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Bottlenecks of the ML-based traffic analysis on dedicated executorl!]
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Intelligent Network Data Plane (INDP)

Today’s ML-based traffic analysis can be forwarding-native
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Motivation

Prior traffic analysis art targeting Intelligent Network Data Plane
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Motivation

Their models rely on advanced feature engineering to boost accuracy
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Motivation

#| Advance INDP to models that are not limited by the availability of flow features
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Motivation

Limited model accuracy on Network Data Plane
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Key Challenges

Challenge |:implement RNN inference on programmable switch

Recurrent Computation Scheme in RNN Match-Action Paradigm in PISA
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Challenge 2: accurately identify the flows for escalation and analyze these flows online
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BoS is a hybrid traffic analysis system with the co-design of:
 An on-switch RNN,
* An off-switch Integrated Model Inference System
* A carefully designed flow escalation mechanism
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CILEES Design Goals and Architecture of Brain-on-Switch
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Design an escalation mechanism to accurately identify the
flows with insufficient confidence from on-switch analysis
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Binary RNN
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Input:
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Binary RNN
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Data Plane Friendly RNN Architecture

Binary RNN * Forward propagation based on match-action
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Binary RNN

length seq IPD seq
v

v
Embedding | | Embedding

STE STE
! !
FC
STE
L —_ T T~ N
GRU
S_i_E Me/rpory
FC + Softmax
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 Expand RNN time steps in serial stages

(® Read the previous hidden state

@ Perform layer GRU M =
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® Update the hidden state
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Data Plane Friendly RNN Architecture

Binary RNN  Expand RNN time steps in serial stages
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Sliding Window Mechanism

When a packet arrives, we use the latest S embedding vectors to get an

intermediate result.
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Sliding Window Mechanism

As the flow proceeds, we shift the window by one packet to processing a new
segment of embedding vectors repeatedly, which produces many intermediate
results.
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Sliding Window Mechanism

For the latest packet, we accumulate all previous intermediate results, and
select the class with the largest cumulative probability as the final result.
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NLEZE Analysis Escalation
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IR Analysis Escalation
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(D Whether a packet is ambiguous is determined by the Confidence Threshold

@ Whether a flow should be escalated is determined by the number of ambiguous packets
in the flow, using the Escalation Threshold

Result: Class 0
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Analysis Escalation

Losses for accurately identifying the flows with insufficient confidence
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Integrated Model Inference System (IMIS)

Enable fast online inference for escalated flows using Transformer-based model

escalated flows
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Evaluation: Setup

Server A Programmable Switch Server B
(Packet Generation) (RNN Analysis) (IMIS Processing)

Metrics E Tasks

*  Packet-level macro-accuracy Encrypted Traffic Classification on VPN
* SRAM and TCAM consumptions

Baselines

e Neural Network on the NIC I
e NetBeacon 2

* Botnet Traffic Classification on loT
*  Behavioral Analysis of loT Devices

*  P2P Application Fingerprinting
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Evaluation: End-to-End Accuracy

Table 3: Analysis accuracy for BoS and other two closely related art.

Methods | BoS NetBeacon [71] (Tree-based Models) N3IC [51] (Binary MLP)
Network Load | Low Normal High Low Normal High Low Normal High
Encrypted Traffic Classification on VPN (ISCXVPN2016)
Email 0.935/0.933 0.936/0.925 0.933/0.923 | 0.309/0.514 0.315/0.524 0.320/0.525 | 0.347/0.326 0.354/0.339 0.367/0.350
Chat 0.903/0.818 0.902/0.818 0.901/0.814 | 0.739/0.935 0.739/0.933 0.742/0.925 | 0.336/0.655 0.336/0.654 0.342/0.656
Streaming 0.926/0.941 0.926/0.939 0.926/0.910 | 0.963/0919 0.962/0904 0.962/0.874 | 0.741/0.608 0.742/0.603 0.743/0.581
FTP 0.973/0.928 0.973/0926 0.973/0922 | 0.946/0.659 0.946/0.655 0.947/0.654 | 0.563/0.396 0.567/0.396 0.575/0.397
VoIP 0.968/0.958 0.968/0.958 0.968/0.957 | 0.938/0.882 0.939/0.881 0.939/0.882 | 0.883/0.783 0.884/0.782 0.886/0.787
P2P 0.905/0.927 0.903/0.928 0.876/0.930 | 0.810/0.959 0.798/0.959 0.778/0.960 | 0.578/0.739 0.577/0.742 0.565/0.748
Macro-F1 0.926 0.925 0.919 0.786 0.784 0.780 0.565 0.567 0.568
Botnet Traffic Classification on IoT (BOTIOT)
Data Exfiltration | 0.964/0.974 0.951/0.973 0.899/0.971 | 0.691/0.845 0.684/0.847 0.658/0.848 | 0.514/0.879 0.508/0.881 0.506/0.879
Key Logging 0.960/0.946 0.961/0.962 0.959/0.902 | 0.921/0.425 0.921/0.419 0.918/0.399 | 0.055/0.033 0.058/0.033 0.052/0.031
OS Scan 0.996/0.996 0.995/0.989 0.995/0.966 | 0.838/0.963 0.841/0.963 0.844/0.945 | 0.831/0.693 0.830/0.677 0.831/0.672
Service Scan 0.993/0.992 0.986/0973 0.979/0978 | 0.928/0.876 0.927/0.870 0.917/0.858 | 0.845/0.663 0.830/0.664 0.840/0.663
Macro-F1 0.978 0.974 0.955 0.785 0.782 0.769 0.547 0.542 0.541
Behavioral Analysis of IoT Devices (CICIOT2022)
Power 0.926/0.887 0.924/0.882 0.921/0.882 | 0.819/0.726 0.820/0.724 0.817/0.724 | 0.639/0.750 0.640/0.750 0.640/0.748
Idle 0.922/0943 0921/0942 0.918/0.941 | 0.810/0.938 0.808/0.938 0.806/0.936 | 0.618/0.640 0.620/0.642 0.622/0.646
Interact 0.934/0946 0.934/0948 0.934/0.943 | 0.871/0.786 0.873/0.786 0.872/0.784 | 0.651/0.504 0.655/0.506 0.661/0.510
Macro-F1 0.926 0.925 0.923 0.822 0.821 0.820 0.629 0.631 0.633
P2P Application Fingerprinting (PeerRush)
eMule 0.943/0.949 0918/0.949 0.898/0.950 | 0.846/0.954 0.821/0.955 0.805/0.954 | 0.734/0.866 0.730/0.867 0.723/0.875
uTorrent 0.949/0.924 0.950/0912 0.941/0.894 | 0.882/0.870 0.885/0.858 0.885/0.831 | 0.734/0.789 0.735/0.790 0.738/0.783
Vuze 0.946/0.962 0.945/0947 0.941/0.930 | 0.910/0.810 0.907/0.790 0.904/0.793 | 0.821/0.626 0.826/0.622 0.826/0.616
Macro-F1 0.945 0.937 0.925 0.877 0.866 0.858 0.755 0.755 0.752

Across 4 tasks, BoS achieves an average Fl-score improvement of 0.13 and 0.31 than NetBeacon and N3IC.
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Evaluation: End-to-End Accuracy
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On more challenging tasks with

more classes, the improvement is even greater, up to 0.17 and 0.39.
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NLE Z 31 Evaluation: Hardware Resource Utilization
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Table 4: Hardware resource utilization.

Datasets ISCXVPN BOT CICIOT Peer
(Tasks) 2016 10T 2022 Rush
Flow Info. (stateful) 5.21% 5.21% 5.21% 5.21%
EV (stateful) 3.65% 3.65% 3.65% 3.65%
SRAM CPR (stateful) 5.63% 3.75% 2.81% 2.81%
FE (stateless) 2.19% 2.19% 2.19% 2.19%
GRU (stateless) 3.02% 1.56% 0.73% 0.73%
Totalx 23.44% 20.10% 18.33% 18.33%
TCAM \ Argmax (Total) \ 1.74% 1.04% 0.69% 0.69%

* Including other components not listed, e.g., packet counters for each flow.

BoS uses 23.44%/20.10%/18.33%/18.33%
of SRAM in 4 tasks, respectively.
(Similar size to NetBeacon)

BoS uses 1.74%/1.04%/0.69%/0.69% of
TCAM in 4 tasks, respectively.
(20x less than NetBeacon)
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Figure 9: [Testbed] The trade-off between percentage of escalated flows and the overall accuracy.

* BoS effectively accommodates the off-switch analysis model to compensate for on-switch analysis.

* Our losses achieve better trade-off between the amount of escalated flows and the overall accuracy.
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* Efficiency of Analysis Escalation & System Performance of IMIS

Evaluation: Deep Dive
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Figure 10: [Testbed] The inference throughput and latency of the off-switch IMIS.

When the number of concurrent flows is below 4096, the maximum end-to-end latency imposed by IMIS
is less than 2 seconds even for 10.0 Mpps inbound rate (equivalently 41 Gbps as the packet sizes we send
are 512 B, and BoS typically escalates less than 5% of flows to IMIS).
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* Scaling Test of the Entire System
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Figure 11: [Testbed] Scaling test of BoS when we progressively increase the aggregate throughput to 100 Gbps.
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Figure 12: [Simulation] Scaling test of BoS when we progressively increase the aggregate throughput to 1.6 Tbps.
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Conclusion of Brain-on-Switch

* BoS is an online traffic analysis system, which is powered by the co-design of an on-
switch RNN, an off-switch Integrated Model Inference System, and a carefully

designed flow escalation mechanism.
* As aresult, BoS can process over 95% of flows with the on-switch RNN accurately,

and escalate the remainning ambiguous flows to the off-switch IMIS, outperforming
prior works in accuracy, scalability and hardware resource utilization.

Source code: https://github.com/InspiringGroup-Lab/Brain-on-Switch

Homepage of our group: https://inspiringgroup.github.io/
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