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Abstract

Large organizations rely increasingly on continuous ML
pipelines in order to keep machine-learned models contin-
uously up-to-date with respect to data. In this scenario, dis-
ruptions in the pipeline can increase model staleness and
thus degrade the quality of downstream services supported by
these models. In this paper we describe the operation of con-
tinuous pipelines in the Tensorflow Extended (TFX) platform
that we developed and deployed at Google. We present the
main mechanisms in TFX to support this type of pipelines in
production and the lessons learned from the deployment of
the platform internally at Google.

1 Introduction

The workflows and underlying systems for machine learning
(ML) in production systems come in different shapes and
sizes. One key distinction is that between one-off and contin-
uous pipelines. One-off pipelines are initiated by engineers
to produce ML models “on demand”. In contrast, continuous
pipelines are “always on”: they ingest new data and produce
newly updated models continuously. The expectation is that a
“fresh” model should be pushed to serving as frequently and
timely as possible in order to reflect the latest trends in the
incoming traffic.

Generally speaking, any ML task whose underlying data do-
main is non-stationary can benefit from continuous training to
keep models fresh. Failing to update models in non-stationary
settings can lead to performance degradation. The frequency
with which models need to be updated depends on the speed
with which the underlying data evolves. We describe two
characteristic examples:

e Recommender Systems: In recommendation systems
the inventory of items that represent the corpus keeps
expanding. As an example, in YouTube new videos are
added every second of the day. The models that retrieve
those items and rank them for users have to be updated
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as the corpus expands to make sure that the recommen-
dations are fresh.

e Perception Problems: In many perception problems, la-
bel acquisition can be slow and costly, while the models
themselves still have not converged. In these cases, it is
beneficial to continuously update the model with new
labeled training data, as long as the performance keeps
improving with newly arriving labels.

The most extreme case of refreshing models is online learn-
ing [3] which updates a model with every received request, i.e.
the serving model is the training model. However, in practice
it is more common to update a model in batches to ensure pro-
duction safety by validating the data and models before they
are updated. At Google, many ML pipelines update models
on an hourly or daily basis. This is often enough for the most
common use-cases we will discuss below.

A key metric for continuous pipelines is model freshness, as
a delay in generating a new model can negatively affect down-
stream services. Given that the arrival of new data is highly
irregular, this necessitates a “reactive” architecture where the
pipeline can detect the presence of new inputs and trigger
the generation of a new model accordingly. This also implies
that continuous pipelines cannot be implemented effectively
as the repeated execution of one-off pipelines at scheduled
intervals, e.g., every 24h: if new data appears slightly after the
scheduled execution of the pipeline, it can take more than one
interval to produce a fresh model which may be unacceptable
in a production setting.

In this paper we describe how we implemented support
for continuous pipelines in the TensorFlow Extended (TFX)
platform [1]. TFX enables Google’s engineers to reliably
run ML in production and is used across hundreds of teams
internally. The design of TFX is influenced by Google’s use
cases and our experience with its deployment. However, we
believe that the abstractions and lessons learned are relevant
for large-scale deployments of continuous ML pipelines in
other environments and organizations.
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Figure 1: Continuous, data-driven pipelines need to be aware
of artifacts, their properties, and lineage.

2  Continuous Pipelines in TFX

2.1 Maintaining State

Continuous pipelines need to maintain state in order to detect
when new inputs appear and infer how they affect the gen-
eration of updated models. Moreover, this state can help the
pipeline determine what results can be reused from previous
runs. For instance, a pipeline that updates a deep learning
model every hour needs to reinitialize (some of) the model’s
weights (also called warm-starting) from a previous run to
avoid having to retrain over all data that has been accumulated
up to this point. Similarly, model validation needs to retrieve
the current production model in order to compare it against a
new candidate model.

To manage this state, TFX introduces an ontology of ar-
tifacts which model the inputs and outputs of each pipeline
component, e.g., data, statistics, models, analyses. Artifacts
also have properties, e.g., a data artifact is characterized by
its position in the timeline and the data split that it represents
(e.g., training, testing, eval). Moreover, TFX maintains the
lineage between artifacts.

2.2  Orchestration

Metadata about artifacts reflects the state of the pipeline and
is recorded in a persistent store. The metadata store supports
transactional updates, so that pipeline components can publish
their output artifacts in a consistent fashion. Moreover, the
store serves as the communication channel between compo-
nents, e.g., the trainer can “listen” for the appearance of data
artifacts and react accordingly. This pub/sub functionality, il-
lustrated in Figure |, forms the cornerstone of component exe-
cution and orchestration in TFX and enables several advanced
properties. First, components can operate asynchronously at
different iteration intervals, allowing fresh models to be pro-
duced as soon as possible. For instance, the trainer can gener-
ate a new model using the latest data and an old vocabulary,
without having to wait for an updated vocabulary. The new
model may still be better than the current model in production.
Second, components can reuse results from previous runs if
their inputs and configuration have not changed. Overall, this
data-driven execution is essential for continuous pipelines
and mostly absent from one-off pipelines.

2.3 Automated Validation

Any system that automatically generates new ML models
must have validation safeguards in place before pushing a
new model to production. Using human operators for these
validation checks is prohibitively expensive and can slow
down iteration cycles. Moreover, these safeguards need to ap-
ply at several points in the pipeline in order to catch different
classes of errors before they propagate through the system.
This implies more than just checking the quality of the up-
dated model compared to the current production model. As
an example, suppose that an error in the data leads to a subop-
timal model. Whereas a model-validation check will prevent
that model from being pushed to production, the trainer’s
checkpointed state might be affected by the corrupted data
and thus propagate errors to any subsequent warm-started
models.

TFX addresses these points by employing several valida-
tion checks at different stages of the pipeline. These checks
ensure that models are trained on high-quality data (data vali-
dation [2]"), are at least as good as or better than the current
production model (model validation”), and are compatible
with the deployment environment (serving infrastructure vali-
dation®).

3 Realizing One-Off, Task-Based Pipelines

TFX also supports one-off or task-based pipelines. The tar-
get audience is engineers who do not need the full power of
continuous pipelines, or engineers who have set up a con-
tinuous pipeline but need to manually trigger execution of
some components, e.g. experimenting with different model
architectures while the input data remain unchanged.

Realizing one-off pipelines with a system that has been de-
signed for continuous pipelines is technically straight forward,
as a one-off run is just one iteration of a continuous pipeline
without prior state. However, the mental model of task-based
execution does not map to that of data-driven orchestration.
Developers who are used to seeing jobs execute in sequence,
as they were defined in a directed acyclic graph (DAG), are
not accustomed to runs being triggered by the presence of
a specific configuration of artifacts, as represented by the
pipeline state.

As a solution, TFX introduces a framework that allows
users to specify job dependency as they would in a task-
based orchestration system. This also allows users of the open
source version of TFX to orchestrate their TFX pipelines with
task-based orchestration systems like Apache Airflow*.

1Using TensorFlow Data Validation.

2Using TensorFlow Model Analysis for model validation.

3Using TensorFlow Serving.

“4Details about the API that allows both modes of executions can only be
added to this paper after March
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https://airflow.apache.org/
https://github.com/tensorflow/data-validation
https://github.com/tensorflow/model-analysis
https://github.com/tensorflow/serving
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