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Abstract

Mobile app energy profilers provide a foundational en-

ergy diagnostic tool by identifying energy hotspots in the

app source code. However, they only tackle the first chal-

lenge faced by developers, as, after presented with the en-

ergy hotspots, developers typically do not have any guid-

ance on how to proceed with the remaining optimization

process: (1) Is there a more energy-efficient implementa-

tion for the same app task? (2) How to come up with the

more efficient implementation?

To help developers tackle these challenges, we devel-

oped a new energy profiling methodology called differ-

ential energy profiling that automatically uncovers more

efficient implementations of common app tasks by lever-

aging existing implementations of similar apps which

are bountiful in the app marketplace. To demonstrate

its effectiveness, we implemented such a differential en-

ergy profiler, DIFFPROF, for Android apps and used it

to profile 8 groups (from 6 popular app categories) of

5 similar apps each. Our extensive case studies show

that DIFFPROF provides developers with actionable di-

agnosis beyond a traditional energy profiler: it identifies

non-essential (unmatched or extra) and known-to-be in-

efficient (matched) tasks, and the call trees of tasks it ex-

tracts further allow developers to quickly understand the

reasons and develop fixes for the energy difference with

minor manual debugging efforts.

1 Introduction

Despite the prevalence of smartphones, the user expe-

rience has remained severely limited by their battery life.

As such, major mobile platform vendors such as Apple

and Google have taken initiatives encouraging app devel-

opers to take effort optimizing their apps [7, 26].

The typical development cycle for optimizing the en-

ergy drain of mobile apps is similar to that for optimiz-

ing the running time of traditional software – iterating

the process of (1) finding hotspots in the app source code

that contribute to a significant portion of the total app en-

ergy drain, and then (2) determining whether and how the

energy hotspots can be restructured to drain less energy.

However, modern mobile apps are highly complex,

easily consisting of millions of lines of source code

and third-party software, and interacting with the OS-

provided frameworks in complex ways. Without the help

of automatic tools, even finding energy hotspots in the

app source code by developers would be very hard.

To this end, mobile app energy profilers (e.g., [32, 31])

made a major step forward by providing a foundational

energy diagnostic tool that automatically identifies en-

ergy hotspots in the app source code. However, these

profilers only help with the first step of the app energy

optimization process, because after presented with the

energy hotspots, developers typically do not have any

guidance on whether and how the energy hotspots can

be restructured to drain less energy.

To help app developers with this remaining challenge

in the energy optimization process, in this paper, we de-

velop a new energy profiling methodology called differ-

ential energy profiling (or energy diffing for short) that

can automatically uncover more efficient implementa-

tions of common app tasks, and in doing so, not only

determines whether an energy-hotspot code segment can

be optimized, but also gives hints on how to optimize it.

The basic idea behind differential energy profiling is

intuitive: if we can find a set of similar apps by dif-

ferent developers that implement many identical app

tasks, chances are the implementations differ and will

have different energy footprint. Directly comparing their

source-code energy profile generated by an energy pro-

filer should expose more efficient implementation from

the less one for the same app tasks.

In this work, we first make three key observations

about the uniqueness of the mobile app marketplace and

common mobile app development practice: (1) Because

of the low barriers to entry of app development, for every

popular app in the app market, there are typically a few

dozen competing apps that implement similar or identi-

cal app functions or app features. (2) Using a traditional

energy profiler, we profiled 8 selected app groups from

6 popular app categories from Google Play, each consist-

ing of 5 similar apps and 5 different versions of one of

them, and we found similar apps can differ significantly

in energy drain in performing similar app functions. (3)

We further observe that mobile apps make heavy use

of the common framework services provided by modern
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mobile OSes such as the Android framework, and our

profiling analysis of the above 8 app groups has shown

similar apps in each group share 38.6% to 81.9% of the

same framework method calls and spent 44.0% to 96.7%

of their app energy drain in calling framework services.

Observations (1) and (2) suggest it is possible to learn

more efficient implementation of the same app task by

comparing the energy profiles of similar apps, but if apps

have very different source code structures, such compar-

ison may not be effective. Observation (3) affirms such

comparison of similar apps is actually meaningful and

potentially effective.

We then present the design and implementation of

such a differential energy profiler, DIFFPROF. Develop-

ing DIFFPROF faces three challenges: (1) What should

be the diffing granularity? (2) How to identify the diffing

units in the source-code energy profiler output of each

app? (3) How to actually diff the energy profiles of simi-

lar apps? We address these challenges as follows:

(1) Using app tasks as the diffing granularity. We ar-

gue following the widely adopted modular programming

principle, an app is typically structured to implement a

number of app features or tasks. Since the ultimate goal

of energy diffing is to uncover more efficient implementa-

tions of app tasks, the ideal diffing granularity that most

directly helps the developers should be an app task.

(2) Characterizing how app tasks manifest in call

trees. Diffing at the app task granularity requires identi-

fying app tasks in the call tree output by a source-code en-

ergy profiler. To address this challenge, we examine the

call trees for top 100 non-game apps and find that app

tasks manifest themselves as Erlenmeyer flask-shaped

slices (denoted as EFLASKS) represented in (call path,

framework-method, subtree) tuples where the call path

identifies the context of the task, the framework-method

is used to invoke the framework service to accomplish

the task, and the subtree captures the particular execution

of the framework service.

(3) An efficient EFLASK matching algorithm. We

give insights on how and why different implementations

(EFLASKS) of the same app task differ which motivates

the need for approximate EFLASK matching. We de-

velop to our knowledge the first EFLASK-shaped tree

slice matching algorithm that accurately finds similar

EFLASKS corresponding to the same app task.

To demonstrate its effectiveness, we implemented

DIFFPROF on top of a state-of-the-art energy profiler

EPROF [32] for Android, and compared it to EPROF

in profiling 8 groups (from 6 popular app categories in

Google Play) of 5 similar apps each. We show DIFFPROF

accurately identifies matched tasks that account for 79%

of the app total energy drain on average as well as unique

tasks (21% of total energy on average), in similar apps.

Further, we conducted 12 case studies to show that

DIFFPROF provides developers with actionable diagno-

sis beyond a traditional energy profiler: (1) When EPROF

identifies energy bottlenecks, they may be necessary or

not inefficient; DIFFPROF identifies non-essential (un-

matched or extra) and known-to-be inefficient (matched)

tasks; (2) The EFLASK of tasks extracted by DIFFPROF

further shows the details of the more efficient implemen-

tation, which allows the developer to quickly understand

the reasons for the energy difference with minor manual

debugging efforts (e.g., setting breakpoints) since the de-

veloper did not author the similar app. Out of the 12 in-

efficient or buggy implementations in 9 apps, 3 of which

have already been confirmed by developers, and remov-

ing them reduces app energy drain by 5.2%–27.4%.

This work makes the following contributions:

• It presents differential energy profiling, which tackles

a key challenge faced by app developers in optimizing

app energy drain - determining whether and how en-

ergy hotspots in app source code can be optimized, by

identifying and comparing different implementations

of the same tasks in similar apps.

• It presents DIFFPROF, an energy diffing tool for An-

droid mobile apps. It describes DIFFPROF’s implemen-

tation and the core algorithm that finds approximate

matching of Erlenmeyer flask-shaped slices in calling

context trees of similar apps, and demonstrates its ben-

efits over traditional energy profilers.

2 Key Insights

The DIFFPROF design is motivated by three key in-

sights we make about the mobile app market.

2.1 Competing/similar apps are abundant

Our first observation is about a unique phenomenon

of the mobile app marketplace: (O1) for every popular

app, there are typically a few dozen competing apps that

implement similar or identical app functions or app fea-

tures. The top 100 non-game apps in Google Play belong

to 34 functionally similar app groups and each of these

categories consists of many competing popular apps. Ta-

ble 1 lists 8 such similar app groups with apps in the

top 100 as well as outside the top 100 apps; the major-

ity of them have 50M+ downloads.1 We see that many

groups include over a dozen similar apps each. More-

over, similar apps, e.g., competing apps such as Pandora

and Spotify, or a popular app (Candy Crush Saga) and

its dozens of clones, typically have similar user interac-

tions. For example, the music playback screens of all

music streaming apps have an album cover image, the

song and the album title, a progress bar, elapsed and re-

maining time text, and buttons to control music playback,

and every app performs music playback.
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Table 1: Eight groups of similar apps from top 100 non-game apps, their competitors, and energy drain measurement.

“*”: Popular but not a top 100 app, “+”: Pre-installed app.

App App Group Similar/Competing Apps Max/min Perc. energy

Category energy ratio in framework

Communica-

tion

Messaging &

calling

Whatsapp, Google Hangouts+, Facebook Messenger, BBM, Line,

Wechat, Viber, Skype, Tango, Whatscall, Telegram, TextNow, imo

8.0 60.2% - 90.3%

Email Yahoo Mail, Gmail, Outlook, Android mail+, Aqua Mail*, Email
For Any*, MailRU*, myMail*

4.6 56.6% - 90.9%

Music &

Audio

Music

streaming

Spotify, Pandora, Soundcloud, iHeartRadio, Youtube Music, Free

music, Napster, Google Play Music+, Apple Music*

4.2 49.6% - 93.8%

Personalization Launcher GO Launcher, CM Launcher 3D*, APUS Launcher*, Solo

Launcher*, Hola Launcher*

3.1 44.0% - 93.8%

Productivity File explorer ES*, FX*, Solid*, File explorer*, File manager* 5.3 89.3% - 94.9%

Shopping Shopping Wish, eBay, Amazon, Walmart, AliExpress, Kohl*, letgo* 3.2 83.1% - 96.7%

Tools Antivirus Supo Security, CM Security AppLock AntiVirus, 360 Security, AVG

AntiVirus, DU antivirus, Mobile Security & Antivirus*, Kaspersky

Antivirus Security*

2.8 53.5% - 91.3%

Cleaning Clean Master, DFNDR, Fast Cleaner - Speed Booster, Turbo cleaner,

Power clean Lionmobi, OK clean lite, DU speed booster & cleaner*,

Ccleaner*

3.6 78.5% - 93.9%

2.2 Similar apps differ in energy drain

Given the abundance of similar apps for every popu-

lar app, we next ask the question: how do they stack

against each other in energy drain, in performing similar

app functions? To answer this question, we profiled the

similar apps in the 8 popular app categories on a Nexus

6 phone running Android 6.0.1 while connected to WiFi.

We use automated tests to perform identical actions

on the similar apps in each group and measure the en-

ergy drained by these actions using EPROF. In particular,

we use UI Automator, the Android black-box UI testing

framework, which does not require app source code.

For each group of similar apps, we first write a generic

base test that interacts with common UI elements. Next,

for each app in the cluster, we launch the app on the

phone and find the unique ids of all the UI elements in-

volved in the base test using Android’s uiautomatorview

tool. Finally, we run the base test with app-specific UI

element ids, thus performing homogeneous interactions

across similar apps. The specific tests for the 8 app

groups are listed in the sub-captions of Figure 1.

Figure 1 contrasts the total energy drain of 5 similar

apps and 5 versions of 1 app under the same user interac-

tions in each of the selected 8 app groups from Table 1.

We observe that the maximal to minimal energy drain

across the 5 apps in each group range between 2.8x to

8.0x, as shown in Table 1. We thus draw our second ob-

servation that (O2) similar apps easily differ significantly

in energy drain in performing similar app functions.

The above observation suggests that directly compar-

ing the energy footprint of similar apps at the source-

code level is promising to diagnose energy hotspots.

However, such comparison will be fruitful only if their

source code have significant overlap.

2.3 Framework services dominate app en-

ergy drain

Our next observation is that mobile apps make heavy

use of the common framework services provided by

modern mobile OSes such as the Android framework.

To simplify app programming, such frameworks imple-

ment and export to apps many services that implement

commonly performed tasks, e.g., the Android frame-

work provides LocationManager, DownloadManager, Me-

diaPlayer, and WindowManager, among others. Typi-

cally, an app presents requirements via configuration pa-

rameters to the services, and the services then perform

the low-level work on the app’s behalf. We hypothesize

that the heavy usage of framework services leads to a

high percentage of app energy drain occurring in these

common services and the framework methods called in

similar apps have a high overlap.

To confirm this hypothesis, we use EPROF to decou-

ple the energy spent in app methods from those spent in

framework services. First, we run dexinfo [5] on all the

framework jar files located in /system/framework/ on

the phone to identify all the framework packages such

as android.view, dalvik.system and java.math. Next,

for each app, we identify all the framework methods in

its energy profiling output belonging to these framework

packages. Finally, we aggregate their energy drain to

compute the total framework energy drain. The remain-

ing energy drain is marked as app energy drain.

Our results (details for only 4 app groups are shown

in Figure 2 due to page limit) show that the apps in the 8

app groups have significant pairwise overlap in the frame-

work methods called during the profiling run, between

38.6% and 81.9% (61.7% on average). Further, Table 1

shows that a significant portion of the total energy of the

apps in each group was spent in framework API calls,

ranging between 44.0% to 93.8% for Launcher apps to
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Figure 1: Energy consumption of similar apps in 8 app groups. Energy drain numbers (in µAh) are direct output of

EPROF, for the actual tests, which vary between 30 seconds to 1 minute long for different app groups.

between 89.3% to 94.9% for File explorer apps. We thus

draw our third observation that (O3) the heavy usage of

framework services leads to a high percentage of app en-

ergy drain occurring in these shared services, up to over

90% of the app energy consumption. This phenomenon

suggests learning more efficient implementations of app

functions by comparing their energy footprints not only

is possible, but actually is a meaningful and practical ap-

proach.

3 How to Diff Energy Profiles?

The above three key insights suggest comparing the en-

ergy profiles of similar apps generated by a source-code

energy profiler has the potential to automatically identify

inefficiencies in implementing common app functions in

similar apps. We call this approach differential energy

profiling, or energy diffing for short.

Developing such a differential energy profiler has to

address three challenges: (1) What is the diffing granu-

larity? (2) How to identify the diffing units in the energy

profiler output of each app? (3) How to actually diff the

energy profiles of similar apps?

3.1 What diffing granularity?
A mobile app typically implements many features. We

refer to the implementation of individual app features in

the source code and their invocations at runtime as app

tasks. Similar apps are expected to implement a common

set of core tasks pertaining to the apps’ common, main

functionality, e.g., music playback along with some basic

UI features (e.g., progress bar) for music streaming apps.

In addition, similar apps by different vendors often

support some differentiating features which result in dif-

ferent tasks at runtime. For example, among the five

streaming apps, SoundCloud uniquely depicts the audio

track using a waveform animation during music play-

back.

Since there are two potential factors that contribute to

the different energy drain of similar apps: (1) different

implementation of common app tasks, and (2) app tasks

unique to each of the similar apps, the natural granularity

for energy diffing of similar apps should be an app task.

3.2 How do app tasks manifest in call trees?

Diffing at the task granularity, however, faces a funda-

mental challenge: app tasks are not explicitly labeled by

developers. To overcome the above challenge, we exam-

ine how app tasks manifest in the call trees of Android

apps.

Android app programming is event-driven where the

Android framework implements frequently used tasks as

services. These Android framework services provide sev-
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Figure 2: Pairwise overlap of similar apps. Lower triangle boxes show the percentage of overlapping framework

method calls (0.30 means 30%). Upper triangle boxes show the matched app tasks in percentage of all tasks.
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ters an asynchronous callback of some other framework

method Y. When framework method Y is invoked, it

starts a new path off the root of the call tree consist-

ing entirely of framework methods. Typical general-

purpose framework methods that serve as the roots of

the call trees include Handler.dispatchMessage and

Binder.execTransact.
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Figure 4: Call trees, dynamic call graphs, and calling

context trees.

What constitutes a task in the call tree? The above call

tree structure suggests an app task typically manifests in

a call tree in an Erlenmeyer flask-shaped [19] slice with

three components 2, as shown in Figure 3:

• Call path: The call path from the root of the call tree

consisting of some F-methods followed by some A-

methods that lead to the F-method uniquely captures

the context of the task, i.e., under which the F-method

was called;

• F-method: The specific F-method invoked by the app

method that is the entry to the invoked framework ser-

vice that accomplishes the app task;

• Subtree: The actual execution of the F-method, given

the context and the parameters passed to the entry

method.

We denote the three-component structure as an EFLASK,

which is a (path, F-method, subtree) task tuple.

In practice, it is often not obvious to isolate all the

EFLASKS in a given call tree that correspond to app tasks,

due to the possibly many layers of interleaving of A-

methods and F-methods. Our EFLASK matching algo-

rithm described in §3.4 takes the call trees of two similar

apps and simultaneously identifies EFLASKS correspond-

ing to app tasks and finds matching tasks.

3.3 What tree structures to diff?

Before discussing the diffing algorithm, we first ex-

plore different options of tree structures to perform diff-

ing, as shown in Figure 4.

Call tree Since EPROF outputs a call tree for each exe-

cution profile, the baseline approach would be to directly
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diff the two call trees (CT). However, this is not practi-

cal, since an app task may be invoked many times during

a profiling run and thus its task tuple may appear many

times in the call tree output. Further, the call tree be-

comes hopelessly large, up to several million call tree

nodes in just a few minutes of a typical profiling run.

Dynamic call graph An alternative approach is to con-

vert call trees to dynamic call graphs (DCG) [9] and diff

DCGs instead, where every method executed has just one

corresponding method node in a DCG. However, using

DCG faces a fundamental challenge that a DCG is not

path preserving, i.e., it may contain code paths that never

occurred during the profile run. For example, the DCG

in Figure 4(b) contains path M → A → B → D which never

occurred in the CT in Figure 4(a). Paths need to be pre-

served for matching the EFLASKS of the same app task.

Calling context tree DIFFPROF overcomes the above

shortcomings of CT and DCG by building and using call-

ing context trees (CCT) [9], a middle ground between

call trees and dynamic call graphs. In a nutshell, two

method call nodes in the call tree are merged in the CCT

whenever both nodes have an identical path from the

root. In addition, recursive calls are merged to the non-

recursive ancestor to keep the tree bounded in size, for

example node A in Figure 4(c)3. Thus, using a CCT pre-

serves the valuable path information while significantly

reducing the number of nodes in the tree. In practice, we

found CCT to contain only tens of thousands of nodes in

a few minutes of profiling run, allowing our sophisticated

matching algorithm to run in less than 30 seconds (§5).

3.4 How to perform EFLASK matching?

We first discuss the need for approximate matching to

find EFLASKS corresponding to the same app tasks. We

then review prior tree matching algorithms, discuss their

drawbacks when applied to our problem, followed by our

EFLASK matching algorithm.

3.4.1 Need for approximate DIFFPROF matching

The above understanding of how app tasks manifest in

call trees in §3.2 suggests that different implementations

and hence their EFLASK structures of the same task in

two apps can differ in the following ways:

• The corresponding call paths may differ slightly. This

can happen for two main reasons. First, apps may

use slightly different mechanisms to achieve the same

app callback. For example, an app can start its

Runnable.run method directly from a new thread, or

via ExecutorService; the two lead to different paths

from root. Second, the app can use different app call-

backs for receiving similar events. For example, the

Turbocleaner app handles the ”clean” button press us-

ing .onClick callback while the DFNDR app uses

.onItemClick callback after which both apps call Ac-

tivity.startActivity to perform a common task.

• The entry F-methods may differ due to two main rea-

sons. First, the same task API can be provided by many

different framework classes. For example, both Https

URLConnectionImpl.getInputStream and HttpURL-

ConnectionImpl.getInputStream get data from a

server, one from an https and another from an http

connection. Second, the same framework class

may provide many alternate APIs to perform the

same app task. For example, three different apps,

Wish, Kohl and letgo, share 8 common nodes in

the call path from the root call and finally call

three different APIs, ImageView.setImageDrawable,

ImageView.setImageBitmap and ImageView.

setImageResource, respectively, for setting an image.

• The subtrees that reflect the actual executions of the

app task in similar apps can differ. Even when the de-

velopers use the same framework API call to accom-

plish a task, the program state and the call parameters

passed in can differ which lead the framework service

to take different paths resulting in different subtrees.

3.4.2 Prior tree matching algorithms

How to match two trees to find similar components

has been previously studied with a diverse set of ap-

plications such as matching RNA structures, structured

text databases and image analysis [12]. However,

prior matching algorithms are not suitable for matching

EFLASKS.

Exact path matching Let T1 and T2 be two CCTs

rooted at r1 and r2, with the set of nodes denoted

by V (T1) and V (T2). Formally, exact path matching

produces a maximal one-to-one node matching4 M ⊆
V (T1)×V (T2), where for any pair (v,w)∈{M− (r1,r2)}:

(r1,r2) ∈ M and (P(v),P(w)) ∈ M

(Path Condition) (1)

where P(v) and P(w) are parents of nodes v and w respec-

tively. However, exact path matching cannot match paths

(e.g., of EFLASK) with minor variations.

Prior approximate tree matching algorithms Tai et

al. [38] gave the first approximate tree matching algo-

rithm. This algorithm produces a maximal one-to-one

matching M where for any pair (v1,w1),(v2,w2) ∈ M:

v1 is ancestor of v2 iff w1 is ancestor of w2

(Ancestor Condition) (2)

The output matching replaces the Path Condition in

Eqn. 1 with a significantly weaker Ancestor Condition

(i.e., Path Condition implies Ancestor Condition). How-

ever, the algorithm is Max-SNP hard.
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To reduce the running time, Zhang et al. [44] added a

Structure Respecting Condition to output matching. This

algorithm produce a matching M, such that for any pairs

(v1,w1), (v2,w2), (v3,w3) ∈ M:

nca(v1,v2) =nca(v1,v3) iff nca(w1,w2) = nca(w1,w3)

(Structure Respecting Condition) (3)

where nca(x,y) is the nearest common ancestor of nodes

x and y. Due to the additional constraint, fewer match-

ing possibilities need to be considered, making the algo-

rithm’s running time polynomial.

However, these algorithms may match EFLASKS with

very different call paths. In contrast to the exact path

matching algorithm which focuses on matching the path

(component of EFLASKS) without considering the sub-

trees underneath, the above approximate matching algo-

rithms match two nodes only based on similarity of sub-

trees (another component of EFLASKS) underneath them

disregarding the call paths. The EFLASK matching al-

gorithm we propose below leverages both the path and

subtree information in matching two nodes, and in doing

so, matches two EFLASKS.

3.4.3 The EFLASK matching algorithm

The EFLASK matching algorithm relaxes the Path Con-

dition incrementally, i.e., the paths from root to matched

nodes in two trees can differ by at most α nodes, and

maximizes the subtree overlap. We replace the Path Con-

dition in the exact matching algorithm with a Relaxed

Path Condition while retaining the Structure Respecting

Condition (Eqn. 3) and Ancestor Condition (Eqn. 2) to

find such matching. Formally, we wish to produce a max-

imal one-to-one matching M, that satisfies Eqn. 2 and

Eqn. 3 and for any pair (v,w) ∈ M:

w ∈Cα(v)

(Relaxed Path Condition) (4)

where Cα(v)⊆V (T2) is the candidate set, where the path

from T2’s root to each node in Cα(v) differs from the path

from T1’s root to v by less than or equal to α nodes. For

example, Figure 5 highlights the nodes in the candidate

set Cα(b) for α equal to 0, 1 and 2. C0(b) contains just

1 node that has the same path from its root as the b in

T1. C1(b) includes 3 additional nodes a, b and c whose

path from root becomes identical to b’s from T1’s root,

r → a → b by doing exactly one operation – deleting b,

deleting a and replacing b by c, respectively.

Notations Before presenting the algorithm we define a

few notations. Let T1,T2 denote two unordered labeled

tree with maximum degrees D1 and D2, respectively. We

denote the set of children nodes of node v by child(v)
and its label by label(v). The path from the root to node

v thus forms a string of labels and is represented by s(v).
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Figure 5: Candidate set Cα(b) for α = 0, 1 and 2.

Let θ denotes an empty tree and let T (v) denote the sub-

tree of T rooted at a node v ∈V (T ) and F(v) denote the

forest under node v, F(v) = T (v)−{v}.

While matching the nodes in two trees, we can per-

form three types of edit operations to the tree nodes – (1)

a relabeling operation to change the node label, (2) a dele-

tion operation to delete node v and make all the children

of v the children of P(v), and (3) an insertion operation,

the complement of deletion.

Let λ denote a special blank symbol. The cost of each

edit operation can be specified using a cost function, γ .

Thus, γ(l1, l2) is the cost of replacing l1 by l2, γ(l1,λ ) is

the cost of deleting l1 and γ(λ , l1) is the cost of inserting

l1. γ is generally assumed to be a distance metric, i.e., γ is

non-negative, symmetric and follows triangular inequal-

ity. We extend the notation such that γ(v,w) for nodes

v and w denotes γ(label(v), label(w)). We assume unit

cost distance in the design of algorithm, i.e., γ(l1, l2) = 1

when l1 6= l2.

Now we are ready to define a few functions and their

properties which form the basis of our algorithm.

Path edit distance function We first find Cα(v) by

computing a path edit distance function ρ . For some

v ∈ V (T1) and w ∈ V (T2), ρ(s(v),s(w)) is the to-

tal cost of edit operations required for v and w to

have identical paths from the root. Thus Cα (v) =
{w ∈V (T2)|ρ(s(v),s(w)) ≤ α}.

Since paths s(v) and s(w) are strings, path edit distance

function ρ(s(v),s(w)) is thus equal to the string edit dis-

tance [41] between s(v) and s(w) and hence can be cal-

culated in a similar manner.

Since we only care about path edit distance when it is

less than or equal to α , we prune some computation as

soon as the distance exceeds α . We can show the runtime

for computing Cα is O(min(N1Dα+2
2 , N1N2)).

Subtree match function Next, we define a subtree

match function µα between two trees. For v ∈ V (T1)
and w ∈ V (T2),µα (T1(v),T2(w)) is the size of maximal

matching of subtrees T1(v) and T2(w) where the match-

ing nodes’ paths differ by at most α .
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Before providing the next lemma, we need the fol-

lowing definition. A restricted matching RM(v,w) is a

matching between nodes of F1(v) and F2(w) and is de-

fined as follows: (1) RM(v,w) follows all the match-

ing conditions – Relaxed Path Condition (Eqn. 4), Struc-

ture Respecting Condition (Eqn. 3), Ancestor Condition

(Eqn. 2), and (2) if (p,q) is in RM(v,w), p is in T1(vi)
and q is in T2(w j), then for any (p′,q′) in RM(v,w), p′

is in T1(vi) iff q′ is in T2(w j) where vi ∈ child(v) and

w j ∈ child(w). In other words, node from a subtree T1(vi)
must only map to nodes of one subtree T2(w j) and vice

versa.

Motivated by the constrained edit distance algo-

rithm [44], we derive the recurrence relationship for µα .

Lemma 3.1. For all v ∈V (T1) and w ∈V (T2),

µα(T1(v),θ ) = 0

µα (θ ,T2(w)) = 0

µα (T1(v),T2(w)) = 0 if w /∈Cα (v)

µα (T1(v),T2(w)) = max













max
w j∈child(w)

µα(T1(v),T2(w j))

max
vi∈child(v)

µα (T1(vi),T2(w))

max
RM(v,w)

µα(RM(v,w))

+(1− γ(v,w))













;

otherwise

Proof. Proof is similar to [44], we skip the details here.

Again, for any v ∈ V (T1), we need to compute

the µα(T1(v),T2(w)) function described above for all

w ∈ Cα(v). The runtime for computing µα is O(N1 ·
min(Dα+1

2 ,N2) · (D1 +D2) · log(D1 +D2))
2.

The EFLASK matching algorithm Putting things to-

gether, the flexible tree matching algorithm makes two

passes. First, it makes a top-down pass to compute Cα(v)
for all v ∈V (T1), i.e., find nodes with call paths different

by at most α nodes. Next, it makes a bottom-up pass to

compute µα(T1,T2). Third, it uses a simple backtrack-

ing mechanism to find for each node v ∈ T1 the matching

node w∈ T2 that maximizes the T1-T2 tree match. Finally,

it finds the matching EFLASKS based on these maximally

matched nodes.

The two passes together simultaneously accomplish

matching of both the call path and the subtree compo-

nents of similar EFLASKS.

3.5 Preprocessing CCTs to facilitate effec-

tive matching

The α value affects the tradeoff between finding more

matching tasks (that vary in their call paths) and false

positive matches. To make the algorithm more effective,

we identified several factors that may increase the path
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erarchy problem.

distance between the paths for the same app task, and pre-

process the CCTs to remove such factors so that more

matchings can be found with smaller α values.

App namespace problem The call paths for the same

task in two CCTs can contain many app methods that are

unique to either app as different developers are likely to

structure and name the app methods differently. Such

app-specific app methods can easily blow up the path

edit distance of the call paths of a matching task. Fig-

ure 6(a,b) show an example of two paths with differing

app methods.

We observe that all the callback app methods must

override some predefined framework methods, and the

remaining internal app methods called from other app

methods have arbitrary names and are also often obfus-

cated. We thus merge all the internal app method calls

into the app callback method root node as shown in Fig-

ure 6(c), and drop the app specific class names from

app’s callback node to allow matching callback methods.

We note that like using DCGs, merging app methods

to address the app namespace problem conceptually also

reduces path sensitivity, but it actually improves the ef-

fectiveness of task matching. This is because the internal

methods of different apps tend to be named very differ-

ently and thus path sensitivity to app method names actu-

ally harms path similarity matching.

Class hierarchy problem A similar issue arises due to

the object-oriented nature of Java, as shown in the follow-

ing example. The two apps in Figure 7(a,b) share a same

task pointed by the dashed arrow, but the first app uses

method S.A which extends and calls method T.A and the

second app directly uses T.A. Each such occurrence in

the path increases the path edit distance by one, and more

occurrences will quickly inflate the path edit distance.

We solve this problem in two steps. First, we merge

T.A into the caller node S.A (S’.A). Second, we tweak

the distance function γ to allow matching S.A with T.A,

i.e., γ(S.A,T.A) = 0. This allows matching the common

task in Figure 7(a,b) with a path distance of zero while

retaining the same path edit distance for sibling classes

in Figure 7(a,c).
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F-method only paths A third situation happens when

a path off the root consists entirely of framework meth-

ods as discussed in §3.2 (path (F0, F1) in Figure 3). When

this happens, in energy profiling, the energy consump-

tion of the call path is not propagated to its asynchronous

caller, i.e., the app task, which leaves the developer clue-

less as to what app task caused the energy drain.

DIFFPROF patches such asynchronous framework

only subtrees to its parent app task by adding additional

logging in the Android framework. In particular, it logs

the callback object’s .hashCode() along with the current

timestamp and thread id, when an asynchronous callback

is enqueued in framework and when the callback is later

dispatched. During post-processing, for each dispatch

method call, the nearest preceding enqueue method call

with matching object .hashCode log is patched as the dis-

patch method call’s asynchronous caller. 5

4 Implementation and Usage

We implemented DIFFPROF on top of EPROF [32]

with 5.7K lines of Java code. DIFFPROF is packaged

as an IDE plugin that can be installed on a laptop, with

a GUI front-end, for interacting with the developer and

computing and showing the energy diffing result. EPROF

traces are collected on a phone running a modified An-

droid 6.0.1 framework version that adds 95 lines to cap-

ture hidden causal relationships due to asynchronous pro-

gramming (§3.5). 6

After collecting EPROF traces of two similar apps, the

developer specifies these traces to DIFFPROF, and DIFF-

PROF performs energy diffing in the following steps. (1)

First, DIFFPROF patches the call tree dumped by EPROF

using the call timing and the log timestamp as described

in §3.5. (2) Next, DIFFPROF converts EPROF’s CT out-

put into CCT and dumps the CCT along with the inclu-

sive and exclusive energy consumption by and the num-

ber of recursive and non-recursive invocations of each

CCT node. (3) Next, the developer is presented with

a list of Java package names that appeared in either app

trace to determine app packages used for merging app

methods as described in §3.5. By default, all packages

not belonging to the Android framework are marked as

app packages. For comparing two different apps, devel-

opers can skip this step, since packages not belonging to

the Android framework are already marked as app pack-

ages. When comparing two versions of the same app,

however, this presents an opportunity for the developer

to unmark certain app packages to expose app-internal

path information (Figure 6) during matching. (4) DIFF-

PROF performs the EFLASK matching algorithm on the

pair of CCTs. (5) Finally, since the EFLASKS of multiple

tasks may share a common path, DIFFPROF assigns the

energy drain for each task as the inclusive energy of the

Table 2: Average running time and matched tasks when

adjusting α . The results are averaged over all app pairs

in each group. α=0 gives the exact matching algorithm.

α 0 1 2 3 4 5

Avg. time (sec) 0.20 1.12 4.89 7.79 16.4 25.7

Avg. % of

matched tasks

10.8 15.6 18.0 19.5 21.3 22.9

F-method.

DIFFPROF gives two outputs: (1) a merged list of

matched (with the other app) and unmatched tasks in the

app, sorted by the energy drain for unmatched tasks and

the energy difference for matched ones, i.e., based on the

potential room for improvement; and (2) upon selection,

a task’s EFLASK in a graphical view.

5 Evaluation

Our evaluation answers the following questions:

(1) Does DIFFPROF effectively identify matching and

unique tasks among similar apps? (2) Does DIFFPROF

offer added benefits over EPROF, in particular, how does

it help developers with understanding and coming up

with more efficient implementation?

5.1 Experimental setup

We use DIFFPROF to profile popular apps belonging

to the 8 app groups in Table 1. For each group, we pick

5 different apps and 4 older versions of one of the 5 apps,

same as in Figure 1. In running the tests, we ensure user

interaction homogeneity using automated testing as de-

scribed in §2.2. All app tests are less than 1 minute long

and are run on a Nexus 6 phone running DIFFPROF’s

modified version of Android 6.0.1. The traces are post

processed and task matching is performed on a Macbook

pro laptop with a 2.5 GHz Intel i5 CPU and 8GB 1600

MHz DDR3 main memory.

Impact of α We first evaluate the impact of changing

α on the EFLASK matching algorithm’s running time and

output. Table 2 summarizes the results. We see that as

expected, the running time grows close to exponentially

with the α value (from 0 to 2 and from 2 to 4). On av-

erage, the algorithm produces the energy diffing output

within half a minute for all values of α ≤ 5.

Next, we observe that the average percentage of match-

ing tasks grows steadily as we increase the value of α ,

starting 10.8% on average at α=0 up to 22.9% at α=5.

The growth slows down at α = 5.

Based on the above result, when profiling the 8 app

groups, for each app pair in a category, we run DIFFPROF

to find the matching tasks using the lowest α that can

match 20% of the tasks, up to α = 5 (shown as dynamic

α in Table 3).
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5.2 Diffing results

The pairwise task overlap for 4 app groups (Music

streaming, Cleaning, Email, Launcher) are shown in the

upper triangles in Figure 2. We see that the task overlap

between similar apps is significant, ranging between 7%–

61%, with an average of 27%, 24%, 28%, and 17%, for

the 4 groups, respectively.

Table 3 gives the details of diffing results for each app

in the 8 app groups. For each app, we classify all its

tasks into tasks that could not be matched with any of the

4 other apps in its category and tasks that were matched

with 4, 3, 2 or 1 other app(s). The columns under “Dy-

namic α” show that the count of such tasks for each app

varies for different categories, e.g., Email apps have 17

5-way matching tasks while Music apps have only 2, sug-

gesting the apps in different categories have different lev-

els of overlapping tasks. We manually examined 20% of

the matched tasks and did not find any false positives.

Table 3 also shows that the percentage of energy

drained by matched tasks (i.e., 1 minus that of unique

tasks energy) is over 70% of the total energy drained by

the app for 32 out of the 40 apps. This suggests that

although it is hard to measure the coverage (false nega-

tive) of task matching produced by DIFFPROF, in prac-

tice, DIFFPROF produces matched tasks that already ac-

count for a majority of the app energy drain which gives

app developers enough focus for optimization.

DIFFPROF also exposes app unique tasks that drain

significant amounts of energy. Table 3 shows Sound-

Cloud and CM launcher drain 53.7% and 43.7% of the to-

tal energy in performing unique app tasks/features, wave-

form animation and rotation animation, respectively.

To show the effectiveness of the EFLASK algorithm,

Table 3 last column lists the number of tasks in each app

that do not get matched using the exact path matching al-

gorithm (α = 0). We see that the EFLASK matching algo-

rithm with dynamic α reduces the number of unmatched

tasks by 13.5% on average (shown in second column).

5.3 Effectiveness

We discuss how DIFFPROF offers added benefits over

a standard energy profiler through extensive case stud-

ies. Our case studies show that DIFFPROF provides de-

velopers with actionable diagnosis beyond a standard en-

ergy profiler in two ways: (1) DIFFPROF identifies non-

essential (unmatched or extra) and known-to-be ineffi-

cient (matched) tasks; (2) the EFLASKS of tasks extracted

by DIFFPROF further expose the reasons for the more

efficient implementation. For convenience, in the fol-

lowing, we often refer to a task by the F-method in its

EFLASK 3-tuple.

Methodology We ran DIFFPROF on the top 3 energy-

draining apps in each of the 8 groups against the least

Table 3: Task overlap for all apps.

Dynamic α α=0

App 0 1 2 3 4 Unique

tasks’

en-

ergy

0

Antivirus

AVG 424 191 45 5 5 7.27% 498

CMSecurity 433 169 36 6 5 20.36% 532

DU 252 68 27 8 5 14.10% 286
Kaspersky 126 48 28 7 5 26.01% 149

MobileSec 165 52 39 9 5 30.02% 227

Cleaner

CCleaner 301 100 41 18 8 23.43% 395

CM 797 290 92 44 8 29.18% 863
DFNDR 402 138 77 46 8 26.48% 495

Fast 265 356 92 55 8 5.11% 286

Turbo 250 234 69 46 8 11.54% 259

Email

Android
Mail

581 67 25 11 17 17.26% 656

Aqua Mail 223 59 28 21 17 6.67% 308

Email For

Any

331 154 193 40 17 3.79% 338

Mail RU 131 129 199 47 17 0.60% 145

myMail 434 200 202 40 17 3.10% 454

File Explorer

ES 244 43 14 4 5 25.15% 272

FX 83 33 5 2 5 4.97% 97

File Exp. 110 42 13 1 5 10.92% 130

File Man. 332 51 9 4 5 24.76% 366

Solid 260 47 16 2 5 7.31% 295

Instant Messaging and Calling

Hangout 780 160 44 7 8 36.50% 881

Line 291 88 35 21 8 29.14% 411

Messenger 928 256 59 13 8 28.00% 1167

TextNow 1405 194 40 4 8 38.47% 1542
Whatsapp 274 107 26 15 8 40.51% 391

Launcher

Apus 430 111 23 6 8 32.77% 495

CM 252 65 30 11 8 43.65% 318

Go 161 50 11 8 8 26.21% 204
Hola 212 45 21 4 8 29.74% 252

Solo 560 132 31 7 8 26.23% 640

Music

FreeMusic 11 6 6 1 2 1.38% 12

Pandora 97 18 5 3 2 17.34% 107
SoundCloud 123 24 10 3 2 53.72% 135

Spotify 14 5 3 3 2 6.23% 14

iHeartRadio 98 34 8 3 2 8.72% 104

Shopping

Amazon 1030 135 54 17 10 32.03% 1118
Kohl 900 218 80 24 10 27.84% 1041

Wish 1321 264 94 30 10 23.15% 1473

eBay 715 172 86 32 10 26.69% 840

letgo 618 222 108 31 10 19.55% 729

Average 409 119 51 16 8 21.14% 473
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Table 4: Buggy and inefficient tasks in case studies and

their energy drain.

App Task Task

energy

drain

(µAh)

% of

total

energy

drain

Unmatched tasks

Hangout ContentResolver.query 44.3 10.1%

Kohl ObjectInputStream.readObject 12.8 3.9%

Kohl ObjectOutputStream.writeObject 10.5 3.2%

Kaspersky Thread.getStackTrace 39.6 14.8%

Pandora
8.0

SharedPreferencesImpl $Edi-
torImpl.apply

22.9 17.5%

DFNDR Runtime.exec 19.5 5.2%

Matched tasks

Wish
Bitmap.compress

100.9 15.9%

letgo 7.14 3.6%

Wish
BitmapFactory.decodeStream

126.3 19.9%

letgo 5.01 2.5%

Pandora5.7
TextView.setText

43.6 28.1%

Pandora8.3 0.74 0.7%

Spotify
ProgressBar.setProgress

29.2 20.2%

Pandora 1.74 1.6%

TextNow
ViewRootImpl.performTraversal

230.5 40.6%

Whatsapp 24.0 28.4%

Solid
Drawable.invalidateSelf

35.5 18.9%

FX 1.24 2.0%

energy-draining app in the same group, and looked at

the top energy-draining app tasks output by DIFFPROF.

Out of these, we skip the cases where the app tasks are

for supporting unique app features (e.g., 47.2% of Sound-

Cloud’s total energy was by a task supporting the wave-

form animation feature). The remaining 12 tasks, sum-

marized in Table 4, all belong to buggy or inefficient im-

plementations, removing which reduces the app energy

drain by 5.2%–27.4% (based on the energy difference).

5.3.1 Unmatched (extra) tasks

Instant Messaging Table 5 shows Google Hangout’s

energy output from EPROF and from DIFFPROF when

compared with Whatsapp. When sorted by inclusive en-

ergy, EPROF shows really high-level Android methods

such as Looper.loop on the top, and when sorted by ex-

clusive energy, it shows really low-level Android meth-

ods such as BinderProxy.transactNative on the top.

Such top energy drainers in both inclusive and exclusive

energy lists are F-methods that do not directly call app

methods and are not directly called by the app; the devel-

opers thus do not get useful guidance on what to focus

on from the long list of EPROF output.

In contrast, DIFFPROF outputs tasks sorted by en-

ergy drain. It shows Hangout consumes more than 10%

of its total energy in an unmatched task ContentRe-

solver.query. Since tasks’ F-methods are directly

called by the app, the top task’s name provides direct

hints to developer on how to optimize the app. EPROF,

Table 5: Rank ordered EPROF’s method energy out-

put and DIFFPROF’s task energy difference output for

Google Hangout compared to Whatsapp. Energy in µAh.

”*”: unmatched tasks.

Rank Method name (EPROF output) Inclusive

energy

1 (toplevel) 436.8

2 void Looper.loop() 220.6

3 void Handler.dispatchMessage( Message ) 207.3

4 void Thread.run() 176.9

5 Object Method.invoke() 175.4
27 Cursor ContentResolver.query() 44.3

Rank Method name (EPROF output) Exclusive

energy

1 boolean BinderProxy.transactNative() 50.8

2 void VMRuntime.runHeapTasks() 11.6
3 void MessageQueue.nativePollOnce() 9.86

4 Object Throwable.nativeFillInStackTrace() 9.39

5 void Trace.nativeTraceBegin() 7.81

1336 Cursor ContentResolver.query() 0.00

Rank Task name (DIFFPROF output) Task

energy

1 Cursor ContentResolver.query()* 44.3

2 int TelephonyManager.getSimState()* 24.9

3 Cursor SQLiteQueryBuilder.query()* 17.2

4 void ObjectOutputStream.writeObject() 11.2

5 Spanned Html.fromHtml() 6.49

however, does not highlight such methods; the top task

method appeared at position 27 when sorted by inclusive

energy and at 1336 when sorted by exclusive energy.

Finding the reasons and optimization for task Con-

tentResolver.query would have been easy for its de-

veloper from the EFLASK output, e.g., the ContentRe-

solver.query method was called 116 times. But since

we did not write the app, to understand this energy drain,

we set a breakpoint at the ContentResolver.query

method and reran the app to examine the parameters

passed to the method. In one call to the method, the app

queries multiple fields that are stored in a local database.

We found that at one message send, the app queries for

81 unique database fields which often are repeated across

two different queries. Moreover, 36 out of the 81 fields,

such as author chat id and author first name, do not

change across two send key presses, but keep on getting

queried at each send. This suggests that there is ample

room for optimization by keeping a staleness flag; only

when the user navigates away from a chat window, the

36 fields can be declared stale and re-queried later.

Shopping Table 6 shows the Kohl’s app’s output from

EPROF and from DIFFPROF when compared with letgo.

DIFFPROF shows ObjectInputStream.readObject and

ObjectOutputStream.writeObject are two top energy

draining extra tasks, consuming 3.9% and 3.2% respec-

tively of its total energy consumption. In contrast,

EPROF outputs them at positions 90 and 133 when sorted

by inclusive energy and at 1516 and 1547 when sorted by

exclusive energy, respectively.
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Table 6: Rank ordered EPROF’s method energy output

and DIFFPROF’s task energy difference output for Kohl

compared to letgo. Energy in µAh. ”*”: unmatched

tasks.

Rank Method name (EPROF output) Inclusive

energy

1 (toplevel) 329.71

2 Object Method.invoke() 149.74

3 void Looper.loop() 134.65

4 void ActivityThread.main() 132.89

5 void ZygoteInit$MethodAndArgsCaller.run() 132.89
90 Object ObjectInputStream.readObject() 12.82

133 void ObjectOutputStream.writeObject() 10.53

Rank Method name (EPROF output) Exclusive
energy

1 void VMRuntime.runHeapTasks() 26.11
2 boolean BinderProxy.transactNative() 11.9

3 Bitmap BitmapFac-

tory.nativeDecodeByteArray()

10.34

4 void DdmVmInternal.threadNotify() 10.02

5 String StringFactory.newStringFromChars() 7.96

1516 Object ObjectInputStream.readObject( ) 0.0

1547 void ObjectOutputStream.writeObject() 0.0

Rank Task name (DIFFPROF output) Task

energy

1 Object ObjectInputStream.readObject()* 12.82

2 Bitmap BitmapFactory.decodeByteArray() 11.19

3 void ObjectOutputStream.writeObject()* 10.53

4 boolean Class.isAnonymousClass() 9.55
5 String JSONObject.toString() 8.24

Since we did not write the app, we dug into the energy

drain by setting breakpoints. We found that the app keeps

the entire catalog and current discount campaigns on the

SD card in catalog.tmp and cms.tmp files respectively

which were 227 KB and 21 KB at the time of the exper-

iment. Whenever a new catalog or a new campaign is

synced with the server, the entire files are dumped again,

rewriting the previous entries; using a database just to

update new entries would have been more efficient.

Note that task View.draw consumes 12.16 µAh energy,

more than the above extra tasks, but does not appear in

the top task list. This is because DIFFPROF prioritizes

the tasks with the most room for optimization: since the

letgo app consumes 8.29 µAh for the same task, the dif-

ference is less than 4 µAh.

Antivirus DIFFPROF highlights

Thread.getStackTrace as an extra task in the Kasper-

sky app which consumes 39.57 µAh, 14.8% of the

app’s total energy drain (position 1 in DIFFPROF

output, but 22 in EPROF output). After decompiling

the app apk using dex2jar [4], we inspected the caller

of Thread.getStackTrace in the app source code and

found that the app collects logs with unicode characters

but in every such attempt, the code throws Unsupport-

edEncodingException which internally collects the

thread stack trace thus unnecessarily wasting energy.

This bug was confirmed by Kaspersky developers.

Music DIFFPROF highlights SharedPreferences-

Impl$Editor.apply as an extra task in Pandora v8.0

that consumes 17.5% of its total energy drain (position

4 in DIFFPROF output but 42 in EPROF output). This

method is used to change app preferences. The Android

developer manual suggests that apps should call Shared-

PreferencesImpl$Editor.edit repeatedly to keep

making changes in memory and then call SharedPref-

erencesImpl$Editor.apply once at the end to commit

all the changes to the disk. However, the app mistakenly

calls SharedPreferencesImpl$Editor.apply once

every second. This bug was confirmed and fixed in the

latest version of the Pandora app.

Cleaner DIFFPROF shows that the DFNDR app calls

framework method Runtime.exec, consuming 19.52

µAh, 5.2% of the app’s total energy consumption (posi-

tion 3 in DIFFPROF output but 50 in EPROF output). We

set a breakpoint at this method and examined its parame-

ters and found that the app runs ps | grep <app pkg> for

each app installed on the phone. Since ps walks down the

entire /proc directory, it would be more efficient to just

obtain the ps output once and parse it to find the fields

related to each app.

5.3.2 Matched tasks

Shopping In diffing Wish and letgo, although the

CCTs of the two apps differ a lot structurally as

shown in Figure 8(a), DIFFPROF is able to match

two commons tasks, Bitmap.compress and Bitmap-

Factory.decodeStream, by collapsing app methods to

⋆.run and its flexible EFLASK matching algorithm.

For the Bitmap.compress task, DIFFPROF shows that

Wish consumes 100.94 µAh, 15.9% of its total energy

drain whereas letgo consumes only 7.14 µAh. To find the

root cause of energy difference, we examined the param-

eters passed to the F-method by setting a breakpoint and

rerunning both apps. We found that Wish compresses

the image into a png image with quality set to 100 while

letgo compresses into a jpg image with quality set to 90.

This causes the large energy difference while the images

shown by both apps are visually similar.

The above image format difference also explains the

energy drain difference between the second common task

BitmapFactory.decodeStream where Wish consumes

126.32 µAh, 19.9% of its total energy drain while letgo

consumes only 5.01 µAh.

Music – Pandora In diffing two versions of Pandora,

DIFFPROF matches the common task TextView.setText

even though structurally their EFLASKS look different,

as shown in Figure 8(b) (merged to save space). DIFF-

PROF shows that the common task consumes 43.63

µAh, 28.1% of its total energy consumption in Pandora

v5.7 but only 0.74 µAh in the latest Pandora app, v8.3.
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Figure 8: Matched tasks between (a) Wish and letgo, (b) Pandora v5.7 and v8.3.

DIFFPROF further highlights the reason for the differ-

ence: in Pandora v5.7, the subtree additionally contains

the ViewRootImpl.scheduleTraversal subtree that tra-

verses and measures the entire view hierarchy. We used

a premium account to disable ads and played the same ra-

dio station on both Pandora versions for two hours while

leaving the phone on the playback screen. We found that

Pandora v5.7 drained 9.2% battery per hour whereas Pan-

dora v8.3 drained only 6.7% battery per hour. We re-

ported this bug to Pandora engineers, who verified that

Pandora v5.7’s layout.xml file erroneously declared the

width of elapsed time and remaining time text views to

wrap content. This flag signals Android’s ViewManager

that the text view must be just large enough to enclose

its content. As a result, every second when the app up-

dates the elapsed time and remaining time text views, An-

droid ViewManager traverses the entire view hierarchy to

recompute the size of the text boxes. The text boxes were

set to a fixed size in later versions of Pandora.

Music – Spotify In diffing Pandora and Spotify

apps, DIFFPROF shows that the common Progress-

Bar.setProgress task consumes 43.63 µAh, 28.1% of

its total energy in Spotify, but just 1.74 µAh in Pandora.

The EFLASK output further shows that Spotify calls this

method from App.doFrame 596 times while Pandora calls

it only 29 times from App.onTrackElapsedTime during

the 30 second music playback, i.e., while Pandora up-

dates the progress bar once per second, Spotify updates it

on every frame, which is unnecessarily frequent as many

frame draws lead to no pixel change.

Instant Messaging In diffing TextNow and Whatsapp,

DIFFPROF shows that TextNow consumes 230.46 µAh,

40.6% of its total energy drain, in calling a common

task ViewRootImpl.performTraversal, almost 10 times

that in Whatsapp. On inspecting the layout of the two

apps with Android’s HierarchyViewer, we found that

TextNow contains 226 views compared to 76 in What-

sapp. Our closer inspection of view properties shows that

172 views in TextNow are in fact not even visible on the

screen. The app statically loads all the possible UI inter-

actions such as pause playing voice note button and

change billing details button icon, keeping them all

in the view hierarchy instead of dynamically loading

views on demand as recommended by Android [3] and

thus inflating the view hierarchy traversal energy. More-

over, the app contains several LinearLayout with just an

ImageView and a TextView which are recommended to

be compressed into one compound view [8] to reduce

the size of the view hierarchy.

File Explorer DIFFPROF shows that Solid explorer

consumes 35.52 µAh, 18.9% of its total energy in task

Drawable.invalidateSelf whereas FX file explorer

only consumes 1.24 µAh. DIFFPROF further shows

that Solid calls Drawable.invalidateSelf 1002 more
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times than FX and that the EFLASK contains ObjectAn-

imator.animateValue followed by Solid’s CircularAn-

imatedDrawable$1.set. Upon inspecting this class, we

found that the app does the animation when a new folder

is created. At each frame, it draws an arc and requests

another frame. However, after the folder gets created,

the app stops drawing the arc but keeps requesting new

frames, unnecessarily wasting energy.

6 Discussions

DIFFPROF’s effectiveness in finding energy optimiza-

tions stems from the large overlap of Android libraries

used among competing Android apps and accurate

source-level energy profiling. As such, its central idea of

diffing source-code-level profiling of similar apps in prin-

ciple can be extended to find optimization opportunities

in other performance metrics of interests to developers,

such as latency, scalability and memory efficiency.

One of the central principles of software engineering,

DRY (Don’t repeat yourself) [24], preaches the use of

reusable code, by abstracting all common reusable code

into standalone libraries. The principle improves modern

software developers’ productivity and has gained wide

adoption in recent years; almost every major build tool

today [1, 6, 2] allows developers to specify library depen-

dencies which are downloaded from a central repository

and packaged with their software. We envision that DIFF-

PROF’s approach can be extended to effectively compare

source-code level profiling measurements of software in

broader domains beyond mobile such as games, web

frontends and server backends.

7 Related work

Performance and energy profiling There is a large

body of work on performance profiling of sequential pro-

grams [20, 15, 30] and concurrent programs [17, 39].

There are also several works on energy profiling for

mobile apps [32, 31, 34, 18]. EPROF [32] performs

source-code-level energy profiling and accounts the en-

ergy drained by each phone component to individual app

method calls. ARO [34] performs cross-layer profiling

for network usage to expose apps’ inefficient interactions

with lower layers. Wattson [31] estimates app energy

consumption on the developer workstation by emulating

different environments such as network conditions, CPU

speed and display technologies. GfxDoctor [18] quanti-

fies the energy drain spent in traversing the entire frame

rendering stack due to each UI update. All such profilers

stop at finding performance/energy hotspots. DIFFPROF

builds on top of such traditional profilers and tackles the

hard but critical question in the app energy optimization

process: whether and how energy hotspots in app source

code can be restructured to drain less energy.

Diffing programs and runtime behavior. (1) Pro-

grams. There has been a large body of research to find re-

gressions introduced from code revisions [13, 36, 22, 23],

and on data mining application source code to detect soft-

ware bugs, e.g., [40]. DIFFPROF allows app developers

to catch and debug energy drain regressions by compar-

ing source-code energy profiles after code revisions. (2)

Runtime behavior. Execution indexing [43] aligns event

logs of two executions of the same program under dif-

ferent input or perturbations and has been used in detect-

ing and understanding security leaks [27], deadlocks [28]

and failures [45, 21]. DIFFPROF aligns calling context

trees of two executions that may be from apps written by

different developers to find energy inefficiencies.

Diffing beyond programs. More generally, diffing is a

pervasive technique that celebrates and exploits diversity

and has been applied to many other scenarios in com-

puter systems and networking. Diffing data has been

applied to storage data for data compression (e.g., [29]),

to network traffic for traffic reduction (e.g., [11, 10]), to

data structures in memory images for detecting polymor-

phic malware [16], and to frames for reducing graphics

energy for mobile devices [25].

Beyond data, many systems, e.g., PeerPressure [42],

ClearView [33], Shen et al. [37], Encore [46], and Diff-

Prov [14], apply diffing to learn or detect deviations from

the correct or reference behavior, via statistical analysis

or data mining, for detecting and diagnosing misconfig-

urations, performance anomalies or faulty events in the

network and distributed systems.

8 Conclusion

This paper presents differential energy profiling which

tackles the hard but critical question in the app energy op-

timization process faced by app developers: whether and

how energy hotspots in app source code can be restruc-

tured to drain less energy. By performing approximate

matching of energy profiles of similar apps by a tradi-

tional energy profiler, energy diffing automatically un-

covers more efficient implementations of common app

tasks and app-unique tasks among similar apps. We

show how our prototype DIFFPROF tool provides de-

velopers with actionable diagnosis beyond a traditional

energy profiler: it effortlessly reveals 12 inefficient or

buggy implementations in 9 apps, and it further allows

(non)developers to quickly understand the reasons and

develop fixes for the energy difference.
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Notes

1We did not include social networks because their main app func-

tions appear to differ (e.g., Facebook, twitter, snapchat).
2F-method-only paths will be patched to other tasks as discussed in

§3.5.
3Refer to [9] for more details on calling context tree construction.
4A maximal one-to-one matching matches the most nodes in the

two trees.
5Our approach to tracking events is similar to AppInsight [35], but

instead of instrumenting app binary, we directly modify the Android

framework to track asynchronous calls. Since we use timestamp and

thread id in addition to hashCode to track objects, we did not see prob-

lems due to hashCode collisions in our experiments.
6 Since EPROF does not break down app energy drain into native

code methods - it simply folds native code’s energy into JNI boundary

method for Java, DIFFPROF would not be able to identify tasks in native

code. In practice, tasks typically start from framework callback Java

methods and hence most of the task structures are captured in the Java

methods that invoke the native code.
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