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Abstract

Live patching has become a common technique to keep long-
running system services secure and up-to-date without caus-
ing downtimes during patch application. However, to safely
apply a patch, existing live-update methods require the entire
process to enter a state of quiescence, which can be highly
disruptive for multi-threaded programs: Having to halt all
threads (e.g., at a global barrier) for patching not only ham-
pers quality of service, but can also be tremendously difficult
to implement correctly without causing deadlocks or other
synchronization issues.

In this paper, we present WFPATCH, a wait-free approach
to inject code changes into running multi-threaded programs.
Instead of having to stop the world before applying a patch,
WFPATCH can gradually apply it to each thread individually
at a local point of quiescence, while all other threads can make
uninterrupted progress.

We have implemented WFPATCH as a kernel service and
user-space library for Linux 5.1 and evaluated it with Open-
LDAP, Apache, Memcached, Samba, Node.js, and MariaDB
on Debian 10 (“buster”). In total, we successfully applied
33 different binary patches into running programs while they
were actively servicing requests; 15 patches had a CVE num-
ber or were other critical updates. Applying a patch with
WFPATCH did not lead to any noticeable increase in request
latencies – even under high load – while applying the same
patch after reaching global quiescence increases tail latencies
by a factor of up to 41× for MariaDB.

1 Introduction

The internet has become a hostile place for always-online sys-
tems: Whenever a new vulnerability is disclosed, the respec-
tive fixes need to be applied as quickly as possible to prevent
the danger of a successful attack. However, it is not viable
for all systems to just restart them whenever a patch becomes
available, as the update-induced downtimes become too ex-
pensive. The prime example for this are operating-system

updates, where rebooting can take minutes. However, we in-
creasingly see similar issues with system services at the appli-
cation level: For example, if we want to update and restart an
in-memory database, like SAP HANA or, at smaller scale, an
instance of Memcached [11] or Redis [32], we either have to
persist and reload their large volatile state or we will provoke
a warm-up phase with decreased performance [26]. With the
advent of nonvolatile memory [24], these issues will become
even more widespread as process lifetimes increase [19] and
eventually even span OS reboots [35]. In general, downtimes
pose a threat to the service-level agreement as they provoke
request rerouting and increase the long-tail latency.

A possible solution to the update–restart problem is dy-
namic software updating through live patching, where the
patch is directly applied, in binary form, into the address space
of the running process. However, live patching can also cause
unacceptable service disruptions, as it commonly requires the
entire process to become quiescent: Before applying the patch,
we have to ensure that a safe state is reached (e.g., no call
frame of the patched function f exists on any call stack dur-
ing patching), which usually involves a global barrier over all
threads – with long and potentially unbounded blocking time.
In programs with inter-thread dependencies it is, moreover,
tremendously difficult to implement such a barrier without
risking deadlocks. To circumvent this, some approaches (such
as UpStare [22]) also allow patching active functions, which
involves expensive state transformation during patch applica-
tion. Others (like KSplice [3]) probe actively until the system
is in a safe state, which, however, is unbounded and may never
be reached. Moreover, even in these cases it is necessary to
halt all threads during the patch application. DynAMOS [23]
and kGraft [29] avoid this at the cost of additional indirection
handlers, but are currently restricted to the kernel itself as
they rely on supervisor mechanisms. So, while disruption-
free OS live patching is already available, live patching of
multi-threaded user-space servers with potentially hundreds
of threads is still an unsolved problem.

In a Nutshell We present WFPATCH, a wait-free live patch-
ing mechanism for multi-threaded programs. The fundamen-
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tal difference of WFPATCH is that we do not depend on a
safe state of global quiescence (which may never be reached)
before applying a patch to the whole process, but instead can
gradually apply it to each thread at a thread-specific point of
local quiescence. Thereby, (1) no thread is ever halted, (2) a
single hanging thread cannot delay or even prevent patching
of all other threads, and (3) the implementation is simpli-
fied as quiescence becomes a (composable) property of the
individual thread instead of their full orchestration. Techni-
cally, we install the patch in the background into an additional
address space (AS). This AS remains in the same process and
shares all memory except for the regions affected by the patch
– which then is applied by switching a thread’s AS.

A current limitation of WFPATCH is that we can only patch
read-only regions (.text and .rodata). In particular, we can-
not apply patches that change the layout of data structures
or global variables. However, WFPATCH is intended for hot
patching and not for arbitrary software updates and the vast
majority of software fixes are .text-only: In our evaluation
with OpenLDAP, Apache, Memcached, Samba, Node.js, and
MariaDB, this holds for 90 out of 104 patches (87%). For
CVE mitigations and other critical issues, it holds for 36 out
of 41 patches (88%).

This paper makes the following contributions:

• We analyze the qualitative and quantitative aspects of
global quiescence for hot patching and suggest local quies-
cence as an alternative (Section 2, Section 4).

• We present the WFPATCH wait-free code-injection ap-
proach for multi-threaded applications and its implementa-
tion for Linux (Section 3).

• We demonstrate and evaluate the applicability of WF-
PATCH with six multi-threaded server programs (Open-
LDAP, Apache, Memcached, Samba, Node.js, and Maria-
DB), to which we apply patches under heavy load (Sec-
tion 4).

The patching procedure itself is out of scope for this paper,
specifically, how binary patches are generated and what kind
of transformations take place when applying them to an AS.
Without loss of generality, we used a slightly modified version
of Kpatch [30] to generate the binary patches for this paper.
However, WFPATCH is mostly transparent in this regard and
could be combined with any patch generation framework. We
discuss its general applicability, the soundness and limitations
and other properties of WFPATCH in Section 5 and related
work in Section 6 before we conclude the paper in Section 7.

2 Problem Analysis: Quiescence

Most live-patching methods require the whole system to be
in a safe state before the binary patch gets applied. Thereby,
situations are avoided where the process still holds a reference
to memory that is modified by the update. For example, for a

Thread #1
...
work();
QP();

Thread #2
...
x=read();
QP();

Thread #3
while(1) {

wait(X);
QP();

}

Thread #4
while(1) {

signal(X);
QP();

}

Global-Quiescence Barrier

X

depends3

1 2

Figure 1: Problems of Global Quiescence. As all threads have
to synchronize at the global-quiescence barrier, problems in
individual threads can prolong the transition phase: (1) Long-
running computations introduce bounded delays, (2) I/O wait
leads to (potentially) unbounded barrier-wait times, and (3)
inter-thread dependencies force a specific arrival order to
avoid deadlocks.

patch that replaces a function f , the system is in a safe state
if no call frame for f exists on the execution stack (denoted
as activation safety in the literature [16]). Otherwise, it could
happen that a child of f returns to a now-altered code segment
and provokes a crash. While defining and reaching safe states
is relatively easy for single-threaded programs, it is much
harder for multi-threaded programs, like operating systems or
network services.

In general, a safe state of a running process is a predicate
Ψproc over its dynamic state S. For a multi-threaded process,
we can decompose this predicate into multiple predicates, one
per thread (th1, th2, . . . ), and the whole process is patchable
iff all of its threads are patchable at the same time:

Ψproc(S)⇔Ψth1(S)∧Ψth2(S) . . .

One possibility to bring a process into the safe state is to
use global quiescence and insert quiescence points into the
control flow: When a thread visits a quiescence point its ΨthN
is true and we let the thread block at a barrier to keep the
thread in this patchable state. One after another, all threads
visit a quiescence point, get blocked at the barrier, and we
eventually reach Ψproc after all threads have arrived. In this
stopped world, we can apply all kinds of code patching and
object translations [17, 15] as we have a consistent view on
the memory.

However, global quiescence is problematic as it can take
– depending on the system’s complexity – a long or even
unbounded amount of time to reach. Furthermore, eager
blocking at quiescence points can result in deadlocks: If the
progress of thread A depends on the progress of thread B,
thread B must pass by its quiescence points until thread A
has reached ΨA(S). Even worse, in an arbitrary program, it
is possible that ΨC(S) and ΨD(S) contradict each other such
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that Ψproc(S) can never be reached. Therefore, programmers
need an in-depth understanding of the system to apply global
quiescence without introducing deadlocks, and they must take
special precautions to ensure that it is reachable eventually.

Figure 1 illustrates these problems. For example, if any
thread in the system is performing a long-running computa-
tion when the patch request arrives, that is, Problem 1, the
others will reach the barrier, which is now activated, one by
one and stop doing useful work. During this transition-period
clients will notice significant delays in response times and
requests will queue-up or even time out. We have seen this
problem in most of the systems that we examined. For ex-
ample, Node.js threads perform long-running just-in-time
compilation of Javascript code.

Similarly, in Problem 2, a thread is waiting on an IO opera-
tion. During this potentially unbounded period, other threads
will reach the barrier. Again, the overall progress rate de-
teriorates before it becomes zero during the patching itself.
This happens, for instance, when the Apache web server is
transferring huge files to a client or executing a long-running
PHP script. In an extreme case, the system could even have
a thread that is waiting for interactive user input that never
comes. Both problems are hard to avoid without changing the
complete software structure by the programmer who has to
insert quiescence points. Sometimes I/O operations can be
quiescence points, but this is application-specific; for exam-
ple, an I/O operation deep in the call stack or with locks held
would be no suitable point for quiescence.

Problem 3 is more subtle and related to inter-thread depen-
dencies. In MariaDB, for instance, worker threads perform
database transactions and, thus, have to be synchronized. If a
thread that is holding a lock reaches the barrier and blocks,
a deadlock will occur if another thread tries to acquire that
lock. In this case, the second thread would block and never
reach the barrier to free the lock-holding thread. Therefore,
a lock-holding thread must not enter the barrier, although its
ΨthN(S) is true, to avoid the cyclic-wait situation between
barrier and lock. More generally speaking, applying global
quiescence correctly requires full knowledge about all inter-
thread dependencies where one thread’s progress depends on
another thread’s progress.

In this paper, we mitigate the aforementioned problems by
proposing the concept of local quiescence. Our main contri-
bution is the concept of address-space generations, that is,
slightly differing views of an AS that can be assigned on a
per-thread basis. This makes it possible to prepare a patch in
the background in a new AS and to migrate threads one-by-
one to the patched universe. A global barrier is not needed.
The approach is “wait-free” in the sense that a thread that has
reached a quiescence point (ΨthN(S) is true) can be patched
immediately. Sections 4.2 and 5 discuss how this approach
and its limitations apply to widely-used software projects.

Figure 2 illustrates the difference between the normal
“global quiescence” approach (upper half) and the proposed

Patch
Request

Listener 1 2 3

Conn. #1 1.1 2 1.2 1.3

Conn. #2 block() 2.1

1

3
1 PA

Background

Global Quiescence

t

Unpatched Patched I/O Wait Dependency Barrier Wait

signal()

Patch
Request

Listener 1 2 3

Conn. #1 1.1 1.2 1.3

Conn. #2 block() 2.1

Background

Patcher PA
t

Migration Phase

signal()

Figure 2: Live Patching a Multi-Threaded Server with Global
(upper half) vs. Local (lower half) Quiescence. The global
quiescence approach suffers from Problem 1–3 (see Figure 1)
while the threads with the local quiescence model can be
migrated to the patched state individually.

“local quiescence” (lower half). The scenario is a database
server with a “Listener” thread for accepting connections,
connection threads (“Conn. #1 and #2”) for each client con-
nection, and a “Background” thread for cleanup activities. The
patch request comes in asynchronously while the listener is
accepting the second connection. At this point in time “Conn.
#1” has already started a transaction and is holding a lock. In
the upper half (global quiescence) we find all three problems
again. For example, the computation time of 1.1 and 2.1 as
well as the I/O wait between 1.1 and 1.2 delay the patch appli-
cation. During this period, the listener does not accept any new
connections (request 3) and the background thread is blocked.
Furthermore, the programmer must make sure that “Conn. #1”
does not block at the barrier before executing 1.2 and releas-
ing the transaction lock, as this would lead the whole system
into a deadlock. With local quiescence, each thread can be
migrated to the patched program version individually. Thus,
no artificial delays are introduced and the quality of service is
unaffected. For all but one thread the patch is applied earlier
than in the global quiescence case. These seconds might be
crucial in the case of an active security attack. Furthermore,
deadlocks cannot occur as long as the patched version of the
code releases the transaction lock.
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Figure 3: Process during the Wait-Free Patching

3 The WFPATCH Approach

Most previous live-patching mechanisms require a global safe
state before applying the changes to the address space (AS)
of the process. With our approach (see Figure 3), we reverse
and weaken this precondition with the help of the OS and a
user-space library: Instead of modifying the currently-used
AS, we create a (shallow) clone AS inside the same process,
apply the modifications there in the background, and migrate
one thread at a time to the new AS, whenever they reach a
local quiescence point, where their ΨthN becomes true. In the
migration phase, we require no barrier synchronization and
all threads make continuous progress. After the migration is
complete, we can safely drop the old AS.

While both AS generations exist, we synchronize memory
changes efficiently by sharing all unmodified mappings be-
tween old AS (Generation 0) and the new AS (Generation 1):
We duplicate the memory-management unit (MMU) config-
uration but reference the same physical pages. Thereby, all
memory writes are instantaneously visible in both ASs and
even atomic instructions work as expected. Only for patch-
affected pages, we untie the sharing lazily with existing copy
on write (COW) mechanisms.

3.1 System Interface

As WFPATCH requires a kernel extension for handling
multiple AS generations per process, we introduce four
new system calls: wf_create(), wf_delete(), wf_pin(), and
wf_migrate(). By the integration into the kernel, we are able
to modify the AS without halting the whole process.

With wf_create(), the kernel instantiates a new AS gener-
ation which is a clone of the process’s current AS. Any thread,
even from a signal handler, can invoke wf_create(). AS gen-
erations are identified by a numeric ID and can be deleted
with the wf_delete() system call. We keep AS generations
in sync and changes to the AS are equally performed on all
generations.

With wf_pin(), we can configure, in advance, memory re-
gions that are not shared between AS generations. Within
pinned regions, memory writes and page-protection changes
will only affect the AS generation of the current thread.
Thereby, we are able to have AS generations that differ only
in patched pages.

On creation, new AS generations host no threads, but indi-
vidual threads migrate explicitly by calling wf_migrate(AS).
On migration, the kernel modifies the thread control block
(TCB) to use the patched AS, and the thread continues im-
mediately once the system-call returns. For live patching,
threads invoke wf_migrate(), via our user-space library, at
their local-quiescence points.

3.2 Implementation for Linux
We implemented the WFPATCH kernel extension as a patch
with 2000 (added or changed) lines for Linux 5.1. We tested
and evaluated WFPATCH on the AMD64 architecture but it
should work on every MMU-capable architecture supported
by Linux. The basic idea is to clone address spaces in a fork-
like manner and rely mostly on the page-sharing mechanism
to keep clones lightweight and efficient. In contrast to fork,
we do not apply COW, and we synchronize mapping changes
between the generations.

The Linux virtual-memory subsystem manages ASs in two
layers: The lower layer is hardware dependent and consists
of page directories and tables, which have on AMD64 up
to 5 (sparsely-populated) indirection levels. On top of this,
virtual memory allocations (VMAs) group together the non-
connected pages into continuous ranges. VMAs contain infor-
mation for the page-fault handler (e.g. file backing), swapping,
and access control. Together, page directories and the list of
VMAs, are kept in the memory map (MM), which is attached
to a thread control block (TCB).

While Linux normally has a one-to-one relation between
MM and process, we discard this convention and let threads
in the same process have different MMs, which are siblings
of each other. Each AS generation has its own distinct MM,
which we keep synchronized with its siblings.

Besides adding a list of all existing siblings to the process,
we extended each MM to include a reference to a master MM.
We use this master MM, which is the process’s initial MM and
its very first generation, to keep track of all shared memory
pages. Furthermore, we use the master MM as a fallback for
lazily-instantiated page ranges. Therefore, the master persists
until the process exits. It cannot be deleted before, even if no
thread currently executes in this generation.

When the user calls wf_pin() on a memory region, we
mark underlying VMAs as non-shared between generations.
We allow pinning only on the granularity of whole VMAs and
before the first call to wf_create(), when the master MM is
the only MM in the process.

On wf_create(), we duplicate the calling thread’s MM
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similar to the fork() system call when it creates a new child
process: For each VMA of the MM, we copy it and its as-
sociated page directories to the newly created sibling MM,
while all user-pages are physically shared between genera-
tions. While fork() marks all user pages as COW, we use
COW only for pinned VMAs, while most VMAs behave
as shared memory regions, which results in the automatic
synchronization of user data between generations. By using
Linux’s COW mechanism for the pinned regions, we are able
to lazily duplicate only those physical pages that are actually
modified by the patch. After duplication, we select a new
generation ID and insert the MM into the process’s sibling
list.

When a thread calls wf_migrate(), we modify its TCB to
point to the respective sibling MM. When the thread returns
from the system call, it automatically continues its execu-
tion in the selected AS generation. Furthermore, each thread
that inhabits a generation increases the reference count of
the generation by one. Thereby, we ensure that a generation
keeps existing as long as threads execute in this address space,
even after the user has instructed us to remove the generation
(by calling wf_delete()). Only after the last thread leaves a
deleted generation, we remove the MM and its page directo-
ries.

While the system call interface of WFPATCH is straight-
forward to implement, its integration with other system calls
and the page fault handler requires special attention: As some
system calls (e.g., mmap(), mprotect(), or munmap()), change
a process’s AS, we modified these system calls to apply their
effects, as long as they touch shared VMAs, not only to the
currently active MM but also to all siblings. However, modi-
fying the protection bits for regions in pinned mappings (via
mprotect()) affects the current MM only.

We also had to modify the page-fault handler, as Linux
allows VMAs and the underlying page directory to become
out of sync. For example, within a newly-created anonymous
VMA, no pages are mapped in the page directory, but they
are lazily allocated and mapped by the page-fault handler. By
having multiple sibling MMs, we have to make such lazy page
loads visible in all generations, when they happen in a shared
VMA. We accomplish this by updating not only the current
page directory, but also the page directory of the master MM.
Upon page faults, we first search the master MM for lazily
loaded pages, before allocating a new page.

In order to avoid race conditions between concurrent sys-
tem calls that modify a process’s AS, we use the master MM
as a read-write lock that protects all siblings at once. Nor-
mally, the MM linked in the TCB is used for this synchro-
nization, but this is insufficient for WFPATCH to synchronize
concurrent accesses. Therefore, we decided to use the master
MM as a locking proxy and automatically replaced all MM
locks with equivalent lock calls to the master MM by using a
Coccinelle [27, 28] script. This replacement alone is respon-
sible for 700 of the 2000 lines of changed source code. For

processes that do not have multiple generations, this locking
strategy imposes no further overhead as the initial MM is the
master MM.

In case a process with mutliple AS generations invokes
fork(), we clone solely the calling thread’s currently active
generation and make it the only generation in the AS of the
child process. This is sufficient, as fork() only copies the
currently active thread to the newly created process. In order
to maintain COW semantics between the forked AS and all
generations of the original AS, we have to mark the appropri-
ate page-table entries of all generations as COW pages (i.e.
set the read-only flag) – not only the entries of the two directly
involved MMs, as we normally would do. This poses a small
overhead when forking processes with multiple generations.

When a COW page gets resolved in an AS with multiple
generations, we must ensure that the newly copied page re-
places the old shared page in all generations, not just in the
current one. Therefore, the page fault handler removes the
corresponding page-table entry in all generations and maps
the new page into the master MM. The master MM fallback
mechanism will fill the siblings’ page-table entries again (with
the copied page) in case of a page fault.

As the AS generations are technically distinct MMs, the
migration of a thread to a new AS generation is treated like
a context switch between processes. Each generation gets its
own address-space identifier (ASID) on the processor. Thus,
there is no need for a TLB shootdown on AS migrations. Of
course, a TLB shootdown (for all generations) is still neces-
sary if access rights become more restricted.

While our kernel extension is a robust prototype, several
features are still missing (e.g., userfaultfd, a mechanism to
handle page faults in user space) and some are not extensively
tested (e.g., swapping, NUMA memory migration, memory
compaction). However, for none of these features, we see any
fundamental problem that would conflict with our approach
or cause a significant deterioration in the performance of the
overall system after adding full support.

3.3 User-Space Library

Our proposed system interface (see Section 3.1) allows a
process to create new AS generations, to migrate individual
threads, and to delete old generations. In order to utilize this
system-call interface for live patching with local quiescence,
we built a user-space library around this system-call interface.
In the following, we will describe its API as well as its usage
in a multi-threaded server with one thread per connection (see
Figure 4).

At start, the user initializes and configures our library with
wf_init(): With track_threads, she promises to signal the
birth and death of threads such that our library can keep track
of all currently active threads and delete old AS generations
after the last thread has migrated away. Alternatively, the
user can configure a callback that returns the current number
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void worker(int fd) {
wf_thread_birth();
while (!done) {
x = read(fd);
work(x);
wf_quiescence();

}
wf_thread_death();

}

int main(void) {
wf_config_t config = {
.track_threads = 1,
.on_migration_start=&f,
};
wf_init(config);
wf_thread_birth();
signal(RTMIN, sigpatch);
...
while (true) {
int c = accept();
spawn_worker(c);
wf_quiescence();

}
}

void sigpatch(int) {
char *p;
p = find_patch();
wf_load_patch(p);

}

Figure 4: Usage of our User-Space Library

of threads. Furthermore, the user can install other callbacks
that we invoke at certain points of the migration cycle. In
the example, we invoke f() when the new AS is ready for
migration and, thereby, give the user the possibility to trigger
blocked threads in order to speed up the migration phase.
With the initialization, the library starts the patcher thread,
which pins the text segment, creates new AS generations, and
orchestrates the migration phase.

As initiation of live updates and the location of patch files is
application specific, we leave this to the user application and
only provide a library interface to start the patching applica-
tion (wf_load_patch()). This function instructs the patcher
thread to load a binary patch from the file system and apply
it in a new AS generation. In our current implementation,
wf_load_patch() supports ELF-format patches created by
Kpatch [30]. These patches are loaded, relocated, and all con-
tained functions are installed in the cloned text segment via
unconditional jumps at the original symbol addresses. Further-
more, all references within the patch to unmodified functions,
global variables, and shared-library functions are resolved
dynamically. Afterwards, the patcher marks the new AS as
ready for migration and sleeps until all thread have migrated.

At the thread-local quiescence points, the user has to call
wf_quiescence() periodically, which checks if a new AS
generation is available and ready for migration. If so, the
library calls wf_migrate() in the context of the current thread
and increases the number of migrated threads. After all threads
have migrated, the patcher thread is woken, deletes the old
AS generation and ends the migration phase.

4 Evaluation

We evaluate WFPATCH with six production-quality infrastruc-
ture services on a Linux 5.1 kernel running the Debian 10
Linux distribution (codename “buster”, released on 2019-07-
10). Table 1 provides a brief overview of the respective De-
bian packages for OpenLDAP, Apache HTTPD, Memcached,
Samba, Node.js, and MariaDB. We use the initial Debian 10

packages and prepare the server executables for dynamic
patching with global and local quiescence (Section 4.1). Our
goal is to apply all patches published by the Debian main-
tainers until 2020-05-09 for these binaries with our approach
(Section 4.2). This situation mimics a system administrator
who maintains a long-running server running one of these
services.

For quantitative evaluation, we measure and compare the
service latency while applying a binary patch with global
and local quiescence (Section 4.3), respectively, as well as
the memory and run-time overheads caused by WFPATCH
(Section 4.4).

4.1 Implementation of Quiescence
As outlined in Section 2, implementing global quiescence
in a complex multi-threaded program can be a difficult un-
dertaking causing three problems in general: Long-running
computations (Problem 1) and waiting for I/O (Problem 2)
prolong the transition period, which results in deteriorating
service quality, while inter-thread dependencies necessitate
stopping the threads in an application-specific order to avoid
deadlocks (Problem 3). In the following, we describe how
we encountered these three problems in our evaluation tar-
gets and how they manifest in their structure and fundamental
design decisions. Besides the steps we had to take in order
to achieve global quiescence, we also describe how we can
reach local quiescence for each of the projects we evaluated.
OpenLDAP The OpenLDAP server (slapd) uses a listener
thread that accepts new connections and dispatches requests
as work packages to a thread pool of variable, but limited
size (≤ 16 threads). Each work package is processed by a
single worker thread, which alternates between computation
and blocking I/O until the request is answered.

For global quiescence, we submit a special task to the thread
pool. The executing worker pauses all other workers with the
built-in pause-pool API, which can only be called from a
worker context, and visits a quiescence point on behalf all
worker threads. Since the listener thread waits indefinitely for
new connections, we need to introduce an artificial timeout
(1 second) to provoke quiescence points periodically. For
local quiescence, we only introduce a quiescence point before
the listener waits for a new connection and after a worker
thread completes a task.

As worker threads execute client requests as a single task
without visiting a quiescence point, complex requests (prob-
lem 1), slow client connections (problem 2), and large result
sets (problem 2) prolong the barrier-wait time.
Apache The default configuration of the Apache web server
(httpd) uses the built-in multi-processing module event,
which implements one dedicated listener thread and a config-
urable number of worker threads (default: 25). That listener
thread handles all new connections, all idle network sock-
ets, and all network sockets whose write buffers are full to
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avoid blocking of the worker threads. In its main loop, the
listener thread periodically checks for activity on the listen-
ing, idle, and full network sockets by using the Linux system
call epoll() with a timeout of up to 30 seconds, which can
cause Problem 2. Once a network socket becomes active, the
listener thread unblocks the next free worker thread to serve
that socket.

We introduce one quiescence point into each main loop
of the listener and worker threads. For global quiescence,
however, we have to make sure that the listener thread enters
global quiescence after all worker threads have done. Other-
wise, some worker threads may block indefinitely because
the listener thread cannot unblock them anymore (Problem 3).
When returning from global quiescence, the listener’s timeout
queue needs to be fixed manually to account for the elapsed
time spent in global quiescence.

Implementing local quiescence in Apache is straightfor-
ward by just introducing the same quiescence points without
bothering about deadlocks nor timeouts.
Memcached Memcached is event-driven and uses 10
threads in the default configuration: Four worker threads wait
for network requests and the completion of asynchronous I/O
tasks. One listener thread accepts new connections and wakes
up at least every second to update a timestamp variable. Both
the workers and the listener use libevent to orchestrate event
processing. Furthermore, three background threads wait on
a condition variable, while two other threads use sleep() to
wake up periodically with a maximal period of one second.

For global quiescence, we use a built-in notify mechanism
to wake up the all workers immediately, even if they are
blocking in libevent. For the listener thread, we have to use
event_base_loopbreak() to interrupt the event-processing
loop. Unfortunately, this only sets a flag that the listener
checks within the aforementioned one-second period. Fur-
thermore, we have to signal the three condition variables to
wake up the associated maintenance threads, as they would
block indefinitely otherwise. The two sleeping threads will,
eventually, reach the quiescence point, but waking them is not
necessary to avoid deadlocks. For local quiescence, we use
the same quiescence points and the same wake-up strategy as
for global quiescence.

While the main operation of Memcached is event-driven
and, therefore, the threads do not block on I/O operations, the
periodic maintenance threads and the listener thread provoke
barrier-wait times of up to one second (Problem 2).
Samba For live patching, Samba’s smbd was especially chal-
lenging as it uses a combination of process-based and thread-
based parallelization. For each connection, which can live for
hours and days if established by a client mount, the process
is forked and uses internally a thread pool to parallelize re-
quests. This thread pool shrinks and grows dynamically with
the request load, while idling worker threads retire only after
a given timeout (1 second). Technically, these workers wait
on a condition variable with a one-second timeout and are

woken when a listener thread enqueues a received request. In
order to issue a patch request, the system administrator has to
inform all processes to initiate the patching process.

For global quiescence, we have to signal each worker’s
condition variable. A woken worker checks whether the bar-
rier is active and visits a quiescence point instead of retiring
early as an idle worker. For local quiescence, we just inserted
quiescence points after the condition wait and after a received
network request.

As each request is limited in size, smbd only suffers from
problem 2 when workers wait for a send operation to complete.
However, as the thread pool dynamically grows to up to 100
threads under heavy load, the overall barrier-wait peaks when
the server is most intensely used.
Node.js For asynchronous I/O operations, Node.js spawns
one thread that executes a libuv loop. For computation,
Node.js uses one work queue for immediate tasks executed by
a variable number (n) of worker threads, and a second queue
for delayed tasks, which is serviced by a dedicated thread.
Each worker executes tasks sequentially and offloads I/O to
the libuv thread.

For binary patching, we introduce quiescence points in the
I/O thread and after a worker completes a task. For global
quiescence, we submit n empty tasks to the immediate work
queue and one task to the delayed work queue. For the libuv

thread, we had to manually signal a semaphore to prevent
deadlocks (problem 3). For local quiescence, we only sub-
mit one task to the delayed work queue and use the same
quiescence points otherwise.

As all computation, including the just-in-time compilation,
is dispatched via work queues, a long job (problem 1) will
increase the barrier-wait time even though the Javascript exe-
cution model is inherently event-driven.
MariaDB MariaDB’s mysqld supports two thread models:
one thread per connection, which is the default, or a pool
of worker threads. In both cases, a separate listener thread
accepts new connections and passes them to connection or
worker threads, and a total of 30 helper threads handle of-
floaded I/O and housekeeping. We implemented patching
support for both thread models.

Judging from its public bug tracker, SQL query evalua-
tion appears to be MariaDB’s most error-prone component.
We therefore limit the global barrier to threads parsing or
executing SQL statements and do not add quiescence points
to listener or helper threads. Even so, our global quiescence
implementation faces all the three challenges outlined in Sec-
tion 2.

Slow queries, such as complex SELECT or large INSERT
statements, increase the barrier-wait time as threads perform
the computation (problem 1) without visiting a quiescence
point. Depending on the query and the size of the database,
this can lead to excessive wait times.

In both threading variants, idle threads are cached in an-
ticipation of new work before being retired. In one thread
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per connection mode, the hard-coded timeout is five minutes;
for the thread pool, it defaults to one minute (problem 2).
As barrier-wait times of over a minute are unrealistic for any
global-quiescence integration, we utilize preexisting functions
to wake up all cached threads for patching. We introduce a
new global patch variable to distinguish between a wake up
due to a new connection, server shutdown, or patching in one
thread per connection mode.

MariaDB supports SQL transactions, which are an atomic
group of SQL statements whose effects are only visible to
other connections after the transaction has completed. As
MariaDB serializes transactions which access the same data
via locks, threads encounter request- and database-induced
dependencies (problem 3). If a thread reaches the barrier while
holding a transaction lock, other threads that try to get this
lock before their next visit at a quiescence point will deadlock.
In one thread per connection mode, we handle this by skipping
the barrier if the connection holds a transaction lock. For
the thread pool, this does not suffice: as each thread handles
several connections, waiting on the barrier is forbidden as
long as any open transaction is present.

For local quiescence, visiting a quiescence point is possible
regardless of the transaction state. Apart from that, we use the
same quiescence points and wake-up strategies as for global
quiescence.

Global vs. Local Quiescence Summarized, we encoun-
tered Problem 1 in three projects (OpenLDAP, Node.js,
MariaDB), Problem 2 in four projects (OpenLDAP,
Memcached, Samba, MariaDB), and Problem 3 in four
projects (OpenLDAP, Apache, Node.js, and MariaDB). While
Problem 1 and 2 in combination with global quiescence
only affect service quality, Problem 3 forced us to introduce
different application-specific dead-lock avoidance techniques
into our benchmarks. Thereby, we repeatedly experienced
set-backs and spurious deadlocks while navigating the often
complex web of existing inter-thread dependencies – achiev-
ing global quiescence was the hardest part of our evaluation!
In contrast, incorporating WFPATCH was straightforward as
we only had to identify the local-quiescence points before
patch application could start.

4.2 Binary Patch Generation
To demonstrate the applicability of live patching in running
user-space programs, we created a set of binary patches for
the aforementioned six network services (see Table 1). For
each project, we use the current version that is shipped with
Debian 10.0 as a baseline against which we apply patches. In
Debian, it is common to select one version of a project for
a specific Debian release and have the maintainer backport
critical patches onto that version.

For five projects (except MariaDB), we systematically in-
spected the Debian source package for maintainer-prepared
patches that touch the source code of the network service.

Debian patches reflect critical updates that an expert on the
service selected for this specific version. Therefore, we con-
sider these patches as a good candidate set for live patches
that a system administrator wants to apply. We also review
the subset of patches with a CVE entry to get statistics of
highly-critical security updates.

For MariaDB, the source package contains no patches: De-
bian follows MariaDB releases instead of backporting individ-
ual patches. Therefore, we processed all commits in the 10.3
branch of the MariaDB repository, starting with the 10.3.15
release shipped with Debian 10.0. Each set of commits that
references a single bug tracker entry classified as Bug with a
severity of at least Major related to mysqld is a source patch.
As the bug tracker does not reference CVE numbers, we use
patches with a severity of at least Critical instead.

From these source-code patches, we manually select those
which only influence the .text segment and do not alter data
structures or global variables, as such patches are currently
out of scope for our mechanism. In Table 1, we see that most
patches that are hand-selected by a maintainer are text-only
patches; for CVE patches, the correlation is even higher. For
MariaDB, where we have a large set of critical patches, 91
percent of the patches exclusively modify the program logic.
We therefore conclude that a mechanism which supports live
patching with a restriction to code-only changes is neverthe-
less a useful contribution for keeping running services up to
date.

As patch generation, in contrast to patch application, is
not among our intended contributions, we use the Kpatch
toolchain, which was developed for live-updating the Linux
kernel, to prepare binary patches from source code changes.
Unfortunately, due to shortcomings in Kpatch, we could not
create binary patches for all text-only changes. Especially
MariaDB and Node.js, which are implemented in C++, show
a low success rate. In the lower half of Table 1 we summa-
rize, over all generated binary patches, the average number of
changed object files, modified function bodies, and the size
of each patch text segment.

We verified our mechanism by applying each patch into the
corresponding service while processing requests. We success-
fully applied all binary patches generated by Kpatch with our
user-space library using thread migration at local quiescence
points.

In total, we successfully applied 33 different binary patches
including 15 CVE-relevant patches. For OpenLDAP, Apache,
and Samba, we were able to apply all generated patches se-
quentially into the running process. This was not possible for
MariaDB because the patches are not applicable to a common
base version due to the amount of patches that we could not
generate with Kpatch. Making the patches applicable sequen-
tially in MariaDB would have meant to backport them to the
initial version, like the Dabian maintainers did for the other
projects.
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OpenLDAP
(slapd)

Apache
(httpd)

Memcached Samba
(smbd)

MariaDB*
(mysqld)

Node.js

Release 2.4.47 2.4.38 1.5.6 4.9.5 10.3.15 10.19.0

All Patches (CVE) [#] 13 (2) 10 (10) 1 (1) 2 (2) 74 (26) 4 (0)
.text Only (CVE) [#] 9 (2) 7 (7) 1 (1) 2 (2) 67 (24) 4 (0)

kpatch’able (CVE) [#] 9 (2) 7 (7) 1 (1) 2 (2) 16 (5) 0 (0)

�Mod. Files [#] 1.11 1.71 1 1 1.19 –
�Mod. Functions [#] 3.67 13.71 1 5.5 2.94 –
�Patch Size [KiB] 13.02 56.94 43.91 9.23 15 –

* For MariaDB, no Debian patches were available and MariaDB maintainers do not relate bugs to CVEs. We instead took patches with severity
≥Major from the project’s bug tracker as base; numbers in brackets denote patches with severity ≥ Critical.

Table 1: Evaluation projects and patches (of which CVE-related) since Debian 10.0 release

4.3 Request Latencies

In order to quantify the service quality benefits of local
quiescence and incremental thread migration over the bar-
rier method, we perform an end-to-end test for our selected
projects. For each project, we define a benchmark scenario
and measure the end-to-end request latencies encountered on
the client side, while we (a) generate new AS generations
and migrate threads, or (b) stop all threads at a global barrier.
For this, we extended our user-space library to also support
global-quiescence states via the barrier method. We period-
ically send patch requests to the same process and skip the
actual text-segment modification in these tests, while still in-
ducing barrier-wait times on the one side and AS-creation
overheads on the other side. Thereby, we achieve a high cov-
erage of different program states at patch-request time, while
keeping the comparison fair.

All experiments are conducted on a two machine setup.
The server process runs on a 48-core (96 hardware threads)
Intel Xeon Gold 6252 machine clocked at 2.10 GHz with 374
GiB of main memory. The clients execute on a 4-core Intel
Core i5-6400 machine running at 2.70 GHz with 32 GiB of
main memory. Both machines are connected by a Gigabit link
in a local-area network.

On the server side, we start the service, wait 3 seconds
for the clients to come up and then trigger a local-quiescence
migration or global-quiescence barrier sync every 1.5 seconds.
By this patch-request spreading, the impact of the barrier
method can cool down before the next cycle starts. On the
client side, we measure the end-to-end latency of each request.
In total, we simulate at least 1000 patch requests for each
benchmark.

For OpenLDAP, 200 parallel client connections send LDAP
searches that result in 50 user profiles from a database with
1000 records. For Apache, we use ApacheBench to download
a 4 MiB sample file 50,000 times using 10 parallel connec-
tions; due to the shared Gigabit link, a download takes about
350 ms when no threads are blocked on the global quiescence
barrier. For Memcached, 50 client connections request a ran-

dom key from a pool of 1000 cached objects of 64 KiB. For
MariaDB, which we operate in the one-thread-per-connection
mode, four sysbench oltp_read_only connections continu-
ously perform transactions with five simple SELECT state-
ments, while four background connections – whose latency
we do not monitor – execute transactions with 2000 state-
ments. For Node.js, we developed an example web service
that encodes a request parameter in a QR-code, wraps it in a
PDF, and sends the resulting “ticket” back to the client. We
use the wrk tool to simulate 10 parallel clients that repeatedly
request a new ticket. For Samba, we mount the exported file
system on the client machine (mount.cifs) and use the sys-
bench fileio benchmark with 32 threads, a block size of 16
KiB, and an R/W ratio of 1.5 to measure file I/O latencies.

Please be aware that these scenarios are chosen as examples
to demonstrate the possible impact of barrier synchronization.
Resulting latencies are highly dependent on the workload and
can be smaller, but also vastly larger in other scenarios. For
example, by executing long-running SQL queries on Maria-
DB or downloading large files from an Apache server, the
barrier-wait times, and therefore the latency of the global-
quiescence method, can be increased arbitrarily.

Figure 5 shows latency histograms (with logarithmic y
axis) for local and global quiescence, as well as the 99.5
response-time percentile. In all benchmarks, we see a signif-
icant increase in tail latency which ranges from a factor of
0.97× (Node.js) to 41× for MariaDB. While the results for
OpenLDAP, MariaDB, and Samba directly show the latency
impact of a global barrier, the other results require explana-
tions. For Memcached, three out of ten threads perform one-
second waits, resulting in latencies of up to one second. For
Apache, local quiescence shows a narrow latency distribution
with the predicted peak at 350 ms while global quiescence
shows a broadened distribution. This is due to the bench-
mark’s network-bound nature: the last worker to reach the
barrier enjoys the unshared 1 Gigabit link to finish its last
request, while all requests arriving after the patch request are
impacted by the barrier-wait time. In Node.js, the percentiles
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Figure 5: Request Latencies during Live Patching
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Figure 6: OpenLDAP Response Rates during Quiescence

are almost equal as the longest encountered barrier-wait time
(18 ms) is still shorter than the average request duration’s jitter
(193±53 ms). However, we observe individual barrier-wait
times of more than 1.5 seconds.

For a deeper understanding of the encountered service qual-
ity directly after a patch request, we analyze OpenLDAP re-
sponses during 1000 patch requests. We correlate each re-
ceived response to the previous patch request and plot them
according to their relative receive time; zero being the patch
request. Figure 6 shows response rate and maximum observed
latency. After a patch request, the response rate in the global-
quiescence case rapidly decreases, while the latency stays at
its normal value. After the workers reach the barrier, no re-
sponses are recorded until the listener has reached the barrier.
After global quiescence is reached, slapd ramps up again and
processes the request backlog built up in the meantime. This
causes the response rate to spike, but those responses are so
late that we see a significant latency increase before the ser-

vice returns to normal operation. With WFPATCH, no impact,
neither on the response rate nor on the maximum latency, can
be observed.

4.4 Memory and Run-Time Overheads

For each patch application, our kernel extension duplicates
the MMU configuration, creates a new AS generation, and
performs one AS switch per thread in order to migrate it to the
new generation. To quantify the impact of these operations,
we measure the MMU configuration size and perform run-
time micro benchmarks of AS creation and switching times
for each server application. We run the benchmarks under load
(see Section 4.3) to provoke disturbance and lock contention
in the kernel.

We measure the memory overhead caused by duplicate
MMU configurations by sequentially applying as many
patches as possible. In Table 2, we report the difference in
MMU configuration size before and after the patch applica-
tion. As the other data-structure additions required for our
extension are negligible in size, this is the total memory over-
head during patch application. Due to the non-deletable mas-
ter MM (see Section 3.2), this overhead becomes permanent
for patched processes: starting with the first additional gen-
eration, we carry the load of this additional MM. We do not
introduce a memory overhead for processes which do not use
AS generations.

For the run-time overhead, we perform two micro bench-
marks. (1) The patcher thread creates a new AS generation
and immediately destroys it. (2) The patcher thread migrates
back and forth between two AS generations (2 switches). We
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Memory Runtime Penalty
[KiB] Create [µs] Switch [µs]

OpenLDAP 412 298±47 7±7
Apache 680 429±17 7±6
Memcached 132 88±23 7±6
MariaDB 516 1339±38 7±6
Node.js 1808 2171±139 8±7
Samba 256 672±54 5±5

Table 2: Address Space Management Overhead

Upstream [µs] WFPATCH [µs]

(a) Anonymous Mapping 0.40±0.12 0.42±0.15
(b) File Mapping 0.50±0.14 0.50±0.15
(c) Read Fault 0.87±0.18 0.87±0.20
(d) Write Fault 1.23±0.29 1.25±0.32
(e) COW Fault 1.79±0.35 1.81±0.39

Table 3: Steady-State Run-Time Overhead

execute each scenario a million times in a tight loop and report,
in Table 2, the average operation time alongside its standard
deviation. We see that the creation and destruction of AS gen-
erations scales with the size of the process’s virtual address
space. Only for Samba and MariaDB, the creation overhead is,
compared to the MM size, disproportionately higher than for
the other four benchmarks. This is caused by a higher num-
ber of file-backed VMAs in Samba and MariaDB that take
longer to duplicate. The wf_migrate() call is a constant-time
operation.

In the implementation of our approach, we tried to min-
imize overhead for applications that do not use WFPATCH.
Memory consumption overhead is limited to few additional
fields in the thread control block (2 pointers + 2 integer fields),
the memory map (3 pointers), and the structure that represents
a memory mapping (1 boolean field). In terms of run-time
overhead, WFPATCH adds code in two critical places in the
kernel: the mapping modification functions and the page-fault
handler. In order to assess the run-time impacts, we performed
micro benchmarks on our modified kernel and on an upstream
kernel with the same version and configuration. To evalu-
ate mapping modifications, we map and unmap either (a) an
anonymous memory region or (b) a file mapping and measure
the time of the mmap() system call. The results do not show a
significant difference between the kernels (see Table 3). For
page faults, we issue (c) a read operation or (d) a write op-
eration on a previously untouched portion of an anonymous
mapping. To also capture (e) copy-on-write resolution, we
write to a page that is also mapped by a forked process. Each
of the five measurements was repeated 10 million times.

5 Discussion

Benefits of Local Quiescence The main benefit of patch-
ing threads individually is the simplified establishment of
quiescence and the avoidance of a global barrier that causes a
deterioration in performance. Thereby, WFPATCH provides
latency hiding for Problem 1 and 2 (Section 4.1) and mitigates
Problem 3.

Nevertheless, in the light of the rare event of applying a live
patch to an application, the overhead and tail latency of global
quiescence may seem negligible. However, the benchmarks
presented in Section 4.3 do not necessarily represent a real-
world or worst-case scenario: We use a single client machine
with a fast, stable, and reliable local network connection to the
server. Furthermore, we aimed for a controlled and uniformly
distributed load pattern for the sake of reproducibility and in
order to fairly compare the relative impact of global vs. local
quiescence. In a real-world scenario, connection latencies
will vary wildly or may be even under control by an active
attacker. As barrier-synchronized global quiescence couples
the progress of all threads in the system, it is much more prone
to such latency variations – the latency impact is dictated by
the slowest (in case of an attacker: stalling) thread to reach
the barrier. With WFPATCH and local quiescence, all other
threads will not only continue working, but also have the
patch applied immediately. Even if a thread stalls forever, the
only damage is an AS generation that will never get freed,
while the patched server continues to answer requests.

Lightweight AS Generation For the lightweight AS gen-
eration, our current implementation copies the whole MM in
wf_create(), including VMAs and the page directories. This
leads to the differing memory and creation overheads that we
observed for our benchmark scenarios (Table 2).

While we consider these overheads as reasonable for the
purpose, they could nevertheless be reduced further if we
implement the different generations to share parts of their
page-directory structure. This is possible for shared VMAs,
as the underlying page tables always reference the same phys-
ical pages. In fact, we currently even pay for not sharing them
by extra efforts to keep page tables synchronized among AS
generations via the master MM. However, VMAs cover page
ranges with arbitrary start/end index, while the page-directory
tree covers page rages on a power-of-two basis, so implement-
ing such sharing is not trivial. To the best of our knowledge,
Linux itself does not employ page-table sharing between ad-
dress spaces, even though this would probably be beneficial
for the implementation of the fork system call.

Code Complexity The current implementation of WF-
PATCH adds a certain amount of complexity to the kernel (see
Section 3.2). This stems from its interaction with the already-
complex kernel memory-management subsystem. One reason
is that Linux targets numerous different architectures and
exploits most of their individual capabilities. Secondly, the
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kernel itself provides many features and often chooses perfor-
mance over simplicity (e.g., fine granular page table locking
or code duplication in the mapping functions). Apart from
that, WFPATCH’s complexity is also caused by the tight con-
nection between address spaces and processes in Linux. As
the idea of AS generations itself is straightforward, the com-
plexity of our kernel extension could be reduced significantly
if we decoupled the two concepts of address spaces and pro-
cesses in general. That would not only serve our approach,
but may even promote other ideas and development [21, 9],
such as the decoupling between threads and processes did.
Applicability The general applicability of WFPATCH is po-
tentially limited by (a) the restriction to .text/.rodata-patches
only and (b) the preparation of the respective target program.
With respect to (a) this depends on the intended use case:
We consider WFPATCH currently as an approach to apply
hot fixes to a server process under heavy load – in order to
prolong the time it needs to be restarted until the next mainte-
nance window. For this use case, our results show that the vast
majority of patches (87%) are .text-only and, therefore, appli-
cable; for critical patches (CVE mitigations) this number is
even higher (88%). Regarding (b), the WFPATCH user-space
library simplifies the preparation of the target program to
support hot patching, but like in other approaches that sup-
port multi-threaded applications, it is up to the developer to
identify and model the respective safe points to apply a patch.
With WFPATCH, however, it becomes significantly easier to
find these points as they need to be only locally quiescent.
In our evaluation, the hardest part of integrating WFPATCH
into the six multi-threaded server programs was the global
barrier we needed solely for the comparison between local
and global quiescence.
Soundness and Completeness Proving the soundness of a
dynamic update is an undecidable problem [14], even though
type checking and static analysis can help to mitigate the
situation in some cases [1]. With WFPATCH, we have the
additional complexity of incomplete patches, that is, some
threads still execute the old code, while others already use
the patched version. This, however, imposes additional cor-
rectness issues only if the code change actually influences
inter-thread data/control dependencies, such as the implemen-
tation of a producer–consumer protocol. In practice, this is a
rare situation – none of the analyzed 90 .text-only patches fell
into this category. Nevertheless, a possible solution in such
cases would be to gradually give up the wait-free property by
implementing group quiescence among the dependent threads,
while all other threads can still migrate wait-free at their local
quiescence point. Compared to global quiescence, group qui-
escence would still be less debilitating for overall response
time and easier to implement in a deadlock-free manner.

In general, if some thread has not yet passed its point of
local quiescence, it is either blocking somewhere in an I/O or
still actively processing a request that arrived before the patch
was triggered. In both cases, it is at most this one request that

may still be processed using the old version. This would also
be the case with global quiescence – only that with global
quiescence based on barriers all other threads have to wait
(see Figure 6); if global quiescence is determined by prob-
ing for a safe state (such as in Ksplice [3]), the other threads
continue processing requests using the unpatched version. If
the respective thread hangs forever, global quiescence based
on barriers would result in a deadlock, while with probing
the patch would never get applied. With WFPATCH, the patch
will be applied as far as possible: All new requests will be
processed with the new code – a server may even be patched
while under an active DDOS attack. Technically, an incom-
plete patch means that the process will stay in two (or even
more) ASs forever.

Overall, local and global quiescence make a different trade-
off between correctness requirements and ease of patch ap-
plicability: While applying patches with global quiescence
requires less upfront thought about the correctness of a patch
as it provokes no transition period, it may be hard or even
impossible to introduce the patch in the system. On the other
hand, although it is harder to show that a patch is suitable for
local-quiescence patching, finding local-quiescence points is
easier and patch application has only minimal impact on the
system’s operation. We believe that many time-critical up-
dates (e.g., additional security checks) have such a localized
impact on the code that the guarantees of local-quiescence
patching are sufficient for a large number of changes.

Generalizability For the sake of simplicity, we chose to
adapt the Kpatch binary-patch creation for our evaluation and
implemented a loader for such patches for user-space pro-
grams (Section 3.3). Thereby, we also inherit the limitations
of Kpatch regarding granularity and installation of patches:
Patches work at the granularity of functions; they are installed
by placing a jump at the original symbol address to redirect
the control flow to the patched version. This bears some over-
head, but is arguably the most widespread technique to apply
run-time patches [1, 23, 3, 29, 30, 5, 6]. Furthermore, only
quiescent (inactive) functions can be patched. While this limi-
tation is a lot less problematic with WFPATCH due to the fact
that quiescence is reduced to local quiescence (inactive in the
currently examined thread), it nevertheless prevents patching
of top-level functions.

It is important to note, though, that these are restrictions of
the employed patching mechanism, not of its wait-free appli-
cation offered by WFPATCH, which is the main contribution
of this work. Integration with more sophisticated patching
methods [17, 15, 22] could mitigate these limitations while
keeping the WFPATCH benefits. For instance, UpStare can
patch active functions by an advanced stack reconstruction
technique [22]. Hence, it does not require quiescence, but nev-
ertheless has to halt the whole process for patch application
and reconstruction of all stacks. In conjunction with WF-
PATCH, this expensive undertaking could be performed in the
background while other threads continue to make progress.
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Data Patching While our toolchain already supports the
introduction of new data structures and global variables, we
currently do not support patches that change existing data-
structures or the interpretation of data objects. Such patches
are generally difficult [36] as a transform function that mi-
grates the system state to the new representation must be
applied to all modified objects in existence. Current live-
patching systems rely on the developer to supply these trans-
form functions [17, 15], while language-oriented methods for
semi-automated transformer generation exists [20, 18, 25].

With local quiescence, state transfer becomes more dif-
ficult as two threads that touch the same data can execute
in different patching states. Therefore, an extension to data
patches would require bidirectional transform functions that
are able to migrate program state back and forth as needed.
MMU-based object migration on read and write accesses via
page faults can be used to trigger the migration of individ-
ual objects between AS generations. Similar mechanisms are
used to provide virtual shared memory on message-passing
architectures [2]. However, for thread-local state only a uni-
directional transform function is required.

Other Applications In a nutshell, WFPATCH provides
means for run-time binary modifications in the background,
which can then be applied wait-free to individual threads. Be-
sides run-time binary patching, the fundamental mechanism
could be useful for many further usage scenarios.

For example, every just-in-time (JIT) compiler has to inte-
grate newer, more optimized versions of functions into the call
hierarchy while the program is executing. With WFPATCH,
the JIT could prepare complex changes and rearrangements
across multiple functions in the background in a new AS gen-
eration and then apply them, without stopping user threads,
by migrating the benefiting threads incrementally to the up-
dated AS. Furthermore, as our kernel extension supports an
arbitrary number of AS generations, the JIT could provide
specialized thread-local function variants with the same start
address, keeping all function pointers valid.

In a similar manner, an OS kernel could transparently apply
path-specific kernel modifications [31] on a per-thread basis.
For example, the kernel could use a different IRQ subsys-
tem that is only used if a thread with real-time priority gets
interrupted.

AS generations can not only be used to provide a differing
code views between threads, but also data views. This can be
employed to provide isolation for security and safety purposes.
For example, a server application could make encryption keys
only be present in a special AS generation; the other gen-
erations would have an empty mapping in this place. Even
individual threads could live in their own AS generations in
order to keep sensible data private but share all the other map-
pings with their sibling threads. The major benefit compared
to using fork() with distinct processes is that all mappings
are shared by default and modifications to the mapping are
implicitly synchronized – the address spaces do not diverge.

Moreover, threads can easily switch back and forth between
generations. Litton et al. [21] made a similar suggestion in
form of thread-level address spaces, which, however are not
synchronized, thus being similar to fork() in this respect.

In general, WFPATCH is able to provide classical cross-
cutting concerns (debugging, tracing, logging) with a thread-
local view of the text segment. For example, a debugger may
limit the effect of trace- and breakpoints to the actually de-
bugged threads or use the unoptimized program only during
the debugging session. Also, the user could enable tracing,
logging, assertions, or behavioral sanitizers (e.g., Clang’s UB-
San) for individual threads.

6 Related Work

Dynamic patching of OS kernels has a long history in research
[13, 4, 5, 12] and is now actually used in production systems
[3, 29, 30]. In contrast, the suggested frameworks to patch
user-level processes [20, 25, 6, 22, 17, 15, 12] are still not
broadly employed.

The DAS [13] operating system incorporated an early run-
time updating solution on module-level granularity. It requires
absolute quiescence of a module to be patched, realized by
locks. K42 [4] exploits its strict object-oriented design to
enable live kernel updates. The event-driven nature with short-
lived and non-blocking threads makes it relatively easy to
define a safe state for concurrent patching.

The Proteos [12] microkernel provides built-in means for
process-level live updates based on automatic state transfer.
Like our wait-free patching technique, they employ MMU-
based address spaces, but unlike our approach the goal is not
a seamless thread-by-thread migration. Instead, the process is
halted during the update procedure, while the separate address
space provides for an easy rollback.

Most live-patching frameworks work on function-level
granularity [1, 23, 3, 29, 30, 5, 6], which can be considered
as a natural scope for changes while still providing for rela-
tively fine-grained updates. A patched version of the function
is loaded and installed via placing a trampoline jump at the
beginning of the old function body (function indirection). Bar-
rier blocking is the classical way to reach global quiescence
to safely apply the trampoline. Ksplice [3] avoids this by
polling for global quiescence instead: The whole kernel is
repeatedly stopped and checked for a safe state before the
function indirection gets installed. While this avoids a global
barrier, all threads have nevertheless to be halted for the check
and to apply the patch. Furthermore, probing is an unbounded
operation, so the patch may be applied late or never.

DynAMOS [23] and kGraft [29] also avoid global barriers
by extending the function indirection method: By (atomically)
placing additional redirection handlers between the trampo-
line and the jump target, they can decide on a per-call basis
which version of a function (original/updated) should be used.
This has some similarities to our address-space migration
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technique as in both methods the patched and the unpatched
universe coexist while the transition is in progress; however,
in contrast to our approach, the redirection method induces
a performance penalty in this phase. Atomicity is reached
by rerouting the call through debug breakpoints during the
patch process; on SMP systems this furthermore requires IPIs
to all other cores to flush instruction caches. This approach
is limited to patching on function granularity and has only
been explored for kernel-level patching, whereas WFPATCH
targets user-level processes and allows for arbitrary large (or
small) in-place binary modifications, which in principle also
includes changes to (read-only) data.

LUCOS [5] tries to solve this by requiring the to-be-
patched kernel to run inside a modified XEN hypervisor,
which is able to atomically install trampoline calls by halting
the VM. The virtualization layer is also used to enable page-
granularity state synchronization between the different ver-
sions of a function. POLUS [6] brings this idea to user space
and relies on the underlying operating system (ptrace, signals
and mprotect) instead of a hypervisor. Again, all threads are
halted while the trampoline gets installed.

Ginseng [25] makes use of source-to-source compilation in
order to prepare C programs for dynamic updating. It inserts
indirection jumps for every function call and every data ac-
cess, but does not support multi-threaded programs. Function
indirections are also used by many other language-oriented
dynamic-variability methods, such as dynamic aspect weav-
ing [7, 10, 34] or function multiverses [33], which, however,
do not address quiescence in multi-threaded environments.

Ekiden [17] and Kitsune [15] provide dynamic updates by
replacing the whole executable code and transferring all pro-
gram state at dedicated update points, which constitute points
of global quiescence implemented by barriers in the case of
multi-threading. UpStare [22] goes one step further by allow-
ing run-time updates at arbitrary program states, enabled by
its stack reconstruction technique. However, updating multi-
threaded programs is also based on halting all threads. The
authors even suggest inserting the respective checks in long-
lived loops and to avoid blocking I/O.

Duan et al. present a comprehensive solution for patching
vulnerable mobile applications on the binary level [8]. How-
ever, patching takes place when the program starts and not
during later run time.

The idea of decoupling address spaces and processes has
also been described before: El Hajj et al. [9] provide freely
switchable address spaces in order to enlarge virtual memory
and to support persistent long-lived pointers. However, they
do not target live patching and their address spaces are in-
tended to be decoupled from each other, whereas WFPATCH
provides extra means to synchronize most regions among
address space generations.

Litton et al. [21] allow for multiple “light-weight execution
contexts” (lwC) per process and the possibility for threads to
switch between them. After creation, where the file-descriptor

table and the AS are copied (like fork), lwCs are decoupled
entities and can diverge significantly from each other. In con-
trast, our AS generations offer a gradually differing view of
the same AS without decoupling other parts of the execution
context (i.e. file-descriptor tables). Thereby, all threads retain
a synchronized view of process state, which is necessary for
incremental thread migration.

7 Conclusion

WFPATCH provides a wait-free approach to apply live code
patches to multi-threaded processes without “stopping the
world.” The fundamental principle of WFPATCH is that a code
change is not applied to the whole process at once, which re-
quires a state of global quiescence to be reached by all threads
simultaneously, but incrementally to each thread individually
at a thread-specific state of local quiescence. Hence, (1) no
thread is ever halted, (2) a single hanging thread cannot de-
lay or even prevent patching of all other threads, and (3) the
implementation gets easier as quiescence becomes a (compos-
able) local property. The incremental migration is provided
by means of multiple generations of the virtual address space
within the updated process. After preparation of an updated
address space, threads switch generations at their local quies-
cence points, while they are still able to communicate with
threads in other generations via shared memory mappings.

We implemented WFPATCH as a Linux 5.1 kernel exten-
sion and a user-space library, and evaluated our approach with
six major network services, including MariaDB, Apache and
Memcached. While live patching at points of global quies-
cence with a barrier increases the tail-latency of client requests
by up to a factor of 41×, we could not observe any disruption
in service quality when live patches were applied wait-free
with WFPATCH. In total, we successfully applied 33 differ-
ent binary patches into running programs while they were
actively servicing requests; 15 patches had a CVE number or
were other critical updates.

WFPATCH brings us closer to an ideal live patching solu-
tion for multi-threaded applications by solving the response-
time issue with a latency hiding patch-application mechanism.
This opens further research opportunities on advanced patch-
ing techniques.
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