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Abstract
Machine learning (ML) models trained on personal data

have been shown to leak information about users. Differential
privacy (DP) enables model training with a guaranteed bound
on this leakage. Each new model trained with DP increases
the bound on data leakage and can be seen as consuming part
of a global privacy budget that should not be exceeded. This
budget is a scarce resource that must be carefully managed to
maximize the number of successfully trained models.

We describe PrivateKube, an extension to the popular Ku-
bernetes datacenter orchestrator that adds privacy as a new
type of resource to be managed alongside other traditional
compute resources, such as CPU, GPU, and memory. The
abstractions we design for the privacy resource mirror those
defined by Kubernetes for traditional resources, but there are
also major differences. For example, traditional compute re-
sources are replenishable while privacy is not: a CPU can
be regained after a model finishes execution while privacy
budget cannot. This distinction forces a re-design of the sched-
uler. We present DPF (Dominant Private Block Fairness) – a
variant of the popular Dominant Resource Fairness (DRF) al-
gorithm – that is geared toward the non-replenishable privacy
resource but enjoys similar theoretical properties as DRF.

We evaluate PrivateKube and DPF on microbenchmarks
and an ML workload on Amazon Reviews data. Compared to
existing baselines, DPF allows training more models under
the same global privacy guarantee. This is especially true for
DPF over Rényi DP, a highly composable form of DP.

1 Introduction
Increasing evidence suggests that machine learning (ML)
models trained on sensitive, personal information – such as
auto-complete models trained on users’ emails – expose in-
dividual entries from their training sets [8, 57]. Despite the
evidence, there is an increasing trend to push models to end-
user devices for faster predictions [6,27,54], share them across
teams in a company [36, 56] and even externally [2, 43].

∗First co-authors of the paper with equal, complementary contributions.

Differential privacy (DP) [15] promises to enable safe shar-
ing of models by providing solid guarantees regarding the ex-
posure of individuals’ data through these models. DP random-
izes a computation over a dataset (e.g. training one model) to
bound the leakage of individual entries in the dataset through
the output of the computation (the model). Each new DP com-
putation increases this bound over data leakage, and can be
seen as consuming part of a global privacy budget that should
not be exceeded. DP is mature algorithmically: most popular
ML algorithms have been adapted to individually enforce the
DP guarantee. There are also libraries that implement these
algorithms, including TensorFlow Privacy [21], Opacus for
PyTorch [18], and multiple libraries for statistics [20, 29, 47].

Comparatively, DP research is primitive on systems that
enforce a global DP guarantee across multiple DP algorithms.
Indeed, enforcing a global DP guarantee creates scheduling
challenges that have never been addressed in the literature. For
example, given a dynamic ML workload of multiple models
trained on the same user data stream, how should the global
privacy budget be allocated to maximize the number of mod-
els that are successfully trained with DP? Recently, we pre-
sented Sage, an incipient design of an ML training platform
that maintains a global DP guarantee for a dynamic workload
of ML pipelines operating on a continuous data stream [35].
Our key contribution was to show that by splitting the data
stream into blocks (for example by time), enforcing a global
DP guarantee over the entire stream reduces to enforcing the
guarantee on each block. This showed at a basic level how
to operationalize a global DP guarantee for a dynamic ML
workload. but left the challenging questions related to schedul-
ing unresolved. Moreover, our block notion was rudimentary,
supporting only limited DP semantics (Event DP, which of-
fers non-ideal protection [33, 41]) and basic DP composition
methods (which scale poorly with the number of models).

In this paper, we present PrivateKube, a plug-in extension
to the popular Kubernetes workload orchestrator that can be
used to schedule global privacy budgets for a dynamic work-
load of DP ML pipelines akin to Sage’s. The key insight is
to (1) generalize the notion of private blocks to support a
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wider range of DP semantics and composition methods, and
(2) incorporate private blocks as a new, native resource into
Kubernetes, alongside traditional compute resources (such as
CPU, GPU, and RAM), so they can be scheduled uniformly.
Despite intuitive correspondence of our privacy abstraction
to Kubernetes abstractions for traditional resources, there are
also significant semantic differences that force us to redesign
the scheduling at a fundamental, algorithmic level.

Specifically, private blocks differ from traditional comput-
ing resources in two key dimensions. First, once a portion
of a private block is allocated to a task, it can never be re-
cuperated. Second, in many use cases, the utility of using
private blocks is a step function: if a task has enough privacy
budget it can make progress, but if it does not have sufficient
budget, its accuracy can be affected in complex ways and it
is often preferable to wait to accumulate enough budget be-
fore proceeding. These two properties invalidate assumptions
typically made by scheduling algorithms for traditional com-
puting resources, such as the popular DRF [19], which we
show loses the max-min fairness property if applied directly
to private blocks. In fact, we find that the very definitions of
standard game-theoretical scheduler properties require change
to apply to the characteristics of the privacy resource.

We develop a new algorithm for scheduling private blocks,
called DPF (Dominant Private block Fairness). DPF treats
each private block as a separate resource that can be de-
manded (or not) by tasks. Different tasks can demand differ-
ent private blocks, creating heterogeneous resource demands
and pointing to multi-resource scheduling algorithms, such
as DRF [19], as a basis for DPF. Similar to DRF, DPF allo-
cates private blocks to the user that has the minimal dominant
private block share – the maximum privacy budget requested
by a user across the private blocks. Different from DRF and
other related scheduling algorithms [32, 49], DPF releases
privacy budgets progressively into the blocks, to ensure that
future pipelines have access to the privacy resource in accor-
dance to a fairness policy. Moreover, DPF allocates requested
budgets all-or-nothing to ensure that pipelines can achieve
their accuracy goals. We prove that DPF satisfies several im-
portant game-theoretic properties: sharing incentive, strategy-
proofness, dynamic envy-freedom (a variant of traditional
envy-freedom), and Pareto efficiency.

We evaluate PrivateKube on microbenchmarks and a work-
load on Amazon Reviews data. We find that: (1) DPF grants
more pipelines than baseline policies at a small cost in delay;
(2) stronger DP semantics (such as User DP) require more
budget and data, increasing the need for judicious budget al-
location as with DPF; (3) adapting DPF to Rényi DP [42],
the state-of-the-art composition method, enables allocation of
either many more or much larger pipelines, and (4) our native
integration of the privacy resource into Kubernetes lets us
easily adapt the Grafana compute resource monitor to track
privacy usage on par with compute usage.

Overall, this paper is the first to pose these questions:
(1) what are the characteristics of the “privacy resource” in
ML workloads, (2) how should scheduling algorithms support
this resource, and (3) what kinds of game-theoretical proper-
ties can be guaranteed for this resource? The answers, which
form our primary contributions, are: (1) the abstraction of the
privacy resource as dynamically-arriving, non-replenishable
private blocks, (2) the DPF algorithm, and (3) the theoretical
properties of DPF. All these are integrated into real systems,
Kubernetes and Kubeflow, in a prototype that we have open-
sourced: https://github.com/columbia/privatekube.

2 Threat Model and Background
2.1 Threat Model

We are concerned with the sensitive data exposure that may
occur when pushing models trained over user data to untrusted
locations, such as mobile devices [6,27,54], model stores that
are widely shared among teams in a company [36,56], or even
opened to the world via prediction APIs [2, 43]. Our focus
is not on singular models, pushed once, but rather on work-
loads of many models, trained periodically over increasing
data from user streams. For example, a company may train
an auto-complete model daily or weekly to incorporate new
data from an email stream, distributing the updated models
to mobile devices for fast predictions. Moreover, the com-
pany may use the same email stream to periodically train
and disseminate multiple types of models, for example for
recommendations, spam detection, and ad targeting. This cre-
ates ample opportunity for an adversary to collect models and
perform privacy attacks to siphon personal data.

Two classes of privacy attacks are particularly relevant: (1)
membership inference, in which the adversary infers whether
a particular entry (e.g., user) is in the training set based on
either white-box or black-box access to the model and/or
predictions [4, 17, 28, 57]; and (2) reconstruction attacks,
in which the adversary infers unknown sensitive attributes
about entries in the training set based on similar white-box or
black-box access [8, 14, 16]. We aim to ensure that an entry’s
participation in a company’s model does not increase the risk
of an adversary learning something about that entry.

Of particular concern are attacks that can access multiple
models or statistics trained on the same or overlapping por-
tions of a data stream. While individually these may leak
limited information about specific entries, together they may
leak significant information, especially when combined with
side information about an entry. Consider two statistics: (1)
average value of a sensitive column s (say representing user
salary); and (2) average value of column s across entries
whose ID differs from “1234.” Individually, they reveal noth-
ing specific about any entry in a dataset. Together, they re-
veal the value of sensitive column s for entry “1234.” This
is a trivialized example in which the queries are ideally cho-
sen and the adversary has access to ideal side-information
about their target: the ID. However, research in more practi-
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cal settings has shown that releasing multiple (versions of)
ML models trained over overlapping datasets increases the
attacker’s membership inference power compared to releasing
just one [61]. Moreover, many pieces of information, such
as demographic traits and locations, can be pieced together
to uniquely identify individuals and used as side information
in such attacks [4, 12, 45]. Thus, a significant data exposure
threat stems from the repeated release of models/statistics
from overlapping portions of a stream.
2.2 Differential Privacy

DP is known to address the preceding attacks [8, 16, 31,
57]. At a high level, membership and reconstruction attacks
work by finding data points (which can range from individual
events to entire users) that make the observed model more
likely: if those points were in the training set, the likelihood
of the observed output increases. DP prevents these attacks by
ensuring that no specific data point can drastically increase the
likelihood of the model outputted by the training procedure.

To prevent such information leakage, DP introduces ran-
domness into the computation to hide details of individual en-
tries. A randomized algorithm Q : D→ V is (ε,δ)-DP if for
any neighboring datasets D,D ′ that differ in one row and for
any S ⊆ V , we have: P(Q (D) ∈ S)≤ eεP(Q (D ′) ∈ S)+δ.
Parameters ε > 0 and δ∈ [0,1] quantify the strength of the pri-
vacy guarantee: small values imply that one draw from such
an algorithm’s output gives little information about whether
it ran on D or D′. The privacy budget ε upper bounds an
(ε,δ)-DP computation’s privacy loss with probability (1-δ).

A key strength of DP is its composition property, which in
its basic form, states that the process of running an (ε1,δ1)-
DP and an (ε2,δ2)-DP computation on the same dataset is
(ε1 + ε2,δ1 + δ2)-DP. Therefore, privacy loss accumulates
linearly with the privacy loss of each computation. Compo-
sition lets one account for the privacy loss resulting from
a sequence of DP-computed outputs, such as the release of
multiple models. It is thus critical for enforcing a global DP
guarantee. There are more advanced forms of composition,
such as Rényi DP [42], which permit much tighter analysis
of cumulative privacy loss (sublinear). We discuss those in
the latter parts of the paper, because they are vital to a well-
performing globally DP system, but for the next two sections
we assume basic composition for simplicity.

Multiple DP mechanisms exist, such as the Laplace and
Gaussian mechanisms. They add noise to the computation
from a Laplace/Gaussian distribution scaled by a function of
ε, δ, and the sensitivity of the computation. The noise scale
depends linearly in 1/ε and at most logarithmically in 1/δ.
When enforcing a global DP guarantee, which we denote in
this paper as (εG,δG), both parameters become “resources”
that must be allocated among the individual computations
to ensure that cumulatively the computations do not exceed
either. However, because individual computations are much
more sensitive to the allocated ε than to δ, throughout this
paper we will focus on εG as the sole global resource to

schedule. In evaluation, we set the individual δ requested by
each pipeline small enough in comparison to δG (10−9 and
10−7, respectively) such that εG is always the bottleneck.

The DP semantic can be instantiated at multiple granulari-
ties, the difference being what a “row” corresponds to. Event
DP enforces DP on individual data points (e.g., individual
clicks). User DP enforces DP on all data points contributed
by a user. It is stronger but challenging to sustain when new
models must keep training on new data from the same users.
User-Time DP is a middle-ground that enforces DP on all data
points contributed by a user in a given period (e.g., one day).
2.3 Assumptions

Our overarching goal is to develop infrastructural support
for organizations to enforce a global DP guarantee – at Event,
User, or User-Time level – across the entire ML workload they
operate on sensitive data streams. This would let organiza-
tions control the leakage of personal information through the
models. The focus of this paper is on how to orchestrate the
global privacy budget across competing but trusted ML train-
ing processes, each of which is assumed to be coded by their
programmers to enforce DP. We assume that the program-
mers are trusted to correctly implement DP training processes
and to adhere to the protocols we establish for them. More-
over, we assume that the training processes themselves, plus
the compute infrastructure, are trusted. For example, if our
scheduler refuses to allocate a requested privacy budget to a
training task, the task will not access the data. If the scheduler
allocates the task’s requested budget, ε, then the training pro-
cess will not attempt to use more than ε. On the other hand,
programmers may be incentivised to achieve higher accuracy
for their models by requesting more ε. Therefore, we must
provide users with strong incentives to fairly share εG.

3 PrivateKube Architecture
PrivateKube is a plug-in extension to the popular Kubernetes
workload orchestrator. It can be used to allocate privacy bud-
gets for a dynamic workload of ML pipelines to enforce a
global (εG,δG) DP semantic. Our key insight is to incorporate
the privacy budget as a new, native resource alongside tradi-
tional compute resources so developers can manage compute
and privacy uniformly. Despite one-to-one correspondence
of our privacy resource abstractions to traditional Kubernetes
abstractions, there are also significant semantic differences
that cause us to re-think scheduling for the privacy resource.
This section gives an architectural view of our privacy re-
source abstraction, with the similarities and differences from
Kubernetes’ abstractions. §4 then describes DPF, the first
scheduling algorithm suitable for the privacy resource. §5
presents extensions of DPF to support both Rényi compo-
sition and all three DP semantics: Event, User, User-Time.
These, too, constitute firsts for the DP systems literature.
3.1 Overview

Fig. 1 shows the PrivateKube architecture alongside the
main components of a standard Kubernetes deployment. It
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Fig. 1: PrivateKube architecture. Clear components are standard Kuber-
netes. Highlighted components (yellow) are added by PrivateKube.

underscores the correspondence between traditional and pri-
vacy abstractions. Kubernetes orchestrates the execution of a
workload – in our case an ML workload consisting of multi-
ple training pipelines – onto the physical resources available
to the Kubernetes deployment. In standard Kubernetes, the
physical resources are physical or virtual machines. The main
abstractions that standard Kubernetes provides are: (1) node,
an abstract representation for a physical or virtual machine;
and (2) pod, a containerized unit of execution. A pod specifies
the container image to execute, plus the type and quantity
of compute resources it demands, such as CPU, GPU, RAM,
SSD. A node specifies the type and quantity of compute re-
sources it has available. The primary functions of Kubernetes
are to: (i) monitor for pods with unsatisfied resource demands
(component Controller in Fig. 1) and (ii) bind each pod to one
node that has the demanded resources (component Scheduler).
Once a pod is bound to a node, the pod’s image is executed.

PrivateKube extends Kubernetes to add a new type of phys-
ical resource: sensitive data streams. We correspondingly add
two new abstractions to Kubernetes: (1) private data block
and (2) privacy claim. Private data blocks (or private blocks
for short) constitute non-overlapping portions of a sensitive
data stream, such as daily windows of data from that stream.
Private blocks are the finest granularity at which data can
be requested by a training pipeline, and the level at which
PrivateKube keeps track of the total privacy loss incurred by
an ML workload of multiple pipelines. Private blocks specify
the portion of the data they represent (e.g., the start and end
times of the corresponding window), plus the privacy budget
still available for use in that window. Privacy claims are used
by training pipelines to demand privacy budget for the private
blocks they are interested in. A pipeline specifies in its pri-
vacy claims a selector for the private blocks it is requesting
(such as the window of time from which they want data), plus
the privacy budget it demands for these blocks. The primary
functions of PrivateKube are to: (i) monitor for privacy claims

many-to-many, 
all-or-nothing

binding

API:    allocate(claim_id, blk_selector, di,j) → Success/Failure
           consume(claim_id, ci,j) → Success/Failure
           release(claim_id)

privacy claim iprivate data block j
claim_id claim unique id

blk_selector time range, blk_ids
status Pending/Allocated

bound_blks bound blk_id vector

di,j privacy demand 
vector

ci,j consumed privacy 
vector

blk_id block unique id
blk_desc time range, user_id 

range
εG

j fixed total budget

εL
j locked budget

εU
j unlocked budget

εA
j allocated budget

εC
j consumed budget

Fig. 2: PrivateKube abstractions and API. Some variables are indexed by
block ( j) or claim (i) for consistency with notation needed in §4.

with unsatisfied private block demands (component Privacy
Controller in Fig. 1) and (ii) bind each privacy claim to the
private blocks it demands (component Privacy Scheduler).

In a Kubernetes deployment with PrivateKube enabled, the
workload may consist of a mix of non-private pipelines (which
interact with insensitive data) and private pipelines (which
interact with sensitive data). Each pipeline has multiple steps
organized in a directed acyclic graph, including steps that
read the data, transform it, train models, etc. The non-private
pipeline interacts with standard Kubernetes to schedule its
steps for execution by registering a pod for each step as soon
as the step’s inputs are available. The private pipeline inter-
acts not only with standard Kubernetes (to allocate compute
resources for each step) but also with PrivateKube (to allocate
and consume privacy budget needed to execute the steps on
the sensitive data in a privacy preserving way).
3.2 PrivateKube Abstractions

PrivateKube’s abstractions are implemented natively in
Kubernetes using its Custom Resource Definition extension
API. Fig. 2 shows the state maintained for each abstraction.
As with standard abstractions, state for custom resources is
stored in the fault-tolerant, strongly consistent etcd store.
Private Block (Fig. 2, left): This abstraction has three con-
stant fields: a globally unique block id (blk_id), a descriptor
specifying the portion of the sensitive data stream it represents
(blk_desc), and the global privacy guarantee PrivateKube
is configured to enforce against the entire stream (εG

j = εG).
PrivateKube supports multiple ways of splitting the stream
into private blocks, and splitting determines the type of DP
guarantee PrivateKube enforces: Event, User, or User-Time
DP. §5 shows how splitting works for each.

Each block j also maintains four variable fields. (1) εC
j

denotes the budget that has been consumed for the block. We
leverage the theory we developed for Sage [35] to justify that
enforcing a global εG privacy guarantee over the entire stream
reduces to ensuring that εC

j ≤ εG
j = εG for all blocks j at all

times. Thus, when εC
j reaches εG, we remove private block

j from Kubernetes and it no longer represents a resource.
(2) εA

j denotes the part of block j’s budget that has been al-
located to some claims but not yet consumed. (3) εU

j , called
unlocked budget, is the unallocated and unconsumed bud-
get made presently available for allocation to privacy claims.
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(4) εL
j , called locked budget, is the unconsumed and unallo-

cated budget not yet made available for allocation. Our DPF
algorithm (§4) leverages the last two fields to unlock budget
from εG

j progressively to ensure that future pipelines have ac-
cess to the privacy resource in accordance to a fairness policy.
Among all fields, the invariant is: εG

j = εL
j + εU

j + εA
j + εC

j .

Privacy Claim (Fig. 2, right): This abstraction is used by
pipelines to allocate and consume privacy budget from one or
more private blocks. When creating a privacy claim, the pro-
grammer specifies a selector for the data blocks relevant for
their pipeline (blk_selector). Typically, this means specify-
ing a time range from which the programmer wishes to obtain
data samples (e.g., the past year). PrivateKube then maps this
descriptor onto the private blocks that contain data samples
from that time range. In addition to the block selector, the
programmer also specifies the demanded privacy budget for
each of the blocks that match the selector. While often the
demanded privacy budget will be uniform across all selected
blocks, we allow the programmer to specify a demand vector,
di, j, with one separate entry for each selected block.

API (Fig. 2, bottom): We implement three functions on pri-
vacy claims: allocate, consume, and release. A pipeline
can invoke them multiple times on the same claim, and they
will be executed sequentially. allocate invokes the Privacy
Scheduler to allocate privacy demand, di, j, to blocks that
match the blk_selector. The scheduler will perform the
selection, verify that every matching block has sufficient un-
consumed and unallocated budget to potentially honor di, j,
and if so, binds the matching blocks to the claim. It then adds
the claim to its internal list of claims to schedule with the
DPF algorithm. The scheduler will ultimately decide to allo-
cate the request, or not. If it does, allocate succeeds and the
caller is guaranteed that the entire demand vector di, j has been
allocated to the bound blocks. If it does not, the blocks are
unbound, and the caller can assume that none of the requested
budgets in its demand vector were allocated. consume invokes
the Privacy Controller to deduct a part of previously allocated
budget, ci, j, from blocks already bound to the claim. The func-
tion is similarly not guaranteed to succeed, for example if the
caller is asking to consume more than the budget it has left for
a block. release invokes the Privacy Controller to reclaim a
previous unconsumed allocation to a claim. For example, a
pipeline invokes release if it decides to stop early and not
execute some steps. The Privacy Controller can also invoke
release if the pipeline that owns the claim fails.

3.3 Example Pipeline
To exemplify usage of PrivateKube’s abstractions and API,

we describe a pipeline from our evaluation (Product/LSTM in
§6.2). It is built in Kubeflow, an ML pipeline orchestrator for
Kubernetes, and trains an NLP model on Amazon Reviews to
predict a product category. Fig. 3 shows (a) our code in Kube-
flow DSL and (b) the pipeline’s execution graph. Highlighted
are the distinctions between private and non-private versions.

(a) Pseudocode

Allocate

Consume

Download

DP-Train-LSTM

DP-Evaluate

Upload

DP-Preprocess

(b) Execution Graph
Fig. 3: Example private Kubeflow pipeline. Distinctions from the non-
private version are highlighted in yellow background.

The pipeline has three processing steps: Preprocess tok-
enizes the reviews; Train-LSTM trains an LSTM model with
stochastic gradient descent (SGD); Evaluate validates that
the model passes a baseline accuracy. The Kubeflow runtime
executes each step in a separate pod and passes artifacts along
the computation graph [34]. If a step fails, its children in the
graph will not be launched. An important note for PrivateKube
is that in Kubeflow, most steps of a pipeline are pure func-
tions and do not communicate with the outside. Only a few
well-defined Kubeflow components do, including: Download
(loads data from an external source) and Upload (pushes an
artifact to the serving infrastructure).

Focusing on the private version (highlighted parts of Fig. 3),
the distinctions from a non-private pipeline are two-fold. First,
each step is coded by the programmer to enforce DP. For
example, the training step uses DP SGD instead of SGD. The
DP steps take an additional parameter: privacy budget (eps).
The programmer splits eps among the steps to enforce eps
DP at pipeline level. In the example, dp_preprocess gets
25% of eps, dp_train 50%, dp_evaluate 25% (Fig. 3a).

Second, the private pipeline interacts with PrivateKube to
demand and consume eps. This interaction is through drop-in
Kubeflow components that we created to wrap PrivateKube’s
API. This example highlights two such components: (1)
Allocate and (2) Consume, wrappers around allocate and
consume, respectively (Fig. 3b). The protocol is simple: place
Allocate before any component accessing sensitive data
(e.g., Download); place Consume before any component with
externally visible side-effects (e.g., Upload). (1) Allocate
creates a privacy claim and invokes allocate on it with a
block selector and eps privacy budget. If allocate succeeds,
then Download reads the data of the blocks bound to the claim
(bound_blks) and the training process begins. If allocate
fails, then Download is never launched and the sensitive data
never accessed. (2) Consume receives the privacy claim from
Allocate and invokes consume on it with a privacy budget
equal to the one that was consumed. If consume succeeds,
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then Upload runs and outputs the model artifact. If consume
fails, then Upload is never launched and the model never ex-
ternalized. Assuming programmers adhere to this protocol
(§2.3), the above ensures that PrivateKube controls the privacy
loss resulting from externalizing ML artifacts.

3.4 Kubernetes – PrivateKube Distinctions
Despite one-to-one mapping of our abstractions with Ku-

bernetes’ – node::private block, pod::privacy claim – there
are also semantic differences. First is the level at which we
make scheduling decisions. Consider the pipeline from §3.3.
The Kubernetes Scheduler performs a scheduling decision for
each step. It schedules our Allocate and Consume pods, as
well as the functional pods. In PrivateKube, we decided to
allocate privacy at the level of entire pipelines. Indeed, after
being allocated compute resources, the Allocate pod creates
a privacy claim and invokes allocate on it. This is when the
Private Scheduler makes a scheduling decision for the privacy
resource. The privacy claim is then kept for the entirety of the
pipeline and passed among its components as needed.

Second, in Kubernetes, the binding of pod to node is many-
to-one: one pod can be bound only to one node, but the same
node can be bound to multiple pods. In PrivateKube, the
binding is many-to-many: a privacy claim can be bound to
many private blocks, and the same block can be bound to
multiple claims. This leads to a question of atomicity for the
binding across multiple blocks. A critical design decision we
have made is an all-or-nothing semantic for scheduling: a
pipeline can expect allocate on its privacy claim to either
fail or guarantee that (1) all the blocks matching the claim’s
selector were bound to the privacy claim, and (2) for each
block, the demanded privacy budget was allocated in full. This
decision, which has significant impact on the scheduling al-
gorithm (§4), should be thought of as a plausible assumption,
though not the only reasonable one. Multiple use cases justify
all-or-nothing. Many DP algorithms have complex interac-
tions with hyper-parameters, such as learning rate and batch
size; programmers may want to run on the budget for which
those were tuned. Other use cases include the need for compa-
rable models and DP budget searches on a fixed schedule (as
proposed in Sage [35]). Furthermore, the non-replenishable
nature of the privacy budget suggests that the scheduler should
grant no more budget than a pipeline demanded, to keep as
much budget available for future pipelines.

4 DPF Algorithm
Given the preceding integration of private blocks as a new re-
source in Kubernetes, we now explore how scheduling should
work for this resource. Can we achieve for privacy the same
types of theoretical guarantees that compute schedulers often
achieve? How should scheduling algorithms change given the
semantic differences between privacy and compute resources?
To obtain initial answers, we focus on max-min fairness guar-
antees and algorithms that support them.

Our idea is to model each private block as a separate re-
source that must be allocated to different pipelines based on
their demands. Demands will differ across pipelines, both in
the blocks they select and in the privacy budgets they request
for selected blocks. Consider four blocks (B0,B1,B2,B3)
and three pipelines requesting: d1 = (0.5,0.5,0.5,0.0);
d2 = (0.0,0.1,0.1,0.1); and d3 = (0.0,0.0,0.0,0.01). The
pipelines could be: a large model (user embedding) regis-
tered before block B3 appeared; a smaller model that needs
recent data (news recommendation) registered after B3 ap-
peared; and a daily statistic invoked on B3. Privacy demands
being heterogeneous, the four blocks will have heterogeneous
capacities left after the pipelines complete.

The preceding formulation points to DRF (Dominant Re-
source Fairness) [19] – an algorithm that achieves max-min
fairness for multiple, heterogeneous compute resources (e.g.,
CPU, memory) – as a basis for scheduling privacy. However,
as we will show, DRF’s max-min fairness guarantees do not
hold for scheduling privacy. We next describe the limitations
of DRF and several variations for privacy scheduling, after
which we present the design and analysis of our new algo-
rithm, DPF (Dominant Private block Fairness).
4.1 Limitations of DRF and Variations

We identify three limitations of DRF with respect to the
privacy resource. First, DRF assumes static resources and
sometimes even static workloads. In PrivateKube, we focus on
a dynamic setting: both pipelines and private blocks arrive to
the system dynamically. If we applied DRF on private blocks,
at every point in time, DRF would try to consume the entire
available budget to satisfy the demands of all present tasks.
This would make it violate the sharing incentive guarantee of
max-min fairness. A new task arriving to the system that asks
for its fair share of privacy budget might not be able to get it,
since DRF had already allocated the budget to previous tasks.

Second, DRF, like most scheduling algorithms for com-
pute resources [9, 23–25, 58], assumes these resources are
replenishable: a resource can grant utility (i.e. via CPU cy-
cles, network bandwidth) indefinitely. For instance, if multiple
pipelines need to time-share a CPU core, prior work assumes
that if a pipeline was assigned to the core in time interval
T1, the core will naturally be available for other pipeline in
time intervals T2, T3, etc. and provide them with the same
amount of CPU cycles per time slot. In contrast, an individual
private block is a non-replenishable resource. If a pipeline
is assigned a budget for a particular private block, that budget
is consumed forever, and there may not be sufficient budget
remaining for another pipeline in that particular block. Dy-
namic DRF [32], a more recent extension of DRF, considers
both dynamic settings and non-replenishable resources. Un-
fortunately, Dynamic DRF has its own limitation, as follows.

Third, as discussed in §3.4, PrivateKube adopts an all-or-
nothing semantic: a pipeline is either allocated all of its de-
manded budget, or none at all. Therefore, pipelines have an
all-or-nothing utility function, where they can only be sched-
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uled (with a utility of 1) if their entire demand vector is allo-
cated, otherwise their utility is 0. Once a pipeline is allocated
its entire demand vector, it leaves the system. Having an all-
or-nothing utility function departs from both Dynamic DRF
and DRF, which assume compute resources with continuous
utility. In fact, an all-or-nothing utility function would break
the Pareto efficiency of Dynamic DRF and DRF alike, which
allocate resources proportionally based on demand (see §7).
4.2 DPF

Due to the dynamic arrival of pipelines and the non-
replenishable nature of private blocks, we need to gradu-
ally unlock privacy budget as pipelines arrive to the system,
in order to award those pipelines their fair share. Therefore,
we need to define a more constrained notion of a fair share
that divides the budget of private blocks over some particular
number of pipelines, or a particular time period. This section
presents a version of DPF that defines a fair share over the first
N pipelines that select particular private blocks, and provides
formal fairness guarantees for those first N pipelines. For any
subsequent pipelines (after the first N) that request a budget
for those particular blocks, PrivateKube will not guarantee
them a fair share, but will make a best-effort to schedule them
with leftover budget. §5 discusses a version of DPF that in-
stead of dividing resources by pipelines, divides resources by
time intervals, and has weaker fairness guarantees. In both
cases we ensure that DPF schedules budget all-or-nothing,
so that no budget is wasted on tasks that will not end up being
scheduled, thus violating Pareto efficiency.

Algorithm 1 gives pseudocode for DPF. When a new block
j is created (ONDATABLOCKCREATION), its per-block bud-
get, εG

j , is determined by the fixed global privacy budget εG.
To ensure that the first N tasks that request j get their fair
share, j’s budget is initially completely locked (εU

j = 0).
Recall that each pipeline in PrivateKube has in its privacy

claim a privacy demand vector, d, whose entries represent the
epsilon demand for the private blocks matching the claim’s
selector. We define the privacy budget fair share of each
private block j as: εFS

j = εG
j /N. DPF guarantees the fair share

of a given private block j to the first N pipelines that arrive to
the system that have a non-zero demand for j.

We unlock the budget as pipelines arrive (function
ONPIPELINEARRIVAL): a new pipeline i that requests budget
from a particular block j unlocks εFS

j of that block’s budget,
up until all the block’s budget is unlocked. The scheduler’s
responsibility is to allocate the total unlocked budget (εU )
among the different pipelines.

To determine which pipeline gets scheduled first, the sched-
uler maintains a sorted list of the waiting pipelines, based
on their dominant private block share. This is defined as the
maximum demand within each pipeline’s demand vector:

DominantSharei = max
j

di, j

εG
j
, (1)

where di, j is the demand for block j of pipeline i and εG
j is the

total budget of private block j. The scheduler sorts pipelines

Algorithm 1 DPF (max-min fairness for first N pipelines).

# Config.: (εG,δG) global DP guarantee to enforce.
function ONDATABLOCKCREATION(block index j)

εG
j ← εG,εU

j ← 0,εA
j ← 0,εC

j ← 0
end function
function ONPIPELINEARRIVAL(demand vector di)

for ∀ j : di, j > 0 do

εU
j ←min(εG

j , εU
j +

εG
j

N )
end for

end function
function ONSCHEDULERTIMER(waiting pipelines wp)

sorted_pipelines← sortBy(DOMINANTSHARE, wp)
for i in sorted_pipelines do

if CANRUN(di) then
ALLOCATE(di)
Run task i, which either consumes di, j (moving
it to εC

j ) or releases it (moving it back to εU
j ).

end if
end for

end function
function DOMINANTSHARE(demand vector di)

return max j: di, j>0
di, j

εG
j

end function
function CANRUN(demand vector di)

return ∀ j : di, j ≤ εU
j

end function
function ALLOCATE(demand vector di)

for ∀ j do
εU

j ← εU
j −di, j

εA
j ← εA

j +di, j
end for

end function

by their dominant private block share, with the smallest share
ranked first (function ONSCHEDULERTIMER). If there are
one or more pipelines that have the same dominant private
block share, DPF will sort them by taking the smallest of the
second-most dominant private block share of each pipeline,
followed by the smallest third-most dominant share, etc.

DPF tries to allocate pipelines based on their order in the
list. It tries to allocate all of the demanded privacy budget
vector of the pipeline at once. If it cannot allocate the pipeline
fully (function CANRUN returns false), then it moves to the
next one in the list, until it reaches the end of the list.

Example. Fig. 4 shows an example run of DPF with three
pipelines and two private blocks. Suppose the fair share (εFS)
of each block is equal to 1. Pipeline 1 (P1) arrives at t = 1,
then P2 and P3 at each time unit. The demand vector of P1
is d1 = (0.5,1.5), while the vector of P2 is d2 = (1.0,1.0)
and P3’s demand is d3 = (1.5,1.0). The bottom of the figure
depicts the state of of DPF’s sorted list at each time unit, where
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Fig. 4: DPF example. DPF is scheduling three pipelines (P1,P2,P3) over
two private blocks (PB1, PB2), over time. Shows the state of DPF’s sorted
list, and what portion of each private block is locked (εL), unlocked (εU ), and
consumed (εC). Assumes budget is consumed instantaneously (εA = 0).

the shaded pipeline in the list is the one that is scheduled at
that time unit, while the unshaded one remains waiting.

When P1 arrives it unlocks a privacy budget of 1 in each
block. Since it is the only pipeline in the system (and therefore
has the minimum dominant resource), the scheduler tries to
allocate it a budget. However it is unable to do so, since P1
requires a budget of 1.5 from PB2 but only 1 is unlocked.

When P2 arrives, more budget is unlocked. The dominant
resource of P1 is then the second block (with a demand of 1.5)
and the dominant resource of P2 is either block 1 or 2, each
of which has a share of 1. Therefore, the scheduler tries to
allocate budget to P2, and does so successfully. It then tries
to allocate budget to P1, but is unable to (since there is only a
budget of 1 left in PB2). P1 will have to keep waiting. When
P3 arrives, its dominant share is for block 1 (1.5), while the
dominant share for P1 is block 2 (1.5). Since their dominant
share is the same, DPF orders them based on their second
highest share, which is 0.5 for P1 and 1.5 for P2. Therefore,
the scheduler allocates the budget for P1. P3 must wait, since
the remaining unlocked budget for block 2 is only 0.5.
4.3 DPF Analysis

We prove four properties of DPF: sharing incentive,
strategy-proofness, dynamic envy-freeness, and Pareto effi-
ciency. We use the same definitions for these properties de-
fined for dynamic environments based on Kash, et.al. [32].

Definition 1 (fair demand pipeline). A fair demand pipeline
has two properties: (a) the pipeline is within the first N
pipelines that requested some budget for all its requested
blocks, and (b) its demand for each one of the blocks is smaller
or equal to the fair share (i.e. for pipeline i, ∀ j : di, j ≤ εFS

j ).

Theorem 1 (sharing incentive). A fair demand pipeline is
granted immediately.
Proof. Consider a fair demand pipeline i with demand di.
We proceed by induction over the number of waiting pipelines.
Base case: no waiting pipelines. di, j > 0⇒ εFS

j ≤ εU
j , since

εFS
j is unlocked by di. di is fair so di, j ≤ εFS

j ≤ εU
j . The

pipeline is granted, and no fair pipeline is waiting. Induc-
tion step: Consider any waiting pipeline k with demand dk
and dominant share DominantSharek. By the induction as-
sumption no fair pipeline is waiting, so DominantSharek >
εFS

j ≥DominantSharei. As before, di, j > 0⇒ di, j ≤ εFS
j ≤ εU

j ,
and di can be granted. di is ordered first so it is granted.

Theorem 2 (strategy-proofness). A pipeline has no incentive
to misreport its demand.
Proof. A pipeline has no incentive to ask for more budget
than its real demand, because: (a) its utility would not increase
if it obtains more budget than it needs, (b) its dominant share
will be greater or equal so it can only become less likely to
get scheduled. A pipeline also has no incentive to ask for less
budget than its real demand, because its utility will drop to
zero if it is not allocated its demanded budget.

Theorem 3 (dynamic envy-freeness). A pipeline present at
time t cannot envy the allocation of another pipeline present
at time t, except if their DominantShares are identical.
Proof. Consider pipeline i. There are two cases. Case
1: i was granted. Its utility cannot improve due to all-or-
nothing utility, there is no envy. Case 2: i is waiting. Con-
sider any pipeline j that i envies and is non identical (i
and j are strictly ordered by DPF). We show by contradic-
tion that j was granted before i entered the system. Sup-
pose that was not the case. When j was granted: either
DominantShare j < DominantSharei and j could be granted;
or DominantShare j > DominantSharei but i could not be
granted while j could. In both bases i cannot be granted from
j’s allocation, which would give i a utility of zero. i cannot
envy j, which is a contradiction.

Theorem 4 (Pareto efficiency). No allocation from unlocked
budget can increase a pipeline’s utility without decreasing
another pipeline’s utility.
Proof. Consider pipeline i. If di was already allocated, its
utility cannot improve due to all-or-nothing utility. If i is
waiting, it cannot be allocated from unlocked budget as DPF
grants pipelines until no pipeline can be allocated. Allocating
di would require extra budget, which can only come from
another allocated pipeline. Since each allocated pipeline has
exactly its requested budget this would decrease its utility
from one to zero, which is not Pareto-improving.

4.4 Best-effort Scheduling for Higher Demands
While DPF only guarantees immediate allocation for fair

demand pipelines, the algorithm has a best-effort approach
to schedule pipelines that do not have a fair demand. There
are two scenarios where pipelines do not have a fair demand.
First, a pipeline’s demand may be higher than its fair share
for at least one block. From Theorem 1, fair demand pipelines
always get immediately scheduled. Therefore, if there is any
leftover unallocated budget after a fair demand pipeline gets
scheduled, that budget can be used to schedule pipelines with
higher demands. This budget will not be needed by any future
fair demand pipeline, since they unlock a budget equal to the
fair share. In Fig. 4, even though pipeline 1 has a higher de-
mand than its fair share for block 1, it still gets scheduled. Sec-
ond, for the same reason, DPF can safely schedule pipelines
that are not among the first N to request budget from some
blocks, if there is leftover unallocated budget in those blocks.

62    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Algorithm 2 DPF-T (shows what changes in Alg. 1).

# Replace ONPIPELINEARRIVAL with:
function ONPRIVACYUNLOCKTIMER(data lifetime L)

for ∀ j do

εU
j ←min(εG

j , εU
j +

εG
j

L )
end for

end function

4.5 Scheduling Compute Alongside Privacy
DPF only schedules private blocks. However, a pipeline

will also need computing resource. Currently, our PrivateKube
prototype implements two schedulers: the privacy scheduler
(based on DPF) schedules private blocks to private pipelines.
The default Kubernetes scheduler schedules traditional com-
puting resources for non-private pipelines, and for private
pipelines that have been allocated their privacy budget. DPF’s
game theoretic properties hold if the system is bottlenecked
by privacy budget, rather than computing resources. We leave
open the problem of scheduling privacy together with comput-
ing resources while guaranteeing game theoretic properties.

5 DPF Extensions
We have focused so far on the core version of DPF that un-
locks budget based on pipeline arrival, and uses basic DP
composition and Event DP. We consider three extensions of
DPF to address limitations of this core version: unlocking
budget by time, using a stronger DP composition (Rényi) and
stronger DP semantics (User and User-Time DP).
5.1 Time-based DPF

Gradually unlocking privacy budget is key to dealing with a
non-replenishable resource and a dynamic workload. The pre-
ceding DPF algorithm unlocks εFS

j for each requested block
j, whenever a new pipeline arrives. We also define a version
of DPF that unlocks budget over time, regardless of workload.
Many organizations already enforce an expiration period, L,
for collected data. In time-based DPF (Algorithm 2), each
block gradually unlocks its budget over its lifetime L, and the
fair share is defined as εFS

j = t
L εG

j , where t is the interval of
time at which private block budgets are unlocked. The advan-
tage of this version is the budget unlocking is predictable and
independent of the pipeline arrival patterns. Moreover, by pac-
ing budget unlocking over the data’s lifetime, we ensure that
the data will have DP budget remaining while still accessible.

Unfortunately, time-based DPF does not guarantee the shar-
ing incentive. A fair-share pipeline may overlap with many
other, smaller pipelines that are ordered first and consume
budget when it becomes available, forcing it to wait longer
than t or even never be granted.

However, the other three properties are guaranteed by this
policy. We briefly sketch out the proofs for each. Strategy-
proofness is guaranteed because there is no advantage in
demanding more than the real demand, since the pipeline
will need to wait longer for the budget to be unlocked. Envy-

freeness is guaranteed for the same reason as in the base
version of DPF. At any given time DPF will prioritize the
pipeline with minimum dominant private block, so a pipeline
with a higher dominant resource can only be scheduled ear-
lier than another pipeline by being granted before the other
pipeline arrives. Finally, Pareto efficiency is guaranteed by
the combination of all-or-nothing utility and allocation.

5.2 DPF with Rényi DP
Rényi DP [42] is an alternative DP definition that is

stronger than (ε,δ)-DP for δ ∈ (0,1] (in the sense that Rényi
DP always implies (ε,δ)-DP but the converse is not true) and
is weaker than (ε,0)-DP ((ε,0)-DP always implies Rényi DP).
The great benefit of Rényi DP is that it permits convenient
composition of multiple mechanisms that scales much better
than the basic composition we have been assuming so far. We
thus believe it is important for any globally DP system to sup-
port Rényi DP, and for this reason we describe our integration
of it in PrivateKube. However, the definition and formulas
of Rényi DP are more complex than those of (ε,δ)-DP, so
we will not attempt to detail them here. Instead, we include a
Rényi DP primer in our extended paper [38] and only state
here a few facts needed to understand this paper.
Rényi DP Facts. As described in §2.2, DP in general upper
bounds the change in the output distribution of a randomized
algorithm that can be triggered by a small change in its in-
put. Making δ = 0 in the DP definition in §2.2, we see that
(ε,0)-DP puts a multiplicative bound on the change in the out-
put distribution: ∀S . P(Q (D)∈S)

P(Q (D ′)∈S) ≤ eε. (ε,δ)-DP loosens this
multiplicative bound with an additive factor, δ. In contrast to
these definitions, Rényi DP puts an upper bound on the Rényi
divergence, a particular measure of distance between the out-
put distributions: RényiDivergenceα(Q (D),Q (D ′))≤ ε. We
state three facts about this distance and Rényi DP.

First, Rényi divergence is parameterized by a parameter,
α > 1, hence Rényi DP is expressed in terms of two pa-
rameters: (α,ε). Second, for every value of α, there is a di-
rect translation from Rényi DP to (ε,δ)-DP. The formula is:
(α,ε− log(1/δ)

α−1 )-Rényi DP implies (ε,δ)-DP for any value of
ε > 0, δ ∈ (0,1], and α > 1. Also, (∞,ε)-Rényi DP is equiva-
lent to (ε,0)-DP for any value of ε > 0. Thus, the α parameter
can be seen as adding a spectrum between pure (ε,0)-DP and
(ε,δ)-DP; from any point on that spectrum, one can recon-
struct back the traditional (ε,δ)-DP guarantee. For our work,
this means that PrivateKube can use Rényi DP internally
while exposing the same (εG,δG)-DP guarantee externally.

Third, Rényi DP allows tighter analysis of the privacy loss
from multiple mechanisms. For example, the scale of the
Gaussian distribution required to achieve (ε,δ)-DP depends
linearly on 1/ε. The scale of the Gaussian required to achieve
(α,ε)-Rényi DP depends on 1/

√
ε (and on α). In traditional

DP, when composing (summing the ε’s of) k Gaussian mech-
anisms with the same scale, σ, the composite mechanism is
equivalent to a Gaussian mechanism with σ/k scale, so it’s
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“k times less private.” But in Rényi DP, when composing the
same k Gaussian mechanisms, the composite mechanism is
equivalent to a Gaussian mechanism with σ/

√
k scale, so it’s

just “
√

k less private.” Thus, Rényi DP scales much better in
the number of computations and should enable more pipelines
to share the global budget.

DPF with Rényi DP. Our goal is to take advantage of Rényi
composition without sacrificing DPF’s game-theoretical prop-
erties. One option is to pick one point in the Rényi DP spec-
trum (one value of α > 1) and apply DPF as is, internally
using Rényi to analyze and compose privacy loss, and ulti-
mately translating the Rényi guarantee back into traditional
DP. Unfortunately, when composing multiple, heterogeneous
mechanisms (think different σ for Gaussian) in Rényi DP, it
is unclear a priori which parameter α will ultimately give
the best traditional-DP guarantee; this is because both the
Rényi analysis of privacy loss and the translation to tradi-
tional DP depend on α, in inverse directions (see [38] for
details). In PrivateKube, we thus choose to track a set A of
α > 1 values, and to use one that ultimately gives the best
traditional-DP guarantee. As the Rényi DP author shows [42],
and as we observed experimentally, fine-grained choice of
values is not important, so we select several values based on
recommendations from [42]: A = {2,3,4,8, ...,32,64}.

Algorithm 3 summarizes the changes DPF requires to sup-
port Rényi. For each private block, j, PrivateKube initializes
a vector of Rényi budgets, with one entry for each value of
α ∈ A, based on the preceding translation formula (function
ONDATABLOCKCREATION). Other privacy variables main-
tained in the block similarly become vectors in α (εU , εA, etc.).
Moreover, a pipeline’s privacy demand also becomes a vector
for each block: di, j(α). In practice, a developer will decide on
the mechanism and noise scale to use (e.g. Gaussian mech-
anism with scale σ), based on which a library can compute
the Rényi privacy demand vector for the tracked α’s. When
a pipeline is allocated (function ALLOCATE), the requested
budget is deducted from each block, and for each α.

With these changes, the question becomes how to schedule
over the α vectors. One approach is to treat each (block,α)
tuple as a separate resource. Since DPF already supports mul-
tiple resources, its game-theoretical guarantees should hold.
Indeed, this is how we compute the DOMINANTSHARE under
Rényi: return the maximum demand over all requested blocks
and α orders. However, treating each (block,α) tuple as a
separate resource does not work when deciding if a pipeline
CANRUN. Indeed, doing so would allocate pipelines only
when enough budget is unlocked for all α values. However,
recall that in Rényi DP, any α with sufficient privacy budget
can be translated to an ε,δ-DP guarantee. Requiring all to
have that would just block progress until the largest α acquires
sufficient budget, which removes the benefits of Rényi com-
position. Instead, we allow allocation of any pipeline in which
each requested block has enough unlocked budget εU

j (α) for
any α (potentially at different α across blocks).

Algorithm 3 DPF-Rényi (shows what changes in Alg. 1).

# Config.: (εG,δG): global DP guarantee to enforce;
# A: Rényi parameters (default: {2,3,4,8, ...,64}).
function ONDATABLOCKCREATION(block index j)
∀α ∈ A : εG

j (α)← εG− log(1/δG)
α−1

end function
# Either ONPIPELINEARRIVAL or ONPRIVACYUNLOCK-
# TIMER, modified to unlock budget for each alpha.
function DOMINANTSHARE(demand vector di(α))

return max j:di, j>0 maxα∈A
di, j(α)

εG
j (α)

end function
function CANRUN(demand vector di(α))

return ∀ j : ∃α s.t. di, j(α)≤ εU
j (α)

end function
function ALLOCATE(demand vector di(α))

for ∀ j and ∀α ∈ A do
εU

j (α)← εU
j (α)−di, j(α)

εA
j (α)← εA

j (α)+di, j(α)
end for

end function

Analysis. Under this behavior, the consumed budget at some
α values may be higher than the unlocked budget, and even
the global one. However, for each block j there will always re-
main one α such that 0≤ εU

j (α)≤ εG
j (α). The global (εG,δG)-

DP guarantee is thus preserved (proof in [38]). Moreover,
DPF’s four properties (§4.3) can be proven to hold under the
following definition of a fair pipeline: ∀ j,di, j(α) ≤ εFS

j (α),

where εFS
j (α) =

εG
j (α)

N (proofs in [38]).

5.3 Supporting Varied DP Semantics
Finally, we detail how we incorporate support for all three

DP semantics – Event, User, and User-Time DP – in our pri-
vate block abstraction. To our knowledge, no one has shown
how to support all three with one abstraction, and since we
believe that a DP system should support diverse semantics,
suitable for different cases, we describe here how we do so.

DP conceals a change between neighboring D and D′ that
are identical with a row added or removed. This neighboring
definition, or what we treat as a row that is added or removed,
defines the protection semantic. In Event DP, the most com-
mon but weakest semantic, D and D′ differ in one event (e.g.,
one click). DP thus conceals the impact of adding or remov-
ing one such event (e.g. yesterday’s click on a health related
post about a specific condition), but since one user can con-
tribute a large number of such events, important aspects of a
user’s behavior can still leak though DP computations (e.g.
repeated clicks related to said medical condition). In User
DP, the strongest semantic, neighboring datasets differ by all
the data of one user. User DP conceals the entire contribu-
tion of a user regardless of the amount of data (e.g., many
clicks in a health app). This semantic can be challenging to
enforce on streams, since users with an exhausted privacy
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(a) Event DP. Same as Sage [35]. (b) User DP. New in PrivateKube. (c) User-Time DP. New in PrivateKube.
Fig. 5: PrivateKube’s support for diverse DP semantics. Shows how the data is split into blocks and how pipelines request them. Light-gray private blocks
can be requested by pipelines, white blocks are in-progress. A block’s area represents its εG

j budget. Red portions are consumed by pipelines, blue by counters.

budget cannot contribute to new computations, even if they
generate new data. User-Time DP is a middle-ground [33], in
which neighboring datasets D and D′ differ by the addition or
removal of all data from one user in a given time period (e.g.,
one day). Repeated actions of a user in that time period are
protected (e.g., a browsing session with repeated clicks), and
newly generated data in the next period can still be used.

Fig. 5 illustrates how we support all three DP semantics
in our private block abstraction. It requires instantiating two
aspects: (1) how data is split into private blocks and (2) how
blocks are requested by the pipelines.

Event DP (Fig. 5a). (1) Splitting data: At pre-set time inter-
vals (e.g., a day), the data collected in this interval forms a new
private block with a total of εG privacy budget. (2) Request-
ing blocks: Because time is public, we always know which
past blocks have been created and filled with data. Pipelines
registered on PrivateKube can thus request blocks from a
time range of interest without risking consuming budget from
an empty block. In Fig. 5a, blocks for the first three days
are available. The pipeline requests data from the last two
days, thereby consuming budget only for those. This design
is identical to Sage [35], which supports only Event DP.

User DP (Fig. 5b). (1) Splitting data: Computing on any
user’s event must consume DP budget for the entire user;
time-based splitting is therefore insufficient because a user’s
clicks can span large time intervals. Instead, PrivateKube
maintains a private block for each (group of) user id(s) that
will ever exist in the system, lazily instantiated. New data
is added to the block responsible for the corresponding user
without changing its remaining DP budget, or to a newly
created block if this user is new. For instance, in Fig. 5b, only
the first three users contributed data so far.

(2) Requesting blocks: This raises a challenge. Unlike in
Event DP, where we know which past blocks have been cre-
ated and filled with data, in User DP we do not know which
users exist in the system at a given time. Knowing that would
leak information about which users join when, violating User
DP. Instead, PrivateKube maintains a DP counter that esti-
mates, in a user-DP way, the number of users in the system at
any time. The counter is updated periodically (e.g., daily) and
consumes a bit of DP budget from every block (in blue on
Fig. 5b). Since the count is noisy, pipelines requesting user

blocks may sometimes overshoot and consume budget from
users that do not yet exist (and therefore cannot possibly sup-
ply any data). To avoid consuming budget from empty user
blocks, our design has pipelines request user blocks based on
a high probability lower-bound of the true count. This ensures
the true count is under-estimated with high probability, so no
empty user is wastefully requested. Our extended paper [38]
gives the specific formulas to obtain this lower bound.

The counter does consume some εcount-DP budget, which
is a configuration parameter of PrivateKube, fixed when Pri-
vateKube is deployed. The budget is deducted once for each
data block, upon the block’s creation. For example, for Rényi-
DP, ONPRIVATEBLOCKCREATION( j) initializes j’s global

Rényi budget vector to: εG
j (α) = εG− log(1/δG)

α−1 − 2ε2
countα,

where the last term corresponds to the Renyi consumption
of the εcount-DP counter. Since DPF always works from this
εG

j (α), all DPF properties are preserved.
User-Time DP (Fig. 5c). A middle-ground between Event
and User DP, User-Time DP combines both mechanisms.
(1) Splitting data: Data is split over both user and time; newly
collected data is assigned to the block managing the corre-
sponding user and the time range that includes the data cre-
ation. Some of the blocks may be empty (e.g. user 1, day 2),
but since no new data can ever be added to them once their
timeframe passes, there is no cost to the future of using their
DP budget now. (2) Requesting blocks: Blocks are requested
on both time and a continuous DP counter of the number of
users. The counter works similarly to User DP, except that
the first (smallest time) block for a user id is created when
the upper-bound of the user counter reaches this user id. This
corresponds to the first time a user may have contributed data.

6 Evaluation
We implemented PrivateKube on Kubernetes 1.17. Our experi-
ments run on Google Cloud with managed GKE on two pools
of CPU (n1-standard8 machines) and GPU (n1-standard8
machines with one Tesla K80 GPU) servers. Each pool is
autoscaled by Kubernetes up to a cap of 10 servers per pool.

Our evaluation seeks to answer six questions:
Q1: How does DPF compare to baseline scheduling policies?
Q2: How do workload characteristics impact DPF?
Q3: How does Rényi DP impact DPF?
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Q4: How does the DP semantic impact model accuracy?
Q5: How does the DP semantic impact DPF?
Q6: Does native integration facilitate tool reuse?

We develop two methodologies. First, we create a simple,
controlled microbenchmark that helps us explore DPF under
varied workload characteristics (Q1, Q2, Q3). Second, we
create a macrobenchmark consisting of multiple ML pipelines
trained on Amazon Reviews [46] to investigate Q1, and Q4-6.
Metrics and Baselines. Across our experiments, we use the
following metrics. Number of allocated pipelines is the num-
ber of pipelines that were successfully allocated their privacy
budget throughout the experiment. Scheduling delay is the
time measured from when a pipeline arrives to the point where
it is allocated its privacy budget. Accuracy is the percentage
of correct classification of a model.

We compare DPF to two baseline scheduling algorithms.
First-come-first-serve (FCFS) tries to allocate pipelines by
their order of arrival on available privacy budget. All the bud-
get is immediately available to pipelines (i.e. unlocked) from
the outset. Round robin (RR) allocates budget evenly among
pipelines that are currently in the system. We implement two
versions of RR that correspond to the two versions of DPF.
The first one unlocks εFS

j of budget for each pipeline that
arrives that demands a block j, and the second one unlocks
budget in the block over time in proportion to its lifetime. For
example, if the data lifetime is a year, a third of the budget of
a block will be released after four months. This latter policy
is similar to the one used by the Sage system [35].
Evaluation Highlights. DPF is able to grant more pipelines
than the baselines at the cost of a small delay (Q1), especially
over heterogeneous workloads (Q2). Rényi DP enables al-
location of either many more or much larger pipelines (Q3).
Stronger DP semantics require more DP budget and data (Q4),
which increases the need for judicious budget allocation as
with DPF (Q5). Our native integration enables reuse of exist-
ing tooling for privacy resource management, such as using
Grafana to monitor privacy consumption (Q6).
6.1 Microbenchmark (Q1, Q2, Q3)

Our microbenchmarks evaluate the performance of DPF
compared to the two baselines. We assume pipeline arrival fol-
lows the Poisson process. In the single-block experiment, the
pipeline arrival rate is 1 per second. We generate two types
of pipelines, mice and elephants, split 75% to 25% by de-
fault, with respective demands of ε = 0.01εG, and ε = 0.1εG.
In the multi-block experiment, blocks are created every 10
seconds. By default, pipeline’s demand ε follows the same
distribution as single-block. However, it can either request
the last block with probability 0.75, or the last 10 blocks with
probability 0.25, independently of the requested ε. We used
a load that emphasizes the differences between the policies,
where newly arrived pipelines’ average demand is 13.5× of
the newly generated blocks. This results in the basic compo-
sition experiments using an arrival rate of 12.8 per second,
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Fig. 6: DPF behavior on a single block.
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Fig. 7: DPF with varied workload mix, single block. (b) DPF N=125.

and the Rényi experiments using 234.4 per second. If not
allocated, pipelines timeout after 300 seconds.

6.1.1 DPF Behavior on a Single Block

We first evaluate the performance of DPF in the simplest
possible setup: with a single private block. In this case, the
demand vector of each pipeline will only contain one item,
and DPF will prioritize the pipeline with the lowest demand.

Fig. 6 shows DPF and RR under different N values, and
FCFS. Fig. 6a shows allocated pipelines. With FCFS early ele-
phants take away the budget of many mice, only 28 pipelines
are granted. With RR, a low value of N directly unlocks all
DP budget, behaving like FCFS. When N is high enough to
maintain a large number of mice, but low enough to eventu-
ally grant them, RR is able to grant up to 38 pipelines (more
than FCFS). At large N RR’s proportional allocation creates
multiple partially granted pipelines and only 20 are granted.
Neither outperforms DPF. When N is equal to 1, the first
pipeline unlocks all the budget and DPF behaves like FCFS.
At higher values of N, DPF prefers mice over elephants and
a higher number of pipelines get allocated, up to the max-
imum possible of 100. Since DPF never wastes budget on
unallocated pipelines it outperforms RR when N is large.

As expected, granting more jobs comes at the cost of in-
creased delay (Fig. 6b shows scheduling delay at notable
operating points for each policy). With DPF at N = 50 some
elephants experience scheduling delays before being granted
from unlocked budget. At N = 175 some mice wait since εFS

is higher than the mice requests, but only mice are granted.

To summarize, DPF is always able to allocate budget to
more pipelines than FCFS or RR. N presents a trade-off be-
tween the number of pipelines that are successfully allocated
and the scheduling delay the pipelines experience.
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Fig. 9: DPF and DPF-T behavior on multiple blocks.

6.1.2 DPF Behavior with Mice Percentage
Fig. 7 compares the three scheduling policies under a vari-

able percentage of mice and elephants. At either extreme, all
pipelines are identical so DPF and FCFS allocate the same
number of pipelines. In this case, the scheduling delay of
FCFS is slightly better, since it always immediately schedules
these pipelines. However, when there is a mix of pipelines,
DPF always allocates more pipelines. RR performance is
mixed: for some workloads it is able to allocate slightly more
pipelines than FCFS, since it assigns a higher percentage of
budget to mice; for others it underperforms FCFS, since it
wastes budget on pipelines that are never scheduled.
6.1.3 DPF Behavior on Multiple Blocks

Fig. 8 shows the multi-block experiment results are similar
to the single-block experiment. The main difference is that
DPF performance with very large N drops, because some
blocks do not see enough requests to unlock all their budget.
For RR, proportional allocation helps cross-blocks pipelines
to be granted (small N), yielding a small improvement over
FCFS and N = 1 DPF. When N > 400, the multiple blocks
create more DP budget spread over ungrantable pipelines, and
there is no high allocation peak: RR grants collapse while
DPF shows a 2× increase over FCFS.
6.1.4 DPF-N vs. DPF-T

Fig. 9 compares DPF-N, the version used throughout the
paper, which unlocks budget based on arriving pipelines, and
DPF-T, which releases budget based on time (§5). We observe
that on low N and T they behave almost identically. This is
because DPF-T will release budget on less queried blocks,
sometimes allowing multi-block pipelines to be prematurely
granted. On large N and T values DPF-T does much better, as
all budget is eventually unlocked and some waiting pipelines
can be granted, even when no new request is made to the
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Fig. 10: Traditional vs. Rényi DP, multiple blocks. (a) Note log axes. Work-
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blocks they demanded. Fig. 9b shows the delay for equivalent
N and T values.

6.1.5 Traditional DP vs. Rényi DP

Fig. 10 compares the DPF algorithm with traditional DP
(the default DP composition used in the paper), against Rényi
DP, including FCFS with both compositions as a baseline.
The results show that switching to Rényi DP results in much
better pipeline allocation: Rényi DP allows DPF to allocate
more than 17× more pipelines than traditional DP, at their
respective peaks. Even FCFS using Rényi DP significantly
outperforms DPF with traditional DP. Note that DPF provides
a benefit at different values of N for the two compositions,
since Rényi DP requires a higher N value to reach the point
where DPF starts prioritizing small pipelines. We conclude
that switching to Rényi DP leads to much more efficient
privacy budget utilization, regardless of the scheduling policy.

6.2 Macrobenchmark (Q1, Q4, Q5)

We use a subset of Amazon Reviews [46] in which users
and products have 5 reviews or more, and keep product cat-
egories with 1M+ reviews. Each event has a review, times-
tamp, user, 1-5 rating, and product in one of eleven categories
(e.g., books, clothing). We keep the reviews from 01-01-13
to 01-01-18, in total 43.4M reviews from 3.7M users. Tab. 1
specifies our workload: eight ML pipelines and six summary
statistics pipelines. For ML, we define four types of models
for each of two tasks: product classification (assigns a re-
view to its product category) and sentiment analysis (predicts
whether a review is positive). Reviews are embedded using a
Wikipedia-trained GloVe [50] except for the fine-tuned BERT
model. We run non-DP architecture searches for non-DP and
DP pipelines on a 1% hold-out.

We set an accuracy goal for each pipeline: for summary
statistics, 5% relative error; for ML models, an accuracy reach-
able by User DP (e.g., 60% for LSTM/Product). Each pipeline
demands the minimum amount of private blocks necessary
to reach its goal with ε ∈ {0.01,0.05,0.1} (“mice,” i.e. statis-
tics) and ε ∈ {0.5,1,5} (“elephants,” i.e. ML models). The
demands range from 1 to 500 private blocks. Models use
δ = 10−9. The workload draws 75% mice and 25% elephants.
Each private block holds one day of data and has εG = 10. The
experiments replay 50 days of the dataset. Pipelines register
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Task Model Architecture∗ Training
Linear 75; 100; [] Optimizer: Adam

1,111 parameters (for DP, non-DP).
FF†† 60; 100; [185, 150]

Product 48,246 parameters DP algo: DP-SGD
classifi- LSTM 30; 100; [40]† (Opacus).
cation 23,171 parameters

BERT L 4; H 256; A 4§ Epochs: non-DP,
858,379 parameters event/event-time

Linear 50; 100; [] DP: 15; user DP: 60.
101 parameters

FF†† 30; 100; [150, 110] Batch: non-DP: 256;
Sentiment 31,871 parameters DP:

√
N for N train

analysis LSTM 50; 100; [40]† samples (per [1]).
22,761 parameters

BERT L 4; H 256; A 4§ DP clipping: flat,
855,809 parameters max norm = 1.

Reviews: total #, per category # Laplace. Bounded
Statistics Tokens: total #, avg, stdev user contribution:

Rating: avg 20/day, 100 in total
Tab. 1: Macrobenchmark pipelines. ∗: Architecture column: the first line,
x;y;z, shows the input sequence length (x), embedding size (y), and the list
of hidden layers’ size (z). The second line shows the number of trainable
parameters. ††: Fully-connected feed-forward neural network. †: The LSTM
is single directional and has no dropout. §: We use a pretrained BERT model
and fine-tune the last transformer layer with over 850K trainable parameters.

with PrivateKube at exponentially distributed time intervals,
at a rate of 300 pipelines per day.
6.2.1 Accuracy of Individual Models with DP Semantic

Fig. 11 shows the LSTM’s product classification accuracy
with increasing data, with no DP and for ε ∈ {0.5,1,5} for
each DP semantic. Other pipelines show similar trends. We
make two observations. First, DP semantic has a large impact
on accuracy for a given DP budget and data size. As expected,
Event DP, the weakest semantic, provides the highest accu-
racy: 73%, 72%, and 72%, for DP budgets of 5, 1, and 0.5
respectively, on 20M datapoints. The larger budgets get close
to the non-DP baseline, at 77%. User DP requires larger bud-
gets: the largest reaches 72% while the smallest yields 68%.
User-time DP’s behavior is closer to, but lower than, Event
DP, with accuracies of 72%, 71%, and 70%.

Second, increasing data or budget improves accuracy: the
DP models approach the baseline slowly, but can reach it
given enough data and DP budget. The relationship between
accuracy, data, and budget however is non linear. For event DP
with 20M datapoints, increasing the budget from 0.5 to 5 in-
creases accuracy from 72% to 73%, while at 2.5M datapoints
the same increase goes from 68% to 71%. This relationship
also depends on DP semantics, with low budget models being
disproportionately impacted by smaller amounts of data and
budget. For user DP for instance, the accuracies go from 68%
to 72% for 20M datapoints, and from 57% to 68% for 2.5M.
6.2.2 DPF Behavior with Macrobenchmark

Fig. 12 shows the performance of DPF with Rényi DP un-
der our end-to-end workload. Fig. 12a shows the number of
granted pipelines under the different DP semantics. We make
two observations. First, as expected stronger DP semantics
require more private block and DP budget, so fewer pipelines

are granted in total: event, user-time, and user DP can grant
13.8k, 10.4k, and 6.7k pipelines, respectively. Second, as be-
fore, increasing N helps DPF prioritize later mice over current
elephants, increasing the total number of pipelines granted
by 67% (event), 75% (user-time) and 17% (user) compared
to low N and FCFS. Fig. 12b shows the scheduling delay of
user DP for N values of 200 and 400. We see that increase in
pipelines granted comes at a reasonable cost in delay.

Fig. 13 shows the cumulative number of incoming pipelines
below a given DP size in our workload, as well as those
granted under DP and Rényi DP. The DP size of a pipeline
is the sum of ε-DP budget over all requested blocks, and is
a measure of the total amount of budget requested by the
pipeline. The Rényi DP allocates about 29% more pipelines
than DP. This difference is quantitatively smaller than we
obtained in our microbenchmark. However, there is a big
qualitative difference that this graph also illustrates: while
DP only grants mice (cumulative budget below 0.1), Rényi
DP is able to also run some elephants: it grants all pipelines
with a cumulative budget below 2 and some pipelines up to
10. This confirms that Rényi DP is very valuable in realistic
workload settings.
6.3 Kubernetes Tool Reuse (Q6)

To illustrate the value of integrating with Kubernetes, we
extended the Grafana-Kubernetes resource utilization mon-
itor to track privacy usage (screenshot depicted in Fig. 14)
with only 150 lines of code. We envision a suite of tools for
monitoring privacy, on par with compute resources.

7 Related Work
To our knowledge, there is no work on scheduling DP, but our
work builds upon a vast literature in each of these two topics.
Scheduling. Decades of work exist on scheduling compute
resources, such as CPU, network, memory and storage [3,7,9,
10,13,19,22–25,30,37,48,49,51,53,58]. Typically, schedulers
aim for max-min fairness, achieving both high system-wide
utilization and high utility for each tenant. However, compute
resources are replenishable, while privacy budget is not: the
particular budget consumed by task i will never be available
for another task in the future, whereas a CPU core granted to
task i can be granted to another task after i finishes.

The two closets to our work are Dynamic DRF [32] and SE-
QUENTIALMINMAX [49]. Dynamic DRF provides fairness
guarantees for agents arriving over time, consuming a fixed
set of non-replenishable resources. Unfortunately, the all-or-
nothing utility function of private blocks violates Dynamic
DRF’s Pareto efficiency, since Dynamic DRF would waste
budget on tasks that may never get fully allocated. SEQUEN-
TIALMINMAX is an algorithm focused on “indivisible” jobs,
or jobs that have an all-or-nothing utility, and thus, similar
to DPF, it only assigns resources in a sequential fashion and
all-or-nothing fashion ordered by the dominant resource share.
However, unlike DPF, SEQUENTIALMINMAX has static jobs,
it assumes all resources are replenishable, and it does not
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consider dynamically arriving resources (private blocks in
our case). Therefore, it provides no mechanism for gradually
releasing or unlocking these resources, and would not provide
a sharing incentive in our setting.

Even under a static setting, standard DRF [19] violates
Pareto efficiency with all-or-nothing utility. CARBYNE sched-
ules analytics jobs, which depend on the parallel execution of
multiple tasks and have an all-or-nothing utility [24]. How-
ever, it assumes replenishable resources.

Differential privacy. There is vast literature on DP algo-
rithms, which includes versions of most popular ML algo-
rithms (e.g., SGD [1, 60], Federated Learning [39]) and statis-
tics (e.g., contingency tables [5], histograms [59]). There are
also open source implementations available [18,20,21,29,47].
This literature is at a lower level than PrivateKube, and we
leverage it extensively in our pipelines. Some algorithms fo-
cus on workloads [26], including on a data stream [11], but
they remain very limited, supporting only linear queries.

A few DP systems exist, providing DP SQL-like [40, 52]
or MapReduce interfaces [55] to static datasets, as well as
support for summary statistics [44]. None focuses on work-
loads of ML pipelines or supports continuous streams of data.
The only such system is Sage [35], which introduces block
composition for event DP, and proposes a procedure to itera-

Consumed Unlocked Locked

Remaining budget over time (Block 4) Number of pending tasks over time

Privacy budget per block

Fig. 14: Screenshot of Grafana-Kubernetes Privacy Dashboard.

tively increase a model’s privacy budget until reaching a good
accuracy. However, Sage does not support user and user-time
DP, for which we extend block composition, and leaves the
question of scheduling unexplored.

8 Conclusion
For workloads operating on sensitive user data privacy loss
should be carefully orchestrated to enforce a global bound on
personal data leakage. This paper presented PrivateKube, an
extension to the Kubernetes workload orchestrator that adds
differential privacy budget as a new native resource to be man-
aged alongside traditional compute resources. PrivateKube
incorporates a novel scheduling algorithm, DPF, the first one
suitable for the unique characteristics of the privacy resource,
including its all-or-nothing utility and non-replenishable na-
ture. We show that DPF has desirable theoretical properties,
outperforms baseline scheduling algorithms, and that native
integration of privacy into Kubernetes can facilitate reuse of
existing tools to better manage this scarce resource.
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A Artifact Appendix
A.1 Abstract

Our open-source artifact contains the main parts of the
PrivateKube system, a scheduling simulator as well as experi-
mental setups to reproduce our evaluation results.
A.2 Scope

The artifact allows to validate the microbenchmark (Fig. 6,
Fig. 7, Fig. 8, Fig. 9 and Fig. 10) and the macrobenchmark
(Fig. 11 and Fig. 12).

The privacy resource implementation and the DPF sched-
uler can be reused on any Kubernetes cluster, as well as
modified to study other aspects, such as different schedul-
ing algorithms, or the co-scheduling of privacy budgets with
computational resources.
A.3 Contents

We release the following parts of the PrivateKube system:
the privacy resource implementation (for both DP and RDP);
the DPF scheduler (DPF-T and DPF-N); and an example of
Kubeflow pipeline using PrivateKube.

We also release the discrete-event simulator, which we
leverage to study and prototype scheduling algorithms of
privacy and computational resources.

We also provide command line interfaces to reproduce:
the microbenchmark; the DP workloads (dataset, models and
parameters) used for the macrobenchmark; and the evaluation
of the DPF scheduler on the macrobenchmark workloads.

The artifact does not contain: the Grafana dashboard; data
ingestion pipelines and other data management infrastructure;
nor a cloud-agnostic deployment for Kubeflow pipelines. We
can make these components available upon request, but at
the time of this publication they are fairly specific to our
Kubernetes cluster.
A.4 Hosting

The artifact is available at https://github.com/
columbia/privatekube/releases/tag/v1.0.
A.5 Requirements

This artifact requires a Kubernetes cluster. The documen-
tation explains how to set up a small cluster on a laptop and
details the other requirements. Optionally, an NVIDIA GPU
can speed up the evaluation.

The privacy resource implementation, the scheduler and the
macrobenchmark do not require anything else. The Kubeflow
components and the Kubeflow pipeline example require a
Google Cloud Platform Kubernetes cluster with Kubeflow
enabled.

It is highly recommended to reproduce the microbench-
mark with a beefy machine. It normally takes us several hours
to finish it with two 32-core CPUs.
A.6 Additional Evaluation Results

The released artifact supports evaluation of PrivateKube
and DPF beyond the results included in the paper. We include
here a few of the results that we omitted in the paper.
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Fig. 16: Rényi DPF behavior on a single block.
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Fig. 17: Rényi DPF behavior with variable workload mix, single block.
DPF N=25,399.

Additional Microbenchmark Results. §6.1 explores in de-
tail the behavior of DPF with basic composition on one or
multiple blocks, and under varied mice::elephant ratios. Our
artifact allows exploration of these behaviors for DPF with
Rényi composition, as well. For thoroughness, we include the
corresponding graphs here:

Fig. 16 (Rényi version of Fig. 6) shows that, when the load
is amplified appropriately (as described in §6.1.5), Rényi DP
can allocate more than 14× more pipelines than traditional
DP for the optimal values of N, in the single block setting.

Fig. 17 (Rényi version of Fig. 7) shows that increasing the
mice percentage has a similar impact on the number of allo-
cated pipelines for DPF under Rényi DP and traditional DP.
Similar to the basic composition results, FCFS also behaves
the same as DPF when the percentage of Mice is either 0% or
100%.

Fig. 18 (Rényi version of Fig. 9) shows that, similarly to
the traditional DP case, DPF performs better for large N and
T . In addition, T outperforms N for large N values, since all
budget is eventually locked.
Additional Macrobenchmark Results. §6.2 shows the re-
sults from our macrobenchmark evaluation of the Rényi DP
instantiation of our system. Our artifact allows evaluation
of the macrobenchmark against the traditional DP instantia-
tion as well. For completeness, we include here some of the
omitted macrobenchmark results:

First, in the body of the paper, we provided an analytical
description of how we chose privacy demands for our mac-
robenchmark workload. Fig. 15 plots the distribution of these
demands for the pipelines in the Event-DP workload. The
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Fig. 15: Pipeline demands for the Event-DP workload.
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Fig. 18: Rényi DPF and DPF-T behaviors on multiple blocks.
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Fig. 19: DPF behavior on the macrobenchmark workload with basic
composition. The global privacy guarantee is εG = 10, δG = 10−7.

x-axis of Fig. 15a, 15b, 15c represents the ε demand in terms
of traditional DP for product classification, sentiment analysis

and statistics pipelines. Each ε also corresponds to the best
possible DP-ε for the Rényi DP version of a given pipeline.
We can see that the demands are scattered across a wide range
of sizes, both in terms of blocks and epsilon, and with finer
granularity than the microbenchmark’s clear-cut mice and ele-
phants. Finally, Fig. 15d shows how these varied demands are
combined to form a workload. This workload gives the incom-
ing load in Fig. 12 and Fig. 13, which evaluate PrivateKube’s
performance with Rényi DP.

Second, under the same workload, we add here the results
from our evaluation of PrivateKube on traditional DP with
basic composition. Fig. 19 (basic composition version of
Fig. 12) shows the performance of DPF for the three DP se-
mantics. We observe the same overall behavior as with Rényi
DP: stronger semantics can allocate less pipelines, and larger
values of N increase the number of granted pipelines. As ex-
pected, Rényi DP allocates more pipelines than traditional
DP. However, as illustrated in Fig. 13, the pipelines allocated
by Rényi DP are qualitatively different from the pipelines
allocated by traditional DP. This effect explains why the gap
in the number of allocated pipelines is smaller than in the
microbenchmark, in particular when the workload contains
larger pipelines (such as under User-DP).
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