
EnclavePDP: A General Framework to Verify Data Integrity in Cloud
Using Intel SGX

Yun He1,2, Yihua Xu3, Xiaoqi Jia1,2∗, Shengzhi Zhang3, Peng Liu4, and Shuai Chang1,2

1{CAS-KLONAT†, BKLONSPT‡}, Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

3Metropolitan College, Boston University
4Pennsylvania State University

Abstract
As the cloud storage service becomes pervasive, verifying the
integrity of their outsourced data on cloud remotely turns out
to be challenging for users. Existing Provable Data Posses-
sion (PDP) schemes mostly resort to a Third Party Auditor
(TPA) to verify the integrity on behalf of users, thus reducing
their communication and computation burden. However, such
schemes demand fully trusted TPA, that is, placing TPA in the
Trusted Computing Base (TCB), which is not always a rea-
sonable assumption. In this paper, we propose EnclavePDP, a
secure and general data integrity verification framework that
relies on Intel SGX to establish the TCB for PDP schemes,
thus eliminating the TPA from the TCB. EnclavePDP sup-
ports both new and existing PDP schemes by integrating core
functionalities of cryptography libraries into Intel SGX. We
choose 10 existing representative PDP schemes, and port
them into EnclavePDP with reasonable effort. By deploy-
ing EnclavePDP in a real-world cloud storage platform and
running the 10 PDP schemes respectively, we demonstrate
that EnclavePDP can eliminate the dependence on TPA and
introduce reasonable performance overhead.

1 Introduction

Nowadays, many organizations demand to keep their data
records, and then perform deep analysis over the data us-
ing machine learning or other techniques for their business
purposes. For instance, e-health companies offer optimized
health care plan for customers by analyzing customers’ health
records. However, not all organizations are able to build and
manage their private data storage platform due to the high cost
of building and maintaining such a platform. Hence, cloud
storage service has become quite popular, due to the features
like pay-as-you-go, elasticity, cost-saving, maintenance, etc.
There are many popular cloud storage services today, such as
Dropbox, Google Drive, Amazon S3, One Drive, etc.

∗Corresponding author: jiaxiaoqi@iie.ac.cn
†Key Laboratory of Network Assessment Technology, CAS
‡Beijing Key Laboratory of Network Security and Protection Technology

However, users will lose control of their data stored on
the cloud platform, which is an inherent issue in such data
outsourcing model. Although the service providers can be
bound by a Service Level Agreement (SLA) to ensure the data
integrity, users still cannot fully trust them. On one hand, the
cloud servers are not immune to data loss or corruption even
the cloud providers are faithful to protect the outsourced data.
For instance, Dropbox, Amazon and Tencent Cloud lost data
due to improper operations, inadvertent administration errors
or system bugs [1–3]. Although these incidents occurred unin-
tentionally, the service providers may not immediately inform
the data loss incidents to users to protect their reputation (i.e.,
service providers are “imperfect and selfish” [4]). For exam-
ple, according to [5], healthcare data breaches are identified
after 84.78 days and customers are notified after additional
68.31 days on average. On the other hand, a service provider
may be actively malicious: deleting data that is infrequently
accessed to save storage space but still charging users for the
deleted data [6], or keeping fewer replicas violating the SLA.

In recent years, numerous data integrity verification ap-
proaches [7–19] have been proposed to ensure the integrity of
the outsourced data. These approaches are referred to as Prov-
able Data Possession (PDP) schemes. Such PDP schemes
provide probabilistic guarantees that the outsourced data
has not been maliciously tampered with, without accessing
the entire data from the cloud storage server. PDP schemes
(e.g., APDP [9], etc.) usually generate metadata (or tag) us-
ing the original data, and upload the metadata together with
the original data to the cloud storage servers. The proof of
data integrity is generated by cloud storage servers using
this metadata and verified by the data owner. Other PDP
schemes [14,17–19] were proposed to support public auditing
for multiple users via a Third Party Auditor (TPA). However,
the TPA may steal users’ private data (honest but curious
TPA) or even conduct collusion attacks with the cloud service
provider (inherently malicious TPA). Besides the trustworthi-
ness concern, deploying TPA also involves extra cost.

In this paper, we propose EnclavePDP (Enclave-protected
Provable Data Possession), a practical and general frame-

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 195

work to verify the integrity of the outsourced data on cloud
platforms relying on the Trusted Execution Environments
(TEEs), i.e., Intel SGX [20], thus eliminating TPAs and reduc-
ing both the computation and communication burdens from
users. We implemented a prototype of EnclavePDP using
Intel SGX and ported the core functionalities of Intel SGX
SSL crypto library [21], Intel SGX GMP library [22], and
the PBC [23] (Pairing-Based Cryptography) library into En-
clavePDP. Then, 10 representative PDP schemes, i.e., APDP
[9], CPOR [12], SEPDP [10], MRPDP [11], PPPAS [19],
DHT-PA [18], SEPAP [17], DPDP [7], FlexDPDP [8], and
a basic Message Authentication Code (MAC) based scheme
(MAC-PDP), are implemented on EnclavePDP with reason-
able effort. We evaluated EnclavePDP on a real-world cloud
storage service, FastDFS [24]. Experimental results show that
EnclavePDP introduced negligible overhead to the response
time per PDP request for all the 10 PDP schemes on different
file sizes (1GB and 16KB), varying from 1.0% to 24.5%.

We summarize the main contribution of the paper as below:
• We proposed and implemented EnclavePDP, a novel and

generic framework that can securely verify the integrity
of the outsourced data relying on Intel SGX, thus elimi-
nating the dependency on TPAs. The core functionaries
of various cryptographic libraries are tailored and ported
into Intel SGX to support both the existing and new
PDP schemes, and 10 representative PDP schemes are
implemented in EnclavePDP with reasonable effort.

• We performed a comprehensive evaluation of En-
clavePDP by deploying it on a real cloud storage service,
FastDFS. All the 10 PDP schemes are evaluated in En-
clavePDP in the aspects of code base in Intel SGX and
overhead of response time, thus eliminating the perfor-
mance concerns of running PDP schemes in Intel SGX.

2 Background

2.1 Provable Data Possession in Clouds
To verify the integrity of the outsourced data on cloud plat-
forms, lots of PDP schemes [7–16] were proposed. Generi-
cally, PDP schemes consist of two phases: a setup phase and
a verification phase. In the setup phase, the client (or the data
owner) generates keys (private or public, depending on the
scheme), as well as metadata (or tag) using the keys and the
original data. The metadata (or tag) and the original data are
uploaded to the cloud storage server. In the verification phase,
the client constructs a challenge that contains a random sub-
set of file blocks, and sends the challenge to the prover (i.e.,
the cloud storage server). The prover uses the challenge, the
metadata (or tag) and the file blocks to compute a proof of
data possession and then sends it back to the client. The client
uses the proof to verify that the data on the cloud is still in-
tact. In addition, many literature surveys, e.g., [25–29] made
a comprehensive comparison among existing PDP schemes.

Below we choose four aspects: types of data, retrievability,
encryption and auditing, to discuss the existing PDP schemes.

Types of data: There exist two types of data: static data
and dynamic data. Static data (e.g., data archive, backups) is
never modified but appended only, whereas dynamic data is
frequently changed due to operations like update, write and
delete. Some PDP schemes, e.g., APDP [9], are only suitable
for static data, because they need re-generate tags of the com-
plete file whenever new data is inserted. In contrast, other
schemes like SEPDP [10] support dynamic data operations.

Retrievability: Generally, PDP schemes only provide proba-
bilistic guarantees of the data integrity, i.e., identifying data
corruption without data recovery, e.g., [8–11, 30], etc. In con-
trast, POR (Proof of Retrievability) schemes provide the guar-
antee that the data is intact and still retrievable even after
corrupted by using the redundant encoding, e.g., CPOR [12],
Mirror [16], Iris [31], etc.

Encryption: Some PDP schemes utilize symmetric key en-
cryption to achieve scalability/efficiency, e.g., SEPDP [10]
uses symmetric key encryption and cryptographic hash func-
tions, while others use asymmetric key encryption for better
security, e.g., APDP [9] uses RSA-based homomorphic veri-
fiable tags (HVT) as the metadata.

Auditing: PDP schemes either support private auditing or
public auditing. For the former, the verifier is always the
data owner, e.g., APDP [9], SEPDP [10], FlexDPDP [8], etc.
For the latter, the TPA sends challenges and verifies proofs
on behalf of the data owner to reduce the computation and
communication overhead of the data owner. Public auditing
schemes can be further categorized into privacy preserving
(e.g., PPPAS [19], DHT-PA [18]) and non-privacy preserving
(e.g., PoS [32], SEPAP [17], MHT-PA [6]) schemes. It is worth
noting most of the public auditing schemes are implemented
using the BLS [33] signature cryptographic primitive.

2.2 Intel SGX

Intel SGX [20] creates an isolated code execution environ-
ment, which enables applications to maintain data confiden-
tiality and integrity. Even the privileged software (OS, hyper-
visor and BIOS) cannot violate the protection of Intel SGX.
Note that we do not consider side-channel attacks against
SGX, which can be addressed orthogonally by corresponding
countermeasures (e.g., [34]).

Enclave. Intel SGX constructs trusted execution environ-
ments referred to as enclaves and creates an encrypted mem-
ory region called Enclave Page Cache (EPC) for enclaves
to store code and data. SGX uses a hardware Memory En-
cryption Engine (MEE) [35] to encrypt/decrypt the enclave
data, and also provides a hardware access control mecha-
nism to prevent illegal access to the enclave memory. An
Intel SGX application generally contains two parts: secure
code (enclave) and non-secure code (non-enclave or applica-
tion). The application needs to launch the enclave, and uses

196 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

ecall/ocall interfaces to switch control between the en-
clave and the non-enclave. Since privileged operations (e.g.,
system calls) cannot be executed inside enclaves, ocall is
invoked to execute those privileged operations indirectly.

SGX Remote Attestation. Intel SGX remote attestation
[36] is to ensure that the enclave is correctly initialized on a
remote SGX enabled platform. It evaluates the enclave iden-
tity, its structure, the integrity of the code inside the enclave.
Furthermore, remote attestation can provide shared secret be-
tween the enclave application and its owner to setup a secure
communication channel over the untrusted network.

Sealing. Enclaves can write confidential data to persistent
storage securely using sealing [36], a mechanism to encrypt
and authenticate the enclave data. Each enclave is provided
with a sealing key, derived from an enclave identity (either
Enclave Identity or Signing Identity), private to the executing
platform and the enclave. Data sealed against Enclave Identity
(MRENCLAVE) can only be decrypted by the same enclave,
whereas data sealed against Signing Identify (MRSIGNER)
can be unsealed by any enclave signed by the same developer.

3 Overview

3.1 System and Threat Model
We consider a cloud storage scenario where usually three
primary entities exist: clients or users, Cloud Storage Service
(CSS), and TPA. Specially, clients have a large amount of data
to be stored on the cloud, and CSS is managed by the Cloud
Service Provider (CSP) to provide data storage service (typi-
cally with a large amount of storage space and computational
resources). To save the computational resources as well as
the online burden potentially incurred by the periodic data
integrity verification, clients resort to TPA (with extra capa-
bilities that clients do not have, e.g., keeping always online)
to verify the integrity of their outsourced data on cloud.

We assume the threats to the integrity of users’ outsourced
data on cloud can be both internal and external on the cloud
storage platform, e.g., software bugs, hardware failures, ma-
licious or accidental management errors, revenue-motivated
hackers, etc. Moreover, the cloud storage platform may in-
tendedly hide the data corruption incidents from users to
maintain its reputation. Most prior works, e.g., MHT-PA [6],
SEPAP [17], usually rely on TPA to provide a cost-effective
way for users to verify the integrity of their outsourced data,
with the assumption that TPA is reliable and trustworthy. How-
ever, such assumption is not always valid, since TPA could be
(1) honest but curious, learning the users’ data after the audit
as described in PPPAS [19], and (2) untrusted, conducting
collusion attack with the untrusted cloud service providers.
Hence, the proposed solution in this paper does not rely on
TPA. We assume the remote CPU (with Intel SGX security
features) running on the cloud storage platform is trusted. We
also assume that the adversary cannot extract secrets within

the CPU packages, which implies that we trust CPUs to pro-
tect code and data hosted inside TEEs. Side-channel and
denial-of-service attacks are outside the scope of this paper.

3.2 Motivation of Using Intel SGX
In this paper, we mainly focus on those PDP schemes that
rely on TPA to verify the integrity of the outsourced data,
since users’ computation resources as well as online burden
can be significantly reduced by TPA. However, such PDP
schemes are still limited in the following aspects. (P1) The
honest but curious TPA. Generally, TPA needs to be fully
trustworthy, exactly following the PDP schemes to execute
the core verification functionality. However, an honest but
curious TPA may potentially learn users’ data through the
procedures of challenging and verifying [19] it gets involved
in. (P2) Collusion attack with untrusted cloud providers.
Although a few privacy-preserving public auditing schemes,
e.g., PPPAS [19] and DHT-PA [18], can be used to address
the data breach issues, they are still limited in eliminating the
collusion attack when the TPA collaborates with the cloud
storage server to deceive users. (P3) Communication over-
head. The communication overhead (sending challenges and
proofs between the cloud storage server and the verifier run-
ning in the TPA) is not negligible.

Fortunately, Intel SGX provides the trusted execution envi-
ronment, enclave, which can be leveraged to solve the above
problems. First, Intel SGX prevents the underlying untrusted
OS or hypervisor from accessing the code/data inside the
enclave. Hence, the PDP schemes can run faithfully in en-
clave on untrusted platforms (i.e., the cloud storage servers),
thus eliminating the dependency on TPA (solving P1 and P2).
Second, the enclave can also protect the private keys used by
the PDP schemes against leaking to untrusted components,
and it can also protect the integrity of verification against
malicious modification. Therefore, we can also deploy private
auditing PDP schemes inside the enclave, which reduces the
computation overhead of the data owners and provides public-
auditing-like support. Finally, EnclavePDP can be deployed
on any of the cloud servers (as long as the underlying Intel
CPU supports SGX), thus it can be co-located with the cloud
storage services on the same physical machine. Hence, the
communication overhead between the verifier in EnclavePDP
and the cloud storage services (inter-process communication)
is negligible (solving P3), compared with that of the native
PDP schemes (network communication).

3.3 Possible Concerns of Using Intel SGX
Compatibility. The implementation of PDP schemes de-
pends on some cryptography libraries (e.g., OpenSSL, PBC
[23], etc.). Therefore, these libraries must be ported into Intel
SGX before implementing PDP schemes inside the enclave.
Currently, two libraries have been ported into enclave: (i)

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 197

Intel SGX SSL [21] library to support OpenSSL and (ii) In-
tel GMP [22] library to support the GNU multiple precision
arithmetic (GMP) library. However, the PBC [23] library de-
manded by many BLS-based PDP schemes (e.g., PPPAS [19],
DHT-PA [18], SEPAP [17], etc.) has not been ported into en-
clave yet. We provided a lightweight enclave-supported PBC
library by trimming and porting the native PBC library into
the enclave (Section 5.1).

Memory usage. In the current implementation of Intel
SGX, the EPC that can be used by the enclave is limited to
128 MB, and only 93 MB is usable for applications. When
enclave uses memory beyond the EPC size limit, SGX swaps
some EPC pages to unprotected DRAM, which incurs high
performance overhead. Therefore, when developing applica-
tions running in enclave, reducing the memory footprint is
crucial. Especially when implementing PDP schemes, neces-
sary support, i.e., cryptography libraries, needs to be ported
into enclave as well, which further increases the overall mem-
ory consumption. We addressed this problem by trimming
the unnecessary modules in cryptography libraries (Section
5.1) and running only the critical code of PDP schemes in
enclave (Section 4.1). We also quantitatively measured the
code base in enclave in our evaluation (Section 6.2), which
demonstrates reasonable memory footprint.

Runtime performance. When the non-enclave code needs
to execute a trusted function (running inside the enclave),
it invokes the SGX ecall primitive to switch the execu-
tion flow into the enclave. Such enclave transitions (i.e.,
switching control between enclave and non-enclave) will im-
pose high runtime overhead [37]. Therefore, the number of
ocalls/ecalls needs to be carefully managed to avoid se-
vere performance overhead. In Section 5 and Section 6,
we discussed and evaluated the impact on practicality of En-
clavePDP introduced by the enclave transitions overhead.

4 The Approach of EnclavePDP

4.1 The Architecture of EnclavePDP

Generally, there are five major functionalities that should be
fulfilled by PDP schemes: KeyGen, Tag, Challenge, Proof
and Verify. Brief description of each operation is as follows.

• KeyGen. During the initialization phase, the client gener-
ates public and private keys for the other functionalities.

• Tag. The file is divided into n blocks, and a tag is gener-
ated for each block using the private key1.

• Challenge. After choosing a random set of file blocks to
audit, a challenge is generated using the private key.

• Proof. When receiving a challenge, a proof of data pos-
session is computed using the public key.

1The original file and all the tags will be uploaded to the remote cloud
storage servers.

Challenger

SGX

Enclave
Private Key Loader

Verifier

EnclavePDP

ecalls/ocalls

Request handler

b

a

c

d

e

Prover

SGX Application

Figure 1: The Architecture of EnclavePDP
• Verify. A received proof will be verified against the chal-

lenge using the private key or public key depending on
the specific PDP schemes.

KeyGen and Tag are running on the client side, so the
integrity of these two functionalities depends on the client.
Proof is conducted by the prover, i.e., the cloud storage server.
For existing PDP schemes, Challenge and Verify functionali-
ties are performed by either the client or the TPA. To ensure
the correctness of the data integrity verification, the private
key used to generate challenges and verify proofs should never
be exposed to the cloud platforms. In addition, challenge and
verification results must be protected against being tampered
with or forged. Therefore, these security-sensitive operations
(i.e., Challenge and Verify) should be executed in the enclave
and the security-sensitive data (e.g., the private key) should
be placed in the enclave as well.

Figure 1 shows the architecture of EnclavePDP. The Chal-
lenger running inside the enclave generates challenges for
PDP schemes. EnclavePDP also makes a backup of the chal-
lenge to defeat potential rollback attacks2. The Verifier inside
the enclave is responsible for verifying proofs generated by
the Prover, a regular (non-SGX) application running on the
cloud storage server, entitled to access the data to be audited to
generate proofs of data possession on behalf of the cloud stor-
age services. The Private Key Loader is designed to securely
load private keys into the enclave (see Section 4.3.2). Request
handler is a SGX application (as described in Section 2.2),
which is responsible for receiving/sending messages (e.g.,
verification request, challenge, proof, etc.) from/to the other
modules. It invokes ecalls provided by the Challenger or
the Verifier to generate challenges or verify proofs.

4.2 The Workflow of EnclavePDP
As shown in Figure 2, the workflow of EnclavePDP mainly
consists of two phases: an initialization phase and a verifica-
tion phase.

2For example, an untrusted cloud storage server may provide a fake proof
based on an outdated challenge as the response to the current challenge.

198 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Client EnclavePDP CSS

KeyGen

Tag

Upload data, tag, public keys

Request

Challenge

Proof

Generating

challenge

VerifyingVerification

Establish secure channel, verify enclave

Generating

proof

1

2

Upload private keys, symmetric keys 4

6

a

b

c

de

5 Sealing

Perform remote attestation 3
Initialization

Verification

SGX Application Non-SGX Application

Figure 2: The workflow of EnclavePDP
EnclavePDP Initialization. In the initialization phase,

clients (data owners) cooperate with EnclavePDP to complete
the necessary setup:

(1) Key Generation: Several keys will be generated by
the client, i.e., a pair of public key (pub_k) and private key
(pri_k), as well as a symmetric key (sk). The public key
is available to the cloud storage services and will be used to
generate proofs, while the private key, owned by the client and
EnclavePDP, is used to generate tags as well as challenges,
and verify proofs. EnclavePDP uses the symmetric key to
encrypt the verification result and sends it back to the client.

(2) Data Tagging: The client generates tags for the original
data using the private key. For some PDP schemes (e.g., DHT-
PA [18]), the client also generates additional data structures
(e.g., Dynamic Hash Table) to record extra information, e.g.,
data version, timestamp, etc., to support dynamic auditing.

(3) Remote Attestation: The client can upload the En-
clavePDP executable to the cloud server running on Intel
SGX, and start the EnclavePDP remotely. After starting En-
clavePDP, the client attests it using Intel SGX remote attes-
tation to verify the code integrity of EnclavePDP, and sub-
sequently performs ECDH [38] protocol to create a secure
communication channel for the following operations.

(4) Secrets Uploading: The private key and the symmetric
key will be sent to EnclavePDP via the secure channel estab-
lished in Step (3). Other security-sensitive data (e.g., dynamic
hash table of DHT-PA schemes [18]) used to support dynamic
auditing will also be uploaded to EnclavePDP.

(5) Sealing: When EnclavePDP receives the private key
and the symmetric key, it encrypts them using Intel SGX
Sealing technique and stores the sealed (i.e., encrypted) keys
on disk. Other security-sensitive data, (e.g., dynamic hash
table of DHT-PA [18]), should be sealed in the same way.

(6) Data Uploading: The client uploads the public key, the
data and all the tags to the cloud storage services (CSS).

EnclavePDP Verification. In the verification phase, the
client issues a PDP request (e.g., via HTTP) to the cloud
storage service, which forwards the request (e.g., via TCP

sockets) to the Request handler (step a© in Figure 1). Note that
the client can also directly issue PDP requests to EnclavePDP.
The request then will be forwarded to the Challenger via ecall
interface, and the Challenger generates a challenge (step b©
in Figure 1) for the file indicated in the request (typically via
file name or file path). The Request handler will transmit the
challenge to the Prover, a regular application (i.e., non-SGX
application) that can access the data stored in the cloud storage
servers. Note that the cloud storage services can entitle the
Prover to access data directly or provide APIs for the Prover
to access data indirectly. The Prover reads the data from the
cloud storage servers, and uses such data (i.e., file blocks,
tags) and the challenge to generate a proof of data possession.
The proof will be sent back to the Request handler (step c© in
Figure 1) and then forwarded to the Verifier (step d© in Figure
1). The Verifier uses the proof to verify whether the cloud
storage servers actually possess the correct data, and returns
a verification response encrypted using the symmetric key sk
to the Request handler. Finally, the client will receive (step
e© in Figure 1) and decrypt the verification response using

the same sk to ensure the confidentiality and integrity of it.
Note that the Request handler is also designed to be able to
generate verification requests periodically on behalf of the
client, and forward these requests to the Challenger, followed
by other steps mentioned as above. Finally, EnclavePDP will
create a tamper-free (encrypted by the enclave) verification
log that will be forwarded to the client if necessary.

4.3 Key Management
4.3.1 Private Key Protecting

The private key used by the PDP schemes can never be ex-
posed to the cloud storage services. In the initialization phase,
the client establishes a secure channel to upload the private
key and EnclavePDP encrypts the private key using SGX Seal-
ing technique. The confidentiality and integrity of the keys
are guaranteed by two conditions: (i) the ECDH protocol is
executed in the enclave, which guarantees the confidentiality
and integrity of the ECDH computation; (ii) The sealed pri-
vate key is bound to a signing authority (developer), so only
the enclave signed by the same authority can unseal it.

4.3.2 Private Key Loading

Before performing challenge or verification operations, the
request handler (running outside of the enclave) firstly reads
the sealed private key from the disk and invokes ecalls pro-
vided by Private Key Loader to unseal the private key inside
the enclave. Note that the symmetric key sk is also loaded
and unsealed in the enclave. When generating challenge (or
verification), the Challenger (or the Verifier) uses the unsealed
private key to generate challenges (or verify the proof). To
reduce enclave transitions caused by ecalls, the private keys
used recently are stored in the private key buffer. Thus, the

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 199

Table 1: A brief comparison of the ten PDP schemes
Dynamic Retrievability Public Encryption

MACPDP X PDP X Sym.
APDP [9] X PDP X Asym.

MRPDP [11] X PDP X Asym.
SEPDP [10] X PDP X Sym.
CPOR [12] X POR X Sym.
DPDP [40] X PDP X Asym.

FlexDPDP [8] X PDP X Asym.
PPPAS [19] X PDP X Asym.
SEPAP [17] X PDP X Asym.

DHT-PA [18] X PDP X Asym.
* Note: "X" means "support"; "X" means "not support"; "Sym." means

symmetric encryption; "Asym." means asymmetric encryption.

Private Key Loader will firstly check if the required private
key already exists in the private key buffer. If so, it returns
the private key directly. Otherwise, it will demand the request
handler to load the sealed private key from the disk and un-
seal the private key into the private key buffer. To save the
enclave memory, the LRU (Least Recently Used) strategy is
utilized to refresh the private key buffer.

5 Implementation

We implemented a prototype of EnclavePDP on a Linux plat-
form, based on Intel SGX SDK 2.4, Intel SGX Driver 1.0,
Intel SGX SSL library integrated with OpenSSL 1.1.0i, In-
tel SGX GMP library and an enclave-supported PBC library
trimmed based on pbc-0.5.14. For generality and scalability,
the Request handler utilizes Linux epoll [39] mechanism to
provide support for multi-thread execution and concurrent re-
sponses. The requests to verify data integrity are encapsulated
into TCP sockets and forwarded to EnclavePDP, which eases
the deployment of EnclavePDP on third party cloud services.

5.1 Porting PDP Schemes
PDP Implementation. We chose 10 representative PDP
schemes, which cover the taxonomy described in Section 2.1
as in Table 1. Most of the PDP schemes can be implemented
in Intel SGX quite straightforward, but the following issues
need to be addressed for other PDP schemes.

(1) For MAC-PDP, to avoid frequent I/O operations from
the enclave and reduce the EPC memory consumption. the
MAC of the file blocks to be verified is not re-computed inside
the enclave. Instead, the prover (running on the cloud storage
server) re-computes the MAC and also loads the encrypted
tags (i.e., MACs of file blocks encrypted by the private key
and uploaded to the cloud storage server during the initial-
ization phase) associated with these file blocks into non-EPC
memory. Then the verifier (inside the EnclavePDP) decrypts
the tags to get the original MAC and compares it with the
MAC computed by the prover.

(2) Some PDP schemes (e.g., SEPAP and DHT-PA) design
an extra data structure to record the data property information
(e.g., timestamp, version) used to perform dynamic auditing

3. Such additional data structures should be uploaded to the
TPA (when involved), protecting their integrity from the cloud
storage server. In contrast, EnclavePDP encrypts these data
structures using the private key and upload them to the remote
cloud server during the initialization phase. In the verification
phase, EnclavePDP decrypts them in the enclave and uses
them to verify the proofs.

(3) During the initialization phase, DPDP generates root
metadata based on the Rank-Based Authenticated Skiplist
(RBASL) to verify its integrity, while FlexDPDP generates
root metadata based on FlexList to verify its integrity. Similar
as (2), EnclavePDP also encrypts the root metadta and uploads
it to the cloud storage server, and then decrypts it inside the
enclave in the verification phase.

Trimming Intel SGX SSL library. Intel SGX SSL [21]
is to provide cryptographic service for enclave applications
based on OpenSSL library. It includes lots of functionalities
that are unnecessary to implement PDP schemes, e.g., des, rc2
and md4, etc. To save the enclave memory consumption, we
trimmed the native implementation of SGX SSL by removing
those unnecessary modules from the configuration file at the
compilation time. Finally the size of the trimmed SGX SSL
library decreases 26.1% (from 4.6MB to 3.4MB).

Porting PBC library. Public auditing schemes (e.g., PP-
PAS [19], SEPAP [17] and DHT-PA [18]) are all based on the
BLS signature cryptographic primitive implemented in the
PBC library [23], which is not supported by Intel SGX yet.
Therefore, we ported the PBC library into SGX to make it easy
to port other existing or develop new BLS-based schemes in
EnclavePDP. We only ported those functions required by the
public auditing schemes into SGX to provide a lightweight
PBC library, thus reducing the memory consumption of En-
clavePDP. Note that some of those functions need a bit tuning.
For instance, generating random numbers is a quite frequent
operation for most PDP schemes, the PBC library generates
random numbers using the /dev/urandom pseudo file on Linux
platform. However, code running in the enclave cannot per-
form I/O operations directly. Hence, we use Intel RDRAND
instruction [41] when porting the random number generation
function in the PBC library.

5.2 Protecting Enclave Binary Integrity
The implementation of the PDP schemes inside the enclave
is essentially an executable binary running on the untrusted
cloud platform. Hence, the adversaries may reverse-engineer
the binary enclave shared object to extract the code logic. We
utilized Intel SGX PCL technique [42] to encrypt the enclave
shared object (.so) at build time and decrypt it at enclave load
time. Moreover, the untrusted cloud providers may create a
fake enclave to perform ECDH [38] protocol with the data

3In particular, when generating tags for the original data, SEPAP will
create a doubly linked info table (DLIT), while DHT-PA scheme will create
a dynamic hash table (DHT).

200 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

owner to steal the private keys. To defeat such threat, the data
owner periodically requests enclave to return its enclave mea-
surement (constructed by invoking the EREPORT instruction,
which can only be executed inside the enclave), and compares
it with local backup measurement. The successive operations
can only be continued upon a match of the measurements.
Note that malicious cloud providers may create a copy of
EnclavePDP and execute this copy, but they cannot reveal any
secret data inside the enclave. The copy of EnclavePDP may
cause DoS attack, which is out of scope of this work.

5.3 Integration with Cloud Storage Service

In order to deploy EnclavePDP on existing cloud storage
services easily, we exposed high-level interfaces (e.g., TCP
sockets) for users or cloud storage services to submit/return
PDP requests/responses. 4

We deployed the prototype of EnclavePDP on FastDFS
[24], an open source high performance distributed file sys-
tem (DFS). FastDFS has two major functionalities: tracker
and storage. The former conducts scheduling and load bal-
ancing for file access. The latter performs file management
including: file storing, file syncing, providing file access in-
terface. We extended the fastdfs-nginx-module of FastDFS
for user to easily submit integrity verification requests, e.g.,
issuing a http get request. When receiving requests submitted
by users, the fastdfs-nginx-module forwards the requests to
EnclavePDP (runs as a daemon on the storage servers) and
waits for the verification result returned by EnclavePDP. The
implementation of integrating EnclavePDP with FastDFS is
less than 300 lines of C code. Note that the Prover runs on
the storage server of FastDFS, so it can access the outsourced
data directly and generate proofs on behalf of FastDFS. As
for the closed source cloud storage services (e.g., Amazon
S3), EnclavePDP can only invoke the public APIs exposed
by those cloud storage services to access the outsourced data.
Current implementation of EnclavePDP supports the integrity
check of the data stored on Amazon S3 using AWS C++ SDK,
with around 70 lines of C++ code added into EnclavePDP
and without any changes to Amazon S3 platform. However,
EnclavePDP needs to download all the data to local disk and
performs verification, because Amazon S3 does not support
random access to different data blocks.

4The cloud storage service needs to: (1) allow users to submit PDP re-
quests and forward the PDP requests to EnclavePDP; (2) allow the Prover
process to access the outsourced data directly, or provide APIs for the Prover
to access the data indirectly. Recall that the Prover is a non-SGX applica-
tion designed to generate proofs on behalf of the cloud storage services,
which makes it possible to integrate EnclavePDP with existing cloud storage
services with as few changes as possible.

6 Evaluation

6.1 Experimental Setup

We deployed EnclavePDP and FastDFS on Microsoft Azure
Confidential Computing (ACC) [43] VMs supporting Intel
SGX. Each VM runs Ubuntu 16.04.1 LTS with kernel version
4.15.0-1036 on a platform with an Intel(R) Xeon(R) E-2176G
CPU (4 cores, 3.70 GHz, and 12 MB cache) and 16 GB RAM.
We ran FastDFS v5.12 on four VMs, one VM as the tracker
server and the others as storage servers. The tracker server
takes charge of scheduling and load balancing for file access,
and is also extended to dispatch PDP requests to other storage
servers. In particular, FastDFS utilizes its Nginx module (i.e.,
fastdfs-nginx-module that is built on nginx-1.15.4) to interact
with the user, thus we extend this module to handle the PDP
requests submitted by the user. EnclavePDP runs as a daemon
on the storage servers. When the tracker server receives PDP
request, it dispatches the PDP request to the EnclavePDP
running on the corresponding storage servers. To evaluate
the throughout of EnclavePDP when handling concurrent
requests, we used a popular workload testing tool, Apache
JMeter, to simultaneously issue integrity verification requests
to EnclavePDP at different speed (requests/second). Apache
JMeter runs on a local computer with Ubuntu 16.04.1 LTS
equipped with Intel(R) Core(TM) i7-7700HQ CPU.

6.2 Analysis of TCB

We measured the change of the TCB code base after port-
ing the Challenge and Verify operations into Intel SGX, as
shown in Table 2. We only focus on the core part of the
implementation of those PDP schemes when measuring the
SLOC (Source line of code), and ignore other code like I/O
operations, sockets, etc. All the PDP schemes include Chal-
lenge and Verify operations, which are two security-sensitive
functions. To guarantee the confidentiality of private keys
used to generate challenges or verify proofs, loading pri-
vate keys into enclave is the third security-sensitive func-
tion. For DPDP and FlexDPDP, there is an extra verification
against the integrity of the Rank-based Authenticated SkipList
and FlexList respectively. Therefore, there exists the fourth
security-sensitive function for those two schemes. Accord-
ingly, each security-sensitive function is associated with an
ecall interface. Hence, each PDP request will conduct three
or four ecall crossings (i.e., traps into enclave) depending
on the specific schemes.

As in Table 2, the security-sensitive SLOC of native PDP
varies from 7% to 33%, while the security-sensitive SLOC
after porting them into enclave varies from 8% to 36%.
Take APDP as an example. Its native implementation totally
contains 1348 SLOC, among which 300 SLOC is security-
sensitive (account for 22% of the total). After porting it into
enclave, the security-sensitive SLOC increases to 350 SLOC

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 201

Table 2: TCB size of EnclavePDP

Schemes SLOC
Security
-sensitive
SLOC

Security
-sensitive
functions

SGX
-enabled
SLOC

MACPDP 1483 115 (7%) 3 121 (8%)
APDP [9] 1348 300 (22%) 3 350 (25%)

MRPDP [11] 1440 476 (33%) 3 624 (43%)
SEPDP [10] 1259 106 (8%) 3 153 (12%)
CPOR [12] 1057 167 (15%) 3 210 (19%)
DPDP [7] 950 117 (12%) 4 145 (15%)

FlexDPDP [8] 945 139 (14%) 4 158 (16%)
PPPAS [19] 1012 199 (20%) 3 249 (24%)
SEPAP [17] 620 162 (26%) 3 225 (36%)

DHT-PA [18] 720 187 (26%) 3 255 (35%)

(25% of the total). Such increase mainly results from ex-
tra functionalities, such as private key loading, challenges
backup/destroy, decrypting other security-sensitive data (e.g.,
doubly linked info table, dynamic hash table), etc. Addition-
ally, we also quantitatively measured the SLOC of those
three enclave-supported libraries: Intel SGX SSL library con-
tains about 138.4K SLOC; Intel SGX GMP contains 163.4K
SLOC; PBC library contains 29.9K SLOC.

6.3 Evaluation of Challenger and Verifier
Given the amount of data outsourced on the cloud, it is in-
advisable to challenge all data blocks at once to verify the
integrity. Instead, the sampling verification is used by most
PDP schemes, that is, to achieve high-accuracy verification
by only checking a portion of the data at once. In particu-
lar, [9, 11, 18, 19] demonstrated that if t fraction of data is
corrupted, randomly sampling c blocks will detect such cor-
ruption with the probability P = 1− (1− t)c. When t = 1%,
the verifier only needs to verify 460 randomly chosen blocks
to detect such corruption with the probability larger than 99%.
Hence, in all the following experiments, we choose 460 as the
maximum number of challenge blocks5, even for large files
with much more file blocks. When the number of the total
file blocks is less than 460, the verifier challenges all the file
blocks instead. We measured the performance of performing
the Challenge and Verify operations inside the enclave, and
compared it with the native implementation below. Note that
the time involved in sending challenges/proofs and reading
data is ignored for both of the two cases.

6.3.1 Overhead of Challenge Operation

Figure 3 depicts the time (in µs) of generating challenges for
both enclave-enabled and native implementation with varying
file sizes. For all the 10 PDP schemes, both enclave and native
implementation demonstrate similar changes over different
file sizes. The challenge operation time of APDP, MRPDP and
SEPDP is relatively constant regardless of file size, because

5The block size is 16KB for APDP, and 4KB for other PDP schemes.

their challenge operations just produce a random seed used
to generate the random block set to be verified, which is
independent of the file size. For the other seven PDP schemes,
as the file size increases, the challenge operation time first
increases and then becomes constant. This is because those
schemes generate a random n-element set for the challenge,
whose size increases as the file size increases. It reaches
a constant (i.e., the maximum number of challenge blocks)
when the number of file blocks exceeds the maximum number
of challenge blocks (460 as described above).

Comparing with the native PDP schemes, APDP and MR-
PDP saw an increase of 18.2% and 18.1% of the challenge
operation time respectively. MAC-PDP, DPDP, FlexDPDP
and CPOR incurred 62%, 50%, 41.5% and 180% overhead
when their challenge operation time reaches a constant. The
three BLS-based schemes, i.e., PPPAS, DHT-PA, SEPAP, im-
posed similar overhead, 89.7%, 85.3% and 84.3% respectively.
The challenge operation time of SEPDP increased nearly 1.9
times. Actually the difference of overhead results from the
challenge operation time of each PDP scheme. For instance,
the challenge operation for native SEPDP is below 4 µs for
varying file sizes, which magnifies the impact of ecall over-
head, thus causing nearly 1.9 times overhead. In contrast, the
challenge operation for native APDP is from 250 µs to 300 µs
for varying file sizes, thus causing merely 18.2% overhead.
Observation 1. The overhead of the challenge operation
is not proportional to the security-sensitive SLOC. PDP
schemes in the same category introduce similar over-
head. Enclave-enabled challenge operation time is still
in the scale of microsecond (µs), which should have little
impact on practical applications.

6.3.2 Overhead of Verify Operation

Figure 4 depicts the time of executing the verify operation for
both enclave-enabled and native implementation with varying
file sizes. The verify operation time of native PDP schemes
varies significantly. In particular, the verify operation time of
SEPDP, MAC-PDP and CPOR is in the scale of microsecond
(µs), but in the scale of millisecond (ms) for APDP, MRPDP,
DPDP and FlexDPDP (FDPDP). For the other three BLS-
based schemes (PPPAS, DHT-PA and SEPAP), their verify
operation time is in the scale of second (s).
Observation 2. RSA-based schemes (ms) are an order
of magnitude slower than symmetric-based schemes
(µs), because the RSA-based modular exponential op-
erations are complicated and expensive. BLS-based
schemes (s) is another order of magnitude slower, prob-
ably due to the inherent drawback of the complicated
and slow computation of BLS signatures (e.g., curves
pairing) [44].

Regarding enclave-enabled implementation of PDP
schemes, executing the verify operation inside the enclave im-
posed 17.1%, 12.7% and 24.7% overhead for APDP, MRPDP

202 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

50

100

150

200

250

300

350

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

APDP

Enclave

Native

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

50

100

150

200

250

300

350

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

MRPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

20

40

60

80

100

120

140

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

CPOR

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

20

40

60

80

100

120

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

MACPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

2

4

6

8

10

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

SEPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

200

400

600

800

1000

1200

1400

1600

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

PPPAS

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

200

400

600

800

1000

1200

1400

1600

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

DHTPA

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

200

400

600

800

1000

1200

1400

1600

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

SEPAP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

20

40

60

80

100

120

140

160

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

DPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

20

40

60

80

100

120

140

160

C
h
a
ll
e
n
g
e
 g

e
n
e
ra

ti
o
n
 t

im
e
 (

u
s
)

FDPDP

Figure 3: Overhead of Challenge Operations
and MAC-PDP, respectively. The three BLS-based schemes
(PPPAS, DHT-PA and SEPAP) saw similar performance
degradation, i.e., 34.9% for PPPAS, 36.5% for DHT-PA, and
35.2% for SEPAP, respectively. DPDP and FlexDPDP intro-
duced 47% and 37% overhead respectively, while SEPDP
and CPOR experienced 82.0% and 92.2% increase of the
verify operation time respectively. The reason for such over-
head is similar to that of the overhead of the challenge time
described above, the low-overhead operation (the verify oper-
ation) is affected more significantly by the ecall execution
context switch. Though up to 92% runtime overhead, the fol-
lowing experiments (Section 6.4) will demonstrate that such
microsecond-range or millisecond-range overhead makes ac-
ceptable, or even negligible impact on the throughput for the
practical deployment.
Observation 3. Running the verification operation
inside the enclave introduces less overhead (12.70%–
92.2%) compared with the challenge operation
(18.10%–190%), because the challenge operation is
relatively “lightweight” compared with the verification
operation in terms of computation.

6.4 Evaluation of PDP Request
We measured the response time and throughput of the 10
native PDP schemes and their EnclavePDP implementation,
by verifying the integrity of files with different sizes. The
response time includes the time of network communication
and all operations (i.e., Challenge, Proof, Verify) in the verifi-
cation phase. Since we set the maximum number of challenge
blocks as 460, we intend to choose 1GB file (larger than 460

blocks) and 16KB file (smaller than 460 blocks) to conduct
the following experiments.

The right of Table 3 shows the average response time un-
der the condition of the maximum throughout of both native
PDP and EnclavePDP on verifying the integrity of 1GB file.
“Thr” indicates the number of concurrent threads (imitating
multiple users) used to trigger the maximum throughput. As
shown in Table 3, the average response time for most of the
PDP schemes (including CPOR, SEPDP, MACPDP, APDP,
MRPDP, DPDP and FlexDPDP), when implemented in In-
tel SGX, is almost negligible, with the overhead from 1.0%
to 5.4%. In contrast, the overhead of the three BLS-based
schemes, i.e., PPPAS, DHT-PA and SEPAP, is 24.5%, 23.4%,
and 10.9% respectively. Recall the verification operation for
the BLS-based schemes takes significantly longer than that of
other PDP schemes, in the scale of second, but the overhead
incurred by EnclavePDP is still reasonable.

We conducted an experiment to measure the proportion of
challenge/verify time to the total response time, when launch-
ing only one thread to issue one PDP request each time. As
shown in Table 4, the verification time of the BLS-based
schemes accounts for much more proportion than that of
other schemes, which well explains why running BLS-based
schemes in enclave introduces more overhead compared with
other PDP schemes. However, the response time also includes
the network communication latency and the time of the proof
operation, thus the overhead per PDP request for these PDP
schemes is diluted. For most of these 10 PDP schemes, the
runtime of the challenge operation and the verify operation
accounts for a quite small proportion of the total response
time, which is in line with the fact that although per challenge

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 203

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

5

10

15

20

25

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

m
s
)

APDP

Enclave

Native

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

10

20

30

40

50

60

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

m
s
)

MRPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

100

200

300

400

500

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

u
s
)

CPOR

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

10

20

30

40

50

60

70

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

u
s
)

MACPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

2

4

6

8

10

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

u
s
)

SEPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0.0

0.5

1.0

1.5

2.0

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

PPPAS

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

DHTPA

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0.0

0.5

1.0

1.5

2.0

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

SEPAP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

5

10

15

20

25

30

35

40

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

m
s
)

DPDP

4K
B

16
KB

64
KB

25
6K

B
1M

B
4M

B

16
M
B

64
M
B

25
6M

B
1G

B

Size of Files

0

5

10

15

20

25

30

35

40

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

m
s
)

FDPDP

Figure 4: Overhead of Verify Operations

Table 3: Evaluation of PDP Request on 16KB and 1GB File.
Schemes 16KB file 1GB file

EnclavePDP Native PDP Overhead Thr. EnclavePDP Native PDP Overhead Thr.
MACPDP 515 ms (403.2 req/s) 500 ms (418.1 req/s) 3.0% (3.6%) 220 987 ms (239.9 req/s) 971 ms (244.7 req/s) 1.6% (2.0%) 200
APDP [9] 1154 ms (33.8 req/s) 1110 ms (35.1 req/s) 3.9% (3.7%) 40 2164 ms (8.9 req/s) 2079 ms (9.3 req/s) 4.1% (4.5%) 40
MRPDP [11] 957 ms (89.8 req/s) 936 ms (91.1 req/s) 2.2% (1.4%) 100 3115 ms (6.2 req/s) 2976 ms (6.5 req/s) 4.7% (4.6%) 40
SEPDP [10] 642 ms (410.2 req/s) 601 ms (436.7 req/s) 6.8% (6.0%) 275 725 ms (327.6 req/s) 718 ms (334.0 req/s) 1.0% (1.9%) 250
CPOR [12] 539 ms (389.7 req/s) 520 ms (414.2 req/s) 3.6% (6.0%) 250 1140 ms (84.8 req/s) 1131 ms (85.7 req/s) 1.0% (1.1%) 100
DPDP [7] 1095 ms (90.4 req/s) 939 ms (103.4 req/s) 16.6% (12.6%) 120 24655 ms (0.0405 req/s) 23814 ms (0.0418 req/s) 3.4% (3.5%) 5
FlexDPDP [8] 1075 ms (90.7 req/s) 934 ms (104.7 req/s) 15.1% (13.3%) 120 50698 ms (0.052 req/s) 48100 ms (0.0552 req/s) 5.4% (5.5%) 5
PPPAS [19] 8391 ms (3.3 req/s) 6318 ms (4.5 req/s) 32.8% (24.4%) 30 46034 ms (0.363 req/s) 36886 ms (0.465 req/s) 24.5% (21.9%) 20
SEPAP [17] 5552 ms (3.5 req/s) 4162 ms (4.6 req/s) 33.3% (24.0%) 30 41700 ms (0.365 req/s) 37591 ms (0.458 req/s) 10.9% (20.4%) 20
DHT-PA [18] 1311 ms (22.3 req/s) 1110 ms (26.3 req/s) 18.1% (15.2%) 30 34207 ms (0.487 req/s) 27709 ms (0.64 req/s) 23.4% (24.0%) 30
* Note: the value in the "()" is the maximum throughput (req/s) associated with corresponding response time.
* Thr. : Threads indicating concurrent users.

or verify operation introduces relatively high overhead, the
impact to per PDP request is almost negligible.

In addition, we find that the proportion of challenge/verify
time for most enclave-enabled PDP schemes is in the same
order of magnitude as that of native PDP schemes, slightly
higher than the latter. For DPDP and FlexDPDP schemes,
the higher overhead on challenge time (2.3 times and 1.5
times respectively) might be explained by a loop function
(an expensive operation) used to generate non-negative ran-
dom integers in the challenge generation function of the two
enclave-enabled schemes. The 1.6 times overhead on chal-
lenge time for the enclave-enabled CPOR scheme is probably
due to the extra operations (e.g., private keys loading, chal-
lenge backup), which has significant impact on the originally
small challenge operation time of the CPOR scheme.
Observation 4. The impact incurred by EnclavePDP to
the entire response time, a complete challenge-verify
procedure, is acceptable for practical deployment.

From the perspective of maximum throughput, SEPDP,

MAC-PDP and CPOR perform much better than the other
schemes. In particular, the maximum throughput of SEPDP
and MAC-PDP is one order of magnitude higher than CPOR
and two orders of magnitude higher than APDP and MRPDP.
This can be attributed to the fact that symmetric encryption
(SEPDP and MAC-PDP) is of higher efficiency than asym-
metric encryption (e.g., APDP). Meanwhile, the maximum
throughput of those three BLS-based schemes (i.e., PPPAS,
DHT-PA and SEPAP) is one or several orders of magnitude
slower than the above five schemes, since they utilize the
BLS signatures primitive to support public auditing at the
expense of low efficiency inherited from BLS signatures. The
maximum throughput of DPDP and FlexDPDP is another one
order of magnitude smaller than the three BLS-based PDP
schemes, because building the Rank-Based Authenticated
Skiplist (RBASL) or FlexList data structures is not efficient
and quite memory-consuming.

Figure 4 shows that the verification time of DPDP and
FlexDPDP is about one order of magnitude shorter than that

204 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 4: Proportion of Challenge and Verify Time in a PDP Request
MACPDP APDP [9] MRPDP [11] SEPDP [10] CPOR [12] DPDP [7] FlexDPDP [8] PPPAS [19] SEPAP [17] DHT-PA [18]

Challenge E 0.015% 0.037% 0.030% 0.001% 0.016% 0.001% 0.001% 0.040% 0.040% 0.050%
N 0.010% 0.032% 0.025% 0.001% 0.006% 0.0003% 0.0004% 0.026% 0.027% 0.034%

Verify E 0.011% 2.881% 5.541% 0.001% 0.072% 0.154% 0.210% 62.870% 68.083% 71.942%
N 0.009% 2.574% 5.104% 0.001% 0.037% 0.108% 0.140% 57.180% 58.753% 63.338%

* Note: "E" means "EnclavePDP"; "N" means "Native PDP".

of the three BLS-based schemes, which seems contradictory
to fact that the maximum throughput of the former is about
one order of magnitude smaller than that of the latter when
verifying the integrity of 1GB file as in the right of Table
3. We conducted another experiment to evaluate the proof
generation time of those five schemes to generate proofs on
1GB file. We find that the proof generation time of DPDP
is 10s, nearly 5 times of those three BLS-based schemes,
i.e., 2.5s for PPPAS, 1.8s for DHTP-A and 2.3s for SEPAP,
respectively. The proof generation time of FlexDPDP is also
about 3 times of those BLS-based schemes. In fact, the proof
generation of DPDP and FlexDPDP spends a large amount
of time to build RBASL and FlexList, and the property
information of the blocks to be checked needs to be sent back
to the verifier, which introduces much more communication
overhead than that of those BLS-based schemes. Moreover,
the size of RBASL and FlexList also depends on the size
of the file to be verified. The left part of Table 3 shows
that DPDP and FLexDPDP perform better than the BLS-
based schemes when verifying the integrity of smaller files.
Observation 5. To support dynamic auditing, the perfor-
mance of PDP schemes like DPDP and FlexDPDP down-
grades significantly, due to the expense of building and
managing memory-consuming data structures.

Finally, we also conducted an experiment to evaluate the
overhead incurred by EncalvePDP when performing integrity
verification on a smaller file, i.e., 16KB. As shown in Table
3, when the number of concurrent threads is the same for
16KB file and 1GB file, verifying 16KB file by EnclavePDP
introduces less overhead than 1GB file. For example, with the
same 40 concurrent threads, enclave-enabled APDP imposed
3.9% overhead on 16KB file and 4.1% overhead on 1GB
file. With the same 30 concurrent threads, enclave-enabled
DHT-PA imposed 18.1% overhead on 16KB file, and 23.4%
overhead on 1GB file. However, for other schemes, we can-
not simply compare the overhead on 16KB file and 1GB file
directly, because the number of concurrent threads launched
to evaluate the maximum throughput can be quite different,
e.g., 120 for DPDP and FlexDPDP on 16KB file and 5 on
1 GB file. Overall, when verifying 16KB file, the maximum
throughput of EnclavePDP is still in the same order of magni-
tude as the native PDP, which indicates the overhead caused
by EncalvePDP is still acceptable for practical deployment.

7 Related Works

Provable Data Possession Schemes. Many data integrity ver-
ification schemes [7–16], [30, 45, 46] have been proposed.

Among them, SEPDP [10], DPDP [7], and FlexDPDP [8]) pro-
vided support to verify dynamic data. Mirror [16], CPOR [12]
and Iris [31] extended PDP schemes to provide data integrity
verification with data recovery if any data corruption is iden-
tified, i.e., proof of retrievability (POR) schemes. [11, 30]
designed the integrity check of static data for multiple copies.
PPPAS [19], DHTPA [18] and Qruta [14] proposed privacy-
preserving auditing schemes using third parties. Many liter-
ature surveys (e.g., [25–29]) presented comprehensive sum-
maries and comparison of the existing PDP scheme by defin-
ing a taxonomy of existing PDP schemes. However, these
surveys primarily focus on a summary of the existing PDP
schemes, without any practical implementation or evaluation
of them on real-world cloud storage servers.

Securing Cloud Storage Systems. DEPSKY [47] proposed
a cloud-of-clouds storage system, storing data on several
cloud services to improve the data integrity and retrievability.
Depot [48] designed a cloud storage system to guarantee the
consistency of operations on data. It also protects the integrity
of data by preventing unauthorized nodes from accessing the
data objects. DEPSKY [47] still trusts the cloud storage plat-
forms, while Depot [48] mainly focuses on the consistency
and availability of the data. CloudProof [49] used crypto-
graphic keys to create access control policies, which allow
users to detect violations of integrity and also prove those
violations to a third party. CloudProof mainly aims to provide
security guarantees for the SLA (Service Level Agreement)
to ensure that users will receive a certain compensation in
case of cloud misbehavior.

Intel SGX-based Approaches. LibSEAL [37] presented a
secure audit library to detect service integrity violations (e.g.,
committing operations of Git) by creating non-repudiable au-
dit logs protected by Intel SGX. LibSEAL is implemented
as a TLS library, which is not applicable to verify data in-
tegrity. EnclaveDB [50] is a secure database that guarantees
the confidentiality and integrity of data and queries by placing
sensitive data (tables, indexes and other metadata) in Intel
SGX enclave. DelegaTEE [51] designed a brokered delega-
tion scheme, which utilizes SGX for users to securely delegate
their credentials of service providers to others. Ohrimenko et
al [52] rely on SGX to perform privacy-preserving machine
learning on collaborative data owned by multi-parties.

8 Conclusion

In order to enable users to independently and confidentially
verify the integrity of their outsourced data on cloud stor-
age servers, we present EnclavePDP, a general framework

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 205

that utilizes Intel SGX to perform data integrity verification.
We tailored Intel SGX SSL library and ported PBC libraries
into Intel SGX. Then 10 representative PDP schemes are im-
plemented based on EnclavePDP framework. We deployed
EnclavePDP on a real-world cloud application (FastDFS) to
evaluate its practicality. The experimental results show that
EnclavePDP introduced a reasonable runtime overhead for dif-
ferent sizes of files, thus feasible to be deployed with existing
cloud storage services via its convenient interfaces.

Acknowledgments

We would like to thank the anonymous reviewers for their
constructive comments. This work is supported in part by
Strategic Priority Research Program of Chinese Academy
of Sciences (No.XDC02010900), National Key Research
and Development Program of China (No.2016QY04W0903),
Beijing Municipal Science and Technology Commission
(No.Z191100007119010) and National Natural Science Foun-
dation of China (No.61772078). Peng Liu is supported by
NSF CNS-1814679.

References

[1] Dropbox bug wipes some users’ files from the
cloud. https://www.engadget.com/2014/10/13/
dropbox-selective-sync-bug/, 2014.

[2] Amazon’s cloud crash disaster permanently
destroyed many customers’ data. https:
//www.businessinsider.com/amazon-lost-data
-2011-4, 2011.

[3] Tencent cloud says ‘improper operations’ led
to data loss. https://www.scmp.com/
tech/article/2158785/tencent-cloud-sa
ys-improper-operations-led-data
-loss-client-it-seeks-implement, 2018.

[4] Christian Priebe, Divya Muthukumaran, Dan O’ Keeffe,
David Eyers, Brian Shand, Ruediger Kapitza, and Pe-
ter Pietzuch. Cloudsafetynet: Detecting data leakage
between cloud tenants. In Proc. of ACM CCSW, 2014.

[5] A look back: U.s. healthcare data breach trends.
https://infosec.uthscsa.edu/sites/default/
files/HITRUST_Report-US_Healthcare_Data
_Breach_Trends.pdf, 2012.

[6] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling
public auditability and data dynamics for storage secu-
rity in cloud computing. IEEE Transactions on Parallel
and Distributed Systems, 22(5):847–859, May 2011.

[7] Chris Erway, Alptekin Küpçü, Charalampos Papaman-
thou, and Roberto Tamassia. Dynamic provable data
possession. In Proc. of ACM CCS, 2009.

[8] Ertem Esiner, Adilet Kachkeev, Samuel Braunfeld,
Alptekin Kupcu, and Oznur Ozkasap. Flexdpdp: Flexlist-
based optimized dynamic provable data possession.
ACM Transactions on Storage, 12(4):23, 2016.

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola,
Joseph Herring, Lea Kissner, Zachary Peterson, and
Dawn Song. Provable data possession at untrusted stores.
In Proc. of ACM CCS, 2007.

[10] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini,
and Gene Tsudik. Scalable and efficient provable data
possession. In Proc. of ACM SecureComm, 2008.

[11] Reza Curtmola, Osama Khan, Randal Burns, and
Giuseppe Ateniese. Mr-pdp: Multiple-replica provable
data possession. In Proc. of IEEE ICDCS, 2008.

[12] Hovav Shacham and Brent Waters. Compact proofs of
retrievability. In Proc. of ASIACRYPT, 2008.

[13] Łukasz Krzywiecki and Mirosław Kutyłowski. Proof of
possession for cloud storage via lagrangian interpolation
techniques. In Proc. of NSS, 2012.

[14] B. Wang, B. Li, and H. Li. Oruta: privacy-preserving
public auditing for shared data in the cloud. IEEE Trans-
actions on Cloud Computing, 2(1):43–56, Jan 2014.

[15] Boyang Wang, Baochun Li, and Hui Li. Knox: privacy-
preserving auditing for shared data with large groups in
the cloud. In Proc. of ACNS, 2012.

[16] Frederik Armknecht, Ludovic Barman, Jens-Matthias
Bohli, and Ghassan O. Karame. Mirror: Enabling proofs
of data replication and retrievability in the cloud. In
Proc. of USENIX Security, 2016.

[17] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo. An
efficient public auditing protocol with novel dynamic
structure for cloud data. IEEE Transactions on Infor-
mation Forensics and Security, 12(10):2402–2415, Oct
2017.

[18] H. Tian, Y. Chen, C. Chang, H. Jiang, Y. Huang, Y. Chen,
and J. Liu. Dynamic-hash-table based public auditing
for secure cloud storage. IEEE Transactions on Services
Computing, 10(5):701–714, Sep. 2017.

[19] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou.
Privacy-preserving public auditing for secure cloud stor-
age. IEEE Transactions on Computers, 62(2):362–375,
Feb 2013.

206 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://www.engadget.com/2014/10/13/dropbox-selective-sync-bug/
https://www.engadget.com/2014/10/13/dropbox-selective-sync-bug/
https://www.businessinsider.com/amazon-lost-data-2011-4
https://www.businessinsider.com/amazon-lost-data-2011-4
https://www.businessinsider.com/amazon-lost-data-2011-4
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://infosec.uthscsa.edu/sites/default/files/HITRUST_Report-US_Healthcare_Data_Breach_Trends.pdf
https://infosec.uthscsa.edu/sites/default/files/HITRUST_Report-US_Healthcare_Data_Breach_Trends.pdf
https://infosec.uthscsa.edu/sites/default/files/HITRUST_Report-US_Healthcare_Data_Breach_Trends.pdf
https://infosec.uthscsa.edu/sites/default/files/HITRUST_Report-US_Healthcare_Data_Breach_Trends.pdf

[20] Intel R© software guard extensions programming
reference. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf,
2014.

[21] Intel R© software guard extensions ssl. https://
github.com/intel/intel-sgx-ssl, 2019.

[22] Gnu multiple precision arithmetic trusted library for
intel R© software guard extensions. https://github
.com/intel/sgx-gmp, 2019.

[23] Pbc library. https://crypto.stanford.edu/pbc/,
2019.

[24] Fastdfs. https://github.com/happyfish100/fa
stdfs, 2013.

[25] Faheem Zafar, Abid Khan, Saif Ur Rehman Malik, Man-
soor Ahmed, Adeel Anjum, Majid Iqbal Khan, Nadeem
Javed, Masoom Alam, and Fuzel Jamil. A survey of
cloud computing data integrity schemes: Design chal-
lenges, taxonomy and future trends. Computers & Secu-
rity, 65:29 – 49, 2017.

[26] S. G. Worku, Z. Ting, and Q. Zhi-Guang. Survey on
cloud data integrity proof techniques. In Proc. of IEEE
AsiaJCIS, 2012.

[27] Nouha Oualha, Jean Leneutre, and Yves Roudier. Veri-
fying remote data integrity in peer-to-peer data storage:
A comprehensive survey of protocols. Peer-to-Peer Net-
working and Applications, 5(3):231–243, Sep 2012.

[28] Mehdi Sookhak, Hamid Talebian, Ejaz Ahmed, Abdul-
lah Gani, and Muhammad Khurram Khan. A review on
remote data auditing in single cloud server: Taxonomy
and open issues. Journal of Network and Computer
Applications, 43:121 – 141, 2014.

[29] Lei Zhou, Anmin Fu, Shui Yu, Mang Su, and Boyu
Kuang. Data integrity verification of the outsourced
big data in the cloud environment: A survey. Journal of
Network and Computer Applications, 122:1 – 15, 2018.

[30] Ayad F Barsoum and M Anwar Hasan. Integrity ver-
ification of multiple data copies over untrusted cloud
servers. In Proc. of IEEE Computer Society CCGRID,
2012.

[31] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina
Oprea. Iris: A scalable cloud file system with efficient
integrity checks. In Proc. of ACM ACSAC, 2012.

[32] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz.
Proofs of storage from homomorphic identification pro-
tocols. In Proc. of ASIACRYPT, 2009.

[33] Boneh–lynn–shacham. Accessed on April 10, 2019.

[34] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-sgx: Eradicating controlled-channel attacks
against enclave programs. In Proc. of NDSS, 2017.

[35] S. Gueron. Memory encryption for general-purpose
processors. IEEE Security Privacy, 14(6):54–62, Nov
2016.

[36] Innovative technology for cpu based attestation and
sealing. https://software.intel.com/en-us/
articles/innovative-technology-for-cpu-b
ased-attestation-and-sealing, 2013.

[37] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe,
Divya Muthukumaran, Christian Priebe, Joshua Lind,
Robert Krahn, Christof Fetzer, David Eyers, and Peter
Pietzuch. Libseal: Revealing service integrity violations
using trusted execution. In Proc. of ACM EuroSys, 2018.

[38] Elliptic-curve diffie–hellman. https:
//en.wikipedia.org/wiki/Elliptic-curve_
Diffie%E2%80%93Hellman, 2019.

[39] epoll. https://en.wikipedia.org/wiki/Epoll,
2019.

[40] Chris Erway, Alptekin Küpçü, Charalampos Papaman-
thou, and Roberto Tamassia. Dynamic provable data
possession. In Proceedings of the 16th ACM confer-
ence on Computer and communications security, pages
213–222. ACM, 2009.

[41] Intel R© digital random number generator
(drng) software implementation guide.
https://software.intel.com/en-us/articles/
intel-digital-random-number-genera
tor-drng-software-implementation-guide,
2014.

[42] Intel(r) software guard extensions (sgx) protected code
loader (pcl) for linux* os. https://github.com/
intel/linux-sgx-pcl, 2017.

[43] Azure confidential computing. https:
//azure.microsoft.com/en-us/solutions/
confidential-compute/, 2019.

[44] Bls signatures: better than schnorr. https:
//medium.com/cryptoadvance/bls-signa
tures-better-than-schnorr-5a7fe30ea716,
2018.

[45] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs
of retrievability via hardness amplification. In Proc. of
Theory of Cryptography Conference, 2009.

[46] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of
retrievability: Theory and implementation. In Proc. of
ACM CCSW, 2009.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 207

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/sgx-gmp
https://github.com/intel/sgx-gmp
https://crypto.stanford.edu/pbc/
https://github.com/happyfish100/fastdfs
https://github.com/happyfish100/fastdfs
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Epoll
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx-pcl
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716

[47] Alysson Neves Bessani, Miguel Correia, Bruno
Quaresma, Fernando André, and Paulo Sousa. Depsky:
Dependable and secure storage in a cloud-of-clouds.
TOS, 9(4):12:1–12:33, 2013.

[48] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen
Clement, Lorenzo Alvisi, Mike Dahlin, and Michael
Walfish. Depot: Cloud storage with minimal trust. In
Proc. of UNSENIX OSDI, 2010.

[49] David Molnar, Jay Lorch, , and Raluca Ada and Popa.
Enabling security in cloud storage slas with cloudproof.
Technical report, May 2010.

[50] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A
secure database using sgx. In Proc. of IEEE SP, 2018.

[51] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari
Juels, and Srdjan Capkun. Delegatee: Brokered delega-
tion using trusted execution environments. In Proc. of
USENIX Security, 2018.

[52] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In Proc. of USENIX Security, 2016.

208 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

	Introduction
	Background
	Provable Data Possession in Clouds
	Intel SGX

	Overview
	System and Threat Model
	Motivation of Using Intel SGX
	Possible Concerns of Using Intel SGX

	The Approach of EnclavePDP
	The Architecture of EnclavePDP
	The Workflow of EnclavePDP
	Key Management
	Private Key Protecting
	Private Key Loading

	Implementation
	Porting PDP Schemes
	Protecting Enclave Binary Integrity
	Integration with Cloud Storage Service

	Evaluation
	Experimental Setup
	Analysis of TCB
	Evaluation of Challenger and Verifier
	Overhead of Challenge Operation
	Overhead of Verify Operation

	Evaluation of PDP Request

	Related Works
	Conclusion

