
FuzzGen:
Automatic Fuzzer Generation

29th USENIX Security Symposium
14th August, 2020

Kyriakos Ispoglou
Google Inc.

Daniel Austin
Atlassian

Vishwath Mohan
Google Inc.

Mathias Payer
EPFL

● Fuzzing libraries is hard
○ Cannot run as standalone programs
○ No dependency information across API

● Goal: Invoke API in the right order with the right arguments
○ Build complex, shared state to pass between calls
○ Reduce false positives (e.g. don’t fuzz buffer lengths)

● Current approaches: AFL, libFuzzer
○ Low code coverage, manual, not scalable

Motivation

2

Intuition Behind FuzzGen
● Library code alone is insufficient

● Leverage a whole system analysis to
synthesize fuzzers

● Utilize “library consumers” to:
○ Infer library’s API
○ Expose API interactions

● Abstract API Dependence Graph
○ Translate into (lib)Fuzzer stub

3

Design
How it’s made

4

Constructing
A2DG

Synthesizing
fuzzer stubs

Inferring
Argument Values

5

Inferring
API

Constructing
A2DG

Synthesizing
fuzzer stubs

Inferring
Argument Values

6

Inferring
API

● : All declared functions in the library

● : All declared functions in all consumer header files

● The final library’s API will be:

Inferring API

7

Synthesizing
fuzzer stubs

Inferring
Argument Values

8

Inferring
API

Constructing
A2DG

● Abstract layout of a single library consumer

● Exposes complicated API interactions & dependencies

● Encapsulates both control & data dependencies

● Directed graph of API calls, generated from CFG
○ Node: An API call
○ Edge: The control flow between 2 API calls

Abstract API Dependence Graph (A2DG)

9

A2DG Construction Example

10

CFGA2DG

● Each consumer has its own A2DG

● Coalesce A2DGs into a single one

● At least one “common node” is required
○ Common Node: Same API call & same argument type

● Coalesce A2DGs by merging common nodes

A2DG Coalescing

11

A2DG Coalescing Example

12

A2DG Coalescing Example

13

Inferring
Argument Values

Constructing
A2DG

Synthesizing
fuzzer stubs

14

Inferring
API

Inferring Argument Values
● Not all arguments should be fuzzed:

○ void *memcpy(void *dest, const void *src, size_t n);
○ if (argc > 3) { … }

● Decide what to fuzz and how to fuzz it
○ Infer argument space (Dataflow analysis + Backward slice)
○ Find dataflow dependencies across arguments

● Give attributes to each argument

15

Constructing
A2DG

Synthesizing
fuzzer stubs

Inferring
Argument Values

16

Inferring
API

Synthesizing Fuzzer Stubs
● Goal: Lift A2DG into C++ statements

● Leverage fuzzer entropy to traverse A2DG at runtime
○ Fuzzer explores the “good” paths

● Fuzzers should be fast to maximize random input tests
○ Encoding every A2DG edge reduces performance

● “Flatten” A2DG
17

● Goal: Preserve the order of every API call

● Invoke every function exactly once

● Flattening algorithm:
○ Drop backward edges from A2DG to make it acyclic
○ Topologically sort to group nodes

● Results in a sequence of groups
○ Permute functions within group at runtime

A2DG Flattening

18

A2DG Flattening Example

19

Group #1: opus_packet_get_bandwidth &
 opus_get_version_string

Group #3: opus_decoder_create

Group #2: opus_packet_get_nb_channels &
 opus_get_version_string

Group #4: opus_decoder_ctl &
 opus_decoder_decode

Group #5: opus_decoder_decode

Group #6: opus_decoder_decode

Group #7: opus_decoder_destory

Group #8: opus_get_version_string

Evaluation
Proof of Work

20

Evaluation

21

● Evaluate on Debian & Android
○ 7 codec libraries
○ libfuzzer + ASAN
○ 24 hr experiments * 5 times each

● 17 Bugs Found, 6 got a CVE:
○ CVE-2019-2176

○ CVE-2019-2108

○ CVE-2019-2107

○ CVE-2019-2106

○ CVE-2017-13187

○ CVE-2017-0858 (duplicate)

● Comparing against manually written fuzzers
○ If no fuzzer found online, we created one

● Average Edge Coverage
○ FuzzGen fuzzers: 54.94% vs 48.00% of manual fuzzers
○ FuzzGen explores more aspects of the library

● Measuring bugs found
○ FuzzGen fuzzers: 17 vs 29 of manual fuzzers
○ Manual fuzzers test more thoroughly “buggy” parts

Evaluation - Metrics

22

Evaluation - Edge Coverage for libavc

23

● Whole system analysis infers API interactions

● Automatically synthesize high entropy (lib)Fuzzer stubs
○ Construct complex program state
○ Achieve high code coverage

● Evaluation found 6 CVEs and 17 previously unknown bugs

● Source code: https://github.com/HexHive/FuzzGen
○ (~20.000 LoC in C++ using LLVM)

Conclusion

24

https://github.com/HexHive/FuzzGen

