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● Fuzzing libraries is hard
○ Cannot run as standalone programs
○ No dependency information across API

● Goal: Invoke API in the right order with the right arguments
○ Build complex, shared state to pass between calls
○ Reduce false positives (e.g. don’t fuzz buffer lengths)

● Current approaches: AFL, libFuzzer
○ Low code coverage, manual, not scalable

Motivation
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Intuition Behind FuzzGen
● Library code alone is insufficient

● Leverage a whole system analysis to 
synthesize fuzzers

● Utilize “library consumers” to:
○ Infer library’s API
○ Expose API interactions

● Abstract API Dependence Graph
○ Translate into (lib)Fuzzer stub
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Design
How it’s made

4



Constructing
A2DG

Synthesizing
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Inferring
Argument Values
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●         : All declared functions in the library

●            : All declared functions in all consumer header files

● The final library’s API will be:

Inferring API
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Synthesizing
fuzzer stubs

Inferring
Argument Values
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● Abstract layout of a single library consumer

● Exposes complicated API interactions & dependencies

● Encapsulates both control & data dependencies 

● Directed graph of API calls, generated from CFG
○ Node: An API call
○ Edge: The control flow between 2 API calls

Abstract API Dependence Graph (A2DG)
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A2DG Construction Example
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CFGA2DG



● Each consumer has its own A2DG

● Coalesce A2DGs into a single one

● At least one “common node” is required
○ Common Node: Same API call & same argument type

● Coalesce A2DGs by merging common nodes 

A2DG Coalescing
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A2DG Coalescing Example
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A2DG Coalescing Example
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Inferring Argument Values
● Not all arguments should be fuzzed:

○ void *memcpy(void *dest, const void *src, size_t n);
○ if (argc > 3) { … }

● Decide what to fuzz and how to fuzz it
○ Infer argument space (Dataflow analysis + Backward slice)
○ Find dataflow dependencies across arguments

● Give attributes to each argument
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Synthesizing Fuzzer Stubs
● Goal: Lift A2DG into C++ statements

● Leverage fuzzer entropy to traverse A2DG at runtime
○ Fuzzer explores the “good” paths 

● Fuzzers should be fast to maximize random input tests
○ Encoding every A2DG edge reduces performance

●  “Flatten” A2DG
17



● Goal: Preserve the order of every API call

● Invoke every function exactly once

● Flattening algorithm:
○ Drop backward edges from A2DG to make it acyclic
○ Topologically sort to group nodes

● Results in a sequence of groups
○ Permute functions within group at runtime

A2DG Flattening
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A2DG Flattening Example
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Group #1: opus_packet_get_bandwidth &
                 opus_get_version_string

Group #3: opus_decoder_create

Group #2: opus_packet_get_nb_channels &
                 opus_get_version_string

Group #4: opus_decoder_ctl &
                 opus_decoder_decode

Group #5: opus_decoder_decode

Group #6: opus_decoder_decode

Group #7: opus_decoder_destory

Group #8: opus_get_version_string



Evaluation
Proof of Work
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Evaluation
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● Evaluate on Debian & Android 
○ 7 codec libraries
○ libfuzzer + ASAN
○ 24 hr experiments * 5 times each

● 17 Bugs Found, 6 got a CVE:
○ CVE-2019-2176

○ CVE-2019-2108

○ CVE-2019-2107

○ CVE-2019-2106

○ CVE-2017-13187

○ CVE-2017-0858 (duplicate)



● Comparing against manually written fuzzers
○ If no fuzzer found online, we created one

● Average Edge Coverage
○ FuzzGen fuzzers: 54.94% vs 48.00% of manual fuzzers
○ FuzzGen explores more aspects of the library

● Measuring bugs found
○ FuzzGen fuzzers: 17 vs 29 of manual fuzzers
○ Manual fuzzers test more thoroughly “buggy” parts

Evaluation - Metrics

22



Evaluation - Edge Coverage for libavc
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● Whole system analysis infers API interactions

● Automatically synthesize high entropy (lib)Fuzzer stubs
○ Construct complex program state
○ Achieve high code coverage

● Evaluation found 6 CVEs and 17 previously unknown bugs

● Source code: https://github.com/HexHive/FuzzGen
○ (~20.000 LoC in C++ using LLVM)

Conclusion
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https://github.com/HexHive/FuzzGen

