
Secure Parallel Computation
on National-Scale Volumes of Data
Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, S. Dov Gordon

User

Learning on User Data

User

Data Model

Machine Learning Engine

User Data

2

3

“Computation on Encrypted Data”

Goal: Creating methods for
parties to jointly compute
a function over their inputs
while keeping those inputs
private.

Secure Multi-Party
Computation:

Example of a ML algorithm
(Sparse) Matrix Factorization:
• De-composition of a sparse

matrix of Ratings (R), into
Users’ (U), and Items’ (V)
matrices.

Gradient Descend:
• An optimization algorithm

used in many machine
learning algorithms.

4

R VU ✕⟹

Items

U
se

rs

items

U
se

rs

d

d

Matrix Factorization for Recommendation Systems

Matrix Factorization using Gradient Descent
for Movie Recommendation

5

R VU ✕⟹

Movies

U
se

rs

Movie ProfilesU
se

r
Pr

of
ile

s

d

d

rij ui

vj

𝑟!" ≈ 𝑢! , 𝑣"

Objective function: 𝐿 = min∑(!,")&' 𝑟!," − 𝑢! , 𝑣"
(+ 𝜇∑!&) 𝑢! (+ 𝜆∑"&* 𝑣"

(

User gradient: 𝛿+! = −2∑"&* 𝑣" 𝑟!" − 𝑢! , 𝑣" + 2𝜇𝑢!
Movie gradient: 𝛿," = −2∑!&) 𝑢! 𝑟!" − 𝑢! , 𝑣" + 2𝜆𝑣"

Distributed Graph Parallel Computation

Non-secure Frameworks:
MapReduce, GraphLab,
PowerGraph [Gonzalez et al. 2012]

Supported algorithms:
Matrix Factorization, Histogram,
PageRank, Markov Random Field
Parameter Learning, Name Entity
Resolution, …

Users Movies

6

PowerGraph:
Think as a

Vertex!
Move computation

to data

GAS model of Operation

7

Secure Graph Parallel Computation

• GraphSC [Nayak et al. SP’15]

• Use Oblivious Sort to hide node degree and
edge structure

Users Movies

Complexity:
𝑂(𝐸 + 𝑉 𝐥𝐨𝐠𝟐 𝐸 + 𝑉)

V vertices, E edges

Running time:
6K users, 4K movies, 1 M Ratings => 13 Hrs

8
Threat model: Honest-But-Curious Adversary

Primary Question [Mazloom, Gordon CCS’18]

Can we make secure computation algorithms faster

if we allow something small to be learned?

And prove the leakage is Differentially Private!

9

Differentially-Oblivious Graph
Parallel Computation

• OblivGraph [Mazloom, Gordon CCS’18]

• Noisy node degree by adding dummy edges
• No. of dummy edges determined by DP parameters
• Use Oblivious Sort to hide the edge structure

Users Movies

Shuffle

10V vertices, E’ all edges

Complexity:
𝑂(𝐸4 + 𝛼 𝑉 𝐥𝐨𝐠 𝐸′ + 𝛼 𝑉), 𝛼: O !"# $%!"#&

'

OblivGraph [Mazloom, Gordon CCS’18]

input

Alice Bob

users

input input

11

12

OblivShuffle

OblivGather

OblivApply

OblivScatter

Alice Bob

OblivGraph [Mazloom, Gordon CCS’18]

Running time:
6K users, 4K movies, 1 M Ratings => 2 Hrs

Threat model: Honest-But-Curious Adversary

Current Question

Can we make these differentially private secure

computation algorithms even faster?

13

Can we do better?

q Low communication MPC [Gordon et al. Asiacrypt’18]

q Differentially Private Leakage in Secure Computation [Mazloom, Gordon CCS’18]

q Graph Parallel Computation
=> Constructing an MPC protocol that can

14

MF on 20 million inputs < 6 mins (MovieLens dataset)
Histograms on 300 million inputs in only 4 mins (Counting users in each zip code)

Running time:
6K users, 4K movies, 1 M Ratings => 25 Sec

Key playing factors

ü Using 4 computation servers instead of 2
ü Linear Oblivious Shuffle instead of Quasi-Linear OblivShuffle
ü Fixed-Point Arithmetic Computation instead of Boolean Circuit
ü Secure against one malicious adversary

15

Challenge 1

16

o The party that access the data should NOT
learn the shuffling pattern

Merging these construction ==> Opportunities and Challenges

ü Partition the tasks between 4 parties:
Group 1: Shuffle the data
Group 2: Access the data

Solution

Challenge 2

17

o Secure against active adversary

ü Verifying the result of each operation to
detect cheating behaviorSolution

Alice Bob

OblivShuffle

Verify Gather

Verify Scatter

Charlotte David

Verify Shuffle

OblivGather

OblivApply

OblivScatter
18

Malicious-secure 4-party
Secure Parallel Computation

OblivApply
Cross-Check

Improved by 230X

Improved by 880X

Challenge 3

19

o Fixed-Point Arithmetic Computation

ü Truncation and handling the rounding errorSolution

Cross–Check Verification after
Apply phase

21

Alice & Bob compute on some masked
values and truncate

Charlotte & David compute on some masked
values and truncate

If their results don’t
match?

The verification may Fail if data is a
decimal value, and it’s NOT because

of malicious behavior!

Abort

inspired by [Gordon et al. 2018]

Implementation Results

22

Implemented in C++, run experiments on AWS

Multiple benchmark algorithms, including Matrix Factorization and Histogram

4 computation servers, 32 cores each, 10 Gbps network

Input size and privacy parameters
for different experiments

Run Time on National-Scale Histogram Problem

23

Run time (s) for computing Histogram problem on different input sizes (LAN)
Counting people in each zip code

Run Time Large-Scale MF Problem

24

Run time (s) for computing Matrix Factorization problem on real-world dataset,
MovieLens on different input sizes for Movie Recommendation

Run Time Comparison with previous works

25

Run time comparison on this work vs. OblivGraph vs. GraphSC. Single
iteration of Matrix Factorization on real- world dataset, MovieLens
with 6K users ranked 4K movies with 1M ratings

Summarize

Goal:
Learning on large-scale data with security and privacy

• Secure MPC for Privacy Preserving Machine Learning
• Secure against one malicious corruption
• Leverage Differential Privacy to improve efficiency

26

Thanks!
Q&A

27

Secure Parallel Computation
on National-Scale Volumes of Data
Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, S. Dov Gordon

sseyedma@gmu.edu
Code is publicly available!

mailto:sseyedma@gmu.edu

