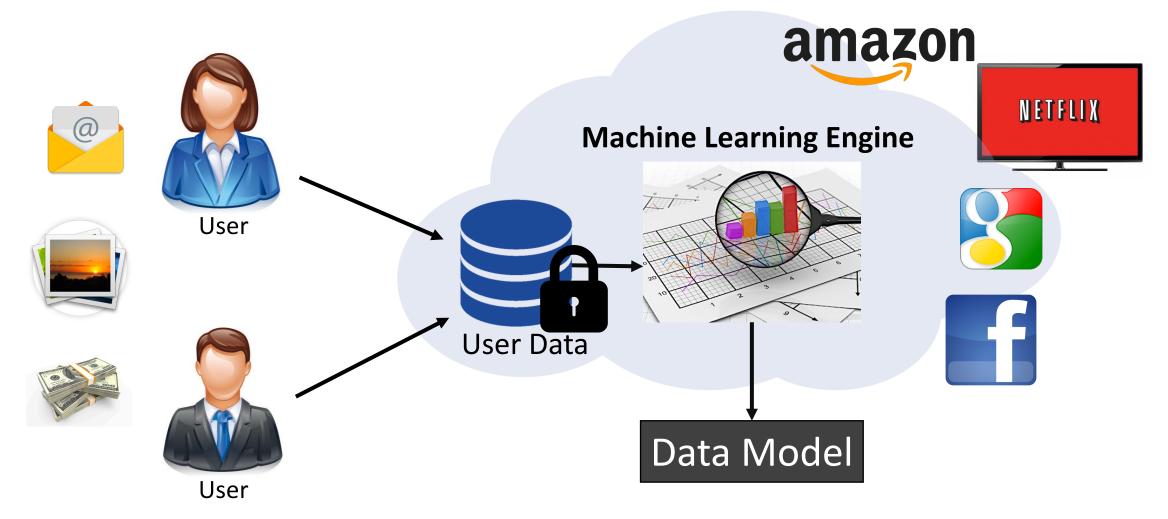
Secure Parallel Computation on National-Scale Volumes of Data

Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, S. Dov Gordon

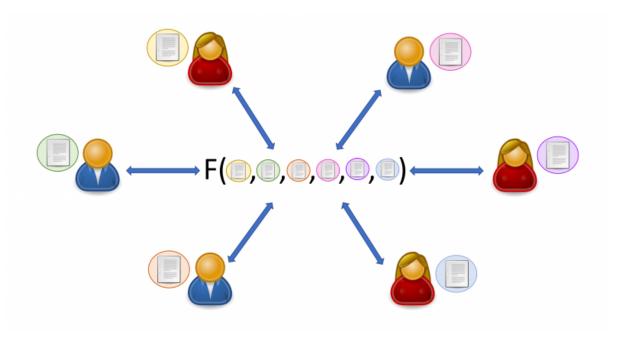
Learning on User Data



"Computation on Encrypted Data"

Secure Multi-Party Computation:

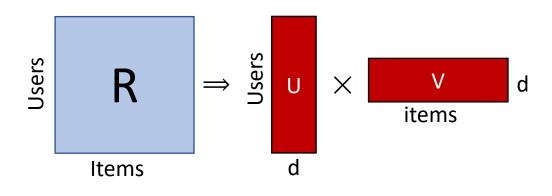
Goal: Creating methods for parties to jointly compute a function over their inputs while keeping those inputs private.



Example of a ML algorithm

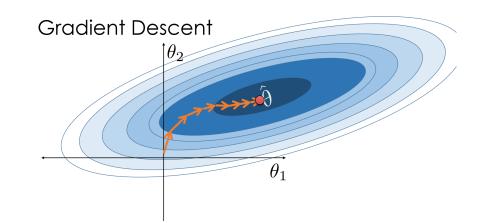
(Sparse) Matrix Factorization:

 De-composition of a sparse matrix of Ratings (R), into Users' (U), and Items' (V) matrices. Matrix Factorization for Recommendation Systems

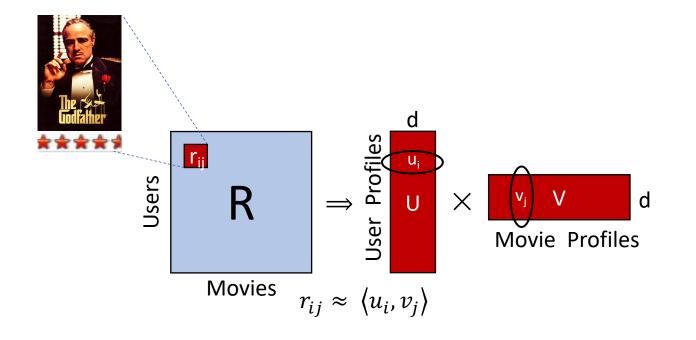


Gradient Descend:

 An optimization algorithm used in many machine learning algorithms.



Matrix Factorization using Gradient Descent for Movie Recommendation



Objective function: $L = \min \sum_{(i,j)\in M} (r_{i,j} - \langle u_i, v_j \rangle)^2 + \mu \sum_{i\in n} ||u_i||^2 + \lambda \sum_{j\in m} ||v_j||^2$ $\begin{cases} \text{User gradient: } \delta_{u_i} = -2 \sum_{j\in m} v_j (r_{ij} - \langle u_i, v_j \rangle) + 2\mu u_i \\ \text{Movie gradient: } \delta_{v_j} = -2 \sum_{i\in n} u_i (r_{ij} - \langle u_i, v_j \rangle) + 2\lambda v_j \end{cases}$

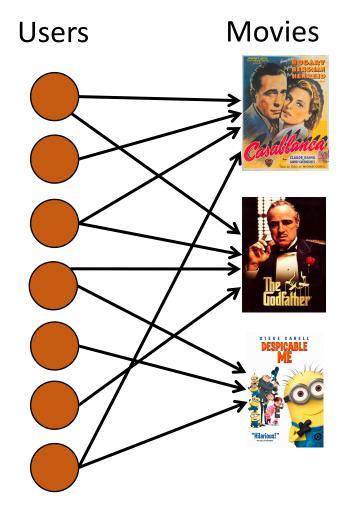
Distributed Graph Parallel Computation

Non-secure Frameworks:

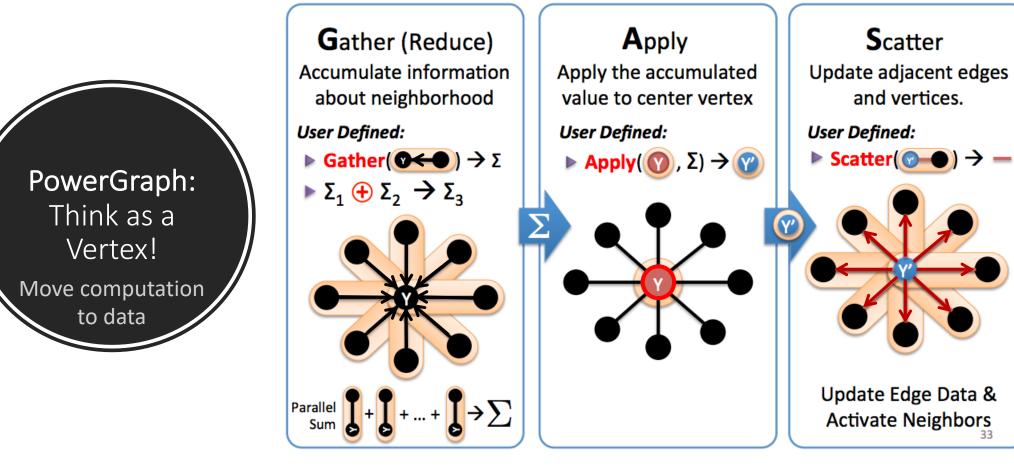
MapReduce, GraphLab, PowerGraph [Gonzalez et al. 2012]

Supported algorithms:

Matrix Factorization, Histogram, PageRank, Markov Random Field Parameter Learning, Name Entity Resolution, ...



GAS model of Operation



Secure Graph Parallel Computation

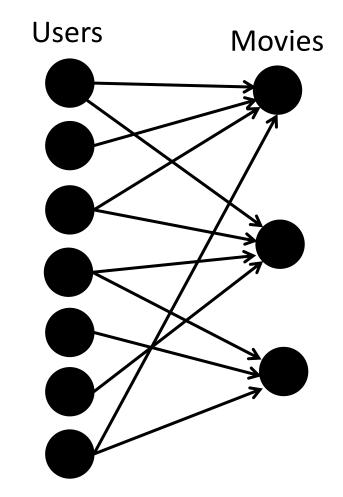
- GraphSC [Nayak et al. SP'15]
- Use **Oblivious Sort** to hide *node degree* and *edge structure*

Complexity: $O((|E| + |V|) \log^2(|E| + |V|))$

Running time:

6K users, 4K movies, 1 M Ratings => 13 Hrs

Threat model: Honest-But-Curious Adversary



Primary Question [Mazloom, Gordon CCS'18]

Can we make secure computation algorithms faster

if we allow *something small* to be learned?

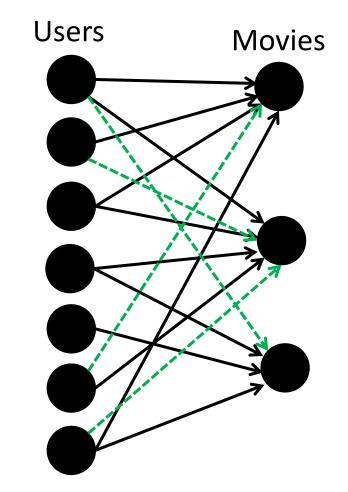
And prove the leakage is Differentially Private!

Differentially-Oblivious Graph Parallel Computation

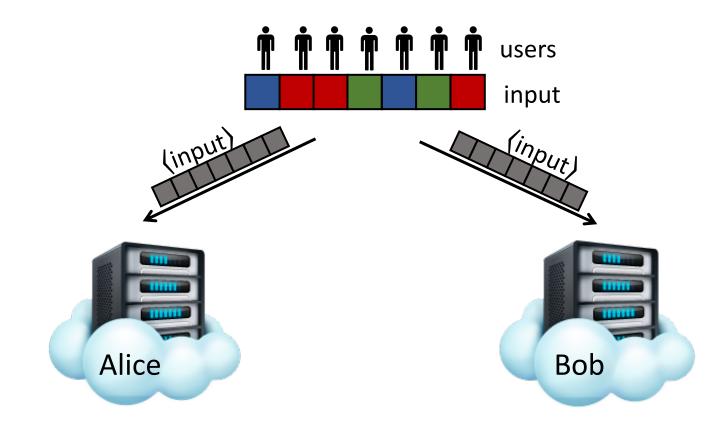
- OblivGraph [Mazloom, Gordon CCS'18]
- Noisy node degree by adding dummy edges
- No. of dummy edges determined by *DP parameters*
- Use Oblivious Sort to hide the edge structure Shuffle

Complexity:

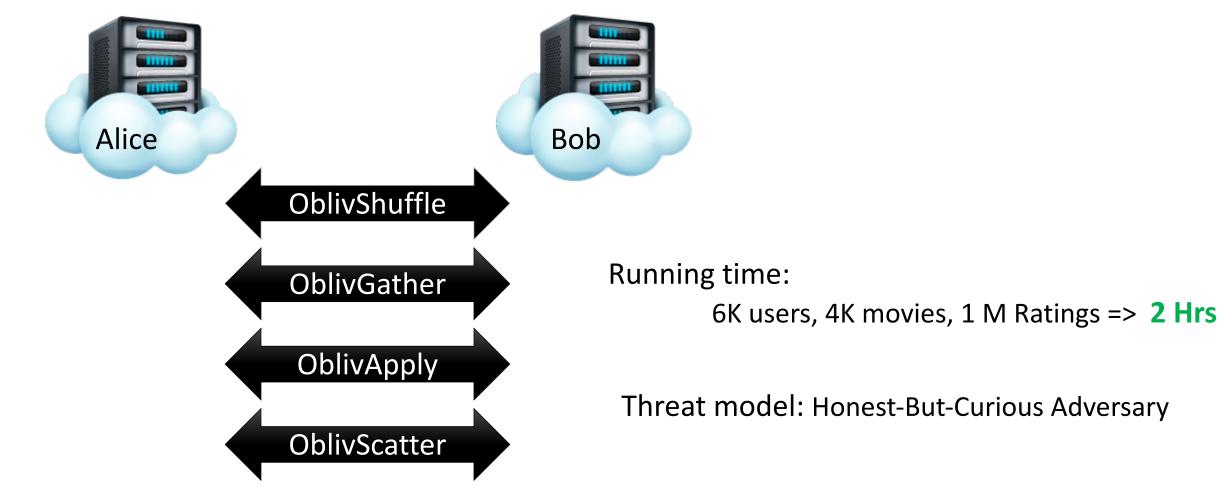
 $O((|E'| + \alpha |V|) \log(|E'| + \alpha |V|)), \quad \alpha: O\left(\frac{\log \delta - \log m}{\varepsilon}\right)$



OblivGraph [Mazloom, Gordon CCS'18]



OblivGraph [Mazloom, Gordon CCS'18]



Current Question

Can we make these *differentially private secure computation* algorithms even faster?

Can we do better?

- Low communication MPC [Gordon et al. Asiacrypt'18]
- Differentially Private Leakage in Secure Computation [Mazloom, Gordon CCS'18]
- Graph Parallel Computation
 - => Constructing an MPC protocol that can

Running time:

6K users, 4K movies, 1 M Ratings => 25 Sec

MF on 20 million inputs < 6 mins (MovieLens dataset) Histograms on 300 million inputs in only 4 mins (Counting users in each zip code)

Key playing factors

- ✓ Using 4 computation servers instead of 2
- ✓ Linear Oblivious Shuffle instead of Quasi-Linear OblivShuffle
- ✓ Fixed-Point Arithmetic Computation instead of Boolean Circuit
- ✓ Secure against one malicious adversary

Merging these construction ==> Opportunities and Challenges

Challenge 1 o The party that access the data should <u>NOT</u> learn the shuffling pattern

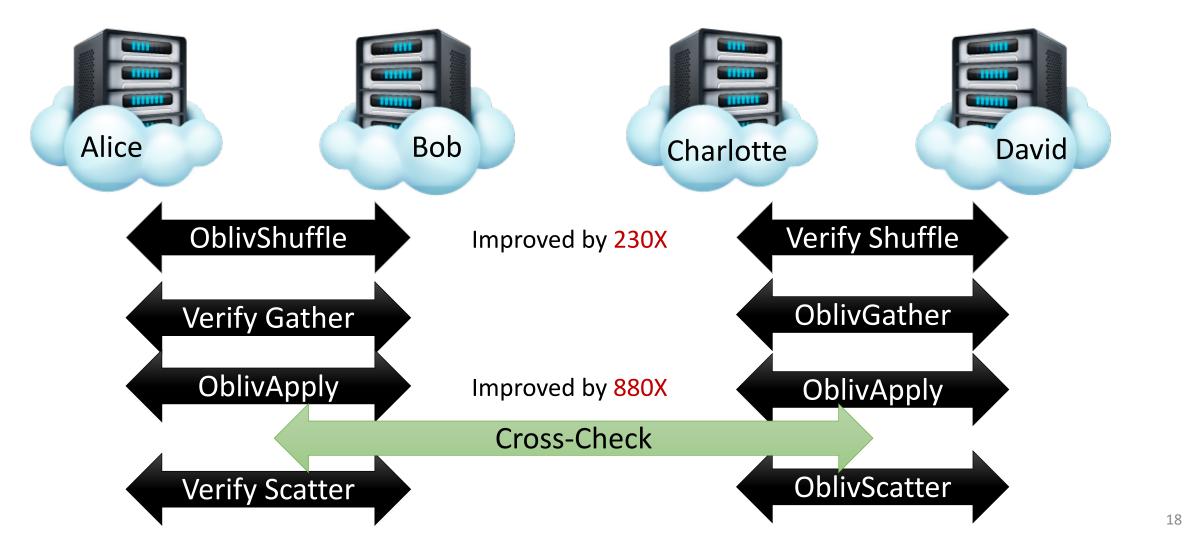
Solution

Partition the tasks between 4 parties:
Group 1: Shuffle the data
Group 2: Access the data

Challenge 2 o Secure against active adversary

Solution Verifying the result of each operation to detect cheating behavior

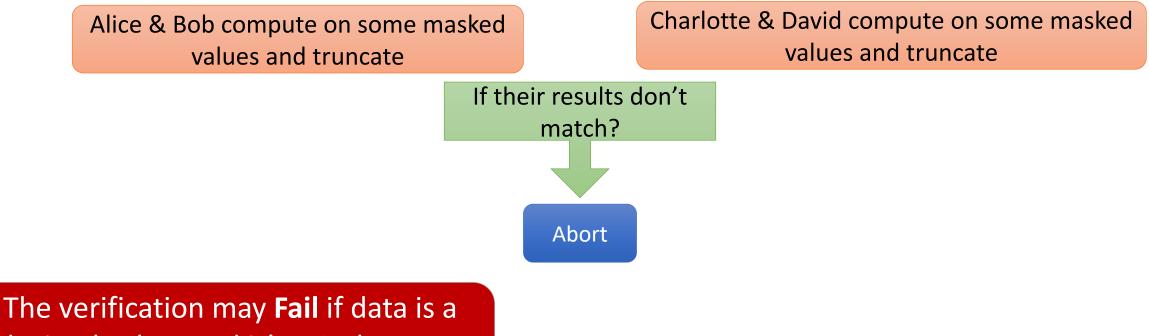
Malicious-secure 4-party Secure Parallel Computation



$challenge \ 3 \quad \circ \ \ {\sf Fixed-Point Arithmetic Computation}$

Solution Truncation and handling the rounding error

Cross—Check Verification after Apply phase inspired by [Gordon et al. 2018]



decimal value, and it's NOT because of malicious behavior!

Implementation Results

Implemented in C++, run experiments on AWS

Multiple benchmark algorithms, including Matrix Factorization and Histogram

4 computation servers, 32 cores each, 10 Gbps network

Edges	Users	Items	3	δ
1M	6K	4K	0.3	2^{-40}
10M	72K	10K	0.3	2^{-40}
20M	138K	27K	0.3	2^{-40}
300M	300M	42K	0.3	2^{-40}

Input size and privacy parameters for different experiments

Run Time on National-Scale Histogram Problem

Processors / Edges	1M	10M	20M	300M
1	13.8	85.0	207.7	2149.4
2	7.5	46.5	98.1	1136.5
4	4.3	28.0	57.78	643.2
8	2.7	16.2	34.39	382.5
16	1.8	11.2	23.3	279.2
32	1.5	10.1	21.67	250.4

Run time (s) for computing Histogram problem on different input sizes (LAN) Counting people in each zip code

Run Time Large-Scale MF Problem

Processors / Edges	1M	10M	20M
1	258.3	1639.7	3401.8
2	132.9	834.7	1913.7
4	80.4	455.57	1055.95
8	44.6	292.2	613.1
16	28.2	190.6	423.7
32	25.1	163.4	357.2

Run time (s) for computing Matrix Factorization problem on real-world dataset, *MovieLens* on different input sizes for Movie Recommendation

Run Time Comparison with previous works

	GraphSC	OblivGraph	This work
Time	13hrs	2hrs	25s

Run time comparison on this work vs. OblivGraph vs. GraphSC. Single iteration of Matrix Factorization on real- world dataset, MovieLens with <u>6K users</u> ranked <u>4K movies</u> with <u>1M ratings</u>

Summarize

Goal:

Learning on large-scale data with security and privacy

- Secure MPC for Privacy Preserving Machine Learning
- Secure against one malicious corruption
- Leverage Differential Privacy to improve efficiency

Secure Parallel Computation on National-Scale Volumes of Data

Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, S. Dov Gordon <u>sseyedma@gmu.edu</u> Code is publicly available!

Thanks!

