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“Computation on Encrypted Data”

Goal: Creating methods for 
parties to jointly compute 
a function over their inputs 
while keeping those inputs 
private.

Secure Multi-Party 
Computation:



Example of a ML algorithm
(Sparse) Matrix Factorization:
• De-composition of a sparse 

matrix of Ratings (R), into 
Users’ (U), and Items’ (V) 
matrices.

Gradient Descend:
• An optimization algorithm 

used in many machine 
learning algorithms.
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Matrix Factorization for Recommendation Systems



Matrix Factorization using Gradient Descent
for Movie Recommendation
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Distributed Graph Parallel Computation

Non-secure Frameworks:
MapReduce, GraphLab, 
PowerGraph [Gonzalez et al. 2012]

Supported algorithms: 
Matrix Factorization, Histogram, 
PageRank, Markov Random Field 
Parameter Learning, Name Entity 
Resolution, …

Users Movies
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PowerGraph:
Think as a 

Vertex!
Move computation 

to data

GAS model of Operation
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Secure Graph Parallel Computation

• GraphSC [Nayak et al. SP’15]

• Use Oblivious Sort to hide node degree and 
edge structure

Users Movies

Complexity:
𝑂( 𝐸 + 𝑉 𝐥𝐨𝐠𝟐 𝐸 + 𝑉 )

V vertices, E edges

Running time: 
6K users, 4K movies, 1 M Ratings =>  13 Hrs
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Threat model: Honest-But-Curious Adversary



Primary Question [Mazloom, Gordon CCS’18]

Can we make secure computation algorithms faster

if we allow something small to be learned? 

And prove the leakage is Differentially Private!
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Differentially-Oblivious Graph 
Parallel Computation

• OblivGraph [Mazloom, Gordon CCS’18]

• Noisy node degree by adding dummy edges
• No. of dummy edges determined by DP parameters
• Use Oblivious Sort to hide the edge structure

Users Movies

Shuffle

10V vertices, E’ all edges

Complexity:
𝑂( 𝐸4 + 𝛼 𝑉 𝐥𝐨𝐠 𝐸′ + 𝛼 𝑉 ), 𝛼: O !"# $%!"#&
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OblivGraph [Mazloom, Gordon CCS’18]

input

Alice Bob

users

input input
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OblivShuffle

OblivGather

OblivApply

OblivScatter

Alice Bob

OblivGraph [Mazloom, Gordon CCS’18]

Running time: 
6K users, 4K movies, 1 M Ratings =>  2 Hrs

Threat model: Honest-But-Curious Adversary



Current Question

Can we make these differentially private secure 

computation algorithms even faster?
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Can we do better?

q Low communication MPC  [Gordon et al. Asiacrypt’18]

q Differentially Private Leakage in Secure Computation [Mazloom, Gordon CCS’18]

q Graph Parallel Computation 
=>  Constructing an MPC protocol that can
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MF on 20 million inputs < 6 mins (MovieLens dataset)
Histograms on 300 million inputs in only 4 mins  (Counting users in each zip code)

Running time: 
6K users, 4K movies, 1 M Ratings =>  25 Sec



Key playing factors

ü Using 4 computation servers instead of 2 
ü Linear Oblivious Shuffle instead of Quasi-Linear OblivShuffle
ü Fixed-Point Arithmetic Computation instead of Boolean Circuit
ü Secure against one malicious adversary
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Challenge 1
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o The party that access the data should NOT
learn the shuffling pattern

Merging these construction ==> Opportunities and Challenges 

ü Partition the tasks between 4 parties:
Group 1:  Shuffle the data
Group 2:  Access the data

Solution



Challenge 2
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o Secure against active adversary

ü Verifying the result of each operation to 
detect cheating behaviorSolution



Alice Bob

OblivShuffle

Verify Gather

Verify Scatter

Charlotte David

Verify Shuffle

OblivGather

OblivApply

OblivScatter
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Malicious-secure 4-party 
Secure Parallel Computation

OblivApply
Cross-Check

Improved by 230X

Improved by 880X



Challenge 3
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o Fixed-Point Arithmetic Computation

ü Truncation and handling the rounding errorSolution



Cross–Check Verification after 
Apply phase
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Alice & Bob compute on some masked 
values and truncate

Charlotte & David compute on some masked 
values and truncate

If their results don’t 
match?

The verification may Fail if data is a 
decimal value, and it’s NOT because 

of malicious behavior!

Abort

inspired by [Gordon et al. 2018]



Implementation Results
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Implemented in C++, run experiments on AWS

Multiple benchmark algorithms, including Matrix Factorization and Histogram

4 computation servers, 32 cores each, 10 Gbps network

Input size and privacy parameters 
for different experiments 



Run Time on National-Scale Histogram Problem
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Run time (s) for computing Histogram problem on different input sizes (LAN)
Counting people in each zip code  



Run Time Large-Scale MF Problem
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Run time (s) for computing Matrix Factorization problem on real-world dataset, 
MovieLens on different input sizes for Movie Recommendation 



Run Time Comparison with previous works
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Run time comparison on this work vs. OblivGraph vs. GraphSC. Single 
iteration of Matrix Factorization on real- world dataset, MovieLens
with 6K users ranked 4K movies with 1M ratings 



Summarize

Goal: 
Learning on large-scale data with security and privacy

• Secure MPC for Privacy Preserving Machine Learning
• Secure against one malicious corruption
• Leverage Differential Privacy to improve efficiency
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Thanks!
Q&A
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