Agamotto: Accelerating Kernel Driver Fuzzing
with Lightweight Virtual Machine Checkpoints

Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent Byunghoon Kang, Jean-Pierre Seifert, Michael Franz

Technische . MI S I
Universitat

Berlin

Device Drivers are Still Vulnerable in 2020

Security Bulletin: NVIDIA GPU Display Driver - June 2020

NVIDIA GPU DISPLAY DRIVER

CVE-ID

Base

Description
P Score

Vector

CVE-2020-5962

NVIDIA GPU Display Driver contains a vulnerability in the NVIDIA Control Panel
component, in which an attacker with local system access can corrupt a system file, 7.8
which may lead to denial of service or escalation of privileges.

AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

CVE-2020-5963

NVIDIA CUDA Driver contains a vulnerability in the Inter Process Communication
APIs, in which improper access control may lead to code execution, denial of 7.8
service, or information disclosure.

AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

CVE-2020-5964

CVE-2020-5965

NVIDIA GPU Display Driver contains a vulnerability in the service host component, in
which the application resources integrity check may be missed. Such an attack may 6.5
lead to code execution, denial of service or information disclosure.

NVIDIA GPU Display Driver contains a vulnerability in the DirectX 11 user mode

driver (nvwgf2um/x.d11l), in which a specially crafted shader can cause an out of 5.5
bounds access, leading to denial of service.

AV:L/AC:L/PR:H/UI:R/S:U/C:H/1:H/A:H

Why Vulnerabilities in Drivers matter?

(i) Highly Privileged

User-mode
Applications

OO

(ii) Wide Attack Surface

OS Kernel Device

Drivers

Peripheral Hardware

System Call Attack Surface
« open(/dev/..)

* read(..) and write(..)

e joctl(..)

6OB Peripheral Attack Surface

* PCI
* USB

Statetul, Event-Driven Nature of Drivers

Discover event <Driver Execution Flow Example>

Initialize failed
Initializing
Checking

alized Queue
Event queue .
EEUE Processing
- v Event

New thread started

Paused Event switch(event.type) {
Dequeued case Ji:

Pausi) case [: ..
ausing Receive event case : ..
case [..

Problem: Fuzzing Device Drivers is Slow

A fuzzer generated

Connect(...)
Initialize(...)
Start(..)
Queue ()
Queue (M)

Discover event

Initializing

Initialize failed

New thread

Checking
Queue
Event queue
.. Processing
Event

case
Pausing Receive event

Several Seconds

(CPU time given to drivers with a low priority, and
frequently interrupted for higher priority tasks.)

Problem: Slowed down further by Crashes
10~30 sec X N

€ = = e - == ===

Di~°'cov‘°-rev(reb00t for crash recovery) |
Discovered I
A fuzzer generated mitialie filed I

=/ N\ | o New thread started
AAAAA L/ A\ | Initializing
..... £/ A | ,
AAAAA L/ A | | Checking
nnnnn £\ ™ AR ueue
T = Inghilized Event queue 2
Connect(...) tart B Pocessing
Initialize(..) i Startfailed Queuing Bvent B £§
ause Event switch(event.ty[!e'}
(Dequeued case j: - e
) case [: ..
Pausing Receive event case |Jjj: -
case i : ..

| Start(..)
}

Crash

Queue ()

N test inputs hit the Bug (or Shallow Bug) ;

Problem: Slowed down further by Crashes

Hard to reach deep bugs
when shallow bugs are present.

Queue (

test inputs hit the Bug (or Shallow Bug)

Existing Approach:
Fuzzing with Snapshot

ﬂ Create Snapshot
* Snapshot restoration ensures i e

Restore from Snapshot
no interference between o e -

test inputs, even after crash. g e | |
(Clean-state fuzzing) I I

> Crash
PTocessing
Event

case

Nely thread started

Initializing

Checking

Queue

* Existing tools create it
a single snapshot
before start processing input,
typically at program startup.

Queuing

Event

Paused

* After executing each test case, the
program is restored from that snapshot.

Existing Approach:
Fuzzing without Snapshot

* Snapshot creation/restoration adds a run-time overhead.

* Snapshot techniques that capture kernel components can be even
more costly.

VM Emulation + fork() — VM Emulation is slow.
* Full VM Snapshot — VM Restore can take several seconds.

* Some fuzzers do not use snapshots.

* [User-space] libFuzzer is an in-process fuzzer; af1 has persistent mode
* [Kernel-space] syzkaller does not use snapshots

_Our Approach:
Dynamic VM Checkpointing

System Initialized — W&,

A fuzzer generated

Connect(...)
Initialize(..) - W&,
Start(..) > ﬁB
Queue ()
Queue (M)

/4

u Create Checkpoint (Root)

Discover event

Discovered

Initialize failed

StartAfailed

ol =)
B®) Create Checkp oifit"¢A)

. Processing
] Event
Queuing

Cl

Checkmg
Queue
Event queue

Create Checkpoint (B)

Event switch(event.type) {

~_J

Receive event

10

~O Our Approach:
Dynamic VM Checkpointing

/l

Root Root

Discover event

System Initialized - wé

A fuzzer generated

Checking
Queue
Event queue
..... Processing
- Event

Event D d switch(event.type) {
equeue .
‘ 4 case Jj: -
)) case |Jj: -
Pausing Receive event case [: -
A case [: ..

11

0 Our Approach:

=" Dynamic VM Checkpointing

System Initialized — W&,

Discover event

Initializing

Ingghlized

A fuzzer generated

StartAfailed

Initialize lehled

Depending on
next test input

New thread started ﬂ €---------
B
Checking
ueue
Event queue &

. Processing
] Event
Queuing B
Event D d switch(event.type
equeue .
4 case |j: - x
. case [: ..
Receive event case if: - M
case [: ..
}

12

O- Our Approach:
=" Dynamic VM Checkpointing

Depending on
e next test input
System Initialized — W&, mRo:t —— |

Deep code paths can be fuzzed (i) much faster,
and (ii) with no interference between test inputs.

WB Qu eue () Crash - Paused Start-failed , Queuing B
{ ven switch(event.type
Queue(- equ o0t
ase :
eceive even . 8

Lightweight Incremental Checkpointing

* Minimizes both the run-time &
memory overhead of checkpoint
creation

* Incremental checkpoints stored in the
CheCkpoint tree -——---- -

* Each tree node represents an
incremental checkpoint which stores
only the pages modified w.r.t. its

parent (or “dirty pages”)

(A

Checkpoint Tree

k Incremental Checkpoints

Full system\
snapshot K&

14

Checkpoint Restoration

* Restoring VM from a dirty VM state @) To Node (C)

Ref. Chkpt. Tree

VM State .

Checkpoint
Node

15

ct. Naive Checkpoint Restoration
- Top-Down

* Restoring VM from a dirty VM state @) To Node (C)

T Ste . ® . .
:Apply. > |

b ©

Overhead = .

Checkpoint
Node

16

ct. Naive Checkpoint Restoration
- Top-Down

* Restoring VM from a dirty VM state @) To Node (C)

VM State
I oMo K

Apply Apply

O - @

Overhead = .+ i

Checkpoint
Node

17

ct. Naive Checkpoint Restoration
- Top-Down

* Restoring VM from a dirty VM state ' To Node @

Vi State . ® . .
Apply Applym Apply

Checkpoint
Node

‘ o ‘ @

Overhead :.+ NEN

_ O (aThe number of

11 + dirty page

18

Lightweight Checkpoint Restoration
- Bottom-up, Delta Restore

* Restoring VM from a dirty VM state ' To Node @

VM State
. @ . .
- Apply
- 1 @

Inconsistent Intermedlate States

Checkpoint
Node

Overhead = g

19

Lightweight Checkpoint Restoration
- Bottom-up, Delta Restore

* Restoring VM from a dirty VM state @) To Node (C)

T . ® . .
- Apply .' Apply

e \

Y N
1
/7

7’

-_»

Inconsistent Intermediate States

Checkpoint
Node

Overhead = g + " :O(Th? number of

dirty pages

20

Lightweight Checkpoint Restoration
- Bottom-up, Delta Restore

* Restoring VM from a dirty VM state ‘ To Node @

e = wm R

This approach achieves up to 8.9x faster VM restoration
than the naive top-down approach.

Node ' !) (57 _:'

Inconsistent Intermediate States

Overhead = g + " :O(The number of

dirty pages

21

Checkpoint Management Policies

Creation
/ Policy vpvyy

* Goal: Increase the Utility of Checkpoints |

* Constraint #1: checkpoint creation run-time overhead

Create &
Store

* Constraint #2: checkpoint memory overhead

Checkpoint
Storage

* High-level Ideas

* Control checkpoint creation via Creation policy

* Evict checkpoints via Eviction policy | |

EvictionI I '
Policy V'V \ A 4
[
i Evict
22

Checkpoint Creation Policy

Connect(..) Connect(...) aj
Initialize(..) Mutate Initialize(..) a2 Execute
T — Start(..) T/ _ Start(..) as
Queue () — | Queue(M) ay
Queue () Queue (M) as
7
(Test Case in the Corpus) (Mutated Test Case to Execute)
Program State (S i)S a . as . as . a) . as .
ey —» D1 — > 02 —» I3 > D4 —————® 5
Transitions 0

Checkpoint Candidate: (7) @ 6 @ ®

23

ct. Naive Checkpoint Creation Policy

Connect(..) Connect(..) aq
Initialize(...) MUtate Initialize(...) a2 Execute
_ Start(..) ! Start(..) as
T = Queue () T = ay
Queue () Queue () 9
(Test Case in the Corpus) (Mutated Test Case to Execute)
Program State (S i)S a . as . as . a) . as .
" 0 —> o1 —> D2 —> O3 > D4 > 5
Transitions

Checkpoint Candidate:

Naively Checkpointing after Every Action in the Test Case

24

Checkpoint Creation Policy

Connect(...) Connect(...) ai
Initialize(...) MUtate Initialize(...) az Execute
— Start(...) /I Start(..) as
T o Queue([]) T _ ay
Queue () Queue () 9
(Test Case in the Corpus) (Mutated Test Case to Execute)
Program State (S;) ay G W a o 9 E
11— 02 —* O3 > D4 ————® 5
Transitions S0

Checkpoint Candidate: ‘ x ®

| 1 | t2—2 tl I t3—2‘t2 I
I I I

(i) Checkpointing (ii) Disabling Checkpointing
at Increasing Intervals after First Mutation 25

Implementation and Experiments

* Implementation of Agamotto
* QEMU 4.0.0 with Linux KVM on x86-64
* Syzkaller for USB fuzzing
* Our own AFL-based PCI fuzzer for PCI fuzzing

* Experimental Parameters
* 32 instance parallel fuzzing
* 12GB checkpoint pool per fuzzing instance

* “Fuzzer—Attack Surface” Configurations

1. Syzkaller—USB: Tested 8 Linux USB Kernel Drivers
2. AFL—PCI: Tested 4 Linux PCI Kernel Drivers

ARTIFACT
EVALUATED

susenix
3 ASSOCIATION

ARTIFACT
EVALUATED

Implementation and Experiments €3,
_passep

* Implementation of Agamotto
* QEMU 4.0.0 with Linux KVM on x86-64
* Syzkaller for USB fuzzing

The fuzzing algorithms of Syzkaller/AFL

were NOT modified.
-......__r r.cpoaecexpontpoor per razzmg searece..........._._._._._._._._._._ Ao

* “Fuzzer—Attack Surface” Configurations

1. Syzkaller—USB: Tested 8 Linux USB Kernel Drivers
2. AFL—PCI: Tested 4 Linux PCI Kernel Drivers

Syzkaller-USB Throughput

[0 Agamotto g Agamotto w/ root checkpoint only 9 unmodified Syzkaller]

Throughput
(execs/s) o T -
20 20]
15 o, . . ATh R * % = e =%]
10 10 10
5 |]
0 { 0 “'”_”_"_"—T—“"*“-D—ﬁ—n—x—x—u—n_ 0
0 1 2 3 0 1 2 3 0 1 5 3
(@RsI ~ Fuzzingtime s \ryiprpy (¢) AR5523
(Hours)
20 — |
=% o e e
10 |
0 | l
0 1 2 3

(e) PN533 (H) GO7007 (g) SI470X (h) USX2Y

Snapshot v. No Snapshot:
Comparing @@ and ©

[0 Agamotto g Agamotto w/ root checkpoint only e unmodified Syzkaller]

Throughput
(execs/s) o T -
20 20 |
15 o, . . ATh R * % = e =%]
10 10 10
5 |]
0 { 0 “'”_”_"_"—T—“"*“-D—ﬁ—n—x—x—u—n_ 0
0 1 2 3 0 1 2 3 0 1 2 3
(@Rst Fuzzingtime) \rwiprEx (c) ARS5523
(Hours)
20 |]
== o e X
10 |
0 | l
0 1 2 3

(e) PN533 (f) GO7007 () SI470X (h) USX2Y

Snapshot v. No Snapshot:

Comparing @@ and ©

[0 Agamotto a Agamotto w/ root checkpoint only e unmodified Syzkaller J

Throughput
(execs/s)

20 An unknown bug
was found

20

10 10

0 xx‘

0 1 2 3 (0] 1 2 3
@Rs1 F “(ZI?I‘(‘)‘frtS‘)me (b) MWIFIEX

(e) PN533 (H) GO7007

20

15

10

20

10

***** n—-r=-l-=§-lj—

1 2 3
(c) ARS5523

1 2 3
(g) SI470X

20

10

20

10

!

—&

h.“&h““—.*-ﬂ--ﬁﬁ.'—&—l’-ﬂ-—ﬂ-ﬂ—

1 2 3
(d) BTUSB
=n=x S X EE
l |
1 2 3
(h) USX2Y

30

Dynamic Checkpointing v. Single Snapshot:
Comparing @ and @

Throughput
(execs/s)

20

10

[0 Agamotto g Agamotto w/ root checkpoint only e unmodified Syzkaller]

20

10

0

a—n—x—x—x—r—x-& -+ N N N X— XX —K —X

0

Fuzzing time

(Hours)

(e) PN533

1 2 3

(b) MWIFIEX

(H) GO7007

20

15

10

i B o

(g) SI470X

20

10

(h) USX2Y

Dynamic Checkpointing v. No Snapshot:

Comparing @ and ©

[0 Agamotto a Agamotto w/ root checkpoint only e unmodified Syzkaller J

Throughput
(execs/s)

20 20 |- —

10 10

a—n—»—x—x—r—x-&-ﬁ-u—n—»—n—x—x—u—c—
0
0 1 2 3

Fuzzing time (b) MWIFIEX
(Hours)

(e) PN533

(H) GO7007

20

15

10

20

10

T ™S

(g) SI470X

20

10

20

10

!

—&

"—n“&h&\.—u*-«--..ﬁ.._r—r—u——u--—

1 2 3
(d) BTUSB
= X S X EE
l \
1 2 3

(h) USX2Y

32

|| rst |f]| mwiFiex ||| ARS523 {f| BTUSB |f]| PN533 |{]| GO7007 ||| S470x [{|] Usx2y

2
g
5
=2
)
=
a9
ik 8k 12k 16k 0 ik 8k 12k 16k 1 1
(a) Pages restored (b) Pages dirtied
>
Q
= o]
) =
=N o,
)

= ()

16 24 32 40 48 (MiB)

More evaluation results available in the paper.
(micro benchmarks, checkpoint statistics, etc.)

(a) Created checkpoints (b) Evicted checkpoints
Delta Restore - - - QEMU Snapshot Restore (Baseline)
USX2Y
________________________________ SI470X
100 GO7007
PN533
BTUSB
ARS5523
30 MWIFIEX
RSI
0 100 00 300 400 00
0
0 0.2 0.4 0.6 08 : 12 a0 (c) Branching factor 33

Conclusion and Future Work

* State-of-the-art fuzzing algorithms produce similar test cases in a
short timeframe, which is another dimension to accelerate fuzzing.

* Lightweight VM checkpointing with dynamic checkpoint
management policies can automatically accelerate kernel driver
fuzzing.

* Changes to the fuzzing algorithm can be explored, e.g., optimizing it
together with the checkpoint management policies.

Thank you!

Contact: Dokyung Song
*“ dokyungs@uci.edu

= https://www.ics.uci.edu/~dokyungs

Artifact: https://github.com/securesystemslab/agamotto

http://uci.edu
https://www.ics.uci.edu/~dokyungs
https://github.com/securesystemslab/agamotto

