
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Locally Differentially Private Analysis of
Graph Statistics

Jacob Imola, UC San Diego; Takao Murakami, AIST;
Kamalika Chaudhuri, UC San Diego

https://www.usenix.org/conference/usenixsecurity21/presentation/imola

Locally Differentially Private Analysis of Graph Statistics

Jacob Imola∗

UC San Diego
Takao Murakami∗

AIST
Kamalika Chaudhuri

UC San Diego

Abstract
Differentially private analysis of graphs is widely used for

releasing statistics from sensitive graphs while still preserv-
ing user privacy. Most existing algorithms however are in a
centralized privacy model, where a trusted data curator holds
the entire graph. As this model raises a number of privacy and
security issues – such as, the trustworthiness of the curator
and the possibility of data breaches, it is desirable to consider
algorithms in a more decentralized local model where no
server holds the entire graph.

In this work, we consider a local model, and present al-
gorithms for counting subgraphs – a fundamental task for
analyzing the connection patterns in a graph – with LDP
(Local Differential Privacy). For triangle counts, we present
algorithms that use one and two rounds of interaction, and
show that an additional round can significantly improve the
utility. For k-star counts, we present an algorithm that achieves
an order optimal estimation error in the non-interactive lo-
cal model. We provide new lower-bounds on the estimation
error for general graph statistics including triangle counts
and k-star counts. Finally, we perform extensive experiments
on two real datasets, and show that it is indeed possible to
accurately estimate subgraph counts in the local differential
privacy model.

1 Introduction

Analysis of network statistics is a useful tool for finding mean-
ingful patterns in graph data, such as social, e-mail, citation
and epidemiological networks. For example, the average de-
gree (i.e., number of edges connected to a node) in a social
graph can reveal the average connectivity. Subgraph counts
(e.g., the number of triangles, stars, or cliques) can be used
to measure centrality properties such as the clustering coef-
ficient, which represents the probability that two friends of
an individual will also be friends of one another [41]. How-
ever, the vast majority of graph analytics is carried out on

∗The first and second authors made equal contributions.

sensitive data, which could be leaked through the results of
graph analysis. Thus, there is a need to develop solutions that
can analyze these graph properties while still preserving the
privacy of individuals in the network.

The standard way to analyze graphs with privacy is through
differentially private graph analysis [22, 23, 49]. Differential
privacy provides individual privacy against adversaries with
arbitrary background knowledge, and has currently emerged
as the gold standard for private analytics. However, a vast
majority of differentially private graph analysis algorithms
are in the centralized (or global) model [13, 15, 16, 27, 34, 36,
42,48,49,52,58,59], where a single trusted data curator holds
the entire graph and releases sanitized versions of the statistics.
By assuming a trusted party that can access the entire graph, it
is possible to release accurate graph statistics (e.g., subgraph
counts [34, 36, 52], degree distribution [16, 27, 48], spectra
[59]) and synthetic graphs [15, 58].

In many applications however, a single trusted curator may
not be practicable due to security or logistical reasons. A
centralized data holder is amenable to security issues such
as data breaches and leaks – a growing threat in recent years
[39, 51]. Additionally, decentralized social networks [43, 50]
(e.g., Diaspora [5]) have no central server that contains an
entire social graph, and use instead many servers all over the
world, each containing the data of users who have chosen
to register there. Finally, a centralized solution is also not
applicable to fully decentralized applications, where the server
does not automatically hold information connecting users. An
example of this is a mobile application that asks each user how
many of her friends she has seen today, and sends noisy counts
to a central server. In this application, the server does not hold
any individual edge, but can still aggregate the responses to
determine the average mobility in an area.

The standard privacy solution that does not assume a trusted
third party is LDP (Local Differential Privacy) [20, 35]. This
is a special case of DP (Differential Privacy) in the local
model, where each user obfuscates her personal data by herself
and sends the obfuscated data to a (possibly malicious) data
collector. Since the data collector does not hold the original

USENIX Association 30th USENIX Security Symposium 983

��
�������	

��
��

���
��

����	 ���	 ����

�

�

�

��

�� ��

�� ��

��

������� � ��, �	

Figure 1: Example of subgraph counts.

personal data, it does not suffer from data leakage issues.
Therefore, LDP has recently attracted attention from both
academia [8,10,11,24,32,33,40,45,57,62] as well as industry
[17, 55, 56]. However, the use of LDP has mostly been in the
context of tabular data where each row corresponds to an
individual, and little attention has been paid to LDP for more
complex data such as graphs (see Section 2 for details).

In this paper, we consider LDP for graph data, and pro-
vide algorithms and theoretical performance guarantees for
calculating graph statistics in this model. In particular, we
focus on counting triangles and k-stars – the most basic and
useful subgraphs. A triangle is a set of three nodes with three
edges (we exclude automorphisms; i.e., #closed triplets = 3×
#triangles). A k-star consists of a central node connected to
k other nodes. Figure 1 shows an example of triangles and
k-stars. Counting them is a fundamental task of analyzing
the connection patterns in a graph, as the clustering coeffi-
cient can be calculated from triangle and 2-star counts as:
3×#triangles

#2-stars (in Figure 1, 3×5
20 = 0.75).

When we look to protect privacy of relationship informa-
tion modeled by edges in a graph, we need to pay attention to
the fact that some relationship information could be leaked
from subgraph counts. For example, suppose that user (node)
v2 in Figure 1 knows all edges connected to v2 and all edges
between v3, . . . ,v7 as background knowledge, and that v2
wants to know who are friends with v1. Then “#2-stars =
20” reveals the fact that v1 has three friends, and “#triangles
= 5” reveals the fact that the three friends of v1 are v3, v4, and
v6. Moreover, a central server that holds all friendship infor-
mation (i.e., all edges) may face data breaches, as explained
above. Therefore, a private algorithm for counting subgraphs
in the local model is highly beneficial to individual privacy.

The main challenge in counting subgraphs in the local
model is that existing techniques and their analysis do not
directly apply. The existing work on LDP for tabular data as-
sumes that each person’s data is independently and identically
drawn from an underlying distribution. In graphs, this is no
longer the case; e.g., each triangle is not independent, because
multiple triangles can involve the same edge; each k-star
is not independent for the same reason. Moreover, complex
inter-dependencies involving multiple people are possible in
graphs. For example, each user cannot count triangles involv-
ing herself, because she cannot see edges between other users;
e.g., user v1 cannot see an edge between v3 and v4 in Figure 1.

We show that although these complex dependency among
users introduces challenges, it also presents opportunities.

Specifically, this kind of interdependency also implies that
extra interaction between users and a data collector may be
helpful depending on the prior responses. In this work, we
investigate this issue and provide algorithms for accurately
calculating subgraph counts under LDP.

Our contributions. In this paper, we provide algorithms and
corresponding performance guarantees for counting triangles
and k-stars in graphs under edge Local Differential Privacy.
Specifically, our contributions are as follows:

• For triangles, we present two algorithms. The first is
based on Warner’s RR (Randomized Response) [60]
and empirical estimation [32, 40, 57]. We then present
a more sophisticated algorithm that uses an additional
round of interaction between users and data collector.
We provide upper-bounds on the estimation error for
each algorithm, and show that the latter can significantly
reduce the estimation error.

• For k-stars, we present a simple algorithm using the
Laplacian mechanism. We analyze the upper-bound on
the estimation error for this algorithm, and show that it is
order optimal in terms of the number of users among all
LDP mechanisms that do not use additional interaction.

• We provide lower-bounds on the estimation error for gen-
eral graph functions including triangle counts and k-star
counts in the local model. These are stronger than known
upper bounds in the centralized model, and illustrate the
limitations of the local model over the central.

• Finally, we evaluate our algorithms on two real datasets,
and show that it is indeed possible to accurately estimate
subgraph counts in the local model. In particular, we
show that the interactive algorithm for triangle counts
and the Laplacian algorithm for the k-stars provide small
estimation errors when the number of users is large.

We implemented our algorithms with C/C++, and published
them as open-source software [1].

2 Related Work

Graph DP. DP on graphs has been widely studied, with most
prior work being in the centralized model [13, 15, 16, 27, 34,
36,42,48,49,52,58,59]. In this model, a number of algorithms
have been proposed for releasing subgraph counts [34,36,52],
degree distributions [16,27,48], eigenvalues and eigenvectors
[59], and synthetic graphs [15, 58].

There has also been a handful of work on graph algorithms
in the local DP model [46, 53, 63–65]. For example, Qin et
al. [46] propose an algorithm for generating synthetic graphs.
Zhang et al. [65] propose an algorithm for software usage
analysis under LDP, where a node represents a software com-
ponent (e.g., function in a code) and an edge represents a

984 30th USENIX Security Symposium USENIX Association

control-flow between components. Neither of these works
focus on subgraph counts.

Sun et al. [53] propose an algorithm for counting sub-
graphs in the local model under the assumption that each user
allows her friends to see all her connections. However, this
assumption does not hold in many practical scenarios; e.g.,
a Facebook user can change her setting so that friends can-
not see her connections. Therefore, we assume that each user
knows only her friends rather than all of her friends’ friends.
The algorithms in [53] cannot be applied to this setting.

Ye et al. [63] propose a one-round algorithm for estimating
graph metrics including the clustering coefficient. Here they
apply Warner’s RR (Randomized Response) to an adjacency
matrix. However, it introduces a very large bias for triangle
counts. In [64], they propose a method for reducing the bias in
the estimate of triangle counts. However, the method in [64]
introduces some approximation, and it is unclear whether their
estimate is unbiased. In this paper, we propose a one-round
algorithm for triangles that uses empirical estimation as a
post-processing step, and prove that our estimate is unbiased.
We also show in Appendix A that our one-round algorithm
significantly outperforms the one-round algorithm in [63].
Moreover, we show in Section 5 that our two-rounds algo-
rithm significantly outperforms our one-round algorithm.

Our work also differs from [53, 63, 64] in that we provide
lower-bounds on the estimation error.

LDP. Apart from graphs, a number of works have looked
at analyzing statistics (e.g., discrete distribution estimation
[8,24,32,33,40,57,62], heavy hitters [10,11,45]) under LDP.

However, they use LDP in the context of tabular data, and
do not consider the kind of complex interdependency in graph
data (as described in Section 1). For example, the RR with
empirical estimation is optimal in the low privacy regimes for
estimating a distribution for tabular data [32, 33]. We apply
the RR and empirical estimation to counting triangles, and
show that it is suboptimal and significantly outperformed by
a more sophisticated two-rounds algorithm.

Upper/lower-bounds. Finally, we note that existing work
on upper-bounds and lower-bounds cannot be directly ap-
plied to our setting. For example, there are upper-bounds
[8, 29, 30, 32, 33, 62] and lower-bounds [7, 18, 19, 21, 29–31]
on the estimation error (or sample complexity) in distribu-
tion estimation of tabular data. However, they assume that
each original data value is independently sampled from an
underlying distribution. They cannot be directly applied to
our graph setting, because each triangle and each k-star in-
volve multiple edges and are not independent (as described
in Section 1). Rashtchian et al. [47] provide lower-bounds
on communication complexity (i.e., number of queries) of
vector-matrix-vector queries for estimating subgraph counts.
However, their lower-bounds are not on the estimation error,
and cannot be applied to our problem.

3 Preliminaries

3.1 Graphs and Differential Privacy
Graphs. Let N, Z≥0, R, and R≥0 be the sets of natural num-
bers, non-negative integers, real numbers, and non-negative
real numbers, respectively. For a ∈ N, let [a] = {1,2, . . . ,a}.

We consider an undirected graph G = (V,E), where V is
a set of nodes (i.e., users) and E is a set of edges. Let n ∈ N
be the number of users in V , and let vi ∈ V the i-th user;
i.e., V = {v1, . . . ,vn}. An edge (vi,v j) ∈ E represents a re-
lationship between users vi ∈ V and v j ∈ V . The number
of edges connected to a single node is called the degree of
the node. Let dmax ∈ N be the maximum degree (i.e., max-
imum number of edges connected to a node) in graph G.
Let G be the set of possible graphs G on n users. A graph
G ∈ G can be represented as a symmetric adjacency ma-
trix A = (ai, j) ∈ {0,1}n×n, where ai, j = 1 if (vi,v j) ∈ E and
ai, j = 0 otherwise.

Types of DP. DP (Differential Privacy) [22, 23] is known as
a gold standard for data privacy. According to the underlying
architecture, DP can be divided into two types: centralized DP
and LDP (Local DP). Centralized DP assumes the centralized
model, where a “trusted” data collector collects the original
personal data from all users and obfuscates a query (e.g.,
counting query, histogram query) on the set of personal data.
LDP assumes the local model, where each user does not trust
even the data collector. In this model, each user obfuscates a
query on her personal data by herself and sends the obfuscated
data to the data collector.

If the data are represented as a graph, we can consider
two types of DP: edge DP and node DP [27, 49]. Edge DP
considers two neighboring graphs G,G′ ∈ G that differ in
one edge. In contrast, node DP considers two neighboring
graphs G,G′ ∈ G in which G′ is obtained from G by adding
or removing one node along with its adjacent edges.

Although Zhang et al. [65] consider node DP in the local
model where each node represents a software component, we
consider a totally different problem where each node repre-
sents a user. In the latter case, node DP requires us to hide
the existence of each user along with her all edges. However,
many applications in the local model send the identity of
each user to a server. For example, we can consider a mobile
application that sends to a server how many friends a user
met today along with her user ID. In this case, the user may
not mind sending her user ID, but may want to hide her edge
information (i.e., who she met today). Although we cannot
use node DP in such applications, we can use edge DP to deny
the presence/absence of each edge (friend). Thus we focus on
edge DP in the same way as [46, 53, 63, 64].

Below we explain edge DP in the centralized model.

Centralized DP. We call edge DP in the centralized model
edge centralized DP. Formally, it is defined as follows:

USENIX Association 30th USENIX Security Symposium 985

Definition 1 (ε-edge centralized DP). Let ε∈R≥0. A random-
ized algorithm M with domain G provides ε-edge centralized
DP if for any two neighboring graphs G,G′ ∈ G that differ in
one edge and any S⊆ Range(M),

Pr[M (G) ∈ S]≤ eε Pr[M (G′) ∈ S]. (1)

Edge centralized DP guarantees that an adversary who has
observed the output of M cannot determine whether it is
come from G or G′ with a certain degree of confidence. The
parameter ε is called the privacy budget. If ε is close to zero,
then G and G′ are almost equally likely, which means that an
edge in G is strongly protected.

We also note that edge DP can be used to protect k ∈ N
edges by using the notion of group privacy [23]. Specifically,
if M provides ε-edge centralized DP, then for any two graphs
G,G′ ∈ G that differ in k edges and any S⊆ Range(M), we
obtain: Pr[M (G) ∈ S]≤ ekε Pr[M (G′) ∈ S]; i.e., k edges are
protected with privacy budget kε.

3.2 Local Differential Privacy
LDP (Local Differential Privacy) [20, 35] is a privacy met-
ric to protect personal data of each user in the local model.
LDP has been originally introduced to protect each user’s data
record that is independent from the other records. However, in
a graph, each edge is connected to two users. Thus, when we
define edge DP in the local model, we should consider what
we want to protect. In this paper, we consider two definitions
of edge DP in the local model: edge LDP in [46] and rela-
tionship DP introduced in this paper. Below, we will explain
these two definitions in detail.
Edge LDP. Qin et al. [46] defined edge LDP based on a user’s
neighbor list. Specifically, let ai = (ai,1, . . . ,ai,n) ∈ {0,1}n be
a neighbor list of user vi. Note that ai is the i-th row of the
adjacency matrix A of graph G. In other words, graph G can
be represented as neighbor lists a1, . . . ,an.

Then edge LDP is defined as follows:

Definition 2 (ε-edge LDP [46]). Let ε ∈R≥0. For any i ∈ [n],
let Ri with domain {0,1}n be a randomized algorithm of
user vi. Ri provides ε-edge LDP if for any two neighbor lists
ai,a′i ∈ {0,1}n that differ in one bit and any S⊆ Range(Ri),

Pr[Ri(ai) ∈ S]≤ eε Pr[Ri(a′i) ∈ S]. (2)

Edge LDP in Definition 2 protects a single bit in a neighbor
list with privacy budget ε. As with edge centralized DP, edge
LDP can also be used to protect k ∈ N bits in a neighbor
list by using group privacy; i.e., k bits in a neighbor list are
protected with privacy budget kε.
RR (Randomized Response). As a simple example of a
randomized algorithm Ri providing ε-edge LDP, we explain
Warner’s RR (Randomized Response) [60] applied to a neigh-
bor list, which is called the randomized neighbor list in [46].

Given a neighbor list ai ∈ {0,1}n, this algorithm outputs
a noisy neighbor lists b = (b1, . . . ,bn) ∈ {0,1}n by flipping
each bit in ai with probability p = 1

eε+1 ; i.e., for each j ∈ [n],
b j 6= ai, j with probability p and b j = ai, j with probability
1− p. Since Pr[R (ai) ∈ S] and Pr[R (a′i) ∈ S] in (2) differ by
eε for ai and a′i that differ in one bit, this algorithm provides
ε-edge LDP.
Relationship DP. In graphs such as social networks, it is usu-
ally the case that two users share knowledge of the presence
of an edge between them. To hide their mutual edge, we must
consider that both user’s outputs can leak information. We
introduce a DP definition called relationship DP that hides
one entire edge in graph G during the whole process:

Definition 3 (ε-relationship DP). Let ε ∈ R≥0. A tuple of
randomized algorithms (R1, . . . ,Rn), each of which is with
domain {0,1}n, provides ε-relationship DP if for any two
neighboring graphs G,G′ ∈G that differ in one edge and any
S⊆ Range(R1)× . . .×Range(Rn),

Pr[(R1(a1), . . . ,Rn(an)) ∈ S]

≤ eε Pr[(R1(a′1), . . . ,Rn(a′n)) ∈ S], (3)

where ai (resp. a′i) ∈ {0,1}n is the i-th row of the adjacency
matrix of graph G (resp. G′).

Relationship DP is the same as decentralized DP in [53]
except that the former (resp. latter) assumes that each user
knows only her friends (resp. all of her friends’ friends).

Edge LDP assumes that user vi’s edge connected to user v j
and user v j’s edge connected to user vi are different secrets,
with user vi knowing the former and user v j knowing the latter.
Relationship DP assumes that the two secrets are the same.

Note that the threat model of relationship DP is different
from that of LDP – some amount of trust must be given to
the other users in relationship DP. Specifically, user vi must
trust user v j to not leak information about their shared edge.
If k ∈ N users decide not to follow their protocols, then up to
k edges incident to user vi may be compromised. This trust
model is stronger than LDP, which assumes nothing about
what other users do, but is much weaker than centralized DP
in which all edges are in the hands of the central party.

Other than the differing threat models, relationship DP and
edge LDP are quite closely related:

Proposition 1. If randomized algorithms R1, . . . ,Rn provide
ε-edge LDP, then (R1, . . . ,Rn) provides 2ε-relationship DP.

Proof. The existence of edge (vi,v j)∈E affects two elements
ai, j,a j,i ∈ {0,1} in the adjacency matrix A. Then by group
privacy [23], Proposition 1 holds.

Proposition 1 states that when we want to protect one edge
as a whole, the privacy budget is at most doubled. Note, how-
ever, that some randomized algorithms do not have this dou-
bling issue. For example, we can apply the RR to the i-th

986 30th USENIX Security Symposium USENIX Association

neighbor list ai so that Ri outputs noisy bits (b1, . . . ,bi−1) ∈
{0,1}i−1 for only users v1, . . . ,vi−1 with smaller user IDs; i.e.,
for each j ∈ {1, . . . , i−1}, b j 6= ai, j with probability p = 1

eε+1
and b j = ai, j with probability 1− p. In other words, we can
extend the RR for a neighbor list so that (R1, . . . ,Rn) outputs
only the lower triangular part of the noisy adjacency matrix.
Then all of R1, . . . ,Rn provide ε-edge LDP. In addition, the
existence of edge (vi,v j) ∈ E (i > j) affects only one ele-
ment ai, j in the lower triangular part of A. Thus, (R1, . . . ,Rn)
provides ε-relationship DP (not 2ε).

Our proposed algorithm in Section 4.3 also has this prop-
erty; i.e., it provides both ε-edge LDP and ε-relationship DP.

3.3 Global Sensitivity

In this paper, we use the notion of global sensitivity [23] to
provide edge centralized DP or edge LDP.

Let D be the set of possible input data of a randomized
algorithm. In edge centralized DP, D = G . In edge LDP,
D = {0,1}n. Let f : D → R be a function that takes data
D ∈D as input and outputs some statistics f (D) ∈ R about
the data. The most basic method for providing DP is to add
the Laplacian noise proportional to the global sensitivity [23].

Definition 4 (Global sensitivity). The global sensitivity of a
function f : D→ R is given by:

GS f = max
D,D′∈D:D∼D′

| f (D)− f (D′)|,

where D ∼ D′ represents that D and D′ are neighbors; i.e.,
they differ in one edge in edge centralized DP, and differ in
one bit in edge LDP.

In graphs, the global sensitivity GS f can be very large.
For example, adding one edge may result in the increase of
triangle (resp. k-star) counts by n−2 (resp.

(n
k−1

)
).

One way to significantly reduce the global sensitivity is
to use graph projection [16, 36, 48], which removes some
neighbors from a neighbor list so that the maximum degree
dmax is upper-bounded by a predetermined value d̃max ∈ Z≥0.
By using the graph projection with d̃max� n, we can enforce
small global sensitivity; e.g., the global sensitivity of triangle
(resp. k-star) counts is at most d̃max (resp.

(d̃max
k−1

)
) after the

projection.
Ideally, we would like to set d̃max = dmax to avoid removing

neighbors from a neighbor list (i.e., to avoid the loss of utility).
However, the maximum degree dmax can leak some informa-
tion about the original graph G. In this paper, we address this
issue by privately estimating dmax with edge LDP and then
using the private estimate of dmax as d̃max. This technique
is also known as adaptive clipping in differentially private
stochastic gradient descent (SGD) [44, 54].

Table 1: Basic notations in this paper.
Symbol Description
n Number of users.
G = (V,E) Graph with n nodes (users) V and edges E.
vi i-th user in V .
dmax Maximum degree of G.
d̃max Upper-bound on dmax (used for projection).
G Set of possible graphs on n users.
A = (ai, j) Adjacency matrix.
ai i-th row of A (i.e., neighbor list of vi).
Ri Randomized algorithm on ai.
f4(G) Number of triangles in G.
fk?(G) Number of k-stars in G.

3.4 Graph Statistics and Utility Metrics

Graph statistics. We consider a graph function that takes
a graph G ∈ G as input and outputs some graph statistics.
Specifically, let f4 : G→Z≥0 be a graph function that outputs
the number of triangles in G. For k ∈N, let fk? : G → Z≥0 be
a graph function that outputs the number of k-stars in G. For
example, if a graph G is as shown in Figure 1, then f4(G) = 5,
f2?(G) = 20, and f3?(G) = 8. The clustering coefficient can
also be calculated from f4(G) and f2?(G) as: 3 f4(G)

f2?(G) = 0.75.
Table 1 shows the basic notations used in this paper.

Utility metrics. We use the l2 loss (i.e., squared error) [32,
40, 57] and the relative error [12, 14, 61] as utility metrics.

Specifically, let f̂ (G) ∈ R be an estimate of graph statis-
tics f (G) ∈ R. Here f can be instantiated by f4 or fk?; i.e.,
f̂4(G) and f̂k?(G) are the estimates of f4(G) and fk?(G),
respectively. Let l2

2 be the l2 loss function, which maps the
estimate f̂ (G) and the true value f (G) to the l2 loss; i.e.,
l2
2(f̂ (G), f (G)) = (f̂ (G)− f (G))2. Note that when we use a

randomized algorithm providing edge LDP (or edge central-
ized DP), f̂ (G) depends on the randomness in the algorithm.
In our theoretical analysis, we analyze the expectation of the
l2 loss over the randomness, as with [32, 40, 57].

When f (G) is large, the l2 loss can also be large. Thus in
our experiments, we also evaluate the relative error, along
with the l2 loss. The relative error is defined as: | f̂ (G)− f (G)|

max{ f (G),η} ,
where η ∈ R≥0 is a very small positive value. Following the
convention [12, 14, 61], we set η = 0.001n for f4 and fk?.

4 Algorithms

In the local model, there are several ways to model how the
data collector interacts with the users [20,31,46]. The simplest
model would be to assume that the data collector sends a query
Ri to each user vi once, and then each user vi independently
sends an answer Ri(ai) to the data collector. In this model,
there is one-round interaction between each user and the data

USENIX Association 30th USENIX Security Symposium 987

collector. We call this the one-round LDP model. For example,
the RR for a neighbor list in Section 3.2 assumes this model.

However, in certain cases it may be possible for the data
collector to send a query to each user multiple times. This
could allow for more powerful queries that result in more
accurate subgraph counts [53] or more accurate synthetic
graphs [46]. We call this the multiple-rounds LDP model.

In Sections 4.1 and 4.2, we consider the problems of com-
puting fk?(G) and f4(G) for a graph G ∈ G in the one-round
LDP model. Our algorithms and bounds highlight limitations
of the one-round LDP model. Compared to the centralized
graph DP model, the one-round LDP model cannot compute
fk?(G) as accurately. Furthermore, the algorithm for f4(G)
does not perform well. In Section 4.3, we propose a more so-
phisticated algorithm for computing f4(G) in the two-rounds
LDP model, and show that it provides much smaller expected
l2 loss than the algorithm in the one-round LDP model. In
Section 4.4, we show a general result about lower bounds on
the expected l2 loss of graph statistics in LDP. The proofs of
all statements in Section 4 are given in the full version [28].

4.1 One-Round Algorithms for k-Stars
Algorithm. We begin with the problem of computing fk?(G)
in the one-round LDP model. For this model, we introduce a
simple algorithm using the Laplacian mechanism, and prove
that this algorithm can achieve order optimal expected l2 loss
among all one-round LDP algorithms.

Data: Graph G represented as neighbor lists a1, . . . ,an
∈ {0,1}n, privacy budget ε ∈ R≥0, d̃max ∈ Z≥0.

Result: Private estimate of fk?(G).
1 ∆←

(d̃max
k−1

)
;

2 for i = 1 to n do
3 ai← GraphProjection(ai, d̃max);

/* di is a degree of user vi. */
4 di← ∑

n
j=1 ai, j;

5 ri←
(di

k

)
;

6 r̂i← ri +Lap
(

∆

ε

)
;

7 release(r̂i);
8 end
9 return ∑

n
i=1 r̂i

Algorithm 1: LocalLapk?

Algorithm 1 shows the one-round algorithm for k-stars.
It takes as input a graph G (represented as neighbor lists
a1, . . . ,an ∈ {0,1}n), the privacy budget ε, and a non-negative
integer d̃max ∈ Z≥0.

The parameter d̃max plays a role as an upper-bound on
the maximum degree dmax of G. Specifically, let di ∈ Z≥0
be the degree of user vi; i.e., the number of “1”s in her
neighbor list ai. In line 3, user vi uses a function (de-
noted by GraphProjection) that performs graph projec-

tion [16, 36, 48] for ai as follows. If di exceeds d̃max, it ran-
domly selects d̃max neighbors out of di neighbors; otherwise,
it uses ai as it is. This guarantees that each user’s degree never
exceeds d̃max; i.e., di ≤ d̃max after line 4.

After the graph projection, user vi counts the number of
k-stars ri ∈ Z≥0 of which she is a center (line 5), and adds the
Laplacian noise to ri (line 6). Here, since adding one edge
results in the increase of at most

(d̃max
k−1

)
k-stars, the sensitivity

of k-star counts for user vi is at most
(d̃max

k−1

)
(after graph pro-

jection). Therefore, we add Lap(∆

ε
) to ri, where ∆ =

(d̃max
k−1

)
and for b ∈ R≥0 Lap(b) is a random variable that represents
the Laplacian noise with mean 0 and scale b. The final answer
of Algorithm 1 is simply the sum of all the noisy k-star counts.
We denote this algorithm by LocalLapk?.

The value of d̃max greatly affects the utility. If d̃max is too
large, a large amount of the Laplacian noise would be added.
If d̃max is too small, a great number of neighbors would be
reduced by graph projection. When we have some prior knowl-
edge about the maximum degree dmax, we can set d̃max to an
appropriate value. For example, the maximum number of con-
nections allowed on Facebook is 5000 [3]. In this case, we
can set d̃max = 5000, and then graph projection does nothing.
Given that the number of Facebook monthly active users is
over 2.7 billion [6], d̃max = 5000 is much smaller than n. For
another example, if we know that the degree is smaller than
1000 for most users, then we can set d̃max = 1000 and perform
graph projection for users whose degrees exceed d̃max.

In some applications, the data collector may not have such
prior knowledge about d̃max. In this case, we can privately
estimate dmax by allowing an additional round between each
user and the data collector, and use the private estimate of
dmax as d̃max. We describe how to privately estimate dmax with
edge LDP at the end of Section 4.1.

Theoretical properties. LocalLapk? has the following guar-
antees:

Theorem 1. LocalLapk? provides ε-edge LDP.

Theorem 2. Let f̂k?(G,ε, d̃max) be the output of LocalLapk?.
Then, for all k ∈ N,ε ∈ R≥0, d̃max ∈ Z≥0, and G ∈ G such
that the maximum degree dmax of G is at most d̃max,
E[l2

2(f̂k?(G,ε, d̃max), fk?(G))] = O
(

nd̃2k−2
max
ε2

)
.

The factor of n in the expected l2 loss of LocalLapk?
comes from the fact that we are adding the Laplacian noise
n times. In the centralized model, this factor of n is not
there, because the central data collector sees all k-stars; i.e.,
the data collector knows fk?(G). The sensitivity of fk? is
at most 2

(d̃max
k−1

)
(after graph projection) under edge central-

ized DP. Therefore, we can consider an algorithm that sim-
ply adds the Laplacian noise Lap(2

(d̃max
k−1

)
/ε) to fk?(G), and

outputs fk?(G)+Lap(2
(d̃max

k−1

)
/ε). We denote this algorithm

by CentralLapk?. Since the bias of the Laplacian noise is

988 30th USENIX Security Symposium USENIX Association

0, CentralLapk? attains the expected l2 loss (= variance) of
O
(

d̃2k−2
max
ε2

)
.

It seems impossible to avoid this factor of n in the one-
round LDP model, as the data collector will be dealing with n
independent answers to queries. Indeed, this is the case—we
prove that the expected l2 error of LocalLapk? is order optimal
among all one-round LDP algorithms, and the one-round LDP
model cannot improve the factor of n.

Corollary 1. Let f̂k?(G, d̃max,ε) be any one-round LDP
algorithm that computes fk?(G) satisfying ε-edge LDP.
Then, for all k,n, d̃max ∈ N and ε ∈ R≥0 such that n
is even, there exists a set of graphs A ⊆ G on n
nodes such that the maximum degree of each G ∈ A is
at most d̃max, and 1

|A | ∑G∈A E[l2
2(f̂k?(G, d̃max,ε), fk?(G))] ≥

Ω

(
e2ε

(e2ε+1)2 d̃2k−2
max n

)
.

This is a corollary of a more general result of Section 4.4.
Thus, any algorithm computing k-stars cannot avoid the fac-
tor of n in its l2

2 loss. k-stars is an example where the non-
interactive graph LDP model is strictly weaker than the cen-
tralized DP model.

Nevertheless, we note that LocalLapk? can accurately cal-
culate fk?(G) for a large number of users n. Specifically, the
relative error decreases with increase in n because LocalLapk?
has a factor of n (not n2) in the expected l2 error, i.e.,
E[(f̂k?(G,ε, d̃max)− fk?(G))2] = O(n) and fk?(G)2 ≥ Ω(n2)
(when we ignore d̃max and ε). In our experiments, we show
that the relative error of LocalLapk? is small when n is large.

Private calculation of dmax. By allowing an additional round
between each user and the data collector, we can privately
estimate dmax and use the private estimate of dmax as d̃max.
Specifically, we divide the privacy budget ε into ε0 ∈ R≥0
and ε1 ∈R≥0; i.e., ε = ε0 +ε1. We first estimate dmax with ε0-
edge LDP and then run LocalLapk? with the remaining privacy
budget ε1. Note that LocalLapk? with the private calculation
of dmax results in a two-rounds LDP algorithm.

We consider the following simple algorithm. At the first
round, each user vi adds the Laplacian noise Lap(1

ε0
) to her

degree di. Let d̂i ∈ R be the noisy degree of vi; i.e., d̂i =
di +Lap(1

ε0
). Then user vi sends d̂i to the data collector. Let

d̂max ∈ R be the maximum value of the noisy degree; i.e.,
d̂max = max{d̂1, . . . , d̂n}. We call d̂max the noisy max degree.
The data collector calculates the noisy max degree d̂max as
an estimate of dmax, and sends d̂max back to all users. At the
second round, we run LocalLapk? with input G, ε, and bd̂maxc.

At the first round, the calculation of d̂max provides ε0-edge
LDP because each user’s degree has the sensitivity 1 under
edge LDP. At the second round, Theorem 1 guarantees that
LocalLapk? provides ε1-edge LDP. Then by the composition
theorem [23], this two-rounds algorithm provides ε-edge LDP
in total (ε = ε0 + ε1).

�������	
�	��	
 ��	��	 ���	��	

����	

�� �� �� ��

������������
��

�������′

Figure 2: Four types of subgraphs with three nodes.

In our experiments, we show that this algorithm provides
the utility close to LocalLapk? with the true max degree dmax.

4.2 One-Round Algorithms for Triangles.
Algorithm. Now, we focus our attention on the more chal-
lenging f4 query. This query is more challenging in the graph
LDP model because no user is aware of any triangle; i.e., user
vi is not aware of any triangle formed by (vi,v j,vk), because
vi cannot see any edge (v j,vk) ∈ E in graph G.

One way to count f4(G) with edge LDP is to apply the
RR (Randomized Response) to a neighbor list. For example,
user vi applies the RR to ai,1, . . . ,ai,i−1 (which corresponds
to users v1, . . . ,vi−1 with smaller user IDs) in her neighbor
list ai; i.e., we apply the RR to the lower triangular part of
adjacency matrix A, as described in Section 3.2. Then the
data collector constructs a noisy graph G′ = (V,E ′) ∈ G from
the lower triangular part of the noisy adjacency matrix, and
estimates the number of triangles from G′. However, simply
counting the triangles in G′ can introduce a significant bias
because G′ is denser than G especially when ε is small.

Through clever post-processing known as empirical estima-
tion [32, 40, 57], we are able to obtain an unbiased estimate
of f4(G) from G′. Specifically, a subgraph with three nodes
can be divided into four types depending on the number of
edges. Three nodes with three edges form a triangle. We refer
to three nodes with two edges, one edge, and no edges as
2-edges, 1-edge, and no-edges, respectively. Figure 2 shows
their shapes. f4(G) can be expressed using m3, m2, m1, and
m0 as follows:

Proposition 2. Let G′ = (V,E ′) be a noisy graph generated
by applying the RR to the lower triangular part of A. Let
m3,m2,m1,m0 ∈ Z≥0 be respectively the number of triangles,
2-edges, 1-edge, and no-edges in G′. Then

E
[

e3ε

(eε−1)3 m3− e2ε

(eε−1)3 m2+
eε

(eε−1)3 m1− 1
(eε−1)3 m0

]
= f4(G).

(4)

Therefore, the data collector can count m3, m2, m1, and
m0 from G′, and calculate an unbiased estimate of f4(G) by
(4). In Appendix A, we show that the l2 loss is significantly
reduced by this empirical estimation.

Algorithm 2 shows this algorithm. In line 2, user vi
applies the RR with privacy budget ε (denoted by RRε)
to ai,1, . . . ,ai,i−1 in her neighbor list ai, and outputs Ri =

USENIX Association 30th USENIX Security Symposium 989

Data: Graph G represented as neighbor lists
a1, . . . ,an ∈ {0,1}n, privacy budget ε ∈ R≥0.

Result: Private estimate of f4(G).
1 for i = 1 to n do
2 Ri← (RRε(ai,1), . . . ,RRε(ai,i−1));
3 release(Ri);
4 end
5 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Rn);
/* Counts m3,m2,m1,m0 in G′. */

6 (m3,m2,m1,m0)← Count(G′);
7 return 1

(eε−1)3 (e3εm3− e2εm2 + eεm1−m0)

Algorithm 2: LocalRR4

(RRε(ai,1), . . . ,RRε(ai,i−1)). In other words, we apply the RR
to the lower triangular part of A and there is no overlap be-
tween edges sent by users. In line 5, the data collector uses
a function (denoted by UndirectedGraph) that converts the
bits of (R1, . . . ,Rn) into an undirected graph G′ = (V,E ′) by
adding edge (vi,v j) with i > j to E ′ if and only if the j-th
bit of Ri is 1. Note that G′ is biased, as explained above. In
line 6, the data collector uses a function (denoted by Count)
that calculates m3, m2, m1, and m0 from G′. Finally, the data
collector outputs the expression inside the expectation on the
left-hand side of (4), which is an unbiased estimator for f4(G)
by Proposition 2. We denote this algorithm by LocalRR4.
Theoretical properties. LocalRR4 provides the following
guarantee.

Theorem 3. LocalRR4 provides ε-edge LDP and ε-
relationship DP.

LocalRR4 does not have the doubling issue (i.e., it provides
not 2ε but ε-relationship DP), because we apply the RR to the
lower triangular part of A, as explained in Section 3.2.

Unlike the RR and empirical estimation for tabular data
[32], the expected l2 loss of LocalRR4 is complicated. To
simplify the utility analysis, we assume that G is generated
from the Erdös-Rényi graph distribution G(n,α) with edge
existence probability α; i.e., each edge in G with n nodes is
independently generated with probability α ∈ [0,1].

Theorem 4. Let G(n,α) be the Erdös-Rényi graph distri-
bution with edge existence probability α ∈ [0,1]. Let p =

1
eε+1 and β = α(1− p) + (1− α)p. Let f̂4(G,ε) be the
output of LocalRR4. If G ∼ G(n,α), then for all ε ∈ R≥0,

E[l2
2(f̂4(G,ε), f4(G))] = O

(
e6ε

(eε−1)6 βn4
)

.

Note that we assume the Erdös-Rényi model only for the
utility analysis of LocalRR4, and do not assume this model
for the other algorithms. The upper-bound of LocalRR4 in
Theorem 4 is less ideal than the upper-bounds of the other
algorithms in that it does not consider all possible graphs G ∈
G . Nevertheless, we also show that the l2 loss of LocalRR4 is

roughly consistent with Theorem 4 in our experiments using
two real datasets (Section 5) and the Barabási-Albert graphs
[9], which have power-law degree distribution (Appendix B).

The parameters α and β are edge existence probabilities
in the original graph G and noisy graph G′, respectively. Al-
though α is very small in a sparse graph, β can be large for
small ε. For example, if α≈ 0 and ε = 1, then β≈ 1

e+1 = 0.27.
Theorem 4 states that for large n, the l2 loss of LocalRR4

(= O(n4)) is much larger than the l2 loss of LocalRRk? (=
O(n)). This follows from the fact that user vi is not aware of
any triangle formed by (vi,v j,vk), as explained above.

In contrast, counting f4(G) in the centralized model is
much easier because the data collector sees all triangles in G;
i.e., the data collector knows f4(G). The sensitivity of f4 is
at most d̃max (after graph projection). Thus, we can consider
a simple algorithm that outputs f4(G)+Lap(d̃max/ε). We
denote this algorithm by CentralLap4. CentralLap4 attains

the expected l2 loss (= variance) of O
(

d̃2
max
ε2

)
.

The large l2 loss of LocalRR4 is caused by the fact that
each edge is released independently with some probability
of being flipped. In other words, there are three independent
random variables that influence any triangle in G′. The next
algorithm, using interaction, reduces this influencing number
from three to one by using the fact that a user knows the
existence of two edges for any triangle that involves the user.

4.3 Two-Rounds Algorithms for Triangles
Algorithm. Allowing for two-rounds interaction, we are able
to compute f4 with a significantly improved l2 loss, albeit
with a higher per-user communication overhead. As described
in Section 4.2, it is impossible for user vi to see edge (v j,vk)∈
E in graph G = (V,E) at the first round. However, if the data
collector publishes a noisy graph G′ = (V,E ′) calculated by
LocalRR4 at the first round, then user vi can see a noisy edge
(v j,vk) ∈ E ′ in the noisy graph G′ at the second round. Then
user vi can count the number of noisy triangles formed by
(vi,v j,vk) such that (vi,v j) ∈ E, (vi,vk) ∈ E, and (v j,vk) ∈
E ′, and send the noisy triangle counts with the Laplacian
noise to the data collector in an analogous way to LocalLapk?.
Since user vi always knows that two edges (vi,v j) and (vi,vk)
exist in G, there is only one noisy edge in any noisy triangle
(whereas all edges are noisy in LocalRR4). This is an intuition
behind our proposed two-rounds algorithm.

As with the RR in Section 4.2, simply counting the noisy
triangles can introduce a bias. Therefore, we calculate an
empirical estimate of f4(G) from the noisy triangle counts.
Specifically, the following is the empirical estimate of f4(G):

Proposition 3. Let G′ = (V,E ′) be a noisy graph generated
by applying the RR with privacy budget ε1 ∈R≥0 to the lower
triangular part of A. Let p1 = 1

eε1+1 . Let ti ∈ Z≥0 be the
number of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E,
(vi,vk) ∈ E, and (v j,vk) ∈ E ′. Let si ∈ Z≥0 be the number

990 30th USENIX Security Symposium USENIX Association

of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E, and
(vi,vk) ∈ E. Let wi = ti− p1si. Then

E
[

1
1−2p1

∑
n
i=1 wi

]
= f4(G). (5)

Note that in Proposition 3, we count only triplets (vi,v j,vk)
with j < k < i to use only the lower triangular part of A. ti is
the number of noisy triangles user vi can see at the second
round. si is the number of 2-stars of which user vi is a center.
Since ti and si can reveal information about an edge in G, user
vi adds the Laplacian noise to wi (= ti− p1si) in (5), and sends
it to the data collector. Then the data collector calculates an
unbiased estimate of f4(G) by (5).

Data: Graph G represented as neighbor lists
a1, . . . ,an ∈ {0,1}n, two privacy budgets
ε1,ε2 > 0, d̃max ∈ Z≥0.

Result: Private estimate of f4(G).
1 p1← 1

eε1+1 ;
/* First round. */

2 for i = 1 to n do
3 Ri← (RRε1(ai,1), . . . ,RRε1(ai,i−1));
4 release(Ri);
5 end
6 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Ri−1);
/* Second round. */

7 for i = 1 to n do
8 ai← GraphProjection(ai, d̃max);
9 ti← |{(vi,v j,vk) : j < k < i,ai, j = ai,k =

1,(v j,vk) ∈ E ′}|;
10 si← |{(vi,v j,vk) : j < k < i,ai, j = ai,k = 1}|;
11 wi← ti− p1si;

12 ŵi← wi +Lap(d̃max
ε2

);
13 release(ŵi);
14 end
15 return 1

1−2p1
∑

n
i=1 ŵi

Algorithm 3: Local2Rounds4

Algorithm 3 contains the formal description of this process.
It takes as input a graph G, the privacy budgets ε1,ε2 ∈R≥0 at
the first and second rounds, respectively, and a non-negative
integer d̃max ∈ Z≥0. At the first round, we apply the RR to the
lower triangular part of A (i.e., there is no overlap between
edges sent by users) and use the UndirectedGraph function
to obtain a noisy graph G′ = (V,E ′) by the RR in the same
way as Algorithm 2. Note that G′ is biased. We calculate an
unbiased estimate of f4(G) from G′ at the second round.

At the second round, each user vi calculates ŵi = wi +

Lap(d̃max
ε2

) by adding the Laplacian noise to wi in Proposi-
tion 3 whose sensitivity is at most d̃max (as we will prove
in Theorem 5). Finally, we output 1

1−2p1
∑

n
i=1 ŵi, which is an

unbiased estimate of f4(G) by Proposition 3. We call this
algorithm Local2Rounds4.
Theoretical properties. Local2Rounds4 has the following
guarantee.

Theorem 5. Local2Rounds4 provides (ε1 + ε2)-edge LDP
and (ε1 + ε2)-relationship DP.

As with LocalRR4, Local2Rounds4 does not have the dou-
bling issue; i.e., it provides ε-relationship DP (not 2ε). This
follows from the fact that we use only the lower triangular
part of A; i.e., we assume j < k < i in counting ti and si.

Theorem 6. Let f̂4(G,ε1,ε2, d̃max) be the output of
Local2Rounds4. Then, for all ε1,ε2 ∈ R≥0, d̃max ∈ Z≥0,
and G ∈ G such that the maximum degree dmax of
G is at most d̃max, E[l2

2(f̂4(G,ε1,ε2, d̃max), f4(G))] ≤
O
(

eε1
(1−eε1)2

(
d̃3

maxn+ eε1

ε2
2

d̃2
maxn

))
.

Theorem 6 means that for triangles, the l2 loss is reduced
from O(n4) to O(d̃3

maxn) by introducing an additional round.
Private calculation of dmax. As with k-stars, we can privately
calculate dmax by using the method described in Section 4.1.
Furthermore, the private calculation of dmax does not increase
the number of rounds; i.e., we can run Local2Rounds4 with
the private calculation of dmax in two rounds.

Specifically, let ε0 ∈ R≥0 be the privacy budget for the
private calculation of dmax. At the first round, each user vi
adds Lap(1

ε0
) to her degree di, and sends the noisy degree d̂i

(= di +Lap(1
ε0
)) to the data collector, along with the outputs

Ri = (RRε(ai,1), . . . ,RRε(ai,i−1)) of the RR. The data collec-
tor calculates the noisy max degree d̂max (= max{d̂1, . . . , d̂n})
as an estimate of dmax, and sends it back to all users. At the
second round, we run Local2Rounds4 with input G (repre-
sented as a1, . . . ,an), ε1, ε2, and bd̂maxc.

At the first round, the calculation of d̂max provides ε0-edge
LDP. Note that it provides 2ε0-relationship DP (i.e., it has the
doubling issue) because one edge (vi,v j) ∈ E affects both of
the degrees di and d j by 1. At the second round, LocalLapk?
provides (ε1 + ε2)-edge LDP and (ε1 + ε2)-relationship DP
(Theorem 5). Then by the composition theorem [23], this
two-rounds algorithm provides (ε0 + ε1 + ε2)-edge LDP and
(2ε0 + ε1 + ε2)-relationship DP. Although the total privacy
budget is larger for relationship DP, the difference (= ε0) can
be very small. In fact, we set (ε0,ε1,ε2) = (0.1,0.45,0.45) or
(0.2,0.9,0.9) in our experiments (i.e., the difference is 0.1 or
0.2), and show that this algorithm provides almost the same
utility as Local2Rounds4 with the true max degree dmax.
Time complexity. We also note that Local2Rounds4 has an
advantage over LocalRR4 in terms of the time complexity.

Specifically, LocalRR4 is inefficient because the data col-
lector has to count the number of triangles m3 in the noisy
graph G′. Since the noisy graph G′ is dense (especially when
ε is small) and there are

(n
3

)
subgraphs with three nodes in

USENIX Association 30th USENIX Security Symposium 991

G′, the number of triangles is m3 = O(n3). Then, the time
complexity of LocalRR4 is also O(n3), which is not practical
for a graph with a large number of users n. In fact, we im-
plemented LocalRR4 (ε = 1) with C/C++ and measured its
running time using one node of a supercomputer (ABCI: AI
Bridging Cloud Infrastructure [4]). When n = 5000, 10000,
20000, and 40000, the running time was 138, 1107, 9345, and
99561 seconds, respectively; i.e., the running time was almost
cubic in n. We can also estimate the running time for larger n.
For example, when n = 1000000, LocalRR4 (ε = 1) would
require about 35 years (= 1107×1003/(3600×24×365)).

In contrast, the time complexity of Local2Rounds4 is
O(n2 + nd2

max)
1. The factor of n2 comes from the fact that

the size of the noisy graph G′ is O(n2). This also causes a
large communication overhead, as explained below.

Communication overhead. In Local2Rounds4, each user
need to see the noisy graph G′ of size O(n2) to count ti and si.
This results in a per-user communication overhead of O(n2).
Although we do not simulate the communication overhead in
our experiments that use Local2Rounds4, the O(n2) overhead
might limit its application in very large graphs. An interesting
avenue of future work is how to compress the graph size (e.g.,
via graph projection or random projection) to reduce both the
time complexity and the communication overhead.

4.4 Lower Bounds

We show a general lower bound on the l2 loss of private
estimators f̂ of real-valued functions f in the one-round
LDP model. Treating ε as a constant, we have shown that
when d̃max = dmax, the expected l2 loss of LocalLaplacek? is
O(nd2k−2

max) (Theorem 2). However, in the centralized model,
we can use the Laplace mechanism with sensitivity 2

(dmax
k−1

)
to

obtain l2
2 errors of O(d2k−2

max) for fk?. Thus, we ask if the factor
of n is necessary in the one-round LDP model.

We answer this question affirmatively. We show for many
types of queries f , there is a lower bound on l2

2(f (G), f̂ (G))
for any private estimator f̂ of the form

f̂ (G) = f̃ (R1(a1), . . . ,Rn(an)), (6)

where R1, . . . ,Rn satisfy ε-edge LDP or ε-relationship DP and
f̃ is an aggregate function that takes R1(a1), . . . ,Rn(an) as
input and outputs f̂ (G). Here we assume that R1, . . . ,Rn are
independently run, meaning that they are in the one-round
setting. For our lower bound, we require that input edges to
f be “independent” in the sense that adding an edge to an

1When we evaluate Local2Rounds4 in our experiments, we can apply
the RR to only edges that are required at the second round; i.e., (v j,vk) ∈ G′

in line 8 of Algorithm 3. Then the time complexity of Local2Rounds4 can
be reduced to O(nd2

max) in total. We also confirmed that when n = 1000000,
the running time of Local2Rounds4 was 311 seconds on one node of the
ABCI. Note, however, that this does not protect individual privacy, because
it reveals the fact that users v j and vk are friends with ui to the data collector.

𝑣3 𝑣4

𝑣1 𝑣2

𝑀

𝑣3 𝑣4

𝑣1 𝑣2

𝐺4

𝑓 𝐺4 = 5

𝑣3 𝑣4

𝑣1 𝑣2

𝐺2

𝑓 𝐺2 = 3

𝑣3 𝑣4

𝑣1 𝑣2

𝐺3

𝑓 𝐺3 = 2

𝑣3 𝑣4

𝑣1 𝑣2

𝐺1

𝑓 𝐺1 = 0

4,2 -independent cube 𝒜

Figure 3: (4,2)-independent cube A for f . In this example,
M = {(v1,v2),(v3,v4)}, G1 = (V,E), A = {(V,E ∪N) : N ⊆
M}, C(v1,v2) = 2, and C(v3,v4) = 3. Adding (v1,v2) and (v3,v4)
increase f by 2 and 3, respectively.

input graph G independently change f by at least D ∈R. The
specific structure of input graphs we require is as follows:

Definition 5. [(n,D)-independent cube for f] Let D ∈ R≥0.
For κ∈N, let G=(V,E)∈G be a graph on n= 2κ nodes, and
let M = {(vi1 ,vi2),(vi3 ,vi4), . . . ,(vi2k−1 ,vi2κ

)} for integers i j ∈
[n] be a set of edges such that each of i1, . . . , i2κ is distinct (i.e.,
perfect matching on the nodes). Suppose that M is disjoint
from E; i.e., (vi2 j−1 ,vi2 j) /∈ E for any j ∈ [κ]. Let A = {(V,E∪
N) : N ⊆M}. Note that A is a set of 2κ graphs. We say A is
an (n,D)-independent cube for f if for all G′ = (V,E ′) ∈ A ,
we have

f (G′) = f (G)+ ∑
e∈E ′∩M

Ce,

where Ce ∈ R satisfies |Ce| ≥ D for any e ∈M.

Such a set of inputs has an “independence” property be-
cause, regardless of which edges from M has been added
before, adding edge e ∈M always changes f by Ce. Figure 3
shows an example of a (4,2)-independent cube for f .

We can also construct a independent cube for a k-star func-
tion as follows. Assume that n is even. It is well known in
graph theory that if n is even, then for any d ∈ [n−1], there
exists a d-regular graph where every node has degree d [25].
Therefore, there exists a (dmax−1)-regular graph G = (V,E)
of size n. Pick an arbitrary perfect matching M on the nodes.
Now, let G′ = (V,E ′) such that E ′ = E \M. Every node in
G′ has degree between dmax − 2 and dmax − 1. Adding an
edge in M to G′ will produce at least 2

(dmax−2
k−1

)
new k-stars.

Thus, A = {(V,E ′ ∪N) : N ⊆ M} forms an (n,2
(dmax−2

k−1

)
)-

independent cube for fk?. Note that the maximum degree of
each graph in A is at most dmax. Figure 4 shows how to con-
struct an independent cube for a k-star function when n = 6

992 30th USENIX Security Symposium USENIX Association

Centralized One-round local Two-rounds local
Upper Bound Lower Bound Upper Bound Upper Bound

fk? O
(

d2k−2
max
ε2

)
Ω

(
e2ε

(e2ε+1)2 d2k−2
max n

)
O
(

d2k−2
max
ε2 n

)
O
(

d2k−2
max
ε2 n

)
f4 O

(
d2

max
ε2

)
Ω

(
e2ε

(e2ε+1)2 d2
maxn

)
O
(

e6ε

(eε−1)6 n4
)

(when G∼G(n,α)) O
(

eε

(eε−1)2 (d3
maxn+ eε

ε2 d2
maxn)

)
Table 2: Bounds on l2 losses for privately estimating fk? and f4 with ε-edge LDP. For upper-bounds, we assume that d̃max = dmax.
For the centralized model, we use the Laplace mechanism. For the one-round f4 algorithm, we apply Theorem 4 with constant
α. For the two-round protocol f4 algorithm, we apply Theorem 6 with ε1 = ε2 =

ε

2 .

𝑣4 𝑣5

𝑣2 𝑣3

𝐺 = (𝑉,𝐸)
𝑣6

𝑣1

𝑣4 𝑣5

𝑣2 𝑣3

𝑀
𝑣6

𝑣1

𝑣4 𝑣5

𝑣2 𝑣3

𝐺′ = (𝑉,𝐸′)
𝑣6

𝑣1

𝑛, 𝑑𝑚𝑎𝑥 − 2
𝑘 − 1

-independent cube 𝒜 for 𝑓𝑘⋆

…

Figure 4: Construction of an independent cube for a k-star
function (n = 6, dmax = 4). From a 3-regular graph G = (V,E)
and M = {(v1,v3),(v2,v6),(v4,v5)}, we make a graph G′ =
(V,E ′) such that E ′ = E \M. Then A = {(V,E ′∪N) : N ⊆M}
forms an (n,2

(dmax−2
k−1

)
)-independent cube for fk?.

and dmax = 4.
Using the structure that the (n,D)-independent cube im-

poses on f , we can prove a lower bound:

Theorem 7. Let f̂ (G) have the form of (6), where R1, . . . ,Rn
are independently run. Let A be an (n,D)-independent cube
for f . If (R1, . . . ,Rn) provides ε-relationship DP, then we have

1
A ∑

G∈A
E[l2

2(f (G), f̂ (G))] = Ω

(
eε

(eε +1)2 nD2
)
.

A corollary of Theorem 7 is that if R1, . . . ,Rn satisfy ε-edge
LDP, then they satisfy 2ε -relationship DP and thus for edge
LDP we have a lower bound of Ω

(
e2ε

(e2ε+1)2 nD2
)

.

Theorem 7, combined with the fact that there exists an
(n,2

(dmax−2
k−1

)
)-independent cube for a k-star function implies

Corollary 1. In Appendix C, we also construct an (n, dmax
2 −

2) independent cube for f4 and establish a lower bound of
Ω(e2ε

(e2ε+1)2 nd2
max) for f4.

The upper and lower bounds on the l2 losses shown in this
section appear in Table 2.

5 Experiments

Based on our theoretical results in Section 4, we would like
to pose the following questions:

• For triangle counts, how much does the two-rounds in-
teraction help over a single round in practice?

• What is the privacy-utility trade-off of our LDP algo-
rithms (i.e., how beneficial are our LDP algorithms)?

We conducted experiments to answer to these questions.

5.1 Experimental Set-up
We used the following two large-scale datasets:

IMDB. The Internet Movie Database (denoted by IMDB) [2]
includes a bipartite graph between 896308 actors and 428440
movies. We assumed actors as users. From the bipartite graph,
we extracted a graph G∗ with 896308 nodes (actors), where
an edge between two actors represents that they have played
in the same movie. There are 57064358 edges in G∗, and the
average degree in G∗ is 63.7 (= 57064358

896308).

Orkut. The Orkut online social network dataset (denoted
by Orkut) [37] includes a graph G∗ with 3072441 users
and 117185083 edges. The average degree in G∗ is 38.1
(= 117185083

3072441). Therefore, Orkut is more sparse than IMDB
(whose average degree in G∗ is 63.7).

For each dataset, we randomly selected n users from the
whole graph G∗, and extracted a graph G=(V,E) with n users.
Then we estimated the number of triangles f4(G), the number

of k-stars fk?(G), and the clustering coefficient (= 3 f4(G)

f2?(G))
using ε-edge LDP (or ε-edge centralized DP) algorithms in
Section 4. Specifically, we used the following algorithms:

Algorithms for triangles. For algorithms for estimating
f4(G), we used the following three algorithms: (1) the RR
(Randomized Response) with the empirical estimation method
in the local model (i.e., LocalRR4 in Section 4.2), (2) the two-
rounds algorithm in the local model (i.e., Local2Rounds4 in
Section 4.3), and (3) the Laplacian mechanism in the central-
ized model (i.e., CentralLap4 in Section 4.2).

Algorithms for k-stars. For algorithms for estimating
fk?(G), we used the following two algorithms: (1) the Lapla-

USENIX Association 30th USENIX Security Symposium 993

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
� LocalRR∆

Local2Rounds∆
CentralLap∆

����

���	

����

��

���

���

��	
��
��
�
�
�

� � � �� �� ��

� ������

�������	���
��

����
�������
��

��������� ���������

Local2Rounds∆
CentralLap∆

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
�

LocalRR∆

Local2Rounds∆
CentralLap∆

����

����

����

���

���

��
��
�
�
�

� � � �� ��

� ������

��������� ���������

Local2Rounds∆
CentralLap∆

����

����

Figure 5: Relation between the number of users n and the l2
loss in triangle counts when ε = 1 (ε1 = ε2 =

1
2 , d̃max = dmax).

Here we do not evaluate LocalRR4 when n > 10000, because
it is inefficient (see Section 4.3 “Time complexity”).

cian mechanism in the local model (i.e., LocalLapk? in Sec-
tion 4.1) and (2) the Laplacian mechanism in the centralized
model (i.e., CentralLapk? in Section 4.1).

For each algorithm, we evaluated the l2 loss and the relative
error (as described in Section 3.4), while changing the values
of n and ε. To stabilize the performance, we attempted γ ∈ N
ways to randomly select n users from G∗, and averaged the
utility value over all the γ ways to randomly select n users.
When we changed n from 1000 to 10000, we set γ = 100
because the variance was large. For other cases, we set γ = 10.

In Appendix B, we also report experimental results using
artificial graphs based on the Barabási-Albert model [9].

5.2 Experimental Results

Relation between n and the l2 loss. We first evaluated the
l2 loss of the estimates of f4(G), f2?(G), and f3?(G) while
changing the number of users n. Figures 5 and 6 shows
the results (ε = 1). Here we did not evaluate LocalRR4
when n was larger than 10000, because LocalRR4 was in-
efficient (as described in Section 4.3 “Time complexity”).
In Local2Rounds4, we set ε1 = ε2 =

1
2 . As for d̃max, we set

d̃max = dmax (i.e., we assumed that dmax is publicly available
and did not perform graph projection) because we want to ex-
amine how well our theoretical results hold in our experiments.
We also evaluate the effectiveness of the private calculation
of dmax at the end of Section 5.2.

����

� � � �� �� ��

� ������

����

����

���

���

���

��
��
�
�
�

����

����

����

����

����

����

���

��
��
�
�
�

� � � �� �� ��

� ������

�������	���
��

����
�������
��

������� �������

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

����

� � � �� ��

� ������

����

����

����

���

���

��
��
�
�
�

����

����

����

����

����

����

����

��
��
�
�
�

� � � �� ��

� ������

������� �������

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

Figure 6: Relation between the number of users n and the l2
loss in k-star counts when ε = 1 (ε1 = ε2 =

1
2 , d̃max = dmax).

Figure 5 shows that Local2Rounds4 significantly outper-
forms LocalRR4. Specifically, the l2 loss of Local2Rounds4
is smaller than that of LocalRR4 by a factor of about 102. The
difference between Local2Rounds4 and LocalRR4 is larger
in Orkut. This is because Orkut is more sparse, as described
in Section 5.1. For example, when n = 10000, the maximum
degree dmax in G was 73.5 and 27.8 on average in IMDB and
Orkut, respectively. Recall that for a fixed ε, the expected l2
loss of Local2Rounds4 and LocalRR4 can be expressed as
O(nd3

max) and O(n4), respectively. Thus Local2Rounds4 sig-
nificantly outperforms LocalRR4, especially in sparse graphs.

Figures 5 and 6 show that the l2 loss is roughly consistent
with our upper-bounds in terms of n. Specifically, LocalRR4,
Local2Rounds4, CentralLap4, LocalLapk?, and CentralLapk?
achieve the expected l2 loss of O(n4), O(nd3

max), O(d2
max),

O(nd2k−2
max), and O(d2k−2

max), respectively. Here note that each
user’s degree increases roughly in proportion to n (though
the degree is much smaller than n), as we randomly select n
users from the whole graph G∗. Assuming that dmax = O(n),
Figures 5 and 6 are roughly consistent with the upper-bounds.
The figures also show the limitations of the local model in
terms of the utility when compared to the centralized model.

Relation between ε and the l2 loss. Next we evaluated the l2
loss when we changed the privacy budget ε in edge LDP. Fig-
ure 7 shows the results for triangles and 2-stars (n = 10000).
Here we omit the result of 3-stars because it is similar to that
of 2-stars. In Local2Rounds4, we set ε1 = ε2 =

ε

2 .
Figure 7 shows that the l2 loss is roughly consistent with

our upper-bounds in terms of ε. For example, when we de-
crease ε from 0.4 to 0.1, the l2 loss increases by a factor of

994 30th USENIX Security Symposium USENIX Association

����

� ��� � ��� �

�

����

����

���

���

���

��
��
�
�
�

����

���

���

��	

��

��
��
�
�
�

�������	���
������

����

����

���

�������� ���
���

��������
���
������

� ��� � ��� �

�

����

� ��� � ��� �

�

����

����

���

���

���

��
��
�
�
�

����

���

���

��	

��

��
��
�
�
�����

����

���

�������� ���
���

� ��� � ��� �

�

LocalRR∆

Local2Rounds∆
CentralLap∆

LocalLap�⋆
CentralLap�⋆

LocalLap�⋆
CentralLap�⋆

LocalRR∆

Local2Rounds∆
CentralLap∆

Figure 7: Relation between ε in edge LDP and the l2 loss
when n = 10000 (ε1 = ε2 =

ε

2 , d̃max = dmax).

about 5000, 200, and 16 for both the datasets in LocalRR4,
Local2Rounds4, and CentralLap4, respectively. They are
roughly consistent with our theoretical results that for small
ε, the expected l2 loss of LocalRR4, Local2Rounds4, and
CentralLap4 is O(ε−6)2, O(ε−4), and O(ε−2), respectively.

Figure 7 also shows that Local2Rounds4 significantly out-
performs LocalRR4 especially when ε is small, which is also
consistent with our theoretical results. Conversely, the differ-
ence between LocalRR4 and Local2Rounds4 is small when
ε is large. This is because when ε is large, the RR outputs the
true value with high probability. For example, when ε ≥ 5,
the RR outputs the true value with eε

eε+1 > 0.993. However,
LocalRR4 with such a large value of ε does not guarantee
strong privacy, because it outputs the true value in most cases.
Local2Rounds4 significantly outperforms LocalRR4 when
we want to estimate f4(G) or fk?(G) with a strong privacy
guarantee; e.g., ε≤ 1 [38].

Relative error. As the number of users n increases, the num-
bers of triangles f4(G) and k-stars fk?(G) increase. This
causes the increase of the l2 loss. Therefore, we also evalu-
ated the relative error, as described in Section 3.4.

Figure 8 shows the relation between n and the relative
error (we omit the result of 3-stars because it is similar to
that of 2-stars). In the local model, we used Local2Rounds4
and LocalLapk? for estimating f4(G) and fk?(G), respec-
tively (we did not use Local2RR4, because it is both inac-
curate and inefficient). For both algorithms, we set ε = 1 or
2 (ε1 = ε2 = ε

2 in Local2Rounds4) and d̃max = dmax. Then

2We used eε ≈ ε+1 to derive the upper-bound of LocalRR4 for small ε.

��

� � � �� �� ��

� ������

�

����

����

����

�����
�
��
��
�
�
	

��
�
�

��������	
��
����������������
����������

����

���	
������ ���	
����
�

�����	
������ �����	
����
�

� � � �� �� ��

� ������

�������
����	
����������	�����������������
����������
��

�

����

����

�����
�
��
��
�
�
	

��
�
�

����

����

��

� � � �� ��

� ������

�

����

����

����

����

�
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

��

�

����

����

����

�
�
��
��
�
�
	

��
�
�

����

����

���

���

� � � �� �� ��

� ������

������
���
����������������
����������
����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

Figure 8: Relation between n and the relative error. In the local
model, we used Local2Rounds4 (ε = 1 or 2) and LocalLapk?
(ε = 1 or 2) for estimating triangle counts f4(G) and k-star
counts fk?(G), respectively (d̃max = dmax).

we estimated the clustering coefficient as: 3 f̂4(G,ε1,ε2,dmax)

f̂k?(G,ε,dmax)
,

where f̂4(G,ε1,ε2,dmax) and f̂k?(G,ε,dmax) are the estimates
of f4(G) and fk?(G), respectively. If the estimate of the clus-
tering coefficient is smaller than 0 (resp. larger than 1), we set
the estimate to 0 (resp. 1) because the clustering coefficient is
always between 0 and 1. In the centralized model, we used
CentralLap4 and CentralLapk? (ε = 1 or 2, d̃max = dmax) and
calculated the clustering coefficient in the same way.

Figure 8 shows that for all cases, the relative error de-
creases with increase in n. This is because both f4(G) and
fk?(G) significantly increase with increase in n. Specifically,
let f4,vi(G)∈Z≥0 the number of triangles that involve user vi,
and fk?,vi(G) ∈ Z≥0 be the number of k-stars of which user vi
is a center. Then f4(G) = 1

3 ∑
n
i=1 f4,vi(G) and fk?,vi(G) =

∑
n
i=1 fk?,vi(G). Since both f4,vi(G) and fk?,vi(G) increase

with increase in n, both f4(G) and fk?(G) increase at least in
proportion to n. Thus f4(G)2 ≥Ω(n2) and fk?(G)2 ≥Ω(n2).
In contrast, Local2Rounds4, LocalLapk?, CentralLap4, and
CentralLapk? achieve the expected l2 loss of O(n), O(n), O(1),
and O(1), respectively (when we ignore dmax and ε), all of
which are smaller than O(n2). Therefore, the relative error

USENIX Association 30th USENIX Security Symposium 995

�������	���
�������

�
����������
��������

�
�

���

�
��
��
��
�	

��
�
�

��

�

����

����

����

�������	
 ��
���

�
���
 ���
�	�

���

�
��
��
��
�	

��
�
�

��

�

����

����

����

�������	
 ��
���

�
���
 ���
�	�

�
�
��� ���

�
�
���

�
��
��
��
�	

��
�
�

���

�

����

����

����

�������	
 ��
���

�
���
 ���
�	�

���

�
��
��
��
�	

��
�
�

���

�

����

����

����

�������	
 ��
���

�
���
 ���
�	�

�
�

����� � � ����� � ���� ����� � ����� ����
� �����	��		�

����� � � ����� � ���� ����� � ����� ����
� �����	��		�

Figure 9: Relative error when d̃max = n (#users), dmax (max
degree), or d̂max (noisy max degree). We used Local2Rounds4
(ε= 1 or 2) and LocalLapk? (ε= 1 or 2) for estimating triangle
counts f4(G) and k-star counts fk?(G), respectively.

decreases with increase in n.
This result demonstrates that we can accurately estimate

graph statistics for large n in the local model. In particular,
the relative error is smaller in IMDB because IMDB is denser
and includes a larger number of triangles and k-stars; i.e.,
the denominator of the relative error is large. For example,
when n = 200000 and ε = 1, the relative error is 0.30 and
0.0028 for triangles and 2-stars, respectively. Note that the
clustering coefficient requires 2ε because we need to estimate
both f4(G) and fk?(G). Yet, we can still accurately calculate
the clustering coefficient with a moderate privacy budget; e.g.,
the relative error of the clustering coefficient is 0.30 when the
privacy budget is 2 (i.e., ε = 1). If n is larger, then ε would be
smaller at the same value of the relative error.

Private calculation of dmax. We have so far assumed that
d̃max = dmax (i.e., dmax is publicly available) in our experi-
ments. We finally evaluate the methods to privately calculate
dmax with ε0-edge LDP (described in Sections 4.1 and 4.3).

Specifically, we used Local2Rounds4 and LocalLapk? for
estimating f4(G) and fk?(G), respectively, and evaluated the
following three methods for setting d̃max: (i) d̃max = n; (ii)
d̃max = dmax; (iii) d̃max = d̂max, where d̂max is the private esti-
mate of dmax (noisy max degree) in Sections 4.1 and 4.3.

We set n = 200000 in IMDB and n = 1600000 in Orkut.
Regarding the total privacy budget ε in edge LDP for es-
timating f4(G) or fk?(G), we set ε = 1 or 2. We used
ε

10 for privately calculating dmax (i.e., ε0 = ε

10), and the re-
maining privacy budget 9ε

10 as input to Local2Rounds4 or
LocalLapk?. In Local2Rounds4, we set ε1 = ε2; i.e., we set
(ε0,ε1,ε2) = (0.1,0.45,0.45) or (0.2,0.9,0.9). Then we esti-

mated the clustering coefficient in the same way as Figure 8.
Figure 9 shows the results. Figure 9 shows that the al-

gorithms with d̃max = d̂max (noisy max degree) achieves the
relative error close to (sometimes almost the same as) the al-
gorithms with d̃max = dmax and significantly outperforms the
algorithms with d̃max = n. This means that we can privately
estimate dmax without a significant loss of utility.

Summary of results. In summary, our experimental results
showed that the estimation error of triangle counts is signifi-
cantly reduced by introducing the interaction between users
and a data collector. The results also showed that we can
achieve small relative errors (much smaller than 1) for sub-
graph counts with privacy budget ε = 1 or 2 in edge LDP.

As described in Section 1, non-private subgraph counts may
reveal some friendship information, and a central server may
face data breaches. Our LDP algorithms are highly beneficial
because they enable us to analyze the connection patterns in a
graph (i.e., subgraph counts) or to understand how likely two
friends of an individual will also be a friend (i.e., clustering
coefficient) while strongly protecting individual privacy.

6 Conclusions

We presented a series of algorithms for counting triangles
and k-stars under LDP. We showed that an additional round
can significantly reduce the estimation error in triangles, and
the algorithm based on the Laplacian mechanism provides
an order optimal error in the non-interactive local model. We
also showed lower-bounds for general functions including
triangles and k-stars. We conducted experiments using two
real datasets, and showed that our algorithms achieve small
relative errors, especially when the number of users is large.

As future work, we would like to develop algorithms for
other subgraph counts such as cliques and k-triangles [34].

Acknowledgments

Kamalika Chaudhuri and Jacob Imola would like to thank
ONR under N00014-20-1-2334 and UC Lab Fees under LFR
18-548554 for research support. Takao Murakami was sup-
ported in part by JSPS KAKENHI JP19H04113.

References

[1] Tool: LDP graph statistics. https://github.com/
LDPGraphStatistics/LDPGraphStatistics.

[2] 12th Annual Graph Drawing Contest. http://mozart.
diei.unipg.it/gdcontest/contest2005/index.
html, 2005.

[3] What to Do When Your Facebook Profile is Maxed
Out on Friends. https://authoritypublishing.

996 30th USENIX Security Symposium USENIX Association

https://github.com/LDPGraphStatistics/LDPGraphStatistics
https://github.com/LDPGraphStatistics/LDPGraphStatistics
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
http://mozart.diei.unipg.it/gdcontest/contest2005/index.html
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/

com/social-media/what-to-do-when-your-
facebook-profile-is-maxed-out-on-friends/,
2012.

[4] AI bridging cloud infrastructure (ABCI). https://
abci.ai/, 2020.

[5] The diaspora* project. https://
diasporafoundation.org/, 2020.

[6] Facebook Reports Third Quarter 2020 Results. https:
//investor.fb.com/investor-news/press-
release-details/2020/Facebook-Reports-
Third-Quarter-2020-Results/default.aspx,
2020.

[7] Jayadev Acharya, Clément L. Canonne, Yuhan Liu,
Ziteng Sun, and Himanshu Tyagi. Interactive infer-
ence under information constraints. CoRR, 2007.10976,
2020.

[8] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang.
Hadamard response: Estimating distributions privately,
efficiently, and with little communication. In Proc. AIS-
TATS’19, pages 1120–1129, 2019.

[9] Albert-László Barabási. Network Science. Cambridge
University Press, 2016.

[10] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. In Proc. NIPS’17, pages 2285—-2293, 2017.

[11] Raef Bassily and Adam Smith. Local, private, efficient
protocols for succinct histograms. In Proc. STOC’15,
pages 127–135, 2015.

[12] Vincent Bindschaedler and Reza Shokri. Synthesizing
plausible privacy-preserving location traces. In Proc.
S&P’16, pages 546–563, 2016.

[13] Jeremiah Blocki, Avrim Blum, Anupam Datta, and
Or Sheffet. The johnson-lindenstrauss transform itself
preserves differential privacy. In Proc. FOCS’12, pages
410–419, 2012.

[14] Rui Chen, Gergely Acs, and Claude Castelluccia. Differ-
entially private sequential data publication via variable-
length n-grams. In Proc. CCS’12, pages 638–649, 2012.

[15] Xihui Chen, Sjouke Mauw, and Yunior Ramírez-Cruz.
Publishing community-preserving attributed social
graphs with a differential privacy guarantee. Proceed-
ings on Privacy Enhancing Technologies (PoPETs),
(4):131–152, 2020.

[16] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing
graph degree distribution with node differential privacy.
In Proc. SIGMOD’16, pages 123–138, 2016.

[17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
Collecting telemetry data privately. In Proc. NIPS’17,
pages 3574–3583, 2017.

[18] John Duchi and Ryan Rogers. Lower Bounds for Lo-
cally Private Estimation via Communication Complex-
ity. arXiv:1902.00582 [math, stat], May 2019. arXiv:
1902.00582.

[19] John Duchi, Martin Wainwright, and Michael Jordan.
Minimax Optimal Procedures for Locally Private Esti-
mation. arXiv:1604.02390 [cs, math, stat], November
2017. arXiv: 1604.02390.

[20] John C. Duchi, Michael I. Jordan, and Martin J. Wain-
wright. Local privacy and statistical minimax rates. In
Proc. FOCS’13, pages 429–438, 2013.

[21] John C. Duchi, Michael I. Jordan, and Martin J. Wain-
wright. Local privacy, data processing inequalities, and
minimax rates. CoRR, 1302.3203, 2014.

[22] Cynthia Dwork. Differential privacy. In Proc.
ICALP’06, pages 1–12, 2006.

[23] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Now Publishers, 2014.

[24] Giulia Fanti, Vasyl Pihur, and Ulfar Erlingsson. Building
a RAPPOR with the unknown: Privacy-preserving learn-
ing of associations and data dictionaries. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2016(3):1–
21, 2016.

[25] Ghurumuruhan Ganesan. Existence of connected regular
and nearly regular graphs. CoRR, 1801.08345, 2018.

[26] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
Exploring network structure, dynamics, and function
using networkx. In Proceedings of the 7th Python in
Science Conference (SciPy’08), pages 11–15, 2008.

[27] Michael Hay, Chao Li, Gerome Miklau, and David
Jensen. Accurate estimation of the degree distribution
of private networks. In Proc. ICDM’09, pages 169–178,
2009.

[28] Jacob Imola, Takao Murakami, and Kamalika Chaud-
huri. Locally differentially private analysis of graph
statistics. CoRR, 2010.08688, 2021.

[29] Matthew Joseph, Janardhan Kulkarni, Jieming Mao, and
Zhiwei Steven Wu. Locally Private Gaussian Estima-
tion. arXiv:1811.08382 [cs, stat], October 2019. arXiv:
1811.08382.

[30] Matthew Joseph, Jieming Mao, Seth Neel, and Aaron
Roth. The Role of Interactivity in Local Differential
Privacy. arXiv:1904.03564 [cs, stat], November 2019.
arXiv: 1904.03564.

USENIX Association 30th USENIX Security Symposium 997

https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://authoritypublishing.com/social-media/what-to-do-when-your-facebook-profile-is-maxed-out-on-friends/
https://abci.ai/
https://abci.ai/
https://diasporafoundation.org/
https://diasporafoundation.org/
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-Third-Quarter-2020-Results/default.aspx

[31] Matthew Joseph, Jieming Mao, and Aaron Roth. Expo-
nential separations in local differential privacy. In Proc.
SODA’20, pages 515–527, 2020.

[32] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. Dis-
crete distribution estimation under local privacy. In Proc.
ICML’16, pages 2436–2444, 2016.

[33] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Ex-
tremal mechanisms for local differential privacy. Jour-
nal of Machine Learning Research, 17(1):492–542,
2016.

[34] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith,
and Grigory Yaroslavtsev. Private analysis of graph
structure. Proceedings of the VLDB Endowment,
4(11):1146–1157, 2011.

[35] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi
Nissim, and Sofya Raskhodnikova. What can we learn
privately? In Proc. FOCS’08, pages 531–540, 2008.

[36] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. Analyzing graphs
with node differential privacy. In Proc. TCC’13, pages
457–476, 2013.

[37] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

[38] Ninghui Li, Min Lyu, and Dong Su. Differential Pri-
vacy: From Theory to Practice. Morgan & Claypool
Publishers, 2016.

[39] Chris Morris. Hackers had a banner year in
2019. https://fortune.com/2020/01/28/2019-
data-breach-increases-hackers/, 2020.

[40] Takao Murakami and Yusuke Kawamoto. Utility-
optimized local differential privacy mechanisms for dis-
tribution estimation. In Proc. USENIX Security’19,
pages 1877–1894, 2019.

[41] M. E. J. Newman. Random graphs with clustering.
Physical Review Letters, 103(5):058701, 2009.

[42] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In Proc. STOC’07, pages 75–84, 2007.

[43] Thomas Paul, Antonino Famulari, and Thorsten Strufe.
A survey on decentralized online social networks. Com-
puter Networks, 75:437–452, 2014.

[44] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Fe-
lix X. Yu, Sashank J. Reddi, and Sanjiv Kumar. AdaCliP:
Adaptive clipping for private SGD. CoRR, 1908.07643,
2019.

[45] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In Proc. CCS’16,
pages 192–203, 2016.

[46] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Generating synthetic decentralized social
graphs with local differential privacy. In Proc. CCS’17,
pages 425–438, 2017.

[47] Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu.
Vector-matrix-vector queries for solving linear algebra,
statistics, and graph problems. CoRR, 2006.14015, 2020.

[48] Sofya Raskhodnikova and Adam Smith. Efficient
lipschitz extensions for high-dimensional graph statis-
tics and node private degree distributions. CoRR,
1504.07912, 2015.

[49] Sofya Raskhodnikova and Adam Smith. Differentially
Private Analysis of Graphs, pages 543–547. Springer,
2016.

[50] Andrea De Salve, Paolo Mori, and Laura Ricci. A sur-
vey on privacy in decentralized online social networks.
Computer Science Review, 27:154–176, 2018.

[51] Tara Seals. Data breaches increase 40% in 2016.
https://www.infosecurity-magazine.com/news/
data-breaches-increase-40-in-2016/, 2017.

[52] Shuang Song, Susan Little, Sanjay Mehta, Staal Vinter-
boy, and Kamalika Chaudhuri. Differentially private
continual release of graph statistics. CoRR, 1809.02575,
2018.

[53] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan
Qui, Hui (Wendy) Wang, and Ting Yu. Analyzing sub-
graph statistics from extended local views with decen-
tralized differential privacy. In Proc. CCS’19, pages
703–717, 2019.

[54] Om Thakkar, Galen Andrew, and H. Brendan McMahan.
Differentially private learning with adaptive clipping.
CoRR, 1905.03871, 2019.

[55] Abhradeep Guha Thakurta, Andrew H. Vyrros,
Umesh S. Vaishampayan, Gaurav Kapoor, Julien Freudi-
ger, Vivek Rangarajan Sridhar, and Doug Davidson.
Learning New Words, US Patent 9,594,741, Mar. 14
2017.

[56] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In Proc. CCS’14, pages 1054–1067,
2014.

998 30th USENIX Security Symposium USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://fortune.com/2020/01/28/2019-data-breach-increases-hackers/
https://fortune.com/2020/01/28/2019-data-breach-increases-hackers/
https://www.infosecurity-magazine.com/news/data-breaches-increase-40-in-2016/
https://www.infosecurity-magazine.com/news/data-breaches-increase-40-in-2016/

[57] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and
Somesh Jha. Locally differentially private protocols
for frequency estimation. In Proc. USENIX Security’17,
pages 729–745, 2017.

[58] Yue Wang and Xintao Wu. Preserving differential
privacy in degree-correlation based graph generation.
Transactions on Data Privacy, 6(2), 2013.

[59] Yue Wang, Xintao Wu, and Leting Wu. Differential
privacy preserving spectral graph analysis. In Proc.
PAKDD’13, pages 329–340, 2013.

[60] Stanley L. Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69,
1965.

[61] Xiaokui Xiao, Gabriel Bender, Michael Hay, and Jo-
hannes Gehrke. ireduct: Differential privacy with re-
duced relative errors. In Proc. SIGMOD’11, pages 229–
240, 2011.

[62] Min Ye and Alexander Barga. Optimal schemes for
discrete distribution estimation under local differential
privacy. In Proc. ISIT’17, pages 759—-763, 2017.

[63] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng,
and Xiaokui Xiao. Towards locally differentially private
generic graph metric estimation. In Proc. ICDE’20,
pages 1922–1925, 2020.

[64] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng,
and Xiaokui Xiao. LF-GDPR: A framework for es-
timating graph metrics with local differential privacy.
IEEE Transactions on Knowledge and Data Engineer-
ing (Early Access), pages 1–16, 2021.

[65] Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas
Rountev. Differentially-private control-flow node cov-
erage for software usage analysis. In Proc. USENIX
Security’20, pages 1021–1038, 2020.

A Effectiveness of empirical estimation in
LocalRR4

In Section 4.2, we presented LocalRR4, which uses the em-
pirical estimation method after the RR. Here we show the ef-
fectiveness of empirical estimation by comparing LocalRR4
with the RR without empirical estimation [46, 63].

As the RR without empirical estimation, we applied the RR
to the lower triangular part of the adjacency matrix A; i.e., we
ran lines 1 to 6 in Algorithm 2. Then we output the number of
noisy triangles m3. We denote this algorithm by RR w/o emp.

Figure 10 shows the l2 loss of LocalRR4 and RR w/o emp
when we changed n from 1000 to 10000 or ε in edge LDP

����

� � � � � ��

� ������

����

����

����

����

����

��
��
�
�
�

��
��
�
�
�

�������	���
��

��
��
�
�
�

��
��
�
�
�

RR w/o emp

LocalRR∆

���

���

����

� ��	 � ��	 �

�

����

����

���

����

����

����

����

RR w/o emp

LocalRR∆

�������	���
�

�

����

� � � � � ��

� ������

����

����

����

����

����

������������
��

RR w/o emp

LocalRR∆

���

���

����

� ��	 � ��	 �

�

����

����

���

����

����

����

����

RR w/o emp

LocalRR∆

������������
�

�

Figure 10: l2 loss of LocalRR4 and the RR without empirical
estimation (RR w/o emp).

from 0.1 to 2. The experimental set-up is the same as Sec-
tion 5.1. Figure 10 shows that LocalRR4 significantly out-
performs RR w/o emp, which means that the l2 loss is signif-
icantly reduced by empirical estimation. As shown in Sec-
tion 5, the l2 loss of LocalRR4 is also significantly reduced
by an additional round of interaction.

B Experiments on Barabási-Albert Graphs

Experimental set-up. In Section 5, we evaluated our algo-
rithms using two real datasets: IMDB and Orkut. We also eval-
uated our algorithms using artificial graphs that have power-
law degree distributions. We used the BA (Barabási-Albert)
model [9] to generate such graphs.

In the BA model, an artificial graph (referred to as a BA
graph) is grown by adding new nodes one at a time. Each new
node is connected to λ ∈ N existing nodes with probability
proportional to the degree of the existing node. In our experi-
ments, we used NetworkX [26], a Python package for graph
analysis, to generate BA graphs.

We generated a BA graph G∗ with 1000000 nodes using
NetworkX. For the attachment parameter λ, we set λ = 10 or
50. When λ = 10 (resp. 50), the average degree of G∗ was
10.0 (resp. 50.0). For each case, we randomly generated n
users from the whole graph G∗, and extracted a graph G =
(V,E) with the n users. Then we estimated the number of tri-
angles f4(G) and the number of 2-stars f2?(G). For triangles,
we evaluated LocalRR4, Local2Rounds4, and CentralLap4.
For 2-stars, we evaluated LocalLap2? and CentralLap2?. In
Local2Rounds4, we set ε1 = ε2. For d̃max, we set d̃max = dmax.

USENIX Association 30th USENIX Security Symposium 999

����

� � � � � ��

� ������

����

���

���

���

���

�

��
��
�
�
�

LocalRR∆	
 � 10�

Local2Rounds∆	
 � 10�

CentralLap∆	
 � 10�

��������	
��

LocalRR∆	
 � 50�

Local2Rounds∆	
 � 50�

����

� ��	 � ��	 �

�

����

����

���

���

���

��
��
�
�
�

����

����

���

CentralLap∆	
 � 50�

�

������
���

� � � � � ��

� ������

���

���

���

���

�

��
��
�
�
�

LocalLap�⋆	
 � 10�

CentralLap�⋆	
 � 10�

LocalLap�⋆	
 � 50�

CentralLap�⋆	
 � 50�

� ��	 � ��	 �

�

���

���

���

��
��
�
�
�

����

���

Figure 11: l2 loss in the Barabási-Albert graph datasets (left:
ε = 1, right: n = 10000). We set the attachment parameter λ

in the BA model to λ = 10 or 50, and d̃max to d̃max = dmax.

We evaluated the l2 loss while changing n and ε. We at-
tempted γ ∈ N ways to randomly select n users from G∗, and
averaged the l2 loss over all the γ ways to randomly select n
users. As with Section 5, we set γ = 100 and changed n from
1000 to 10000 while fixing ε = 1. Then we set γ = 10 and
changed ε from 0.1 to 2 while fixing n = 10000.
Experimental results. Figure 11 shows the results. Over-
all, Figure 11 has a similar tendency to Figures 5, 6, and
7. For example, Local2Rounds4 significantly outperforms
LocalRR4, especially when the graph G is sparse; i.e.,
λ = 10. In Local2Rounds4, CentralLap4, LocalLap2?, and
CentralLap2?, the l2 loss increases with increase in λ. This is
because the maximum degree dmax (= d̃max) increases with
increase in λ.

Figure 11 also shows that the l2 loss is roughly consistent
with our upper-bounds in Section 4. For example, recall that
LocalRR4, Local2Rounds4, CentralLap4, LocalLap2?, and
CentralLap2? achieve the expected l2 loss of O(n4), O(nd3

max),
O(d2

max), O(nd2
max), and O(d2

max), respectively. Assuming that
dmax = O(n), the left panels of Figure 11 are roughly con-
sistent with these upper-bounds. In addition, the right pan-
els of Figure 11 show that when we set λ = 10 and de-
crease ε from 0.4 to 0.1, the l2 loss increases by a factor
of about 3800, 250, and 16 in LocalRR4, Local2Rounds4,
and CentralLap4, respectively. They are roughly consistent
with our upper-bounds – for small ε, the expected l2 loss
of LocalRR4, Local2Rounds4, and CentralLap4 is O(ε−6),

𝐺 = (𝑉,𝐸) 𝑀

Figure 12: Examples of G and M for constructing an inde-
pendent cube for f4 (n = 14, dmax = 8, η1 = 3, η2 = 2).

O(ε−4), and O(ε−2), respectively.
In summary, for both the two real datasets and the

BA graphs, our experimental results showed the follow-
ing findings: (1) Local2Rounds4 significantly outperforms
LocalRR4, especially when the graph G is sparse; (2) our
experimental results are roughly consistent with our upper-
bounds.

C Construction of an (n, dmax
2 −2) independent

cube for f4

Suppose that n is even and dmax is divisible by 4. Since dmax <
n, it is possible to write n = η1

dmax
2 +η2 for integers η1,η2

such that η1 ≥ 1 and 1 ≤ η2 < dmax
2 . Because η1

dmax
2 and

n are even, we must have η2 is even. Now, we can write
n = (η1−1) dmax

2 +(η2 +
dmax

2). Thus, we can define a graph
G = (V,E) on n nodes consisting of (η1−1) cliques of even
size dmax

2 and one final clique of an even size η2 +
dmax

2 ∈
(dmax

2 ,dmax) with all cliques disjoint.
Since G = (V,E) consists of even-sized cliques, it contains

a perfect matching M. Figure 12 shows examples of G and M,
where n = 14, dmax = 8, η1 = 3, and η2 = 2. Let G′ = (V,E ′)
such that E ′ = E \M. Let A = {(V,E ′ ∪N : N ⊆ M}. Each
edge in G is part of at least dmax

2 −2 triangles. For each pair
of edges in M, the triangles of G of which they are part are
disjoint. Thus, for any edge e ∈M, removing e from a graph
in A will remove at least dmax

2 −2 triangles. This implies that
A is an (n, dmax

2 −2) independent cube for f4.

1000 30th USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	Preliminaries
	Graphs and Differential Privacy
	Local Differential Privacy
	Global Sensitivity
	Graph Statistics and Utility Metrics

	Algorithms
	One-Round Algorithms for k-Stars
	One-Round Algorithms for Triangles.
	Two-Rounds Algorithms for Triangles
	Lower Bounds

	Experiments
	Experimental Set-up
	Experimental Results

	Conclusions
	Effectiveness of empirical estimation in LocalRR
	Experiments on Barabási-Albert Graphs
	Construction of an (n, dmax2-2) independent cube for f

