
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Fuzzy Labeled Private Set Intersection with
Applications to Private Real-Time Biometric Search

Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and
Wenke Lee, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity21/presentation/uzun

Fuzzy Labeled Private Set Intersection with Applications to
Private Real-Time Biometric Search

Erkam Uzun
Georgia Institute of Technology

Simon P. Chung
Georgia Institute of Technology

Vladimir Kolesnikov
Georgia Institute of Technology

Alexandra Boldyreva
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

Abstract
The explosive growth of biometrics use (e.g., in surveillance)
poses a persistent challenge to keep biometric data private
without sacrificing the apps’ functionality.

We consider private querying of a real-life biometric scan
(e.g., a person’s face) against a private biometric database.
The querier learns only the label(s) of a matching scan(s) (e.g.
a person’s name), and the database server learns nothing.

We formally define Fuzzy Labeled Private Set Intersection
(FLPSI), a primitive computing the intersection of noisy input
sets by considering closeness/similarity instead of equality.

Our FLPSI protocol’s communication is sublinear in
database size and is concretely efficient. We implement it
and apply it to facial search by integrating with our fine-tuned
toolchain that maps face images into Hamming space.

We have implemented and extensively tested our system,
achieving high performance with concretely small network
usage: for a 10K-row database, the query response time over
WAN (resp. fast LAN) is 146ms (resp. 47ms), transferring
12.1MB; offline precomputation (with no communication)
time is 0.94s. FLPSI scales well: for a 1M-row database, on-
line time is 1.66s (WAN) and 1.46s (fast LAN) with 40.8MB
of data transfer in online phase and 37.5s in offline precom-
putation. This improves the state-of-the-art work (SANNS)
by 9−25× (on WAN) and 1.2−4× (on fast LAN).

Our false non-matching rate is 0.75% for at most 10 false
matches over 1M-row DB, which is comparable to underlying
plaintext matching algorithm.

1 Introduction

Recent advances in deep learning (DL)-based biometric identi-
fication have made possible real-time identification of persons
in footage collected by surveillance equipment. The trend to-
ward real-time surveillance in public and private places (e.g.,
streets, city halls, airports, retail stores, pharmacies, gas sta-
tions etc.) has immense benefits for public safety or customer
convenience. However, adoption of these technologies come
at a significant privacy cost, which raises serious objections.

To our knowledge, existing biometrics surveillance systems
have the following major challenges. First, vendors store and
process the collected biometric data on their server in plaintext
for the ease of deployment and practicality. Second, people
cannot opt-out of these systems, since video footage (or any
captured faces) are directly uploaded to a remote server.

Identifying “persons of interest” may be warranted [65], but
tracking everybody else in the process may open the doors to
illegitimate surveillance and certain human right abuses [67].
In response, privacy stakeholders are pressing for a morato-
rium on permanent adoption of these systems, and in fact
they have already succeeded in banning facial surveillance in
several countries and U.S. states [10, 64, 66].

In this paper, we propose a middle ground solution, privacy-
preserving biometric search. Here the server S holding a large
biometric database with corresponding labels (e.g., identities)
should learn nothing about the query or the result, while the
querier (client C) should learn nothing about the database
besides the label(s) of the query’s match(es).

A similar problem of exact private match is extensively
studied in a variety of scenarios (e.g., contact list discovery
and online dating services), and can be achieved via (labeled)
private set intersection (LPSI), a standard primitive [16,17,41,
49]. Even though the state-of-the-art CHLR18 [16] achieves a
practical efficiency with communication costs sublinear to DB
size, LPSI cannot directly be applied to our problem because
it targets exact matches, while biometrics are noisy (e.g., due
to lighting, imprecise scans, etc.).

We introduce FLPSI: a fuzzy LPSI protocol for fast privacy-
preserving biometric search. We address a number of techni-
cal challenges in protocol/definition design and formal proofs.

To our knowledge, none of the prior work related to fuzzy
matching achieves practical efficiency for real-time surveil-
lance, mainly because of communication growing (at least)
linearly with database size (see Sect. 2 and Sect. 11.5 for the
related work). For example, two protocols of the state-of-the-
art (SANNS [15]) require 1.7-5.4 GB communication and
15.1-41.7 sec. online response times over WAN per query
over a million-row database.

USENIX Association 30th USENIX Security Symposium 911

We follow a much more scalable approach that reduces our
fuzzy matching problem to an easier exact-matching subprob-
lems that could be solved with communication cost sublinear
in DB size, by leveraging optimizations of the state-of-the-
art (L)PSI techniques [16, 17]. The crux of our solution is
twofold. First, we translate the closeness (e.g., in Euclidean
space) of two biometrics into a t-out-of-T set-based matching
without sacrificing accuracy. That is, we encode a given bio-
metric input into a set of T items, s.t. the two sets will likely
have at least t exactly common items iff the biometrics are
of the same person. Second, we build an efficient threshold
set-matching protocol from fully homomorphic encryption
(FHE), garbled circuits (GC) and t-out-of-T secret sharing,
and solve several challenges in definitional approach.

1.1 Summary of Our Contributions
• We describe and formally define the functionality and secu-

rity of Fuzzy Labeled Private Set Intersection (FLPSI). We
build a FLPSI protocol using the AES blockcipher, homo-
morphic encryption, garbled circuits and t-out-of-T secret
sharing. We prove the security in the semi-honest model.

• We show how to interpret closeness (e.g., in Euclidean
space) between biometric inputs as t-out-of-T exact set-item
matchings without sacrificing the accuracy.

• We give simulation-based FLPSI security definition (prior
definitions of fuzzy primitives are game-based).

• We introduce a number of optimizations, in addition to the
prior (L)PSI techniques we use.

• We extensively evaluate our protocol in different settings.
We achieve 1.66s online running time over WAN with
40.8MB transfer per query over a million-row database.

• We systematically compare our design with prior art, and
outperform all of them in their best settings, often by several
orders of magnitude both in run time and communication.
For example, on the largest dataset (of 10M records), we
speed up by a factor of 3-33× and decrease the overall data
communication by a factor of up to 48-452× compared to
the two protocols of the state-of-the-art, SANNS [15].

• We highlight sublinear and concretely very small network
use of our solution. In contrast with most other related work,
our solution will scale on very small-bandwidth networks.

2 Related Work

As noted above, (L)PSI protocols [16, 17, 41, 49] and other
exact-match protocols are inapplicable in our setting.

Freedman et al. [29] informally introduced the problem of
private fuzzy search as an application of their private match-
ing protocol. They proposed a basic construction, and left
improving its efficiency as future work.

We now discuss state of the art techniques in fuzzy search.

Threshold Matching. The works [11, 18, 76] are based on
threshold t-out-of-T matching outlined in [29]. These con-
structions incur (at least) linear in DB size and concretely
inefficient communication and computation. We compare
them in detail in Sect. 11.5 and Fig. 12 and show that they do
not scale to a million-row DB.

A related line of work uses threshold over Euclidean or
Hamming distance or cosine similarity between players’ vec-
tors [4, 5, 23, 34, 47, 53, 75]. While these works are generally
faster than [11,18,76], our solution is still orders of magnitude
more efficient. We provide detailed performance comparison
in Sect. 11.5 and Fig. 11.

Our solution, also based on threshold t-out-of-T matching,
must overcome the technical difficulties of i) high variability
(and hence high distance) of feature vectors of the same per-
son, and ii) large size of extracted feature vectors (hence high
costs). We resolve both by carefully integrating fine-tuned
random private subsampling of the feature vectors prior to
computing threshold match (see Sect. 5).

Nearest Neighbor Search (NNS). A related line of work,
albeit solving a different problem from the privacy perspec-
tive, is secure NNS. Indeed, NNS may (and is expected to)
return match(es) for a person who is not present in DB; hence
NNS does not meet our security requirements. However, we
compare to NNS solutions as well, as they are close enough
in spirit to our application scenario, and they are faster than
prior work on private fuzzy search discussed above. Note, we
do not consider outsourcing-based NNS [72, 78, 79, 81, 82]
as they require a third party who learns the query ([52] re-
quires two non-colluding servers). State-of-the-art optimized
NNS [15] (SANNS) relies on a fast network connection (up
to 56 gigabit/s) for efficiency as they transfer 1.7-5.4 GB to
run a 10-NNS over a database of a million entries (6.1-57.7
GB over a database of 10 million entries). Hence, SANNS is
not practical enough for real-time tasks at scale. We give a
detailed comparison to SANNS in Sect. 11.5.

Finally, we mention, but do not discuss in detail, work on
fuzzy searchable encryption [6,43], as they address a different
setting where the querier owns the data stored on an untrusted
server (i.e. non-private DB).

3 Overview and Technical Details

Here we review existing non-private (plaintext) fuzzy match-
ing algorithms and building privacy protection into them.

3.1 Plaintext Fuzzy Matching

Existing facial surveillance systems, informally, work as fol-
lows. A client C captures facial images of people from a
surveillance video footage, then transmits the biometric data
to a server S with transport encryption, and S receives the data
in plaintext. Then, the server uses a DL system to turn raw

912 30th USENIX Security Symposium USENIX Association

E
n
c
o
d
e

x3

y

x1

x2

1
1
0
0
1

m
a
s
k
2

m
a
s
k
1

1
0
1
0
1

q

Subsampling

11001
y1
y2

Figure 1: Overview of FLPSI. For clarity, subsampling is depicted without AES encryption and 2PC.

biometric readings into embedding vectors with a (probabilis-
tic) guarantee that two such vectors will be close in Euclidean
distance iff they are from the same person. If the server finds
such a close biometric entry in its database, it returns the
label (e.g, identity) of the entry to the client. Otherwise, it
returns “no match” result to the client. In our evaluation, we
used FaceNet [55], which is the state-of-the-art DL system
achieving at most 0.67% for 10 false matches per query over
1M-row DB. See Fig. 7.

Privacy concerns. Clearly, since the data is typically pro-
cessed in plaintext by the server, it achieves maximal privacy,
while the client achieves none. Next, we discuss achieving
maximal client privacy as well.

3.2 Private Fuzzy Matching
Our goal is to build a protocol that reveals labels of query
matches only to C , while maintaining confidentiality of C ’s
query and S ’s database. To achieve this, C and S can locally
compute DL embeddings from their biometric data, then apply
standard MPC tools to compute Euclidean (or cosine simi-
larity) distance between the C ’s query and each of the S ’s
database items [4, 5, 23, 34, 53]. However, this does not scale
(cf Fig. 11). Our much more scalable approach is based on a
t-out-of-T matching scheme, described in detail next. Fig. 1
shows a high-level overview of our FLPSI protocol.

Binary encoding. To accommodate t-out-of-T matching,
we first address the incompatibility between DL embed-
dings (operating in Euclidean space) and the crypto com-
ponents (operating in Hamming space) of our protocol. (Op-
erating in Hamming space, e.g., computing closeness is much
cheaper in MPC). To do this, parties additionally apply a
space mapping function, which is based on locality-sensitive
hashes [13, 36, 38, 51], to convert the embedding vectors into
bio-bit vectors (xi and y) with the desired property (they are
Hamming-close if they originate from the biometrics of the
same person). This is also used as a dimension reduction pro-
cess in scalable image search applications [42, 46, 77]. We
note that there are different DL-based algorithms that generate
binary representations directly from the raw data [21, 39, 70].

We omit exploring the best algorithm, and refer to [71] for
a comprehensive survey. For lack of space, we present our
space mapping technique from [68] in Appx. A. We will refer
to the set of functions converting biometric data into bio-bit
vectors, as “Encode(.)”.

C and S proceed as follows after encoding their biometric
data into bio-bit vectors y (held by C) and xi ∈ X (held by S).
• Subsampling: generate T random subsamples of y and

each xi bio-bit vectors (in the same way, e.g., x21 = x2 ∧
mask1), s.t. at least t of them will be the same iff y and a xi
belong to the same person (if bio-bit vectors are Hamming-
close, this can be achieved whp);

• Secret sharing: generate t-out-of-T secret shares of the la-
bel li (e.g., identity) of each xi ∈ X (each share is associated
with a subsample of xi), s.t. any t shares can reconstruct li;

• STLPSI: interactively execute a private t-out-of-T match-
ing protocol (Set Threshold LPSI, or STLPSI) on the C ’s
subsample set and the S ’s sets of (subsample, secret share)
pairs1: the label li of an xi ∈ X is revealed to C iff at least
t of the subsamples of y and xi are equal (which means C
obtains shares of matching subsamples of xi).

Our private matching achieves false positive and negative
rates equal to the state-of-the-art plaintext algorithms.

3.2.1 Our Solutions to Technical Challenges

Now we discuss the most interesting technical challenges.
Subsample confidentiality As described above, C learns

the subsamples (and respective subsampling masks), which
may help C learn something additional about database. For
example, in case of a false-positive match, the semi-honest
C will now learn with confidence positions in bio-bit vector,
thereby learning the original biometric, which may not be
included in the result set. Further, it may be the case (and
publicly known) that faces in S ’s database are similar (e.g.
manifested by certain positions of the bio-bit vectors being
equal). A match from C ’s query will inform the malicious
C how to set the bits of his next query so as to improve his

1Note that the secret shares are now treated as labels in the STLPSI.

USENIX Association 30th USENIX Security Symposium 913

chance of “hitting” a face in database (a false match).
We can resolve this by operating over encrypted sub-

samples only. For this, S chooses the random subsam-
pling/projection masks and an AES encryption key kS . Then
S via MPC allows C to compute the AES-encryptions of
masked projections on the C ’s query bio-bit vector y, while
keeping the projection masks and kS secret from C . The server
efficiently computes AES-encryptions of masked projections
on its large database non-interactively in O(|X |). Note that S
has to refresh these masks and keys for each execution.

Concealing partial matches in single execution. (L)PSI
protocols (e.g., [16, 17, 41, 49]) do not directly implement the
above STLPSI functionality since they, by design, reveal par-
tial (below-threshold t) matches.We resolve this by building
effient STLPSI from t-out-of-T secret sharing and FHE, based
on prior (L)PSI works (e.g., CHLR18 [16]).

Concealing partial matches in repeated executions.
This subtle issue arises when generated shares are not re-
freshed between queries, and C may collect threshold t shares
across queries. We resolve this by carefully resetting secret
shares, subsampling masks and keys in each execution.

Novel definitional approach. In MPC, the preferred
simulation-based security definitions offer clean and com-
posable guarantees. At the same time, they require precise
specification of ideal-world behavior, which we (as a commu-
nity) do not know how to achieve for biometric functions. Be-
cause of this, biometric authentication definitions are usually
game-based and not composable, but which allow to bound,
rather than precisely specify adversary success.

One of our contributions is a novel definitional approach
(see Section 7.1), which allows the best of both worlds: our
definition is indeed simulation-based, and yet we bound adver-
sary success rather than exactly specifying it. Our definition
is generic and incorporates optional leakage, which is often
needed for efficient sublinear protocols. We believe this defini-
tional approach can serve as a template in defining primitives
in the biometric space.

3.2.2 Trust Assumptions and Threat Model

• C and S locally apply binary encoding to their biomet-
ric data. We assume they own the same DL model that is
trained on a public dataset and not tailored to any particu-
lar user from either party. Hence, we consider membership
inference [58] or model inversion [27] attacks to be out of
our scope.

• Considering our motivating application, we do not discuss
here how the query biometric is obtained; we note that
face detection in video footage is an easy and solved prob-
lem [69].

• We prove our 2PC (one C and one S) in the semi-honest
model (parties follow the protocol specification). In par-
ticular, parties do not corrupt their inputs (e.g., via a pixel
perturbing attack [62]). This models natural scenarios in

practice, as well as serves as a stepping stone to stronger
models, such as handling malicious adversaries. Of course,
many practical applications require protection against ac-
tive cheating. Indeed, the biometric information served by
S may be highly sensitive, and hence a possibility of data
exfiltration by a malicious C would preclude offering the
search service to a broader audience. We leave malicious
security as important future work.

Resilience Against Certain Malicious Behaviour. While
our protocol is in the SH model, we informally discuss several
natural malicious attacks, their impact and mitigation.

Firstly, S can exclude its DB entries from search results
simply by sending encryptions of random values. This can be
also achieved by appropriate input substitution, and therefore
is not an attack in a standalone execution setting. In general,
efficiently ensuring that a malicious S is unable to omit entries
in its DB is a hard technical problem.

Further, C can try to learn DB by querying random bit-
vectors or brute-forcing arbitrary biometric inputs. Brute-
forcing is a well-understood attack, which is mitigated by
rate-limiting. Querying bit-vectors is not helping C , since the
bit-vector search space is larger than the space of faces.

4 Definition of FLPSI

In this section, we define a general syntax for a fuzzy labeled
PSI. We start with the notion of closeness (fuzzy matching),
adopted from [6].

Definition 4.1. Closeness Domain. We say that Λ= (D,Cl)
is a closeness domain if D is a set, and Cl is the (par-
tial) closeness function that takes any x,y ∈ D and outputs
a member of {close,far}, so that Cl is symmetric (i.e.,
Cl(x,y) = Cl(y,x)).

There are no requirements on the output of close for pairs
that are “near” (i.e. points that neither close nor far).

Definition 4.2. Fuzzy Labeled PSI (FLPSI). FLPSI proto-
col is defined for a closeness domain (D,Cl) and a label space
LS by the interactive algorithm (C , S), where the client C
inputs a query q ∈ D, and the server S inputs a database
Db = {(d1, l1)..,(dN , lN)}, where items di ∈ D and labels
li ∈LS. At the end, C outputs a set R, and S outputs⊥. FLPSI
must satisfy the following correctness and security properties:

Correctness. We use ε-correctness instead of a perfect
correctness, as it is common for biometrics-matching systems
to have errors, e.g., false matches (ε1) and non-matches (ε2).
Then, it requires that, for q and Db, we have an output set R
consisting only of pairs (q, li) such that for each i ∈ [N]2;

if Cl(q,di) = far, then Pr[(q, li) /∈ R]≥ 1− ε1;
if Cl(q,di) = close, then Pr[(q, li) ∈ R] ≥ 1− ε2, where
(di, li) ∈ Db.
2[N] is a shorthand for {1,2, . . . ,N}.

914 30th USENIX Security Symposium USENIX Association

In our construction the domain D refers to facial biometrics
in a surveillance scenario. Hence, Cl(q,di) = far refers to
each of q,di coming from different people, while Cl(q,di) =
close refers to both of them belonging to the same person.
The label space LS refers to people’s identities or other info.
Hence, the client learns the information corresponding to the
person in its query, if the photo(s) of this person is in the
database.

Security of FLPSI is formally defined in Sect. 7.1 in the
simulation paradigm by specifying the ideal functionality. We
stress that we separately require ΠFLPSI to satisfy the above
correctness requirement. We present this low-level technical
definition discussion together with the proofs in Sect. 7.1, and
focus on the protocol description next.

5 Building Blocks of FLPSI

In this section, we discuss the ideas behind our protocol and
its building blocks (presented formally in Sect. 6).

5.1 Binary Encoding
Our construction starts with a binary encoding step, where
the client and server locally turn each of their raw biometric
inputs (e.g., facial photos) q,di ∈D, for i ∈ [N], into bio-bit
vectors y = Encode(q) and xi = Encode(di), respectively, so
that if there is a q,di pair of the same person, then y,xi are
likely close wrt Hamming distance.

5.2 Subsampling and 2PC
Now the client and server could apply random projections for
each bit vector y and xi, respectively. This outputs a set of sub-
sampled bit vectors, Y = {y1, . . . ,yT} and Xi = {xi1, ...,xiT},
with the property that if y and xi are close, then some subsam-
ples of them will likely be the same [12, 20, 68].

S hides the subsampling projections from C to avoid it
reconstructing the inputs in the database (see Sect. 3.2.1). To
do this, S chooses a 128-bit AES blockcipher key kS and gen-
erates the projection masks {mask1, . . . ,maskT}. Note that S
can locally compute its subsample set Xi for each of its bio-bit
vector xi s.t. xi j = AESkS (xi∧mask j), where j ∈ [T].

Next both parties execute a 2PC protocol (CAES,SAES).
This protocol privately computes each y j ∈ Y s.t. y j =
AESkS (y∧mask j) for C , s.t. it can learn matched encrypted
subsamples without learning the projection masks and kS .

We implement this 2PC protocol as Yao’s Garbled Cir-
cuits (GC)3 using the EMP toolkit [73]. We use subsamples

3Note, we could have used a generic oblivious PRF (OPRF) to implement
encrypted subsampling; however, known efficient OPRF are public-key based,
even when both key and input are known to the evaluator. This would result
in a more expensive solution, since (expensive public-key) OPRF must be
applied by S to each DB entry for each query. In contrast, while we pay
slightly more to evaluate AES inside MPC on the C ’s query, we pay much
less to encrypt DB entries.

and encrypted subsamples interchangeably, by referring Y ,
throughout the paper.

5.3 Secret Sharing

Our construction will use STLPSI (introduced in the next
section) along with a t-out-of-T secret sharing scheme, whose
syntax, correctness and security we now define.

Definition 5.1. t-out-of-T Secret Sharing. A t-out-of-T se-
cret sharing scheme is defined by algorithms (KS,KR) for
sharing and reconstructing a secret. The domain of secrets is
{0,1}K, where K is some parameter. KS takes a secret s and
outputs a set {ss1, ...,ssT} of shares. KR takes as input a set
of shares {ss1, ...,ssd} and returns an integer s ∈ {0,1}K if
d ≥ t, or ⊥ if d < t.

Correctness. For correctness we demand that for any s ∈
{0,1}K, any set SS ∈ [KS(s)], and SSi ⊆ SS, where |SSi| ≥ t,
it holds that KR(SSi) = s with probability 1.

Privacy. For privacy we demand that for any s ∈ {0,1}K
and set SS ∈ [KS(s)] it holds that any subset SSi ⊆ SS of
size |SSi|< t does not give any information about s, i.e., its
probability distribution is independent of s.

In our protocol, S generates t-out-of-T secret shares for the
label li ∈LS associated with the ith entry in its database. Note
that S attaches an agreed-upon token 0λ, where λ is a security
parameter, to each label li before secret sharing it. Then, C
can verify if any set of t shares (obtained via a single STLPSI
execution) correctly reconstruct a valid label. Overall, for a
given label li ∈LS, S generates {ssi1, ...,ssiT} $←KS(0λ || li).

5.4 Set Threshold LPSI (STLPSI)

Though prior steps prepare the inputs to accommodate a t-out-
of-T matching, existing private t-out-of-T matching schemes
are not practical for a real-time surveillance (see Sect. 11.5.1).
We require small communication (e.g., under 128 MB), to
support server with a large (1M rows) database and a WAN
or less channel to the client.

A closely related LPSI primitive does achieve above per-
formance [16], but cannot be plugged in directly as a building
block to FLPSI, since it does not implement t-out-of-T match-
ing (LPSI reveals below-threshold t matching to the client). It
is, however, possible to combine with an appropriate carefully
designed secret sharing scheme to achieve this feature as well.

For modularity and because STLPSI is a useful primitive,
we formalize it and implement it based on prior techniques,
mostly drawn from CHLR18. We integrate a number of opti-
mizations specific to our setting, such as different bucketing,
removing now redundant preprocessing steps and the use of
cuckoo hashing in CHLR18. We prove security of the result-
ing protocol (Theorem 5.1).

USENIX Association 30th USENIX Security Symposium 915

Functionality FSTLPSI

Given inputs Y ⊂MS of C , and X = {X1, . . . ,XN} and SS =

{SS1, . . . ,SSN} of S , where Xi ⊂MS and SSi ⊂ SS, the function-
ality sends the output result set R (cf Def. 5.2) to the client, and
nothing to the server.

Figure 2: The Ideal Functionality FSTLPSI

5.4.1 Formal Definition of STLPSI

In this section, we formally define a general syntax and cor-
rectness for a private t-out-of-T matching protocol.

Definition 5.2. Set Threshold Labeled Private Set In-
tersection (STLPSI). STLPSI protocol is defined by the
input space MS, label space SS4, threshold values t,T ∈
N and the interactive algorithm (C ,S). C inputs a query
set Y = {y1, . . . ,yT} ⊂ MS, and S inputs database sets
X = {X1, . . . ,XN}, where Xi = {xi1, ...,xiT} ⊂MS, and SS =
{SS1, . . . ,SSN}, where SSi = {ssi1, ...,ssiT} ⊂ SS. At the end,
C outputs a set R, while S outputs ⊥.

Correctness. We require that R = {r1, . . . ,rN} s.t. for each
i∈ [N], let r′i = {(xi j,ssi j) : xi j = y j ∈Y ,ssi j ∈ SSi} j∈[T], then
we have that ri = (r′i, li) iff |r′i| ≥ t, otherwise ri = /0. That is,
through the set R, C learns such tuples (xi j,ssi j) and the label
li associated with them iff it gets at least t exactly matching
items between sets Y and Xi.

Now we define the security of STLPSI. Let Π be an STLPSI
protocol, defined according to Def. 5.2. The ideal functionality
FSTLPSI is defined in Fig. 2. In Appx. B, we recall the standard
definition of securely realizing ideal functionality in the semi-
honest model [24], formulated as Def. B.1 for the 2PC case.
Now we can put these together to define security of STLPSI.

Definition 5.3. STLPSI Security. We say that a protocol
ΠSTLPSI = (C,S), defined w.r.t. input space MS and label
space SS, is a secure STLPSI protocol (in the semi-honest
model) with no leakage if ΠSTLPSI securely realizes (cf.
Def. B.1) functionality FSTLPSI of Fig. 2.

5.4.2 Constructing STLPSI Protocol

For clarity, we first explain how a private t-out-of-T matching
works on two sets, Y from the client and Xi ∈ X from the
server (each with T items) in a strawman design. Then, we
introduce our optimizations for an efficient construction.

Strawman design. First, C and S agree on an FHE scheme,
where C generates (public, secret) keys (pk,sk) and sends
pk to S . C also homomorphically encrypts each set item
y j ∈ Y into a ciphertext Jy jK and sends to S . Then, S com-
putes Jzi jK = r× (Jy jK− xi j)+ ssi j under encryption5, where

4Since the labels are secret shares in STLPSI, we use SS for the label
space to avoid confusion with the label space LS of the main protocol.

5Following [16], we slightly abuse notation to emphasize FHE operations
with known values. Formally, we are computing Jzi jK= Jr×(y j−xi j)+ssi jK.

r ∈R P and is refreshed for each computation, and ssi j is the
secret share (of label li) associated with xi j. S sends the cipher-
text Jzi jK to C . Recall that secret shares are uniformly sampled
items in SS (equal to MS). Notice, zi j = si j iff y j = xi j, Oth-
erwise, zi j is random on SS. Now, it is guaranteed that C can
reconstruct the label li iff it gets at least t shares of li (see
Def. 5.1). Otherwise, C learns nothing and cannot distinguish
possible below-threshold t matches.

Optimizations. Applying above evaluation for each DB
item does not scale to large DBs (e.g., of a million sets). We
adopt the following optimizations from the (L)PSI literature
for compressing DB items and reducing the circuit depth
in FHE evaluations [9, 16, 17, 28, 29, 48, 49, 60]. With the
exception of bucketing, we closely follow CHLR18 [16] in
applying the following optimizations:

Polynomial interpolation is used instead of the above
strawman to generate Jzi jK. To do this, S interpolates an N-
degree polynomial Pj, by using (〈item〉,〈secret share〉) pairs
(xi j,ssi j) s.t. Pj(xi j) = ssi j. Since Pj(y) = αNyN + ...+α1y+
α0, where the αi could be pre-computed by S in the offline
phase, Pj is homomorphically evaluated in O(logN) multi-
plicative depth given JyK. Further, a single Jzi jK now encodes
a secret share corresponding to any of the matching xi j.

Bucketing. Prior exact matching works use different meth-
ods (e.g., cuckoo hashing, bloom filters) to bucketize the DB
items, so that the query item needs to be compared only with
DB items in the same bucket. In our protocol, since each of
T set items are generated through different LSH projections,
each projection is interpreted as a bucket (with N items). Note
that bucketing is a standard PSI technique [50], also used in
CHLR18. It improves asymptotic performance, but concretely
is costly, as buckets must be padded with dummy element for
security. Crucially, this additional bucketing is not needed in
our application. As noted above, projections already define
the buckets within which the search is performed, and they
need not be padded.

We combine bucketing with windowing, described next.
Windowing. Interpolating polynomials over buckets

doesn’t scale to large N values (e.g., a million). If C sends the
encryptions of y20

,y21
,y22

, ...,y2logN
, S can homomorphically

compute all necessary powers of y in O(log logN) multiplica-
tive depth. This technique decreases C ←S communication
cost by a factor of N, while increasing the C →S cost by a
factor of logN, which has a small impact on overall commu-
nication since C only holds a set of T items.

Splitting. To speed-up homomorphic evaluations, S splits
each bucket into a partitions, s.t. it interpolates a N

a -degree
polynomial per partition. This reduces the multiplicative
depth to O(log log N

a), and the number of y powers (C sends
to S) to log N

a , but increases the C ←S communication by a
factor of a as S sends results for all partitions to C .

Batching. This is a well-known technique in FHE to en-
able Single Instruction Multiple Data (SIMD) on cipher-
texts. For more details and example applications, we refer

916 30th USENIX Security Symposium USENIX Association

Inputs: C inputs set Y = {y1, . . . ,yT } ⊂ MS; S inputs
X = {X1, . . . ,XN}, where Xi = {xi1, ...,xiT } ⊂ MS, and SS =
{SS1, . . . ,SSN}, where SSi = {ssi1, . . . ,ssiT } ⊂ SS is the secret
shares of 0λ || li s.t. λ is a param., li ∈ LS.
1. [FHE parameters] Parties agree on FHE parameters

(m,mp,mct ,P) for an IND-CPA secure FHE scheme, and
on threshold (t), split (B = NT

ma) and windowing (w ∈
{21,22, . . . ,2logB}) parameters. Then, C generates (public, se-
cret) FHE keys (pk,sk), then sends pk to S .

2. [Pre-process X and SS] S bucketizes X into a table and splits
each bucket (column) into a partitions, then interpolates a B-
degree polynomial Pk for each partition, s.t. Pk(xi j) = ssi j,
where ssi j is the secret share associated with xi j. Then, S
batches coefficients at corresponding row (of lenght m) of
the table into a plaintext polynomial p`k, where ` ∈ B, k ∈ a.

3. [Compute encrypted query from Y] C concatenates its in-
put set m

T times and batches into a plaintext polynomial. Then,
it homomorphically encrypts (by using pk) each windowing
power (w) of this plaintext polynomial into the ciphertexts
JywK, then sends them to S .

4. [Homomorphic intersection] S , under encryption, i) expands
the received JywK to {Jy0K,Jy1K, . . . ,JyBK}; ii) evaluates JzkK=

B
∑
`=0

Jy`K.p`k for each k ∈ a, and sends all ciphertexts JzkK to C

after applying noise flooding and modulus switching on them.
5. [Decrypt and get result] C decrypts (by using sk) ciphertexts

JzkK to obtain result vector zk (of length m) for each partition
k ∈ a. Now, each item of zk will be the evaluation of Pk(y j) =
ssi j iff there is any xi j = y j in partition k of corresponding
bucket, otherwise the item will be a random element in FP.

6. [Reconstruct label] C runs KR algorithm on each
(T

t
)

com-
bination of consecutive T items of zk, and gets a reconstruc-
tion result si. We have r′i = {(xi j,ssi j) : xi j = y j ∈ Y ,ssi j ∈
SSi} j∈[T]. Then si = 0λ || li and ri = (r′i, li) iff |r′i| ≥ t, other-
wise si is a random element from FP (see Def. 5.1) and ri = /0.
0λ validates a label li in DB.

Output: C outputs a result set R = {r1, ...,rN}, where each ri 6= /0

is recovered in Step 6. S outputs ⊥.

Figure 3: STLPSI protocol ΠSTLPSI

[8, 17, 30, 31, 60]. In this work, we specifically use SIMD
batching from FHE library SEAL [56]. To accommodate it,
S groups coefficients, associated with the same powers of
y1,y2, . . . ,yT from different buckets, into vectors of length
m. Since m is parameterized as m� T , S also concatenates
coefficients from m

T partitions. This means batching m
T sets

into a single vector, that decreases each partition size to NT
ma .

Finally, C concatenates its set m
T times and batches into a

plaintext polynomial, then it computes all windowing powers
of it and sends encryptions of them to S . Overall, batching
decreases i) the FHE multiplicative depth to O(log log NT

ma);
ii) the number of y powers (C sends to S) to log NT

ma ; and iii)
C ←S communication by a factor of m

T .

Noise flooding. S re-randomizes the returned ciphertexts
by adding fresh encryptions of zero with large noise [22].

This results in increased FHE parameters. See Sect. 11.2.
Modulus switching. This is a technique that FHE scheme

allows to reduce the complexity of a ciphertext at some de-
grees [9]. In our design, S performs SEAL’s modulus switch-
ing on encrypted results before sending them to C .

After receiving the evaluation results, the client decrypts
each of them to m

T sets (each with T results). Then, it runs
the reconstruction algorithm KR from Def. 5.1 on

(T
t

)
com-

binations of each set and obtains a label li iff at least t query
subsamples match with the ones from ith database set.

5.4.3 Full Protocol and Security Proof of STLPSI

Our STLPSI protocol is formally presented in Fig. 3.

Theorem 5.1. In the presence of a semantically secure
fully homomorphic encryption and t-out-of-T secret sharing
schemes, the ΠSTLPSI protocol of Fig. 3 is a secure (in the
semi-honest model) STLPSI protocol with no leakage if each
of the server’s input sets of labels SSi ∈ SS for i ∈ [N] are:
• randomly sampled (and unknown to C) t-out-of-T Shamir’s

secret shares of 0λ || li, where λ is a security parameter and
li ∈ LS is the label associated with ith database record;

• the domain of secret shares SS is equal to the domain FP

of the underlying fully homomorphic encryption scheme.

Proof. The intuition for the protocol security is presented
above in Sect. 5.4.2. For space, we formally prove security of
our protocol ΠSTLPSI w.r.t. Def. 5.3 in Apx. C.1.

6 FLPSI Protocol

In Sect. 3.2 we present the technical intuition of our ΠFLPSI

protocol. Fig. 4 formalizes that discussion and presents ΠFLPSI

for the closeness domain (D,Cl) and label space LS. The
protocol uses the building blocks AES blockcipher, t-out-of-T
secret sharing scheme (KS,KR), 2PC protocol (CAES,SAES),
and STLPSI protocol (CST LPSI ,SST LPSI).

In the protocol, Encode is an algorithm that generates L-bit
bit vector for an input from D; kS is 128-bit AES blockcipher
key; T is number of subsamples; t is matching threshold; λ is
a security parameter; and ∧ is “logical and” operation, used
in subsampling function, i.e., AESkS (y∧mask j).

The outputs of both S ’s subsampling in Step 3 and
(CAES,SAES) (Step 5), and the input items of CST LPSI and
SST LPSI should be in the same domain MS. Moreover, the
output of secret sharing KS (Step 4) and the input labels of
SST LPSI should be from the same domain SS.

6.1 Instantiating FLPSI Protocol
We now discuss specific instantiations of ΠFLPSI building
blocks, tailored for our use case. Discussion of low-level pro-
tocol and subprotocol parameters is presented in Sect. 11.2.

USENIX Association 30th USENIX Security Symposium 917

Inputs: C inputs query q ∈ D; S inputs a database Db =
{(d1, l1), ...,(dN , lN)} , where each di ∈D and label li∈LS.
1. [Encode] Parties agree on function Encode : D→{0,1}L. C

computes y = Encode(q), and S computes xi = Encode(di)
for each i ∈ [N].

2. [Init] The server S samples an AES key kS
$←{0,1}128 and T

projection masks {mask1, . . . ,maskT }.
3. [Server’s local subsampling] The server generates subsam-

ple set Xi = {xi1, ...,xiT }, where xi j ∈ MS such that xi j =
AESkS (xi∧mask j) for each i ∈ [N] and j ∈ [T].

4. [Secret sharing] S generates a secret share set SSi =

{ssi1, . . . ,ssiT } $←KS(0λ || li) for each i∈ [N], where ssi j ∈ SS,
0λ is an agreed token, and li is the ith label.

5. [Client’s 2PC oblivious subsampling] C and S run
(CAES,SAES), where CAES inputs y, SAES inputs kS and
{mask1, . . . ,maskT }. Then, CAES learns the subsample set
Y = {y1, ...,yT }, where y j ∈MS s.t. y j = AESkS (y∧mask j)
for each j ∈ [T], and SAES learns ⊥.

6. [STLPSI execution] C and S run (CST LPSI ,SST LPSI), where
CST LPSI inputs Y , and SST LPSI inputs X = {X1, . . . ,XN}, and
SS = {SS1, . . . ,SSN}. At the end, S learns ⊥, and C learns a
set R as per Definition 5.2. I.e., we have r′i = {(xi j,ssi j) : xi j =
y j ∈ Y ,ssi j ∈ SSi} j∈[T] for each i ∈ [N], and ri = (r′i, li) iff
|r′i| ≥ t, otherwise ri = /0. Then, R = {r1, ...,rN}.

Output: For each ri ∈ R, ri 6= /0, C outputs li label recovered in
Step 6. S outputs ⊥.

Figure 4: FLPSI protocol ΠFLPSI

In the binary encoding step, C and S locally i) encode their
raw biometrics (q and di, resp.) into embedding vectors, by us-
ing the state-of-the-art DL model (e.g., FaceNet [55]); and ii)
translate the Euclidean space into Hamming, by using Super-
Bit Locality Sensitive Hash (SBLSH) [38] (see Appx. A), that
converts DL embeddings into bio-bit vectors (y and xi, resp.).

Next, following Sect. 5.2, C and S generate their subsample
sets (Y and Xi, resp.). Recall that, S generates each projection
mask, by randomly choosing Nsb ones, which essentially turns
all other bits into a constant zero.

Before each protocol execution, S regenerates the projec-
tion masks, AES encryption key kS , and secret shares of each
label li for each DB record (by using t-out-of-T Shamir’s se-
cret sharing scheme [57]), so that S ensures that C is not able
to use any information seen in a prior execution.

Finally, parties run STLPSI protocol in Fig. 3, where C
inputs its subsamples, and S inputs subsamples and their
associated secret shares for each DB record. At the end, S
learns nothing and C learns the label li (and matching items)
of ith database record iff the ith record has at least t matching
subsamples with the C ’s set.

Correctness. The protocol works correctly with small false
matching (ε1) and non-matching (ε2) error probabilities. Since
we can only empirically estimate these errors, we defer this
analysis to Sect. 11.2. In summary, we target to get maximum
error rates of ε1 = 0.001 and ε2 = 0.01 for the smallest DB.

7 Security Analysis of FLPSI Protocol

We start our analysis by formally defining security of FLPSI.
We then state and prove security in Sect. 7.2.

7.1 Security Definition of FLPSI

SECURITY DEFINITION DISCUSSION. Following the com-
mon approach to modeling security of 2PC, we use the ideal-
real paradigm and consider static security against a semi-
honest adversary that can corrupt at most one participant.

We need to define an ideal functionality for FLPSI and what
it means for a protocol to securely realize it. An ideal func-
tionality takes inputs from the parties, computes the desired
parties’ outputs, and returns them to the parties, along with
the corresponding leakage (if any). We require that the view
of each party in real protocol’s execution is indistinguishable
from the view produced by the ideal-world simulator.

This is a common general approach, which, unfortunately,
does not fit FLPSI and many natural biometric functionalities.
The difficulty we are facing is that the ideal functionality must
precisely match what happens in the real world. In particular,
the parties’ outputs should have the same distribution in both
worlds on all inputs. In our case this would mean that the
ideal functionality specifies the exact probability of any two
close elements correctly identifying as close by the protocol,
as well as the probability of far elements correctly identifying
as far. This is unrealistic to achieve for real-world settings,
such as facial biometrics we focus on.

This complication is avoided in game-based definitions,
where no ideal functionality is defined, and hence there is no
need to explicitly specify it. Indeed, security there can be de-
fined as an adversary unable to succeed (e.g., learn something
forbidden) with probability above a certain threshold. How-
ever, they will not guarantee that absolutely nothing additional
is revealed, and such protocols are not freely composable –
these are features of ideal-real style definitions.

Our approach. We reconcile the yin and yang and achieve
the best of both by defining the ideal FLPSI functionality
via a reference to a real FLPSI protocol ΠFLPSI. Namely, we
will say that ideal functionality outputs whatever the real
ΠFLPSI formally outputs. Recall, in our case (cf Def. 4.2), it
is the set R or pairs (q, li). While at the first glance this may
seem a tautology, this approach does provide a guarantee
that nothing beyond the explicit protocol output is revealed.
Now we are in a good place, since we can easily control
explicit protocol output by specifying the correctness property.
Indeed, Def. 4.2 requires (modulo errors bounded by ε) that
the C outputs close labels, and in particular does not output
far labels or any other information it may have learned from
the view of execution.

In sum, the correctness requirement of Def. 4.2 guarantees
that ΠFLPSI’s syntactic output only contains allowed records;
the simulation-based component guarantees that no additional

918 30th USENIX Security Symposium USENIX Association

Functionality F L ,Π
FLPSI

Given inputs q ∈ D of C, and Db = {(d1, l1) . . . ,(dN , lN)} of S ,
where each di ∈D, li ∈ LS,
• trusted party runs an honest execution of the protocol Π on the

players’ inputs and obtains the output result set R;
• return R and LC to the client;
• return LS to the server.

Figure 5: The Ideal Functionality F L ,Π
FLPSI

information (beyond the above output) is revealed. Put to-
gether, this makes a composable and usable security definition.
We are not aware of this definitional approach being used in
prior work, and believe it can be broadly useful, especially
working with biometrics.

We caution the reader that the correctness requirement –
and hence our definition – are not perfect. A “bad” protocol
may exploit the allowed small manipulations of probability of
returning each particular record and leak unauthorized infor-
mation to C . However, in FLPSI (in contrast, e.g., to MPC of
approximations [26]), correctness condition is restrictive and
severely limits possible leakage: we return input DB records
which cannot be modified to leak. Moreover, our definition
can be further tightened, e.g. by correctness requiring that a
record return probability does not change if some other DB
record changes. Formal exploration of this new definitional
style for fuzzy MPC is an interesting future research direction.

We parameterize the security definition with a leakage
profile describing leakage of information to the parties. This
is common in the searchable encryption but is somewhat
novel for MPC-style definitions. Our construction will have
very limited leakage to C : a measure of closeness of C ’s input
with S ’s entry it matched; no leakage in case of no match.

FORMAL FLPSI SECURITY DEFINITION. Let Π be an FLPSI
protocol for a closeness domain (D,Cl) and label space LS,
defined according to Def. 4.2. Let L = {LC ,LS} be the leak-
age profile describing leakage to C and S . The ideal func-
tionality FFLPSI is defined in Figure 5. Then, the security of
FLPSI is formally defined as follows.

Definition 7.1. FLPSI Security. We say that a protocol
ΠFLPSI = (C,S) defined w.r.t. the closeness domain (D,Cl)
is a secure FLPSI protocol (in the semi-honest model) with
leakage profile L = {LC ,LS}, if ΠFLPSI securely realizes (cf.
Def. B.1) functionality F L ,ΠFLPSI

FLPSI of Fig. 5.

7.2 Security Theorem and Proof of FLPSI
We now formally state the security theorem of FLPSI con-
struction, instantiated with secure 2PC protocols (CAES,SAES)
and (CST LPSI ,SST LPSI), and Shamir’s t-out-of-T secret shar-
ing scheme. We also state the leakage profile of ΠFLPSI, then
prove the security theorem of it in the semi-honest model.

Theorem 7.1. Assume AES is a pseudorandom function
(PRF). In the presence of secure (in the semi-honest model)
2PC protocols (CAES,SAES) and (CST LPSI ,SST LPSI), and a t-
out-of-T secret sharing scheme, the ΠFLPSI protocol of Fig. 4
is a secure (in the semi-honest model) Fuzzy LPSI protocol
with leakage profile L = {LC ,LS =⊥}.

Leakage LS to S in ΠFLPSI. There is no leakage to S .
Leakage LC to C in ΠFLPSI. ΠFLPSI reveals to the client

a measure of quality of the match with the database entry
(i.e., the number of (obliviously) encrypted matching sub-
samples). In case of multiple matches, the client also learns
which (obliviously) encrypted subsamples matched (i.e. were
common) across the different matched database entries.

Recall that our initial privacy goal is to achieve client pri-
vacy, which is satisfied by revealing and leaking nothing to the
server. Furthermore, we emphasize the leakage to the client is
strictly less (and in fact much less) than the client learning the
matching database entry(ies) (or its bit vector) of the server. It
is easy to see that this leakage is inferred from the matching
entry(ies) held by the server. Inspecting the relevant portion
of the proof, it is easy to see that the SimC actions informed
by leakage can be easily performed without LC , and with the
knowledge of the matching database entries of the server.

In a typical scenario, where parties share all the informa-
tion/data about matches (e.g., photos, name, age, etc. of a
person of interest) with each other, this leakage does not have
any security impact on the desired system.

Proof. For lack of space, we formally prove the security of
our main protocol ΠFLPSI w.r.t. Def. 7.1 in Apx. C.2.

8 Complexity Analysis of FLPSI

In Apx. D, we explain our communication and computation
complexity in detail. In summary, FLPSI has O(NT

mB`) and
O(NT

m) communication and computation complexities, respec-
tively. In the notations, N is database size, T is number of
subsamples, m is SIMD vector size, B is the size of each
DB split and ` is the length of an item in MS and SS. Note
that mB could be parameterized to be (almost) equal to N
(see Sect. 11.2) if we are not considering a database of, e.g.,
hundreds of millions of people. Then, our communication
complexity would approximate to O(T `) in practice.

9 Environment and Implementation Details

We use an Azure F72s_v2 instance, which has 72 virtual
cores equivalent to that of 2.7 GHz Intel Xeon Platinum 8168
CPU and 144 GB of RAM each. We also have two sets of
experiments: for fast and slow network connections between
C and S . While the former has 500 MB/s connection with 0.5
ms latency, the latter is having 40 MB/s with 34 ms latency.
We use Ubuntu 18.04 in this instance. Note that, even though,

USENIX Association 30th USENIX Security Symposium 919

our design does not require a fast network connection or high
number of threads, we use above environment for creating an
identical comparison setting with the state-of-the-art [15].

We implement our protocol on top of the homomorphic
encryption library SEAL v3.5 [56], through Brakerski/Fan-
Vercauteren (BFV) scheme [25]. To extract embedding vec-
tors from facial images, we use the Python implementation
of FaceNet6 (with the Inception-Resnet-V1 architecture [63])
after aligning faces, as recommended in [80].

10 Optimizing FLPSI Implementation

In addition to applying optimization tricks to compress the
database and reduce the homomorphic multiplication depth
in STLPSI, as explained in Sect. 5.4.2, we further optimize
our protocol for better performance and accuracy as follows.

Noise reduction (NR) in binary encoding. Inspired by [7,
59, 68], the client can extract multiple face samples from a
short surveillance video in order to perform noise removal.
This can be done very seamlessly at some specific application
scenarios. Since people cannot be completely in the same
pose throughout a video recording, C can treat each individual
frame in a video as a different sample. On the other hand, S
can capture multiple samples per person more conveniently
since it may have a controlled environment unlike C .

In this optimization, both parties take bit vectors, generated
in the binary encoding step (from Sect. 5.1) through multiple
biometric readings, and majority vote over each bit. If a certain
amount of them agree (e.g., at least 90 percent), they keep it.
Otherwise, they cancel (zero-out) it. After eliminating noisy
bits, the residual bit vector is given to the subsampling layer.

Subsample compression. Since we use AES blockcipher
with 128-bit key kS , we can compress its inputs to 128 bits
to avoid multiple rounds of block-ciphering. This will reduce
the online communication and computation costs of the 2PC
subsampling protocol from Sect. 5.2. To do this, we can effec-
tively compress a subsample as it mostly contains zero bits,
e.g., only 14-out-of-256 bits are ones in our setting, as follows.
We split the bio-bit vector into 128-bit of chunks, and evenly
subsample each chunk (e.g., 7-out-of-128) without colliding
subsampled bits across the chunks. For instance, if 8th bit is
subsampled in the first chunk, we do not subsample 8th bit of
the second chunk. Finally, we compute the bit-wise XOR of
all chunks as the compressed output.

Optimizing STLPSI (load balancing). We introduce a
new optimization to balance the loads across the buckets in
S ’s reconstructed database (see Sect. 5.4.2). We decrease the
number of partitions, as argued next. Note that a certain sub-
sample(s) may be the same for too many DB entries, while the
rest are shared by less of them. Also notice, it is not mathemat-
ically possible to build a (Lagrange or Newton) interpolation
polynomial over such (item, secret share) pairs, where any two

6https://github.com/davidsandberg/facenet

Par. Description Value
t matching threshold 2
T number of subsamples 64
L length of bio-bit-vectors 256
τrb consistency threshold ratio 0.9
Nsb number of subsampled bits 14
kS S ’s key for a AES blockcipher {0,1}128

P prime mod. of domain FP 8519681
λ security param. for token 0λ blogPc=23
N number of database entry [10K-10M]
Figure 6: List of parameters and their fixed values.

items are the same [44]. That is why S has to put each of the
colliding subsamples into distinct partitions, and thus there is
an unavoidable lower bound on the number of partitions, and
accordingly, on the computation and communication costs. In
STLPSI, before building the database, S truncates such (sub-
sample, secret share) pairs after reaching a certain collision
threshold, which balances the load of the each bucket of its
constructed coefficient table. In Sect. 11.4, we empirically
show the impact of this optimization on the overall costs.

11 Evaluation

In this section, we extensively evaluate our protocol, and then
systematically compare it to the prior art. Note that we achieve
our results by applying all optimizations.

11.1 Datasets
Evaluation datasets. We use a DL model that is pre-trained
on the MSCeleb1M dataset, including over 8 million uncon-
strained facial images of around 100 thousand identities [33].

Query set. We use the YouTube Faces (YTF) benchmark
dataset, that contains noisy collections of unconstrained facial
videos from 1,595 public figures [74]. Since the preprocessing
may use multiple biometric scans per person to generate reli-
able bio-bit vectors, we randomly pick (at most) ten frames
each for C and S to test ε errors. We assume C always queries
these 1,595 people over any size of DB in our experiments.

Database set. We generate photo-realistic synthetic faces to
create large-scale databases since there is no such big public
datasets. We use StyleGAN [40] to create databases of 10
thousand (Face-10K), 100 thousand (Face-100K) and one
million (Face-1M) identities along with the YTF identities
(with isolated samples from the query set).

Comparison datasets. For our comparative analysis, we
use AT&T [54] and Deep1B [3] datasets, which are used in
prior art. Note that we use these datasets in the same way
as they are used in the prior art. AT&T7 includes 400 facial
images from 40 people, where 8 faces of each (320 in total)

7https://www.kaggle.com/kasikrit/att-database-of-faces

920 30th USENIX Security Symposium USENIX Association

https://github.com/davidsandberg/facenet
https://www.kaggle.com/kasikrit/att-database-of-faces

of false FRR (%) for Plaintext / FLPSI
matches Face-10K Face-100K Face-1M
1 2.89/2.95 2.93/2.97 2.99/3.01
2 1.62/1.65 1.86/1.95 2.13/2.18
3 1.26/1.32 1.64/1.66 1.97/2.01
4 1.06/1.14 1.39/1.42 1.55/1.56
5 0.92/1.01 1.14/1.18 1.18/1.25
6 0.81/0.85 0.94/0.97 1.06/1.12
7 0.72/0.77 0.83/0.86 0.92/0.94
8 0.56/0.59 0.74/0.79 0.87/0.92
9 0.53/0.58 0.69/0.74 0.73/0.79
10 0.51/0.56 0.58/0.63 0.67/0.75

Figure 7: FRRs of underlying plaintext matching system and
FLPSI protocol for at most 10 false matches per query errors.

are kept as database items and 2 faces of each are queried.
Deep1B contains a billion image descriptors (each 96 dimen-
sion vector), which is generated by passing images through a
deep neural network [3]. We use the original query set, which
includes 10 thousand data points, published by the authors8.
And, we conduct queries over two subsets of Deep1B that
consist of randomly selected one million and 10 million en-
tries (labeled as Deep1B-1M and Deep1B-10M, respectively).
We treat Deep1B descriptors as embedding vectors in our
pipeline since it is not a facial dataset.

11.2 Parameters

In the following, we introduce the parameters and our param-
eter selection process. Note that once we fix our parameters,
we use them without changing across different experiments.

ε-correctness errors. These refer to the errors in the ε-
correctness of FLPSI. Recall from the Sect. 4 that, ε1 infers
the false matches, and ε2 infers the false non-matches (or,
false rejection rate − FRR). Interpreting in our context, false
matches denotes the number of different identities obtained
other than the queried one, while false non-matches standing
for the number of “not exist” results in response to querying
existing people in the database.

In our experiments, we target to get at most 10 false matches
and 1% false non-match rate for any of the database sizes,
which meets accuracy requirement of the commercial sys-
tems [2, 32, 45].

Parameter choices for the targeted errors. In the follow-
ing, we summarize our parameter searching method to find
the ones achieving the targeted errors.

In Fig. 6, in addition to t and T , we enumerate and describe
all parameters (L,τrb,Nsb) required in DL, SBLSH and NR
steps, which affect the errors. We first search the parameters
for the plaintext baseline to see if we can obtain the targeted
errors without enabling privacy-preserving blocks. We search

8http://sites.skoltech.ru/compvision/noimi/

(following Apx. E) and fix our parameters to the values in
Fig. 6, then use them for all the experiments below.

Parameter choices for privacy-preserving blocks. The
parameters of BFV scheme are three integers (mp,mct ,P),
where mp is the polynomial modulus degree , mct is the ci-
phertext modulus and P is the plaintext modulus [14]. We
initialize mp = 213, mct = 218 bits and P = 8519681 to al-
ways achieve at least a 128-bit security level as recommended
in [14]. These parameters allow us to perform a standard
noise flooding operation as part of our STLPSI protocol (see
Sect. 5.4.2). The LWE estimator9 by Albrecht et al. [1] sug-
gests 128−131 bits security level for this setting. We switch
the ciphertext modulus from 218 to 55 bits in the modulus-
switching step to decrease the communication size from S to
C . For the parameters such as standard deviation error and
secret key distribution we use the default values of SEAL.
We set the SIMD vector size to m = 8192, and the size of the
token 0λ to 23 bits (at most), which is the same length of the
labels of database records.

Achieved errors for the fixed parameters. After fixing
the parameters, we measure the errors of end-to-end FLPSI
protocol to see if it holds our ε-correctness requirement. Fig. 7
shows the FRRs per query for the targeted false-matches (at
most 10 per query for any DB size). Note that these error rates
have implications on the confidentiality of DB, and nothing
relevant to the query data, which is the first privacy goal of our
protocol. As mentioned before, revealing false matches (e.g.,
within industrial standards [2, 32, 45]) to the client is allowed
since it is unavoidable in desired application. Having said that,
though FLPSI slightly increases the FRR errors compared to
underlying plaintext system (due to the reason explained in
Sect. 10), it still holds the correctness for all settings.

11.3 Costs of FLPSI
Fig. 8 shows experimental results of FLPSI protocol. For each
database size N, it presents the storage needs and preprocess-
ing times for the offline phase, total online communication
overhead, and end-to-end online computation times for dif-
ferent number of threads (Th). We report total response times
for the fast and slow network configurations, introduced in
Sect. 9. For clarity, we discuss the results of a single query
over Face-1M dataset in the following. We average over 100
queries for the FLPSI results.

11.3.1 Offline Preprocessing Cost of FLPSI

We run a one-time initialization phase to compile the DB from
facial images. We do not include this cost in our summary
tables. Our protocols refresh t-out-of-T secret sharings and
AES blockcipher key kS (both held by S) per query. This
is performed solely by S in expectation of the query. This

9We use the commit fb7deba from https://bitbucket.org/malb/l
we-estimator/src/master/

USENIX Association 30th USENIX Security Symposium 921

http://sites.skoltech.ru/compvision/noimi/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/

Database
Offline Online Online response time (milliseconds)

Storage Preprocess comm. Computation time with different number of threads Best query
(MB) time (s.) (MB) Th=1 8 16 32 64 72 Sp-up fast slow

Face-10K 5 0.94 12.1 523 93 68 46 57 56 11.4× 47 146
Face-100K 51 4.07 20.4 4457 635 376 257 241 186 24.0× 187 386
Face-1M 501 37.5 40.8 43956 5944 3058 1828 1647 1355 32.4× 1455 1655

Figure 8: FLPSI results (per query). The best computation times are in bold-face, and the best computation speed-ups are
measured against the single-threaded results. Total response times are reported under the last two columns for fast/slow networks.

Step Party Run time percent
Building encrypted query C 3.66%
Homomorphic evaluation S 91.6%
Decrypting query results C 3.79%
Extracting matches C 0.95%

Figure 9: Run time percent. of steps in a query over Face-1M.

cost is easily amortized (run concurrently) with an actively
executing query, and we report it as an offline cost. In our
experiments, S needs at most 501 MB of storage and 37.5 sec.
to pre-compute and buffer a copy of constructed database of
1M entries. We include buffer reading time in the following
online evaluations.

11.3.2 Online Communication Cost

We have a fixed (8.5 MB per query) communication cost
from obliviously extracting the subsamples of a single bio-
bit-vector of the client through the 2PC (CAES,SAES) protocol.
Hence, this cost is independent from the database size. FLPSI
achieves at most 40.8 MB per query communication cost,
which shows that we are not relying on the fast network con-
nection for efficiency. The last two columns of Fig. 8 show
that data communications increase from 100 to 300 ms (at
most) even if we switch from the fast to slow network connec-
tion. This is our major advantage compared to prior art (see
Sect. 11.5). Hence, we can conclude that FLPSI is compatible
with the existing network infrastructures of potential clients
in the desired surveillance scenario.

11.3.3 Online Computation Cost

Even in the single-threaded execution scenario, FLPSI
achieves promising performance (at most 44 seconds). Given
that, since we spend most of the time for homomorphically
evaluating the polynomials on the server side, as presented
in Fig. 9, we can use multi-threading to speed up this compu-
tation. Note that setting up a powerful server could be more
applicable than providing fast network connections (e.g., in
gigabit scale) for every client. Using 72 threads achieves
32.4× faster computation compared to using a single thread.
Moreover, since S concurrently evaluates partitions, which
could be less than the number of threads for small databases,

Database Communication Response time (fast/slow)
(MB) Saving (seconds) Speed up

Face-10K 72 6× 2.12/2.33 4.1×/3.7×
Face-100K 528 26× 17.8/21.7 4.0×/4.7×
Face-1M 2124 52× 189/199 4.3×/4.5×

Figure 10: FLPSI per query results taken without load balanc-
ing the server’s buckets. Data communications are reduced by
saving factors, and response times are improved by speed
up factors with optimizations.

computation time does not decrease linearly (or increases) as
S uses more threads.

Best end-to-end timing: In Fig. 8, we show the best
achievable response times for each of the database sizes at the
last two columns. Overall, by using multi-threading, FLPSI
can privately search a single person over a database of a
million people in 1.46 sec. and 1.66 sec. with fast and slow
network connections, respectively. To the best of our knowl-
edge, this is the fastest response time compared to prior art,
with similar functionality, in a desired application scenario.

11.4 Impact of Load Balancing Optimization
In the following, we explain how we decrease the overall
communication and computation costs, through the optimiza-
tion from the Sect. 10. To do this, we repeat the experiments
without applying this optimization, whose results are pre-
sented in Fig. 10. Then, we compare them with those in Fig. 8.
For clarity, we only report total communication overheads
and single threaded response times. To show the impact of
our optimization, we also report the achieved saving factors
in communication and speed ups in computation costs, by
comparing optimized and non-optimized results. Overall, we
reduce the communication overheads up to 52× and speed
up the response times up to 4.3/4.5× on fast/slow networks.

11.5 End-to-end Comparison with Prior Art
In this section, we systematically compare FLPSI with previ-
ous private fuzzy matching protocols. Considering their func-
tionality and security guarantees for our application scenario,
we group prior art in two categories: i) threshold matching
and ii) k-nearest neighbor search. In (i), as in our work, S

922 30th USENIX Security Symposium USENIX Association

Protocol Communication Resp. time (fast)
(MB) Saving (sec.) Speed up

FLPSI 0.39 - 0.014 -
Yasuda et al. [75]† 9.92 25.5× 1.70 121×
Huang et al. [34]† 17.9 46.0× 6.08 434×
Osadchy et al. [47]† 35.2 90.3× 99.2 7086×
Blanton et al. [5] 2.8 7.18× 9.37 669×
Barni et al. [4]† 9.11 23.4× 16.0 1110×
Sadeghi et al. [53] 2.8 7.18× 15.5 1286×
Erkin et al. [23] 7.3 18.7× 18.0 1143×

Figure 11: Comparing FLPSI with existing distance thresh-
olding protocols. Communication costs and response times
per query over AT&T database. †Costs are scaled for AT&T
database based on reported results in cited works.

may return empty result (depending on the ε1 error) to C if no
close entry exists in the database. In (ii), S always guarantees
to return k database entries to C regardless of the query. While
(ii) is a different functionality, we compare our work with pro-
tocols in both categories, as the state-of-the-art (SANNS [15])
in (ii) is also faster than protocols in (i), and is the fastest
among protocols “close enough in spirit”.

As discussed earlier, we do not compare with exact match-
ing protocols (e.g., (L)PSI protocols from [16,17,41,49]), as
they do not support fuzzy matches. We solve a much harder
problem than exact matching.

11.5.1 Comparison to Threshold Matching Approaches

As discussed in Sect. 2, prior art either a) applies threshold-
ing to computed Euclidean (or Hamming and cosine simi-
larity) distance [4, 5, 23, 34, 47, 53, 75], or b) runs t-out-of-T
matching [11,18,29,76] between query and database (feature)
vectors. Though they satisfy the functionality requirement
and security guarantees for our application scenario, none of
them propose a practically applicable system for a real-time
surveillance task.

Distance thresholding approaches. Fig. 11 compares
concrete costs of FLPSI to prior work [4, 5, 23, 34, 47, 53, 75].
Note that the cited works report communication and compu-
tation costs linear in the database size. They achieve between
1.7-99.2 sec. response times and 2.8-35.2 MB network over-
heads per query over AT&T database.

Further, majority of them do not satisfy our ε-correctness
requirements. We achieve 121-7086× faster response time
(14 ms. per query) and 7.18-90.3×less communication for the
same database, while meeting our ε-correctness requirements.
Note that we consider single threaded execution for all works,
but could not execute them in the exact same environment.
However, since all run on similar clock speeds, our achieved
speed-ups would slightly vary on the same environment.

t-out-of-T matching approaches. Systems [11,18,76] (re-

Protocol Communication Computation
FLPSI O(NT

mB`)≈O(T`) O(NT
m)

CEC [11] O(N|FP|`) O(N(|FP|+T)T′ε)
YSPW [76] O(NT2`) O(N(poly(T)+T2T′ε))
CH1 [18] O(NT`) O(N(

(T
t

)
poly(T)+TT′ε))

Figure 12: Comparing FLPSI with existing t-out-of-T pro-
tocols that are still considered secure. Only the dominant
terms are kept for all protocols. ` is the size of a ciphertext in
the chosen encryption scheme. T′ε is the time needed for all
homomorphic operations in a single cycle.

ferred as CH1
10, YSPW, CEC, resp.) are existing, secure, t-out-

of-T protocols. Fig. 12 compares asymptotic communication
and computation complexity of [11, 18, 76] to our system.
FLPSI behaves better both in computation and communica-
tion than CH1, YSPW, and CEC protocols, as both of their
communication and computation complexities are linear in
database size. Further, computation and communication of
CEC [11] are linear also with the domain size. In concrete
terms, CEC reports 3GB communication for a database of
100 T -dimension vectors, where each vector item could be
one of 4 distinct letters. Thus, CEC does not scale for our
case (FLPSI operates in a domain with over 223 integers).
CH1 [18] and YSPW [76] do not report concrete costs.

11.5.2 Comparison to kNNS Approaches

We emphasize that “k-nearest neighbor search” protocols
solve a somewhat related, yet different problem, and do not
meet the security guarantees we consider. Nevertheless, we
compare them to FLPSI because we wish to present a broader
perspective and to illustrate that our work is more efficient
not only than protocols for our exact problem, but than any
prior work “close enough in spirit.”

kNNS is related to FLPSI. Before discussing perfor-
mance, we briefly explain the relevance of kNNS to our set-
ting. Indeed, a protocol returning a nearest neighbor could
be used to construc a (leaky) FLPSI, e.g. as follows: C and
S run 1NNS. C obtains the output and checks if it meets the
threshold of FLPSI before returning it (causing leakage to
C if it does not). To search and return multiple matches, C
and S could either proceed iteratively, increasing k by a small
amount, or guess a larger k and risk higher leakage.

Performance comparison. We compare our design with
Chen et al. [15]’s two protocols since, to our knowledge,
they are the fastest protocols compared to all other kNNS
approaches [19, 35, 37, 61], which do not use a trusted third-
party in their pipelines.

[15] show (at least) 8-31× faster response times compared
to optimally implemented prior art. They propose an opti-
mized linear scan (SANNS-linear) and an approximate search

10Ye et al. [76] break the security of the second protocol from [18].

USENIX Association 30th USENIX Security Symposium 923

Protocol
Deep1B-1M Deep1B-10M

Communication Response time (fast/slow) Communication Response time (fast/slow)
Total Saving (seconds) Speed up Total Saving (seconds) Speed up

FLPSI 40.8 MB - 1.46/1.66 - 128 MB - 12.7/13.5 -
SANNS-linear 5.39 GB 132× 5.79/41.7 3.97/25.1× 57.7 GB 452× 73.1/446 5.76/33.0×
SANNS-approx 1.72 GB 42× 1.70/15.1 1.16/9.09× 6.07 GB 48× 5.27/41.8 0.41/3.10×

Figure 13: Comparing FLPSI to two protocols of SANNS [15]. Best achieved response times are reported for fast/slow networks.

(SANNS-approx) protocols, which are built upon additive
homomorphic encryption, garbled circuits and oblivious read
only memory, to conduct secure kNNS over large databases.

To conduct an almost identical comparison, we evaluate
FLPSI on the same Azure instances with the same fast/slow
network connections, as introduced in Sect. 9, and over the
same image datasets: Deep1B-1M and Deep1B-10M.

Communication and computation costs. Fig. 13 com-
pares total communication overheads and the best achieved
response times through the fast/slow networks for the both
database sizes. Due to our sublinear communication, FLPSI
decreases required bandwidth by 132-452× and 42-48× (de-
pending on the database size) compared to SANNS’s lin-
ear and approximate protocols, respectively. This implies
significant improvement in wall-clock time, especially on
slower networks. In fact, SANNS outperforms FLPSI only on
Deep1B-10M dataset, with fast network connection, and via
its approximate algorithm. For instance, the best response
time of SANNS-approx protocol increases from 1.7 to 15.1
sec. as we switch the network from fast to slow connection.
Similarly, SANNS-linear’s performance decreases even more
in the same situation, as it has more data overhead than their
approximate protocol. On the other hand, FLPSI preserves
its performance regardless of the network connection, as it
has 128 MB of communication overhead even for a database
of 10 million entries. Overall, we achieve up to 5.8/33× and
1.2/9.1× faster response times compared to SANNS’s lin-
ear and approximate protocols, respectively, on the fast/slow
networks.

12 Conclusions

We define FLPSI, fuzzy labeled private set intersection, and
propose an efficient construction. In FLPSI, client C holds
a biometric query and server S holds a labeled biometric
database, where labels may be, e.g., persons’ identities. In
FLPSI, C learns the label iff the query is in the database,
and S will learn nothing. Our definitional approach uniquely
combines the properties of game-based and simulation-based
definitions, and can be useful in other settings.

Designing an efficient protocol for FLPSI is challenging
mainly due to the need to manage the noisiness of biomet-
ric data. We realize FLPSI in the semi-honest model from a
blockcipher, garbled circuits, secret sharing, and fully homo-

morphic encryption.
FLPSI achieves sublinear communication cost relative to

the database. Our experiments show that our solution scales
well to massive datasets including up to 10 million entries. Ad-
ditionally, our comparative results show that i) FLPSI achieves
up to 48-452× less communication cost and ii) up to 3.1/33×
faster response times compared to protocols from the state-
of-the-art on a database of 10 million entries. Notably, FLPSI
has a major advantage over prior art by not relying on high
speed network connection for efficiency.

References
[1] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of

learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

[2] Android Open Source Project. Biometric security, 2020. https:
//source.android.com/security/biometric/measure.

[3] A. Babenko and V. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In IEEE CVPR, 2016.

[4] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, et al. Privacy-
preserving fingercode authentication. In MM&Sec, 2010.

[5] M. Blanton and P. Gasti. Secure and efficient protocols for iris and
fingerprint identification. In ESORICS. Springer, 2011.

[6] A. Boldyreva and N. Chenette. Efficient fuzzy search on encrypted
data. In International Workshop on FSE. Springer, 2014.

[7] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image understanding
for iris biometrics: A survey. CVIU, 110(2):281–307, 2008.

[8] Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in lwe-based
homomorphic encryption. In International Workshop on Public Key
Cryptography, pages 1–13. Springer, 2013.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. TOCT, 6(3):1–36, 2014.

[10] Business Insider. https://www.businessinsider.com/senate-b
ill-sanders-merkley-ban-corporate-facial-recognition
-without-consent-2020-8.

[11] I. Calapodescu, S. Estehghari, and J. Clier. Compact fuzzy private
matching using a fully-homomorphic encryption scheme, Aug. 29
2017. US Patent 9,749,128.

[12] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith. Reusable
fuzzy extractors for low-entropy distributions. In EUROCRYPT, 2016.

[13] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In STOC, 2002.

[14] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein,
K. Lauter, S. Lokam, D. Moody, T. Morrison, et al. Security of homo-
morphic encryption. HomomorphicEncryption.org, Tech. Rep, 2017.

[15] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and M. S.
Riazi. SANNS: Scaling up secure approximate k-nearest neighbors
search. In USENIX Security, 2020.

[16] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled psi from fully
homomorphic encryption with malicious security. In CCS, 2018.

924 30th USENIX Security Symposium USENIX Association

https://source.android.com/security/biometric/measure
https://source.android.com/security/biometric/measure
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8
https://www.businessinsider.com/senate-bill-sanders-merkley-ban-corporate-facial-recognition-without-consent-2020-8

[17] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from
homomorphic encryption. In CCS, 2017.

[18] L. Chmielewski and J.-H. Hoepman. Fuzzy private matching. In ARES,
2008.

[19] D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[20] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT,
2004.

[21] Z. Dong, C. Jing, M. Pei, and Y. Jia. Deep cnn based binary hash video
representations for face retrieval. Pattern Recognition, 81, 2018.

[22] L. Ducas and D. Stehlé. Sanitization of fhe ciphertexts. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 294–310. Springer, 2016.

[23] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-preserving face recognition. In PETS, 2009.

[24] D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to
secure multi-party computation. FnT Privacy and Security, 2, 2018.

[25] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[26] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N.
Wright. Secure multiparty computation of approximations. ACM Trans.
Algorithms, 2(3):435–472, July 2006.

[27] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In CCS,
pages 1322–1333, 2015.

[28] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search
and oblivious pseudorandom functions. In TCC, 2005.

[29] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching
and set intersection. In EUROCRYPT, 2004.

[30] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the
aes circuit. In Annual Cryptology Conference, pages 850–867. Springer,
2012.

[31] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing. Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In International Conference on
Machine Learning, pages 201–210. PMLR, 2016.

[32] P. Grother, P. Grother, M. Ngan, and K. Hanaoka. Face recognition
vendor test (frvt) part 2: Identification. NIST, 2019.

[33] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In ECCV, 2016.

[34] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX, pages 331–335, 2011.

[35] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving
biometric identification. In NDSS, 2011.

[36] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 604–613, 1998.

[37] P. Indyk and D. Woodruff. Polylogarithmic private approximations and
efficient matching. In TCC, 2006.

[38] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian. Super-bit locality-sensitive
hashing. In NIPS, pages 108–116, 2012.

[39] R. Ji, H. Liu, L. Cao, D. Liu, Y. Wu, and F. Huang. Toward optimal man-
ifold hashing via discrete locally linear embedding. IEEE Transactions
on Image Processing, 26(11):5411–5420, 2017.

[40] T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. In CVPR, pages 4401–4410, 2019.

[41] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient
batched oblivious prf with applications to private set intersection. In
CCS, 2016.

[42] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In IEEE ICCV, pages 2130–2137, 2009.

[43] M. Kuzu, S. Islam, and M. Kantarcioglu. Efficient similarity search
over encrypted data. In IEEE ICDE, 2012.

[44] E. Meijering. A chronology of interpolation: from ancient astronomy
to modern signal and image processing. Proc. IEEE, 2002.

[45] Microsoft. Biometric requirements, 2020. https://docs.microso
ft.com/en-us/windows-hardware/design/device-experience
s/windows-hello-biometric-requirements.

[46] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance
metric learning. In Advances in neural information processing systems,
pages 1061–1069, 2012.

[47] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi-a system
for secure face identification. In IEEE S&P, 2010.

[48] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set
intersection using permutation-based hashing. In USENIX, 2015.

[49] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-
based psi via cuckoo hashing. In EUROCRYPT, 2018.

[50] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection
based on {OT} extension. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 797–812, 2014.

[51] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. Advances in neural information processing
systems, 22:1509–1517, 2009.

[52] M. S. Riazi, B. Chen, A. Shrivastava, D. S. Wallach, and F. Koushanfar.
Sub-linear privacy-preserving search with untrusted server and semi-
honest parties. CoRR, 2016.

[53] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. In ICISC, 2009.

[54] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model
for human face identification. In IEEE WACV, 1994.

[55] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embed-
ding for face recognition and clustering. In IEEE CVPR, 2015.

[56] Microsoft SEAL (release 3.5). https://github.com/Microsoft/S
EAL, Aug. 2020. Microsoft Research, Redmond, WA.

[57] A. Shamir. How to share a secret. Commun. ACM, 1979.
[58] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership infer-

ence attacks against machine learning models. In IEEE S&P, 2017.
[59] S. Simhadri, J. Steel, and B. Fuller. Cryptographic authentication from

the iris. In ISC, pages 465–485. Springer, 2019.
[60] N. P. Smart and F. Vercauteren. Fully homomorphic simd operations.

Designs, codes and cryptography, 71(1):57–81, 2014.
[61] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar.

Compacting privacy-preserving k-nearest neighbor search using logic
synthesis. In IEEE DAC, 2015.

[62] J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep
neural networks. IEEE TEVC, 2019.

[63] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In
AAAI, volume 4, page 12, 2017.

[64] The Guardian. https://www.theguardian.com/technology/202
0/aug/11/south-wales-police-lose-landmark-facial-rec
ognition-case, June 2020.

[65] The Intercept. https://theintercept.com/2018/05/30/face-r
ecognition-schools-school-shootings/, Dec. 2020.

[66] The NYT. https://www.nytimes.com/2020/01/18/technology/
clearview-privacy-facial-recognition.html, June 2020.

[67] The Verge. Moscow’s facial recognition system can be hijacked. http
s://www.theverge.com/2020/11/11/21561018/moscows-facia
l-recognition-system-crime-bribe-stalking, Dec. 2020.

[68] E. Uzun, C. Yagemann, S. Chung, V. Kolesnikov, and W. Lee. Crypto-
graphic key derivation from biometric inferences for remote authenti-
cation. In ASIACCS, 2021.

[69] P. Viola and M. J. Jones. Robust real-time face detection. International
journal of computer vision, 57(2):137–154, 2004.

[70] Y. Vizilter, V. Gorbatsevich, A. Vorotnikov, and N. Kostromov. Real-
time face identification via cnn and boosted hashing forest. In IEEE
CVPR Workshops, pages 78–86, 2016.

[71] J. Wang, T. Zhang, N. Sebe, H. T. Shen, et al. A survey on learning to
hash. IEEE TPAMI, 40(4):769–790, 2017.

[72] Q. Wang, S. Hu, K. Ren, M. He, M. Du, and Z. Wang. Cloudbi: Practical
privacy-preserving outsourcing of biometric identification in the cloud.
In ESORICS, 2015.

USENIX Association 30th USENIX Security Symposium 925

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-biometric-requirements
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://www.theguardian.com/technology/2020/aug/11/south-wales-police-lose-landmark-facial-recognition-case
https://theintercept.com/2018/05/30/face-recognition-schools-school-shootings/
https://theintercept.com/2018/05/30/face-recognition-schools-school-shootings/
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking
https://www.theverge.com/2020/11/11/21561018/moscows-facial-recognition-system-crime-bribe-stalking

[73] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit. https://gi
thub.com/emp-toolkit, 2016.

[74] L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained
videos with matched background similarity. In IEEE CVPR, 2011.

[75] M. Yasuda. Secure hamming distance computation for biometrics
using ideal-lattice and ring-lwe homomorphic encryption. Information
Security Journal: A Global Perspective, 26(2):85–103, 2017.

[76] Q. Ye, R. Steinfeld, J. Pieprzyk, and H. Wang. Efficient fuzzy matching
and intersection on private datasets. In ISISC, 2009.

[77] X. Yi, C. Caramanis, and E. Price. Binary embedding: Fundamental
limits and fast algorithm. In ICML, pages 2162–2170, 2015.

[78] J. Yuan and S. Yu. Efficient privacy-preserving biometric identification
in cloud computing. In IEEE INFOCOM, 2013.

[79] C. Zhang, L. Zhu, and C. Xu. Ptbi: An efficient privacy-preserving
biometric identification based on perturbed term in the cloud. IS, 2017.

[80] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE
Signal Processing Letters, 23(10):1499–1503, 2016.

[81] L. Zhu, C. Zhang, C. Xu, X. Liu, and C. Huang. An efficient and
privacy-preserving biometric identification scheme in cloud computing.
IEEE Access, 6:19025–19033, 2018.

[82] Y. Zhu, Z. Wang, and J. Wang. Collusion-resisting secure nearest
neighbor query over encrypted data in cloud, revisited. In IEEE/ACM
IWQoS, 2016.

A Super-Bit Locality Sensitive Hashing

Though the Euclidean space of DL accurately captures the
statistical properties of the raw input data, unfortunately, even
the two consequent biometric scans of a person will not result
the same embeddings due to fuzzy/noisy nature of biometrics.
In order to accommodate t-out-of-T matching, both parties
translate the Euclidean space into Hamming, by using Super-
Bit Locality Sensitive Hash (SBLSH) [38]. SBLSH is built
on top of Sign-Random-Projection LSH (SRP-LSH) [13] ,
which turns input vectors into one-bit hash s.t. if two input
vectors are close in angular distance, it is likely that their SRP-
LSH will be the same. In particular, SRP-LSH is defined as
hv(x) = sgn(vT x), where x and v are d-dimensional vectors,
and sgn(.) is the sign function (i.e. 1 if the input is greater
than or equal to 0, otherwise 0). Note, x is the input (e.g.,
embedding vector), and v is sampled with normal distribution.

SBLSH demonstrated that SRP-LSH can be used to turn
x into L-bit codes. It independently samples {v1, ...,vL} vec-
tors, then for each i ∈ [L], it calls hvi(x), and thus generates
L-bit codes. For details, we refer readers to [13, 38].

B Securely Realizing Ideal Functionality

In this section, we recall the standard definition of securely
realizing ideal functionality in the semi-honest model [24],
formulated for the 2PC case in Def. B.1.

Definition B.1. Securely Realizing Ideal Functionality.
We say that a real-world protocol Π securely realizes an ideal-
world functionality F in the presence of static semi-honest
adversaries if there exists a simulator Sim such that, for ev-
ery corrupt party Pi, i ∈ {1,2} and all valid inputs x1,x2, the

distributions RealΠ(κ,Pi;x1,x2) and IdealF ,Sim(κ,Pi;x1,x2)
are computationally indistinguishable (in κ). Real and Ideal
ensembles are defined as follows:

RealΠ(κ,Pi;x1,x2): run Π with security parameter κ, where
each party Pi runs honestly using private input xi. Let Vi denote
the final view of party Pi, and let y1,y2 be the final outputs of
the two parties. Output {Vi,(y1,y2)}.

IdealF,Sim(κ,Pi;x1,x2): Let (y1,y2)← F (x1,x2). Output
{Sim(Pi,(xi,yi)),(y1,y2)}.

C Proving the Security of STLPSI and FLPSI

In this section, we formally prove the Theorem 5.1 and Theo-
rem 7.1. We specifically describe ideal world simulators SimC
and SimS emulating the views VIEWC and VIEWS of C and
S in the real execution for both protocols. Recall, the player’s
view includes its input, output, randomness, and the messages
it received. The (challenging part of the) task of the simulators
is to emulate the received messages in a consistent manner.
Recall, a simulator Sim takes as input the simulated player’s
input, output and leakage (if there is any). In the following,
we formally present the required simulators and the proofs of
the indistinguishability of the simulated and real views.

C.1 Proving the Security Theorem of ΠSTLPSI

It is immediate that ΠSTLPSI correctly computes the set inter-
section and the associated labels if the underlying Shamir’s
secret reconstruction succeeds, i.e. when there are at least
t intersecting items between a query and database set (cf.
Def. 5.1). Now, we formally prove the Theorem 5.1.

For the ease of exposition, we assume that the simula-
tor/protocol is parameterized by (t,T,λ,m,mp,mct ,P,a,B),
which are fixed and public (see Sect. 11.2), and that t-out-of-T
secret sharing scheme (Sect. 5.3) is used.

C.1.1 Simulating the Client

Recall, SimC takes the client’s query set Y = {y1, . . . ,yT}
and the output of the real execution (labels of the matching
database sets Xi and corresponding (item, share) pairs, if at
least t of them matched). To construct SimC , we first describe
the real view that needs to be simulated.

Real view of C . In Steps 1-3 and 5-6, C receives no mes-
sages, and thus SimC does nothing to simulate them.

In Step 6, C attempts to reconstruct a label li (and succeeds
if there is a matching one. As required by the security of
STLPSI, the client should not learn any below-threshold t
matches. STLPSI achieves this since the server takes a set of
secret shares (for each label) as inputs, and again, Shamir’s
secret sharing scheme guarantees the indistinguishability of
each individual share (or any below-threshold t combinations
of them) from a random item in the share domain SS, which
is the same with the agreed FHE scheme’s domain FP.

926 30th USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit
https://github.com/emp-toolkit

Also note that we assume the server randomly re-generates
different set of secret shares for each label before each ex-
ecution of STLPSI protocol. This prevents a serious leak-
age, an adversary combining (possible) below-threshold t
shares, which are obtained across distinct executions, to sum
up enough shares reconstructing a label.

In Step 3, C computes and sends logB homomorphic ci-
phertexts to S . In Step 4, C receives back a homomorphic
ciphertexts, each of which is an encryption of a degree-m FHE
plaintext polynomial. Crucially, the ciphertexts sent to C by
S are rerandomized with high noise (noise flooding), to hide
the history of ciphertext construction.

Constructing the client’s simulator. We need to simulate
the output of Step 4, homomorphic evaluations of intersection
functions. Hence, SimC is defined as follows.

Recall the SimC has the output of the real execution. Hence,
if the output is empty (there is no match), SimC generates a
vectors, where each of them includes m random items from
the agreed FHE scheme’s domain FP. And, if the output has
a matching label li, SimC inserts its associated shares into the
corresponding vector indices (which are also obtained from
the output) instead of random items from FP. Then, SimC
batches each of these a vectors into a FHE plaintext polyno-
mial and homomorphically encrypts it into a ciphertext. The
ciphertext is then noise-flooded with the same noise distri-
bution as used in the protocol. This ensures that the noise
distribution in the simulated ciphertext is indistinguishable
from that of the real execution. SimC then applies modulus
switching with the same parameters as in the real execution.
The resulting a ciphertexts serve as a simulation of the client’s
view. By the IND-CPA security assumption on the agreed
FHE scheme, this view is indistinguishable from the client’s
view VIEWC in the real execution of ΠSTLPSI.

C.1.2 Simulating the Server

Simulating the server is straightforward. In Step 4, S receives
logB ciphertexts, where each of them is an encryption of
a degree-m FHE plaintext polynomial. SimS generates new
encryptions of zero in place of the encryptions in this step. By
the IND-CPA security of the agreed FHE scheme, this view
is indistinguishable from the server’s view VIEWS in the real
execution of ΠSTLPSI.

C.2 Proving the Security Theorem of ΠFLPSI

In this section, we prove Theorem 7.1 of our main protocol.

C.2.1 Simulating the Client

Describing the client’s view. After describing VIEWC , we
explain what the simulator does to simulate the view and why
this works. The simulator SimC ’s inputs are a query q ∈D,
the leakage LC , and the output of the real execution (label(s)
of the matched biometric(s), if any match occurred).

Let q be the client’s query biometric data, and y be the
output bio-bit vector, computed through DL, SBLSH and NR
in the preprocessing. Only y is used in the rest of the protocol.

The preprocessing stage (Step 1) and Steps 2-4 are non-
interactive and the client receives no messages. Hence, SimC
does nothing to simulate these steps.

In Step 5, C and S run MPC, where C inputs y, and S
inputs kS and {mask1, . . . ,maskT}. Then, C gets subsample
set Y = {y1, . . . ,yT} s.t. y j = AESkS (y∧mask j). C receives
MPC messages here, which (by the security of the underlying
MPC protocol) carry no information and are simulated by
the simulator guaranteed by the MPC protocol. However, the
output of the MPC is something that C obtains in its view,
and we need to simulate it.

In Step 6, the client submits the encrypted subsamples
Y = {y1, . . . ,yT}, received from Step 5, to the STLPSI proto-
col and gets the set of shares (and identities of the correspond-
ing matching encrypted subsamples) as output, if there is a
match (which means there are at least t matches). If there was
no match, C receives the empty set from the STLPSI proto-
col. Because SimC is given the output, it will know whether
STLPSI returns empty. However, in case a match is returned
in the FLPSI protocol, we do not know how many subsamples
matched. We cannot simulate this (without leakage), as it de-
pends, e.g., on how close C ’s and S ’s matching bio-bit vectors
are. Thus, this information (the number of matched subsam-
ples in case of a match) constitutes leakage LC , and SimC
will use it for the simulation. We again emphasize that this
leakage is strictly less (and in fact much less) than C learning
the matching bio-bit vector (or the original biometric) of S .

Constructing the client’s simulator. We need to simulate
the output and input of the STLPSI call in Step 6. STLPSI
inputs from the client is the set of elements (simulated by
random elements in the range of the AES function and which
are further used in the simulation of the AES step, described
next). STLPSI output to the client is a set of labels and allows
to reconstruct the output of ΠFLPSI, together with the corre-
sponding matched set elements. The ΠFLPSI output (which
is given to SimC as input) indicates if there was a match (or
matches) and specifies the corresponding label(s).

If no match was achieved, SimC sets the simulated output
of STLPSI to be empty.

If there was a single match over the database, SimC knows
the label to be returned in STLPSI. It also uses leakage LC
to determine how many subsamples should be returned in
STLPSI. It then uses the received label li to generate the
simulated secret shares input into STLPSI and obtained in the
matched subsamples. SimC then randomly chooses the set
elements (from the AES outputs it simulated) to be the ones
resulting in matches.

The case of multiple matches is handled similarly. The only
interesting difference is in simulating how many subsamples
should be returned for each label li. This is established with
the help of the leakage LC .

USENIX Association 30th USENIX Security Symposium 927

Having constructed the simulated input and output of
ΠSTLPSI, SimC uses the client-side simulator guaranteed by
the security of ΠSTLPSI, to simulate the messages exchanged
as part of the Step 6. Note that the input of the protocol is
distributed according to the requirements of Theorem 5.1, and
hence simulation goes through.

We need to simulate messages received in the MPC call
of Step 5. The output of the MPC call is the T random ele-
ments chosen by SimC as described above. The input to the
MPC call is the client’s input y, which is also given to SimC .
Thus, the real-world messages generated by the MPC subpro-
tocols called in Step 5 are simulated by running the client-side
simulator provided by the MPC protocol.

This completes the description of the simulator SimC . As
noted above, the discussion included in the view description
and the simulator construction is a direct argument of the
indistinguishability of the simulated and real views.

C.2.2 Simulating the Server

Simulating S is significantly easier as it does not learn any-
thing or receive any leakage in the protocol execution. The
only protocol messages received by S are those of the calls to
MPC and STLPSI in Steps 5 and 6. SimS simulates inputs to
both calls simply by following the protocol on its input, and
there are no outputs to S in these steps. Thus, the messages re-
ceived by S in these steps are simulated by the corresponding
server-side simulators of the MPC and STLPSI.

This completes the description of the simulator SimS . The
argument of the indistinguishability of the simulated and real
views is immediate.

D Complexity Analysis of FLPSI

In this section, we present the computation and communica-
tion complexities wrt the database and query sizes. C holds a
set of T subsamples for a single query, and S holds a database
of N records with associated labels, each with T (subsample,
share) pairs. Let a,B,m be the number of partitions, size of
each partition and size of SIMD batching vector, respectively.

Communication complexity. FLPSI includes two interac-
tive protocols: 2PC subsampling (CAES,SAES) and STLPSI
(CST LPSI ,SST LPSI). Let β be the data transmission cost for a
single (CAES,SAES) call, then the communication complex-
ity for the former is O(T β) , which does not depend on the
database size. Let ` be the length of an item in MS and SS,
which is equal to domain of FHE scheme FP, where `= logP.
Then, STLPSI has O(a`+T `) = O(T `(N

mB +1)) communi-
cation complexity. Since mB could be parameterized to be
(almost) equal to N (see Sect. 11.2), the total communica-
tion complexity is O(T (`+ β)) (or O(T `) considering the
dominant term) in practice. This is sublinear relative to the
database, but linear relative to the number of subsamples.

Computation complexity. In the offline phase, S needs
to interpolate m×a polynomials, each in the degree of B =
NT
ma . Given that the interpolation has a O(B2) complexity,

then the offline complexity is O((NT)2

ma) [16]. In the online
phase, S homomorphically evaluates a B-degree interpolation
polynomial for all partitions, which has a O(NT 2

m2) complexity.
Since T � m, we have O(NT

m) FHE operations. Moreover,
C tries

(T
t

)
combinations among plaintext results of each

partition, which brings an additional O(
(T

t

)ma
T) share recovery

cost through plaintext data. Note that we fix t to a small value
for all of the evaluated datasets, thus the share recovery cost
does not become a bottleneck in our pipeline (e.g., only 0.95%
of the query time, as reported in Fig. 9).

E Parameter Selection Process

Tuning all parameters together has its own challenges because
this is a big search space to explore. Since t and T values
(especially t) is also critical for the complexity of our protocol,
we set t = 2 and search for the minimum possible T value. To
achieve this, we first tune the length of bio-bit vectors. Then,
we brute force the Nsb and T by targeting to the minimum
errors. We also consider the threshold τrb for the ratio of
reliable bits along with these parameters. Instead of brute
forcing, we follow a more probabilistic approach to find its
optimal value. That is, we have to guarantee that enough bits
are retained at the end of the NR layer to pick T distinct
subsampling functions (each has Nsb ones). Hence, 1) the
number of the remaining reliable bits (Nrb) should be more
than the number of subsampled bits in each subsampling
function (Nrb >Nsb) and 2)

(Nrb
Nsb

)
≥ T inequality should to

be guaranteed. Finally, we fix our parameters to the values
presented in Fig. 6.

928 30th USENIX Security Symposium USENIX Association

	Introduction
	Summary of Our Contributions

	Related Work
	Overview and Technical Details
	Plaintext Fuzzy Matching
	Private Fuzzy Matching
	Our Solutions to Technical Challenges
	Trust Assumptions and Threat Model

	Definition of FLPSI
	Building Blocks of FLPSI
	Binary Encoding
	Subsampling and 2PC
	Secret Sharing
	Set Threshold LPSI (STLPSI)
	Formal Definition of STLPSI
	Constructing STLPSI Protocol
	Full Protocol and Security Proof of STLPSI

	FLPSI Protocol
	Instantiating FLPSI Protocol

	Security Analysis of FLPSI Protocol
	Security Definition of FLPSI
	Security Theorem and Proof of FLPSI

	Complexity Analysis of FLPSI
	Environment and Implementation Details
	Optimizing FLPSI Implementation
	Evaluation
	Datasets
	Parameters
	Costs of FLPSI
	Offline Preprocessing Cost of FLPSI
	Online Communication Cost
	Online Computation Cost

	Impact of Load Balancing Optimization
	End-to-end Comparison with Prior Art
	Comparison to Threshold Matching Approaches
	Comparison to kNNS Approaches

	Conclusions
	Super-Bit Locality Sensitive Hashing
	Securely Realizing Ideal Functionality
	Proving the Security of STLPSI and FLPSI
	Proving the Security Theorem of STLPSI
	Simulating the Client
	Simulating the Server

	Proving the Security Theorem of FLPSI
	Simulating the Client
	Simulating the Server

	Complexity Analysis of FLPSI
	Parameter Selection Process

