
SEApp: Bringing Mandatory Access Control
to Android Apps

Matthew Rossi*, Dario Facchinetti*, Enrico Bacis*, Marco Rosa+, Stefano Paraboschi*

Speakers
Matthew Rossi matthew.rossi@unibg.it
Dario Facchinetti dario.fad@gmail.com

*University of Bergamo +SAP Security Research

mailto:matthew.rossi@unibg.it
mailto:dario.fad@gmail.com
https://seclab.unibg.it/

Motivation

Retain control on which components access sensitive data, and limit the impact of
internal vulnerabilities

● every component has complete access to the internal storage
● 3rd-party libraries may abuse app privileges
● large and complex components prone to bug are not easy to isolate

Idea

libmedia.so

Activity 1 Activity 3

:core :advertisement

Activity 2

Service B

:media

Service A

SEApp

1. Separate components into different app processes
2. Regulate with SELinux the permissions at process level

A component falls into a process
based on its android:process
value in the manifest

Policy module

Each app provides a policy module. The policy module lists the security contexts
associated with processes and files.

seapp_contexts
user=_app seinfo=cert_id domain=pkg_name.unclassified name=pkg.name:unclassified
user=_app seinfo=cert_id domain=pkg_name.secret name=pkg.name:secret

file_contexts
.* u:object_r:app_data_file:s0
dir/unclassified u:object_r:pkg_name.unclassified_file:s0
dir/secret u:object_r:pkg_name.secret_file:s0

sepolicy.cil
(block package_name

(type secret)
(call md_appdomain (secret))
(typebounds untrusted_app secret)
(allow secret cameraserver_service (service_manager (find)))

...)

Policy language syntax

Declare types and assign them permissions

● type and typeattribute declare types and attributes
● typeattributeset populates attributes to improve policy conciseness
● allow grants permissions to types and attributes
● call adds a set of predefined policy statements and improve usability

Guide and enforce constraints

● block wraps the policy in a unique namespace
● typebounds bounds the permissions of a type to a parent type

Policy language constraints

To preserve the overall consistency of the SELinux policy, each policy module:

● must not change the system policy
● must have an impact only on processes and resources associated with the

app itself

Policy constraints are enforced at installation time and runtime

Origin of types and attributes

Using the block statement we detect the origin of types and attributes

● local: defined within the policy module (ns equal to the package name)
● global: defined by the system

Origin determines valid allow and typeattributeset policy statements

For example, the use of types or attributes defined by other modules is prohibited

AllowAS when a local type needs to be granted a permission on a system type [bounded]
(allow mydomain activity_service (service_manager(find)))

(typebounds untrusted_app mydomain)

Constraining allow statements

AllowSA regulates how system components access internal types [denied]
(allow gpuservice mytype (file (open)))

AllowSS represents a direct modification of the system policy [denied]
(allow isolated_app app_data_file (file (open)))

AllowAA defines privileges internal to the app module [permitted]
(allow mydomain mytype (file (create getattr open read write)))

Macros

But we need to ensure interoperability with services crucial to the app lifecycle (e.g., Zygote).

So we introduce macros.

(call md_appdomain (mydomain))

Benefits:

● safe by design, a predefined set of statements is added to the policy (i.e., by extending
system domains that already have permissions on untrusted_app and app_data_file)

● no need for the app developer to know or understand system policy internals

Changes to the app installation procedure

Install time support

Zygote was modified to enable runtime process labeling

Runtime support: processes

Introduction of restorecon service to enable file labeling

The call to the restorecon service is performed transparently by android.os.File, a
new API with the same interface of java.io.File)

Runtime support: files

Boot procedure

Since Treble:

● policy segment changes → on-device compilation

Changed the second stage (init.rc):

● to mount /data partitions (where policy modules are stored)
● implementing a new built-in function to build and reload the policy

The policy is not bypassable, since the modules are loaded before any application starts

Device: Pixel 3, Version: android-10.0.0_r41

Experiments: install time overhead

Device: Pixel 3, Version: android-10.0.0_r41

Experiments: runtime overhead

Thank you! Any questions?

Our contacts
Matthew Rossi matthew.rossi@unibg.it
Dario Facchinetti dario.fad@gmail.com
Enrico Bacis enrico.bacis@gmail.com
Marco Rosa marco.rosa@sap.com
Stefano Paraboschi parabosc@unibg.it

SEApp
 https://github.com/matthewrossi/seapp
Available for Android 10, 9
Tested on Pixel 3, Pixel 2 XL, Emulator

mailto:matthew.rossi@unibg.it
mailto:dario.fad@gmail.com
mailto:enrico.bacis@gmail.com
mailto:marco.rosa@sap.com
mailto:parabosc@unibg.it
https://github.com/matthewrossi/seapp

