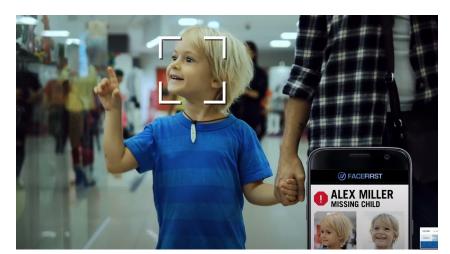
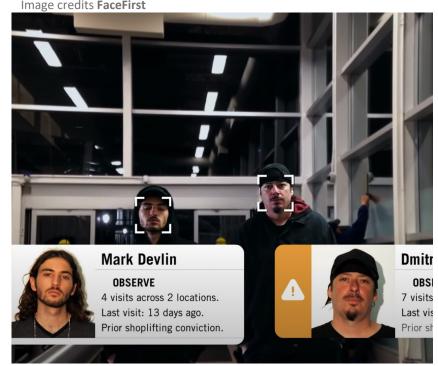


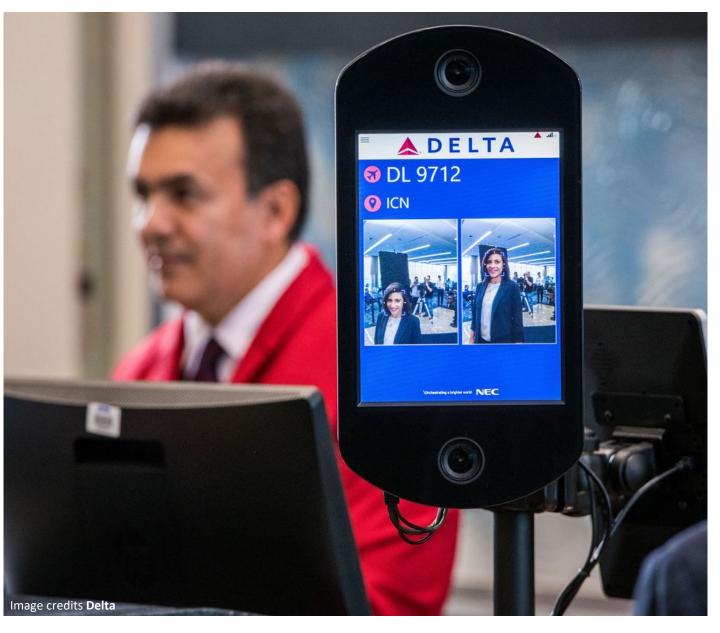
FUZZY LABELED PRIVATE SET INTERSECTION WITH APPLICATIONS TO PRIVATE REAL-TIME BIOMETRIC SEARCH

Erkam Uzun, Simon Chung, Vladimir Kolesnikov, Alexandra Boldyreva and Wenke Lee (Georgia Institute of Technology)

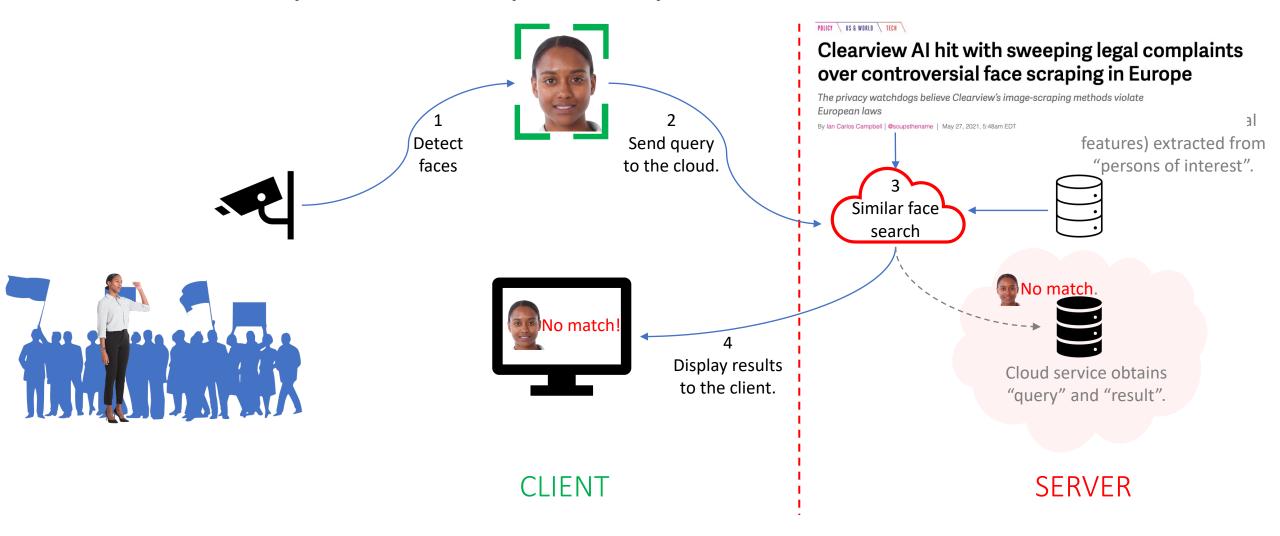
CREATING THE NEXT







Current practice: privacy risk



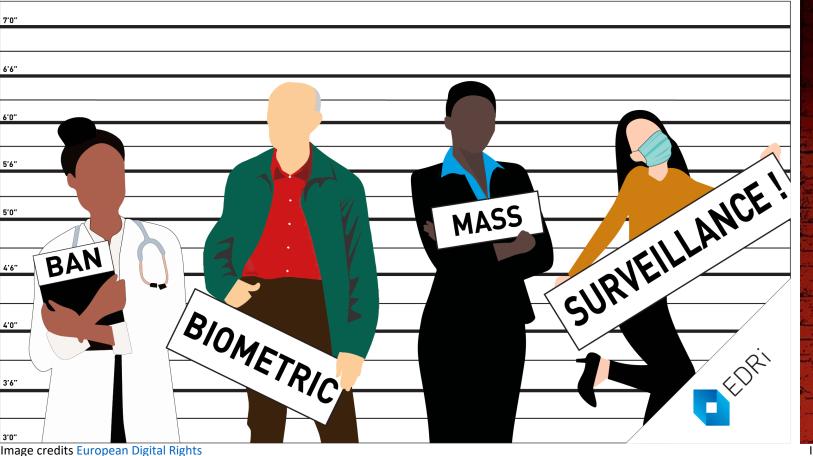
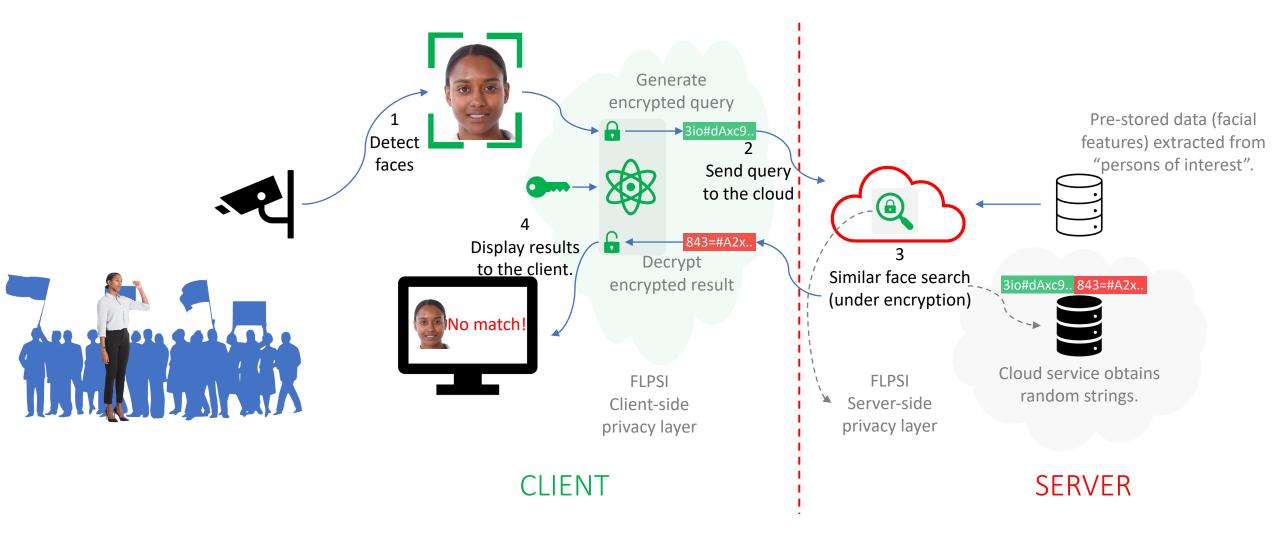


Image credits Financial Times

Ban vs Keep Using

Solution: Fuzzy Labeled PSI (FLPSI)



State-of-the-art

Exact private match: CHLR18

- (Labeled) Private Set Intersect.
 - E.g., contact list discovery
- Chen et al. (CCS'17, CCS'18)

Sublinear communication.

Efficient computation.

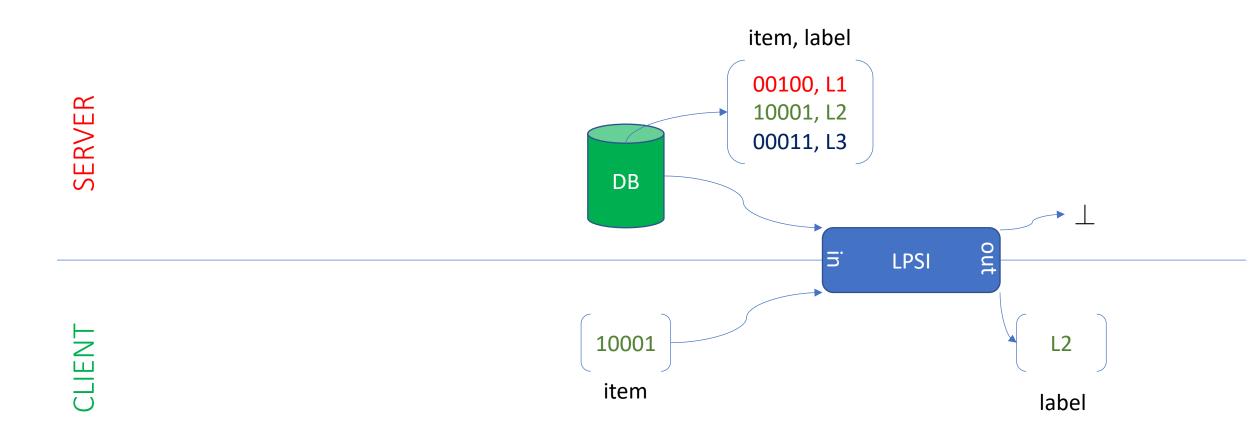
Not directly be applied to fuzzy (e.g., biometrics) match.

Fuzzy private match: SANNS

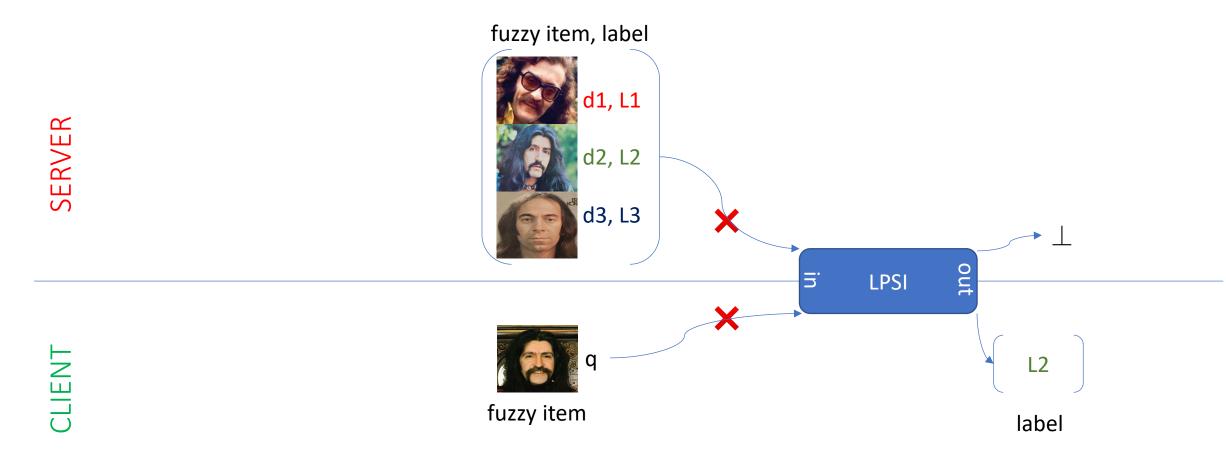
- Secure Approximate NNS
 - E.g., top-k closest embedding vector search
- Chen et al. (Usenix'20)
 Accommodate fuzzy matching.
 High bandwidth requirement.
 - 1.7-5.4 GB communication to search a face over 1M-row DB.

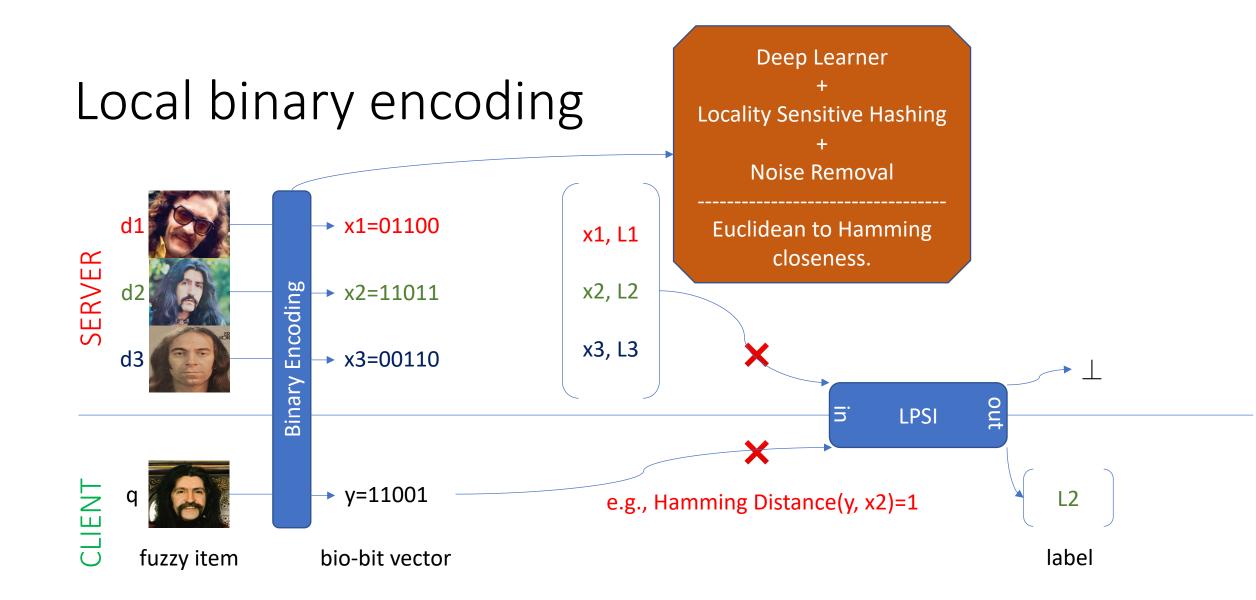
Building FLPSI

Accommodating exact matching

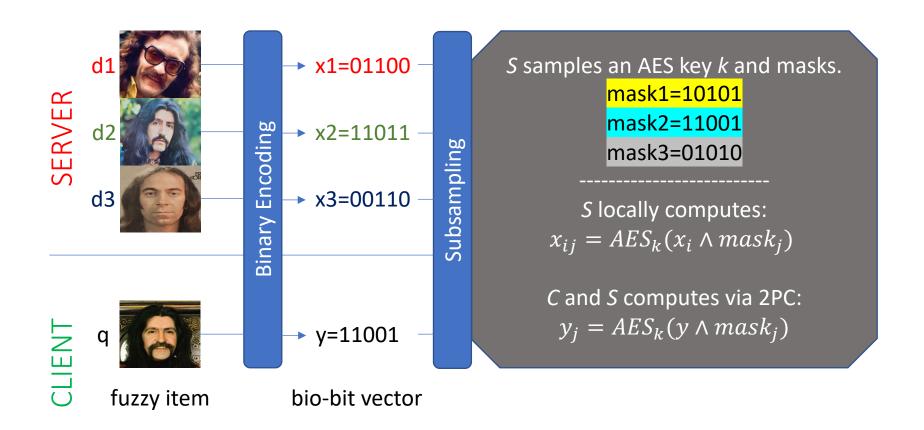


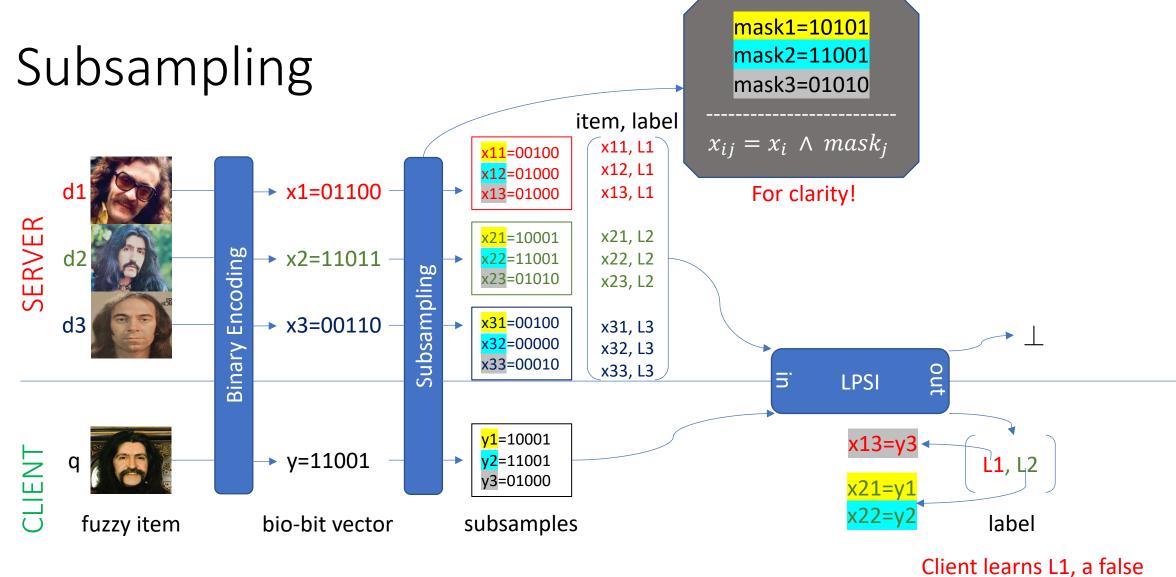
Accommodating exact matching





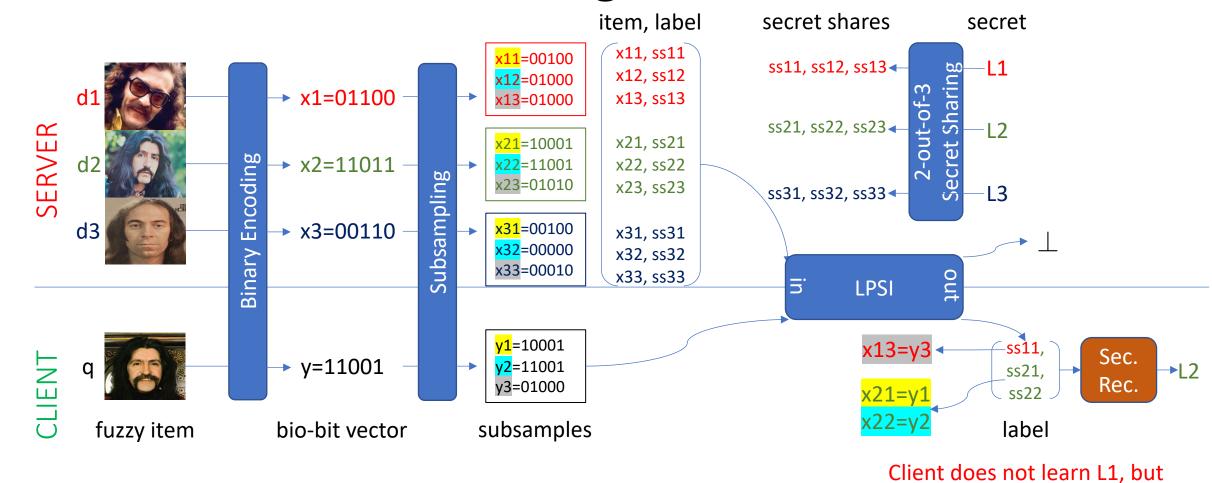
Subsampling





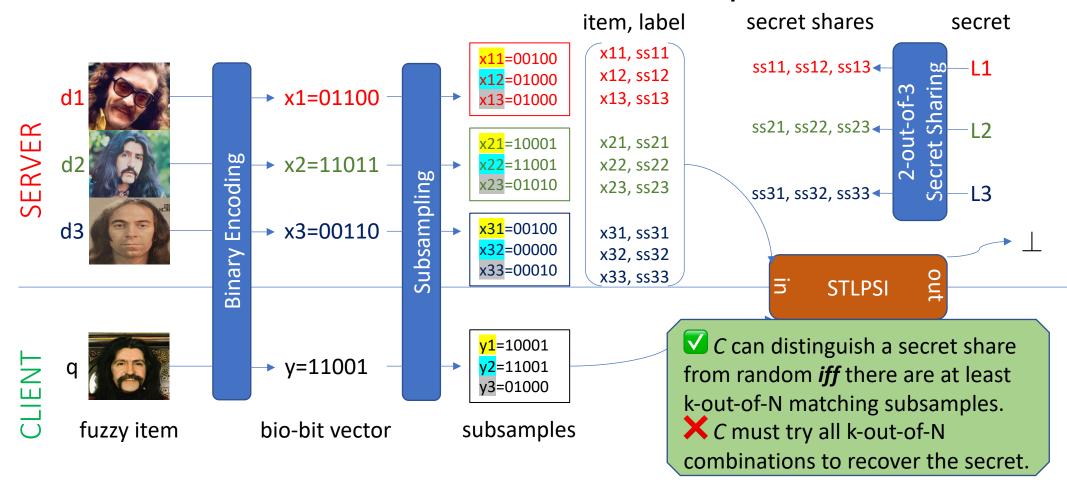
Client learns L1, a false match!

k-out-of-N Secret Sharing

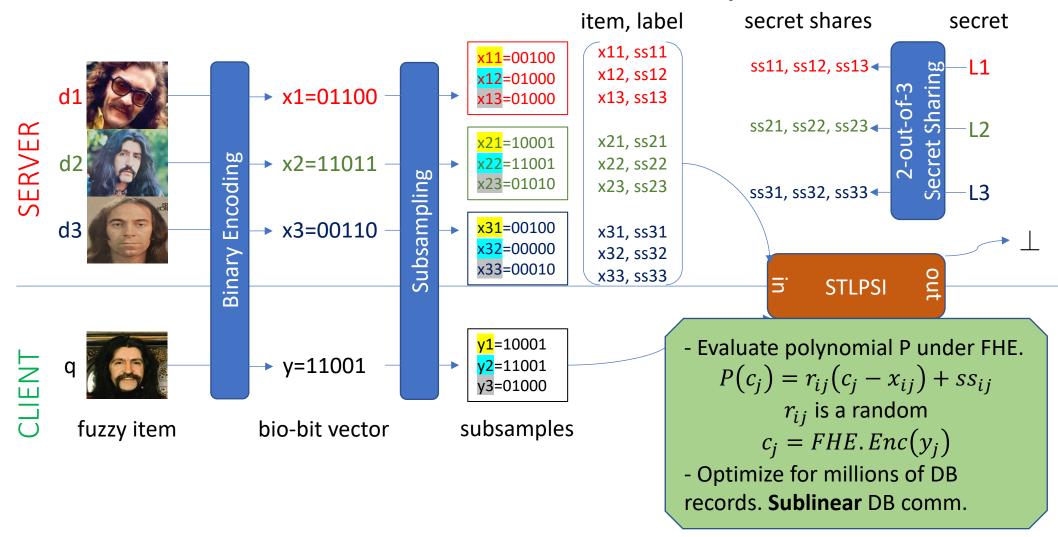


partial matches are still leaked!

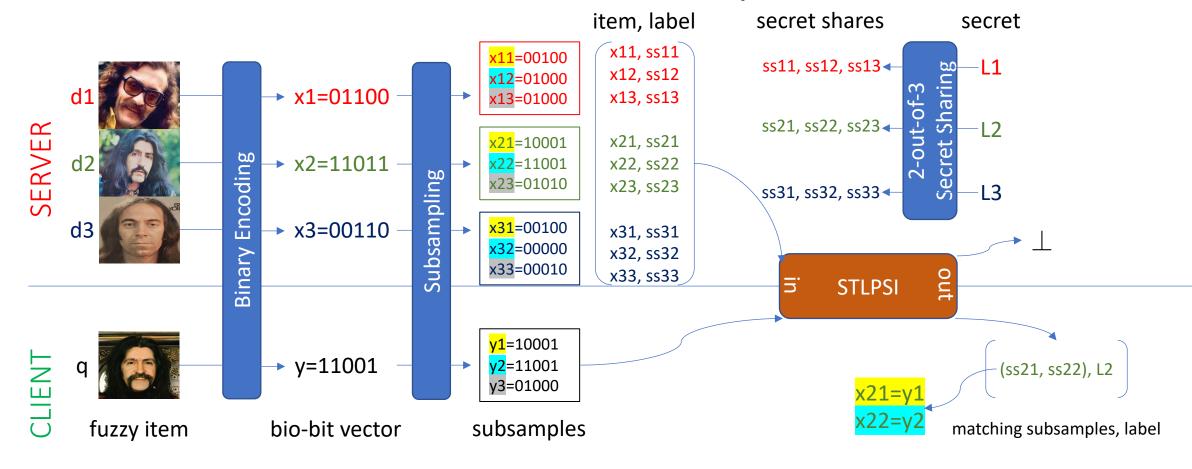
Set Threshold LPSI: k-out-of-N private match



Set Threshold LPSI: k-out-of-N private match

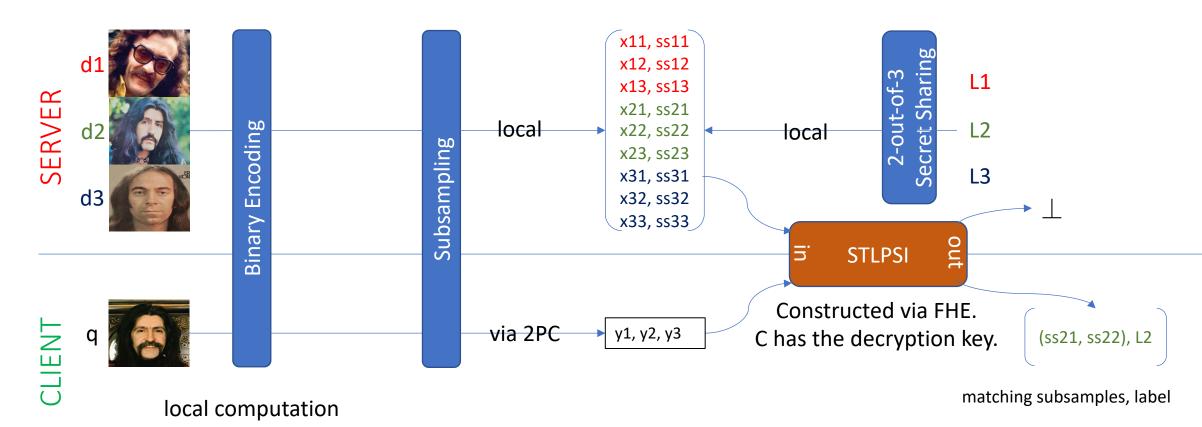


Set Threshold LPSI: k-out-of-N private match



Evaluating FLPSI

Security of FLPSI: in semi-honest model



Minor (allowed) leakage: C learns matching confidence.

Datasets

Used for	Query	Database
Face-1M	YouTube Face-YTF (1.6K)	YTF (1.6K) + StyleGAN (1M)
Deep1B-1M	10K image descriptors	1M
Deep1B-10M	10K	10M
AT&T	40 people	40

Environment and parameters

- Parameters are tuned to preserve plaintext accuracy.
 - 2-out-of-64 matching.
 - 0.67/0.75% of FRR for plaintext/FLPSI @10 false matches/query over Face-1M
- Same environment settings with SANNS (Chen et al. from Usenix'20).
 - Network settings: fast (500 MB/s) and slow (40 MB/s).
 - Azure F72s_v2 instance: 72 virtual cores, 144 GB of RAM

Performance results: Face-1M database

- Communication overhead: 40.8 MB
- Computation time:
 - @1 thread: 44 sec.
 - @72 threads: 1.36 sec.
- Best response time:
 - @fast network: 1.46 sec.
 - @slow network: 1.66 sec.

Comparison with threshold matching systems

Distance thresholding

- On AT&T dataset, single thread and same network speed (*fast*).
- Comparison with 7 systems.
 - 7.2x 90x network save.
 - 121x 7086x resp. time speed up.

k-out-of-N matching

- Asymptotic comparison with 3 systems.
- FLPSI is the *first* achieving communication sublinear to DB.

Comparison with kNN systems: SANNS

- The state-of-the-art: SANNS (Chen et al. from Usenix'20).
 - SANNS-linear: Searching over all DB items.
 - SANNS-approx: Searching over sub-DB items with slight accuracy penalty.

Database	Protocol	Communication		Response time (fast/slow)	
		Total	Saving	Total (sec.)	Speed-up
Deep1B-1M	FLPSI	40.8 MB	-	1.46/1.66	
	SANNS-linear	5.39 GB	132x	5.79/41.7	3.97/25.1x
	SANNS-approx	1.72 GB	42x	1.70/15.1	1.16/9.09x
Deep1B-10M	FLPSI	128 MB	-	12.7/13.5	-
	SANNS-linear	57.7 GB	452x	73.1/446	5.76/33x
	SANNS-approx	6.07 GB	48x	5.27/41.8	0.41/3.1x

Limitations

- Requires offline preprocessing before each query
 - 501 MB storage and 37.5 sec preprocessing for 1M-row DB.
- Client requires a public DL model.
- Not resilient against malicious attacks.
 - Server can return random outputs
 - Client can exploit allowed false matches to learn entire DB.
 - But prior systems are also semi-honest.

Questions?

Email:

euzun@gatech.edu

Project page:

https://sites.gatech.edu/euzun/projects/biometrics-surveillance