
LIGHTBLUE: 
Automatic Profile-Aware Debloating of 

Bluetooth Stacks

Jianliang Wu1, Ruoyu Wu1, Daniele Antonioli2, Mathias Payer2, 
Nils Ole Tippenhauer3, Dongyan Xu1, Dave (Jing) Tian1, 

Antonio Bianchi1

1 Purdue University 2 EPFL 3 CISPA



2

Background

• Bluetooth devices are everywhere

• Support different use cases

▪ Audio streaming

▪ Printing

▪ Smart home

▪ Health care



3

Motivation - Bluetooth is bloated

• Multiple profiles

▪ GATT (Generic Attribute Profile)

▪ PAN (Personal Area Network), etc.

• Diverse protocols

▪ L2CAP, BNEP, etc.

• Two components

▪ Host code

▪ Firmware

GATTHIDPANMAP

ATTBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth stack

GATTHIDPANMAP

ATTBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth stack

PoS app



4

Motivation - Example

GATTHIDPANMAP

ATTBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth stack

Square app



5

Objectives

• Debloating unneeded code so that the vulnerabilities within the 
unneeded code are no longer exploitable.

• Automatic

▪ LightBlue should automatically removes unneeded code 

• Flexible

▪ LightBlue should support debloating different profiles

• Full stack debloating

▪ Debloating across different components (host code and firmware)



6

LightBlue workflow

1. Identify needed profiles

2. Identify and remove code not 
used by the needed profile in the 
host (host code debloating)

3. Identify and remove unused HCI 
command handlers in the 
firmware (firmware debloating)

GATTHIDPANMAP

ATTBNEPRFCOMMSDP

L2CAP

HCI

Firmware

Bluetooth stack

Square app

GATT

Square app



7

• Scan for APIs used to invoke a profile’s functionalities

▪ E.g., getProfileProxy() on Android

Step 1. Profile identification



8

Step 2. Host code debloating (source code)

• Profile aware dependence analysis

▪ Profiles might be coupled

o Per-profile data analysis 



9

Step 2. Host code debloating (source code) cont.

• Profile aware dependence analysis (cont.)

▪ One profile has multiple entry functions

o Data analysis cannot directly apply

o Transform multiple-entry interface into a single-entry interface

• Divide profile entries into 3 categories (initiating, functioning, and ending)

• Create a dummy function mimicking the profile life-cycle

• Code removal and HCI commands extraction

Initiating
(e.g., init_src())

Functioning (e.g., 
src_connect_sink(), 

disconnect())

Ending (e.g., 
cleanup_src())



10

Step 3. Firmware debloating (binary code) 

• HCI dispatcher identification

▪ Dispatcher candidate scanning

o Scan for functions with the bitwise 
operation pattern

▪ Dispatcher candidate verification

o HCI command semantics

• Symbolically execute each candidate

• Check whether expected value is 
accessed

• HCI handler identification and 
debloating

OpCode

OCF OGF
Parameter 

length
Parameter

0 8 16 24 32

HCI dispatcher

Read BD_ADDR

BD_ADDR



11

Implementation and Evaluation

• Implementation
▪ Host code analysis
o LLVM pass

▪ Firmware analysis
o angr

• Evaluation platform
▪ Host code
o Android 6 (Bluedroid), Android 9 (Fluoride), Linux (BlueZ), Embedded system 

(BlueKitchen)

▪ Firmware
o BCM4335, BCM43430A1, CYW20735B1



12

Host code debloating

• Keep each of the possible profiles on 4 platforms

▪ BlueDroid (6 profiles): average ~40% code reduction

▪ Fluoride (7 profiles): average ~33.7% code reduction

▪ BlueZ (5 profiles): average ~31.7% code reduction

▪ BlueKitchen (8 profiles): average ~49.1% code reduction

• Keep 5 common profile combinations

▪ A2DP & HFP, GATT & HFP, A2DP & GATT & HFP, A2DP & GATT, A2DP & HID

▪ Code reduction drops slightly (~5%) compared with keeping one profile



13

Firmware debloating

• BCM4339

▪ ~65% of the HCI command handlers are debloated

• BCM43430A1

▪ ~57% of the HCI command handlers are debloated

• CYW20735B1

▪ ~83% of the HCI command handlers are debloated



14

Security improvement

• Prevented vulnerabilities

▪ 20 known vulnerabilities can be prevented 
by debloating different profiles

▪ 15 of them can be triggered over-the-air

• Prevented attacks

▪ BlueBorne attack (Armis’2017)

▪ BadBluetooth attack (NDSS’2019)



15

Summary

• We develop a new technique to identify the unneeded code in a 
Bluetooth stack with a given Bluetooth app

• We build LightBlue to automatically debloat unneeded code in 
Bluetooth host source code and firmware binary

• We evaluate LightBlue on 4 platforms

▪ 31% - 49% host code reduction and 57% - 83% firmware reduction

▪ Prevention of 20 known CVEs

• LightBlue is open-source

▪ https://github.com/purseclab/lightblue



Thank you!

Questions?
wu1220@purdue.edu

This project was supported in part by ONR under grants N00014-18-1-2674 and N00014-17-1-2513


