
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Towards Automatically Reverse Engineering
Vehicle Diagnostic Protocols

Le Yu, Yangyang Liu, Pengfei Jing, Xiapu Luo, Lei Xue, and Kaifa Zhao,
The Hong Kong Polytechnic University; Yajin Zhou, Zhejiang University; Ting
Wang, The Pennsylvania State University; Guofei Gu, Texas A&M University;

Sen Nie and Shi Wu, Tencent Keen Security Lab
https://www.usenix.org/conference/usenixsecurity22/presentation/yu-le

Towards Automatically Reverse Engineering Vehicle Diagnostic Protocols

Le Yu1, Yangyang Liu1, Pengfei Jing1, Xiapu Luo1∗, Lei Xue1

Kaifa Zhao1, Yajin Zhou2, Ting Wang3, Guofei Gu4, Sen Nie5, Shi Wu5

1The Hong Kong Polytechnic University 2 Zhejiang University
3The Pennsylvania State University 4Texas A&M University 5Tencent Keen Security Lab

Abstract

In-vehicle protocols are very important to the security assess-
ment and protection of modern vehicles since they are used in
communicating with, accessing, and even manipulating ECUs
(Electronic Control Units) that control various vehicle compo-
nents. Unfortunately, the majority of in-vehicle protocols are
proprietary without publicly available documents. Although
recent studies proposed methods to reverse engineer the CAN
protocol used in the communication among ECUs, they can-
not be applied to vehicle diagnostics protocols, which have
been widely exploited by attackers to launch remote attacks.
In this paper, we propose a novel framework for automatically
reverse engineering the diagnostic protocols of vehicles by
leveraging professional diagnostic tools. Specifically, we de-
sign and develop a new cyber-physical system that uses a set
of algorithms to control a programmable robotics arm with
the aid of cameras to automatically trigger and capture the
messages of diagnostics protocols as well as reverse engineer
their formats, semantic meanings, and proprietary formulas
required for processing the response messages. We perform a
large-scale experiment to evaluate our prototype using 18 real
vehicles. It successfully reverse engineers 570 messages (446
for reading sensor values and 124 for controlling components).
The experimental results show that our framework achieves
high precision in reverse engineering proprietary formulas
and obtains much more messages than the prior approach
based on app analysis.

1 Introduction

In-vehicle protocols are very important to the security assess-
ment and protection of modern vehicles since they are used
in the communication between ECUs (e.g., CAN protocol) as
well as the accessing and manipulating ECUs (e.g., diagnostic
protocols). For example, the communication between ECUs
usually follows the ISO 11898 standard [18]. The diagnostic

∗The corresponding author.

protocols were designed for reading sensor values or control-
ling ECUs through the OBD port. For example, Keyword
Protocol 2000 (KWP 2000) [1, 5, 6] and Unified Diagnostic
Services (UDS) [8] are most widely used diagnostic proto-
cols. Although these standards define the low-level message
formats, the syntactic information and semantic meaning of
messages, as well as formulas for encoding the return values,
are usually defined by vehicle manufacturers and thus are
proprietary without publicly available documents.

Recent studies for reverse engineering in-vehicle protocols
focus on analyzing the CAN messages transmitted between
ECUs [48, 71]. Unfortunately, they cannot be applied to the
diagnostics protocols because they neither consider the trans-
mission layer protocol used to transmit high-level messages
that may span multiple CAN messages [20] nor recover the
proprietary formats and formulas. It is worth noting that di-
agnostics protocols have been widely exploited to launch
various attacks on vehicles. For example, Miller et al. [65]
send diagnostic messages through OBD port to kill engine
or control fuel gauge of the Ford and Toyota [65]. Other
examples include the attacks using diagnostic messages to
control Hyundai Sonata and Toyota Camry [9,10], BMW [14],
Jeep [66], Volkswagen [50].

CANHunter [83] inspects the apps of vehicle telematics
dongles to extract the messages sent by the apps. Although
it may collect some messages of diagnostics protocols, we
find in §4.6 that the majority of the collected messages be-
long to the well-documented OBD-II protocols [34] instead
of proprietary diagnostics protocols. The reason may be that
the telematics apps studied in [83] are mainly designed for
normal drivers, and thus they just read ordinary information
(e.g., speed, engine RPM) through the OBD-II protocols [34].
Moreover, CANHunter [83] focuses on driving the apps to
send request messages without reverse engineering the request
messages and the formulas required for processing response
messages. Therefore, even if a few telematics apps in [83]
send and receive messages of proprietary diagnostics proto-
cols, CANHunter does not reverse engineer them.

In this paper, to fill the gap, we propose a novel frame-

USENIX Association 31st USENIX Security Symposium 1939

work named DP-Reverser to reverse engineer vehicle diag-
nostic protocols automatically. We focus on KWP 2000 [12]
and UDS [26] because they have been widely used in most
vehicles. For example, UDS, which is derived from KWP
2000, has been used in all new ECUs from tier-1 suppliers
and is incorporated into other popular standards such as AU-
TOSAR [74, 84]. Although the standards define the low-level
message formats, the high-level information customized and
used by vehicle manufacturers is proprietary. For example, the
value and functionality of some fields in the request messages
are customized by the manufacturers. Moreover, proprietary
formulas are required to transform the data stored in the re-
sponse messages to meaningful values.

In particular, we observe that the ECUs of almost all mod-
ern vehicles can be accessed and even manipulated by certain
professional diagnostic tools. They can be either general di-
agnostic tools that can handle multiple kinds of vehicles e.g.,
[31] or special ones designed for a specific kind of vehicles
e.g., [72]. Moreover, it is not difficult to purchase or access
such tools since they are widely used by automobile 4S shops
and repair shops. By exploiting this observation, our frame-
work first drives professional diagnostic tools to generate
messages of diagnostic protocols and captures them. Then,
it uses a set of algorithms to reverse engineer the value and
functionality (i.e., semantic information) of target fields in
request messages as well as the proprietary formulas required
to process response messages.

The design and development of our framework need to ad-
dress several challenging issues. First, the implementation of
diagnostic tools is diverse, which can be roughly divided into
three categories, namely professional handheld diagnostic
equipments (e.g., [31, 36]), professional diagnostic software
running on a host (e.g., [37, 72]), and OBD based telematics
apps. Thus, the framework should be general for all exist-
ing diagnostic tools, extensible for incorporating new tools,
and automated for reverse engineering the diagnostic proto-
cols of a large number of vehicles. Moreover, professional
diagnostic tools usually adopt various security techniques to
prevent analysis and reverse engineering. For example, the
hardware and software of professional handheld diagnostic
equipments are usually carefully hardened and well protected
so that other programs or apps cannot be installed into them
and their firmware cannot be extracted. Second, vehicle man-
ufacturers define proprietary formulas to encode the actual
values of ECUs into the data in response messages. Thus,
the framework should be able to automatically reverse engi-
neer these proprietary formulas to recover the raw data into
meaningful values.

To solve the first challenge, we design and develop a new
cyber-physical system to automatically drive diagnostic tools
and collect the corresponding request and response messages
of diagnostic protocols. Specifically, it uses two cameras to
capture UI screenshots of the diagnostic tools and uses OCR
(Optical Character Recognition) algorithms [23] to extract the

sensor values and semantic information from the screenshots.
Moreover, it analyzes the UI screenshots to decide the optimal
movement strategy to instruct a programmable robotic arm
(i.e., robotic clicker) to click the diagnostic tools. In the mean-
time, it monitors the OBD port to capture all CAN frames and
associates them with the screenshots of the diagnostic tools.
To tackle the second challenge, we first extract the sensor
values from the UI video and associate them with the values
of sensor fields that are extracted from the recovered pay-
load of diagnostic messages. Then, we design an improved
genetic programming algorithm to infer the proprietary for-
mulas based on the extracted data.

We develop a prototype of DP-Reverser and conduct a
large-scale experiment to evaluate it using 18 real vehicles,
which come from 14 major manufacturers in six countries.
DP-Reverser successfully reverse engineered 570 messages
(446 for reading sensor values and 124 for controlling compo-
nents). Its precision of inferring the proprietary formulas of
UDS and KWP 2000 reaches 98.3%, which is much higher
than alternative algorithms, including the linear regression
(43.8%) and polynomial curve fitting (32.1%). By using 7
kinds of ECU signal values of the OBD-II protocol as the
ground truth, we find that the DP-Reverser achieves 100%
precision. Moreover, in order to compare the number of pro-
prietary formulas that can be extracted from professional
handheld diagnostic equipments and OBD based telematics
apps, we developed a new tool to analyze 160 telematics apps.
The result shows that only 3 apps include UDS/KWP 2000
formulas. Moreover, we conduct experiments with two real
vehicles to compare the information that can be reversed en-
gineered from professional diagnostic tools and that from
telematics apps. The results show that much more important
information about the diagnostic protocols can be obtained
from professional diagnostic tools.

In summary, our major contributions include:
• To the best of our knowledge, we propose the first CPS-
based framework, entitled DP-Reverser, for automatically re-
verse engineering vehicle diagnostic protocols from profes-
sional diagnostic tools.
• We develop a prototype of DP-Reverser with a focus on
two widely used diagnostic protocols (i.e., KWP 2000 and
UDS) after tackling several technical challenges, such as co-
ordinating the robotic arm, cameras, and diagnostic tools to
efficiently collect and process the messages of diagnostic
protocols, reverse engineering the proprietary formulas.
• We conduct a large-scale experiment to evaluate
DP-Reverser with 18 vehicles, 4 professional diagnostic
tools/software, and 160 telematics apps. We also develop
a new tool to analyze telematics apps for comparison. The ex-
perimental results show that it can accurately reverse engineer
the detailed information of the request and response messages
of diagnostic protocols. The source code of DP-Reverser and
the new tool for analyzing telematics apps will be released at:
https://github.com/yulele/DP-Reverser.

1940 31st USENIX Security Symposium USENIX Association

https://github.com/yulele/DP-Reverser

2 Threat Model and Background

2.1 Threat Model

Fig. 1 shows a model of a modern vehicle [78]. The ECUs
of the vehicle are connected through bus systems. They can
handle the data collected from sensors or camera [53]. They
communicate with each other by using CAN frames [19] and
are connected to the gateway. The OBD port was designed
for On-board diagnostics (OBD), which refers to the vehicle’s
self-diagnostic and reporting capability [34]. The professional
diagnostic tools [31,36,37,72] connected to the OBD port can
send diagnostic messages to ECUs and receive response mes-
sages to read their values or even manipulate them. Aiming
at automatically reverse engineering the request and response
messages of diagnostics protocols, we only assume the avail-
ability of a target vehicle and a diagnostic tool that works for
the vehicle.

OBD
port Central

Gateway

ECU

ECU
ECU

Domain Gateway Domain Gateway

ECU

ECU

ECU

Professional
Diagnostic Tools

Figure 1: Communication system in the vehicle.

Our system and results can be used by both attackers and
defenders. On the one hand, to attack a vehicle, the attacker
can first rent a vehicle of the same type and then use our
system to reverse engineer the diagnostics protocols supported
by the vehicle. After obtaining the detailed information of
such messages, the attacker can inject such messages to the
target vehicle through vulnerable OBD-II dongles or T-Box or
other communication channels [10,65] in order to control the
vehicle or cause severe safety consequences. To demonstrate
it, we conduct an experiment with 4 real vehicles, including
BMW i3, Lexus NX300, Toyota Corolla, and Kia. We find
that all these diagnostic messages can trigger certain actions
even when the vehicle is running and thus cause safety issues.
For example, by sending the diagnostic message 40 05 30 11
00 ... 001 to Toyota Corolla, we can successfully unlock all
doors when the vehicle is running. Tab. 13 in Appendix lists
other reverse-engineered diagnostic messages used in this
experiment. On the other hand, third-party security solution
providers can benefit from our research because they need
the information of diagnostic messages to filter out injected
malicious diagnostic messages [54, 79, 81].

1Part of the messages is hidden to avoid being abused. This practice is
also applied to other diagnostic messages in this paper.

2.2 CAN message.
ECUs connected to the CAN bus use CAN frames to com-
municate with each other. According to the CAN 2.0 speci-
fication, each CAN frame contains one CAN ID and a data
field [45]. The CAN ID determines which ECU will process
the frame. A lower value of the CAN ID field indicates a
higher priority of the corresponding frame. The data field
contains up to 8-byte data. To send a long message with more
than 8-byte data, the sender relies on the transport/network
layer protocols (e.g., ISO 15765-2 [11], VW TP 2.0 [29]) to
split the long message into multiple CAN frames.

Table 1: OSI model of KWP 2000, UDS, and OBD-II

Application KWP 2000: UDS: OBD-II:
Session ISO 14230-3 [5] or 15765-3 [6] ISO 14229-2 [28] ISO-15031 [34]

Transport ISO 15765-2 [11] ISO 15765-2 [11] ISO 15765-2 [11]Network VW TP 2.0 [29]
Data Link
Physical K-Line: ISO 14230-1(2) [3, 4], CAN: ISO 11898 [18]

2.3 Diagnostic Protocols
OBD-II, KWP 2000, and UDS are the most popular diagnostic
protocols [13, 22]. Tab. 1 shows their OSI model. We do
not reverse engineer the OBD-II protocol because it is well-
documented. The SAE J1979 standard [7] defines the list of
services (i.e., modes), the parameter ids (i.e., PIDs) list of
each service, the formulas used to parse response messages,
and the diagnostic trouble codes [33, 35].

2.3.1 KWP 2000

Keyword Protocol 2000 is an on-board diagnosis protocol
compatible with both K-Line and CAN in-vehicle networking
systems [17]. KWP 2000 is widely used in vehicles manufac-
tured and sold in Europe. For K-Line based KWP 2000, the
physical, data link, and application layers are compatible with
ISO 14230 standard [2, 3, 5]. For CAN based KWP 2000, the
transport and application layer protocols are compatible with
ISO 15765-2 [11] and 15765-3 [6]. Volkswagen uses its own
transport layer protocol VW TP 2.0 [29].

0

Request

Service
Id: 0x30

Input Output
Local Identifier

1 0

Positive Response

1 2 ŏ�Q2 ŏ�Q
Control
Option

Service
Id: 0x70

Input Output
Local Identifier

Control
Status

0

Request

Service
Id: 0x2F

Input Output
Common Identifier

1 2 0

Positive Response

3 ŏ�Q3 ŏ�Q
Control
Option

Service
Id: 0x6F

Control
Status

1 2
Input Output

Common Identifier

Figure 2: Request and positive response messages of the input
output control by local identifier service and input output
control by common identifier service of KWP 2000

Using KWP 2000, diagnostic tools can control an output
(actuator) of an electronic system of the vehicle through two

USENIX Association 31st USENIX Security Symposium 1941

services: input output control by local identifier service (id
0x30) [1, 5] and input output control by common identifier
service (id 0x2F) [1, 5], and read ECU signal values denoted
as ESV through the read data by local identifier service (id
0x21) [1]. When using KWP 2000 to control an output (ac-
tuator) of an electronic system, the diagnostic tool will send
a request message to the ECU [1]. If the request message is
successfully executed, the ECU will send a positive response
message to the diagnostic tool.

Fig. 2 shows the formats of the request message and posi-
tive response message. For the input output control by local
identifier service, the request message contains the service
id (0x30), the input output control local identifier (one byte),
and control option. The control option field shall include all
information required by the ECU’s output signal or actuator.
We use ECU Control Record (ECR) to represent the control
option. The positive response message contains the service id,
input output local identifier, and control status. For the input
output control by common identifier service, the format of
request and response messages are similar.

0

Request

Service
Id: 0x21

Local Id

1 0

Positive Response

Service
Id: 0x61

Local Id

1
ECU Signal

Value

2 ŏ�Q
 #1 … #m

Figure 3: Request and positive response messages of the read
data by local identifier service of KWP 2000

When using KWP 2000 to read data from the vehicle, the
formats of the request and positive response messages are
displayed in Fig. 3. The request message contains one local
identifier. The positive response message contains 1 to m ECU
signal values(i.e., ESVs). One ESV in the response message
describes one kind of data in ECU (e.g., engine RPM, steer-
ing angle). It has three bytes. The first byte determines the
formula used to calculate the actual ECU signal value. We use
Ftype to represent it. The remaining two bytes are the values
used in the formula. We use X0 and X1 to represent them,
respectively. By combining these three bytes, the diagnostic
device/software calculates the real ESV.
Example. To turn on/off the light, the diagnostic tool sends
the request messages “30 15 00 40 00” and “30 15 00 00
00” to the Main Body Control ECU, respectively [65]. To
obtain the engine RPM, the diagnostic tool sends the request
message “21 07” to the engine. Then, it receives a response
message containing the ESV “01 F1 10”. The formula type is
0x01. The corresponding formula is X0 ∗X1/5. As the value
of X0 is 0xF1 (i.e., 241) and the value of X1 is 0x10 (i.e., 16),
the actual ESV is 771.2 /min (i.e., 242*16/5).
Target of reverse engineering KWP 2000. We aim at three
kinds of information that is not defined in the standard of
KWP 2000, including (1) the value of local id and its semantic
information; (2) the semantic information of ECR; (3) the
corresponding formula used to transform ESV in the response

message to actual ESV.

2.3.2 UDS

Unified Diagnostic Services is a diagnostic protocol that com-
bines the K-Line based and CAN based KWP 2000 [26, 27].
Compared with KWP 2000, UDS supports more bus systems,
such as CAN, CAN-FD, LIN [12]. The ISO 14229 standard
lists 26 kinds of UDS services and the message formats of
each service [27]. Using UDS, diagnostic tools can control ac-
tuator of an electronic system through the IO control service
(id 0x2F) or read ESV by using the Read Data By Identifier
service (id 0x22) [26]. The standard defines the formats of
the request and response messages of these two services.

Request Service Id
0x2F

1 2 3
Data

Identifier

4 ŏ�Q
Control Option

Record

n+1 ŏ�
Control Enable
Mask (Optional)

Service Id
0x6F

1 2 3
Data

Identifier

4 ŏ�Q
Control Option

Record
Positive

Response

Figure 4: Request and positive response messages of UDS IO
control service.

To control the actuator of an electronic system, the diag-
nostic tool first sends a request message to the ECU. After
receiving the request message, the ECU will rely with a re-
sponse message. Fig. 4 shows the formats of the request and
positive response messages. The request message contains
four parts: 1 byte service id (i.e., 0x2F), 2 bytes data identifier
(DID), control option record (1 or more bytes), and Control
Enable Mask Record (optional). The response message starts
with 0x6F (positive response) or 0x7F (negative response).
The data identifier (DID) specifies the actuator to be con-
trolled. The control option record includes all information
required by the actuator. We use ECU Control Record (ECR)
to represent the control option record.

Request

Service Id
0x22

1 2 3

Positive Response

Service Id
0x62

Data

1 2 3 4 ŏ�Q
Data

Identifier

Data
Identifier

Figure 5: Request and the positive response messages of UDS
Read Data By Identifier service.

For the Read Data By Identifier service, the formats of
request and response messages are shown in Fig. 5. The re-
quest message contains one or more DIDs. The length of each
DID is two-byte. The response message contains one or more
ESVs. When parsing the response message, the diagnostic
device employs proprietary formulas to transform the ESV in
the message to actual ESV.
Example When testing the fog lights on the left hand, to
light up the lights for 5 seconds, the diagnostic tool sends the
request message “2F 09 50 03 05 01 00 00”. The DID is

1942 31st USENIX Security Symposium USENIX Association

0x0950 and the ECR is “03 05 01 00 00”. To read the speed
of the vehicle (DID 0xF40D), the diagnostic tool sends the re-
quest message ‘22 F4 0D” to the engine. Then, it receives the
response message “62 F4 0D 21”. The ESV in the response
message is 0x21 (i.e., 33). According to the formula X ∗1.0,
the actual speed is 33 km/h (i.e., 33∗1.0 = 33.0).
Target of reverse engineering UDS. We aim at three kinds
of information that is not defined in the standard but used for
controlling the vehicle components or reading ESV, including
(1) the value of DID and the corresponding semantic infor-
mation that specifies the component to be controlled or the
type of ESV to be read. (2) the semantic information of ECR.
(3) the formulas used when transforming ESV in response
message to actual ESV.

2.4 Vehicle diagnostic tools

According to the platforms running the diagnostic software,
the vehicle diagnostic tools available on the market can be
roughly divided into three categories (More details in §9.1).
(1) Professional handheld diagnostic equipment. It con-
tains both the hardware and software used to perform the diag-
nostic services. Users can connect the equipment to a vehicle
and read the results shown on the equipment’s screen [36,80].
(2) Professional diagnostic software. It usually runs on a
laptop. After connecting the laptop to a vehicle, users can
read the result shown on the software’s UI [72].
(3) OBD based telematics app. They usually run on a mo-
bile phone that connects to a diagnostic device plugged into
the OBD port via wireless channel (e.g., bluetooth, WIFI).

We use professional diagnostic tools to represent (1) pro-
fessional handheld diagnostic equipment and (2) professional
diagnostic software in the following part of this paper.

3 System Design

Fig. 6 (a) shows the architecture of DP-Reverser. The diag-
nostic tool is connected to the vehicle. The data collection
module described in §3.1 collects the diagnostic messages
and captures the video of the UI of the diagnostic tool, which
will be used as the input of reverse engineering.

As a cyber-physical system [57], the data collection module
includes three layers. At the sensor/actuator layer, it has one
robotic clicker (i.e., actuator) to click the diagnostic tool’s
screen. It also has two cameras: camera a captures the screen-
shots of the diagnostic tool to guide the robotic clicker and
camera b records the video of the UI of the diagnostic tool for
reverse engineering. At the communication layer, camera a
sends the screenshots to a laptop via a USB connection. The
laptop also uses a USB connection to send the latest control
scripts to the actuator. The application layer is a laptop that
analyzes the screenshots taken by camera a and generates
the control scripts to control the robotic clicker. When the

data collection module is working, we sniff the CAN frames
exchanged between the diagnostic tool and the vehicle.

The diagnostic frames analysis module described in §3.2
receives the CAN frames generated by the diagnostic tool.
Since one CAN frame may contain partial payload of the diag-
nostic protocols, this module first assembles the payload and
then extracts the fields from request and response messages.
The screenshot analysis module described in §3.3 takes in the
video of UI and then extracts the texts shown on UI.

Finally, the request message analysis module described
in §3.4 associates the local identifier fields and DID fields
customized by vehicle manufacturers with the text shown on
UI to determine their functionality (i.e., semantic information).
The response message analysis module described in §3.5 uses
the ESV stored in response messages and the actual values
shown on UI as input. It recovers the formulas used to parse
response messages.

3.1 Data Collection
Since diagnostic tools are usually well protected and we can-
not install any other programs into them to control or extract
their firmware, we leverage a robotic clicker to interact with
them so that the CAN messages and UI video can be recorded
automatically. Note that our approach is independent of diag-
nostic tools and can be applied to various diagnostic tools in
order to automatically reverse engineer the diagnostic proto-
cols of a large number of vehicles.

Fig. 6 (b) shows the procedure of the data collection mod-
ule. By using camera a to capture the screenshot of the UI, the
UI analyzer identifies the ECUs or ESVs that will be tested.
Here, test means the diagnostic tool reads ESV or controls the
component over a period of time. The (X,Y) coordinates of
these ECUs/ESVs are sent to the planner, which will estimate
the total moving distance of different sequences of clicking.
The planner will select the sequence with the shortest path
and send it to the script generator that transforms the clicking
sequence to a script and inserts waiting times between click-
ing. The script executor and logger run the script and record
the detail of each clicking. When the diagnostic tool shows a
new GUI, camera a will take a new picture and send it to the
UI analyzer to continue the data collection.

The robotic clicker is a hardware that controls a stylus pen
to click the screen according to the specified (X, Y) coordi-
nates. Since the stylus pen can only move straight along the
coordinate axis with fixed speed, we determine the optimal
clicking sequence with the least moving distance to reduce
the time of data collection.
UI Analyzer. It inspects the texts shown on UI and outputs the
(X, Y) coordinates to click. To achieve this goal, we leverage
computer vision techniques (CV) [47] to first locate the areas
with text from the figure and then filter out irrelevant areas
according to the text information in them.

More precisely, given a picture of the UI, identifying the

USENIX Association 31st USENIX Security Symposium 1943

Diagnostic Frames
Analysis

Data Collection

Request Message
Analysis

Response Message
Analysis

The functionality of
customized fields in
request messages.

The formulas used
when processing
response messages.

Section 3.2

Section 3.3

Section 3.4

Section 3.5

Section 3.1

CAN
Frames

Video
of UI

Target
Fields

UI
Texts

Screenshot Analysis

UI Analyzer

Target
ECUs/ESV

Planner Script
*HQHUDWRU

Script
Executor DQG�/RJJHU

Order of clicking
ECUs/ESV

Scripts

Pictures

Take pictureClick UI Send output

Camera aCamera b (a) (b)

Figure 6: System Overview (a) and Data Collection Steps (b)

areas with text is a “Text Detection” task in CV. We use the
open-source text detector “EAST” [39] to accomplish it be-
cause EAST can process 13 pictures per second and achieves
high text detection accuracy. After identifying the areas with
text, the UI analyzer checks the text content of each area to
filter out the areas that are not our target (e.g., “clear trouble
codes”). This is an “OCR” (i.e., “Optical Character Recogni-
tion”) task. We use Tesseract, one of the most popular open-
source OCR engines [56, 67, 75, 77] to accomplish it, because
Tesseract has a new neural net (LSTM) based OCR engine
that can recognize more than 100 languages and its word er-
ror rate is only 6.4% for English and 6.29% for Chinese [76].
If the text recognized by OCR contains the keywords (e.g.,
“Read Data Stream”), the robotic clicker will click this area.

If some buttons do not contain text, our system recognizes
them by exploiting the similarity of UI widgets. In detail,
for each screenshot of the UI, we first identify all widgets
in it. Then, we identify the widgets with/without text from
the screenshot seperately since we cannot perform static or
dynamic analysis on the diagnostic tools to extract the wid-
gets from UI. The widgets with text are identified by using
Tesseract [24]. The widgets without text are identified by us-
ing Canny edge detection [43,69]. To identify the buttons, we
calculate the similarity between each extracted widget and
the pictures of pre-defined buttons by referring [86]. If this
similarity is higher than a pre-defined threshold, we guide the
robotic clicker to click it.
Planner. After receiving a set of ECUs/ESVs to click, the
planner tries to determine the optimal clicking sequence with
the least moving distance. We formalize it as a travelling
salesman problem [38,70]. That is, given a set of ESVs on UI
and the distance between each pair of ESVs, the planner looks
for the shortest route that visits each ESV exactly once and
returns to the origin ESV. Since it is an NP-hard problem in
combinatorial optimization, we approach it by using heuristic
approach [73]. In particular, after getting the picture of the
UI, we first calculate the distance between a pair of ESVs and
then run the nearest neighbor algorithm [55] to determine
the sequence of clicking. The nearest neighbor algorithm is
a heuristic algorithm that can obtain good solutions without
guaranteeing that the optimal solution will be found. However,

it is much faster than brute-force approach [59]. We compared
the time cost of using the nearest neighbour algorithm to select
14 ESVs on UI with that of randomly selecting 14 ESVs on
UI. The result shows that, compared with random selection,
the nearest neighbor algorithm saves 7.3% time of moving
(i.e., (80.45-74.6)/80.45).
Script Generator. After getting the sequence of clicking
ECUs/ESVs, we generate a script to control the robotic clicker.
Each target will be mapped to a statement for clicking their
(X, Y) coordinates. After each clicking statement, the gener-
ator inserts a statement that waits for a fixed period of time
to ensure that the diagnostic tool has enough time to react
to the clicking. If the diagnostic tool starts reading ESV or
controlling the component, the waiting time will be relatively
long to get enough data for reverse engineering (e.g., 30 sec-
onds). All the clicking statements and waiting statements are
combined together to generate the script.
Script Executor and Logger. When the robotic clicker is ex-
ecuting the script, it logs the timestamp of each UI clicking so
that we can split the captured CAN frames and recorded video
into multiple parts. When the diagnostic tools are communi-
cating with the vehicle, we sniff the CAN frames exchanged
between the diagnostic tool and the vehicle. To record the
texts shown on UI, camera b is controlled by the “Camera
Timestamp Free” app [25] running on a smartphone to record
video of the UI. The recorded video contains timestamps used
to associate the UI texts with the corresponding CAN frames
because both the CAN frames and the video of UI are needed
for reverse engineering the diagnostic messages.

3.2 Diagnostic Frames Analysis
After getting CAN frames through sniffing, this module as-
sembles the raw payload of diagnostic messages and extracts
the target field of request and response messages. We first fil-
ter out useless frames because they do not contain the payload
of diagnostic messages in Step 1: Screening Frames. Then,
we assemble the raw payload of diagnostic messages because
the transport/network layer protocols transmit long diagnostic
messages through multiple frames in Step 2: Assembling Pay-
load. Finally, we extract the fields from the assembled payload

1944 31st USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Data Payload

Data Payload

DataLength

1

2

Sequence Number ��[���[)�

First Frame
(FF)

Continuous
Frame (CF)

FF

FC

CF

CF

CF

Sender Receiver

0 1 2 3 4 5 6 7
Data Payload0

DataLengthDataLength

Single Frame
(SF)

0 1 2
3

Flow State

Flow Control
Frame (FC)

Block
size

STmin

Figure 7: ISO 15765-2: Structures of single frame (SF), first
frame (FF), continuous frame (CF), flow control frame (FC),
and flow control mechanism.

because those fields are defined by the vehicle manufacturers
in Step 3: Fields Extraction.
Step 1: Screening Frames. As shown in Fig. 7, for ISO
15765-2 [20], four kinds of frames will be captured: single
frame(SF), first frame(FF), continuous frame(CF), flow con-
trol frame(FC) [20]. We remove the flow control frames (the
first four bits opcode is ‘0x3”) because they are used to notify
the sender the receiver’s properties (e.g., buffer size). They
do not carry the payload of diagnostic messages. The other
three kinds of frames are kept. For VW TP 2.0 [29], we re-
move three kinds of frames (i.e., broadcast, channel setup, and
channel parameters) because they do not contain payload [29].
Only the data transmission frames will be kept because they
contain the payload of the diagnostic messages.
Step 2: Assembling Payload. Since the network/transport
layer protocols split the long diagnostic message into multi-
ple short frames, we combine these short frames to assemble
the raw payload. For ISO 15765-2, different types of frames
are processed separately. If the frame is a single frame, the
payload stored in it is complete and we extract the payload
directly. If the frame is the first frame, the payload stored
in it is incomplete. Thus, we need to first capture the fol-
lowing continuous frames and then assemble the complete
payload by combining the payload of the first frame and the
payloads of continuous frames until the total length reaches
the data length field of the first frame. For VW TP 2.0, the
data transmission frames do not contain the data length fields.
We check their opcodes to determine if the current frame is
the last frame or not. If true (i.e., the current packet is the last
packet), we extract the concatenated payload as the raw pay-
load. Otherwise, we concatenate its payload with the payload
of the next frame.

Wen transmitting long diagnostic messages, we observe
that some vehicles like BMW and Mini Copper do not directly
adopt the ISO 15765-2 protocol. Instead, the first byte of each
CAN frame stores the ID of the target ECU. The remaining
bytes are the payload of the diagnostic message. To correctly
recover the payload of diagnostic messages, we ignore the
first byte and put the remaining bytes together since the ID is
not part of the payload.
Step 3: Fields Extraction. After obtaining the payload of a

diagnostic message, we split the payload into multiple fields
according to the protocol formats described in §2.3. We ex-
tract the local id, DID, ESV and ECR contained in diagnostic
messages because they will be used in discovering their se-
mantic meaning and formulas. For each ECR, we also extract
the IO control parameter and control state from it to discover
the semantic meaning of the control state field.

To extract fields of the diagnostic messages involved in
reading ESV, since the response message of UDS can contain
multiple ESVs and the length of each ESV is not fixed, we
cannot extract these ESVs by only checking the response mes-
sage. To solve this issue, we extract the last request message
sent to the ECU. By using the DIDs contained in the request
message as a reference, we can identify the ESVs in the cor-
responding response message, because the list of DIDs in the
request message also appear in the corresponding response
message with the same order and the field value after each
DID is just the corresponding ESV.

3.3 Screenshot Analysis
Since the texts from the video of the UI contains the semantic
information of the request messages and actual ESVs calcu-
lated by using formulas, we extract them and the timestamps
from the video by using the OCR engine Tesseract [24] which
can automatically convert typed or handwritten content into
machine readable, editable format [23]. We also design a
post-processing step to remove incorrect ECU signal values
because the precision of the OCR engine may not be 100.0%
and some incorrect values will be identified.
UI Text Extraction. We first use MPlayer [21] to transform
the video into a series of images since the OCR engine can
only process one single image at one time. Then, we apply
Tesseract [24] to these images for extracting the text.
Incorrect ESV Value Filtering. Since sometimes the OCR
engine might miss some decimal points (e.g., “25.00” is incor-
rectly identified as “2500”), we propose a two-stage filtration
to remove incorrect ESVs. In the first stage, we set a normal
value range for each type of ESV. For each ESV extracted
by OCR-engine, we check if it is in the pre-defined range
or not [15]. If true, we include it in the data set. Otherwise,
we exclude it. In the second stage, we employ the anomaly
detection (i.e., outlier detection) algorithm [51] to remove
the values that are significantly different from the majority of
the identified ESVs. The reason is that during a short period
of time, the measured ESVs cannot change greatly. In other
words, the “outlier” has a high possibility to be incorrect ones
generated by the OCR engine.

3.4 Request Message Analysis
If the values of fields in request messages and their semantic
information (i.e., functionality) are not defined in the stan-
dards, we recover their semantic information by using the

USENIX Association 31st USENIX Security Symposium 1945

texts shown on UI. When reading the ESV through UDS or
KWP 2000, the request message includes the DID (as shown
in Fig. 5) or local identifier (as shown in Fig. 3), which are
customized by the manufacturers. When controlling vehicle
components with UDS, the request message also includes
DID of the target component(as shown in Fig. 4). To obtain
the semantic meaning of the DID or local identifier in the
request message, we extract the types of ESVs displayed on
UI or the type of controlled component shown on UI.

3.5 Response Message Analysis

When parsing the response message of UDS and KWP 2000,
if it contains ESV, the diagnostic tool uses proprietary for-
mulas to transform the ESV in response to ESV displayed on
UI. To infer these formulas, since both the ESV in response
messages and the ESV displayed on UI keep changing, we
first need to correlate them. Then, we design an improved
genetic programming algorithm to infer the formulas. We
do not employ the linear regression to infer the formula [71]
because the linear regression can only infer linear formulas
(e.g., Y = a ∗X + b) [62] and it cannot infer the nonlinear
formulas (e.g., Y = X0 ∗X0) [32].
Step 1: Constructing the mapping between ESV in diag-
nostic messages and ESV displayed on UI. We create a data
set that contains a series of data pairs (i.e., (X ,Y)) according
to the timestamps in the video and the captured CAN frames.
Each data pair contains one ESV extracted from diagnostic
messages (i.e., X) and the ESV extracted from UI (i.e., Y).

For each ESV extracted from the diagnostic message (i.e.,
X), we get the timestamp of receiving the message (i.e.,
timetra f f ic). Then, we timetra f f ic to search the nearest times-
tamp displayed on UI (timeui). By using timeui, we can iden-
tify the corresponding actual ESV displayed on UI (i.e., Y).
We combine X and Y to get a value pair (X ,Y) and add it
to the data set. Note that, each ESV X is an integer value
for UDS and each ESV contains two integer values for KWP
2000 (i.e., X0 and X1 mentioned in §2.3.1).

The alignment of diagnostic messages and screenshots of
UI is important for correctly inferring the formulas. Before
starting the data collection, we adopt two methods to ensure
the alignment of diagnostic messages and screenshots of UI.
One is to use NTP protocol [64]. The other is to use the well-
documented OBD-II protocol [34]. We described the details
of the alignment in §9.4.
Step 2: Inferring the formula through genetic program-
ming. Based on the data set, we search the space of mathe-
matical expressions to find the model that best fits the data
set. That is, based on a series of independent variables (i.e.,
ESV in diagnostic messages, X) and their dependent variable
targets (i.e., ESV displayed on UI, Y), we want to find out the
formula (i.e., f) that allows f (X) = Y . In the machine learn-
ing field, this task is called “Symbolic Regression” [16]. We
apply genetic programming (GP) to solve this problem [30]

because GP can handle both arithmetic operators (i.e., addi-
tion, subtraction, division and multiplication) and nonlinear
functions (e.g., square root, log, sine, tangent).

GP uses syntax trees to represent the formulas (e.g., a ∗
a+b), where the functions are interior nodes (e.g., ∗, +) and
the variables/constants are the leaves of the trees (e.g., a, b).
GP will change the randomly generated formulas in multiple
generations and select the one that has the highest fitness
score (i.e., most close to f (X) = Y). Starting from a few
randomly generated formulas, GP selects the fittest individuals
and leverage evolution (i.e., Crossover and Mutation) to get
the next generation of formulas. The evolution process repeats
until one stopping criteria is satisfied. Two kinds of stopping
criteria are usually used: (i) the number of evolution has
reached the maximum number of generations. (ii) the fitness
of one of the latest formula has reached the threshold. The
fitness (similar to “error” or “loss” in machine learning) of one
formula is calculated using functions such as “mean absolute
error” or “mean squared error”.

Table 2: Pre-processing of the data set and post-processing of
the variables contained in the formulas inferred by GP.

ESV in response messages (X) ESV displayed on UI (Y)

Range Pre-process
Formula

Post-processing Pre-process
Formula

Post-processing
> 104 X ′ = X/104 Replace(X ′, X/104) Y ′ = Y/104 Replace(Y ′, Y/104)

103-104 X ′ = X/103 Replace(X ′, X/103) Y ′ = Y/103 Replace(Y ′, Y/103)
102-103 X ′ = X/100 Replace(X ′, X/100) Y ′ = Y/100 Replace(Y ′, Y/100)
10-102 X ′ = X/10 Replace(X ′, X/10) Y ′ = Y/10 Replace(Y ′, Y/10)
0.1-1.0 - - Y ′ = Y ∗10 Replace(Y ′, Y ∗10)

10−2-10−1 - - Y ′ = Y ∗100 Replace(Y ′, Y ∗100)
10−3-10−2 - - Y ′ = Y ∗103 Replace(Y ′, Y ∗103)
< 10−3 - - Y ′ = Y ∗104 Replace(Y ′, Y ∗104)

Step 3: Pre-processing of the data set and post-processing
of the formula. When using GP to infer formulas, we find that
the correctness of the output is affected by the ranges of ESV
displayed on UI (i.e., variable targets, Y in Tab. 2). For exam-
ple, if most values of Y are extremely small (e.g.,< 0.0001),
GP will directly set a constant value as the formula (e.g.,
Y = 0.0001). In this case, the fitness score (e.g., “mean ab-
solute error”) is smaller than the pre-defined threshold and
the evolution process stops. Moreover, if most Y values are
extremely large (e.g., > 1000), GP will generate complex for-
mulas to decrease the distance between f (X) and Y .

Our manual testing shows that when most absolute values
of X and Y are in the range 1.0 to 10.0, the output of GP
achieves the highest accuracy. Thus, before using the GP to
process (X ,Y) pairs in the data set, we first check the absolute
values of Y to determine if they should be reduced or enlarged:
If more than half of the absolute values of Y are larger than 10
(smaller than 1), we think these Y values should be reduced
(enlarged). In this case, we replace each Y value in the data
set with a new value Y ′, which is equal to Y ∗ a, where a is
the reduced or enlarged factor. We combine the new (X , Y ′)
pairs to construct a data set and infer the formula f (X) = Y ′.
After getting the formula f (X) = Y ′, we replace the variable
“Y ′” with “Y ∗a” to get the formula “ f (X) =Y ∗a”, which de-

1946 31st USENIX Security Symposium USENIX Association

scribes the relation between X and Y . For example, as shown
in Tab. 2, if most absolute values of Y are in range 103 to 104,
we divide each value with 103 (i.e., Y ′). If the inferred formula
is Y ′ = X , we replace variable “Y ′” with “Y/103” (i.e., the
final formula is Y/103 = X).

For the X values in the data set, we process them with the
same method to ensure that most new X ′ values are in the
range 1.0 to 10.0. Because all of X values are integer (i.e.,
larger than 1.0), we only check if they should be reduced or
not (“ESV in response messages (X)” in Tab. 2).

4 Experiment

We conduct a large-scale experiment to evaluate DP-Reverser
and answer the following research questions:
Q1: Can the OCR engine correctly extract text from the UI
of diagnostic tools? (§4.1)
Q2: For the frames of reading ESVs through OBD-II protocol,
can DP-Reverser correctly recover their formulas? (§4.2)
Q3: For the frames of reading ESVs through UDS and KWP
2000 protocols, can DP-Reverser correctly recover the formu-
las and semantic information? (§4.3)
Q4: How is the performance of alternative algorithms to infer
the formulas of UDS and KWP 2000? (§4.4)
Q5: For the CAN frames of controlling the vehicle compo-
nents, can DP-Reverser correctly recover the semantic infor-
mation of request messages? (§4.5)
Q6: How many telematics apps contain the formulas of diag-
nostic protocols? (§4.6)

Table 3: Vehicles and diagnostic tools used in experiments

Car Vehicle Model Protocol Diagnostic Tools
Car A Skoda Octavia UDS LAUNCH X431
Car B Volkswagen Magotan KWP 2000 VCDS
Car C Volkswagen Lavida KWP 2000 LAUNCH X431
Car D Lexus NX300 UDS Techstream
Car E Mini Copper R56 UDS AUTEL 919
Car F Mini Copper R59 UDS AUTEL 919
Car G BMW i3 UDS AUTEL 919
Car H RongWei MARVEL X UDS AUTEL 919
Car I Changan Eado UDS AUTEL 919
Car J BMW 532Li UDS AUTEL 919
Car K Volkswagen Passat KWP 2000 AUTEL 919
Car L Toyota Corolla UDS AUTEL 919
Car M Peugeot 308 UDS AUTEL 919
Car N Kia k2 (UC) UDS AUTEL 919
Car O Ford Kuga UDS AUTEL 919
Car P Honda Accord UDS AUTEL 919
Car Q Nissan Teana UDS AUTEL 919
Car R Audi A4L UDS AUTEL 919

To answer these questions, we use 18 vehicles listed in
Tab. 3 to conduct experiments. We use four diagnostic tools
to interact with these vehicles: (1) Two professional hand-
held diagnostic equipment (i.e., LAUNCH X431 [80] and

AUTEL 919 [36]). (2) Two professional diagnostic software
(i.e., VCDS [72] and Techstream [37]).

4.1 Precision of the OCR engine
Approach: We use a camera to record the video of the screens
of two diagnostic tools (i.e., AUTEL 919 and LAUNCH
X431) and then check if the OCR engine can correctly extract
the text from the pictures transformed from the video.
Result: The result is shown in Tab. 4. We find that the pre-
cision of the OCR engine reaches 97.6% for AUTEL 919
and 85.0% for LAUNCH X431. The reason is that the screen
of AUTEL 919 is larger with better resolution than that of
LAUNCH X431.

Table 4: Performance of OCR engine
Diagnostic Tool #Total Pics #Correct Pics Precision

AUTEL 919 500 488 97.6%
LAUNCH X431 500 425 85.0%

Answer of Q1: The precision of the OCR engine reaches
97.6% for AUTEL 919 and 85.0% for LAUNCH X431.

4.2 Result of OBD-II Frames
Approach: To measure the effectiveness of DP-Reverser, we
test the ESV in the OBD-II protocol because the standard has
defined the formula of each ESV, which serves as the ground
truth. We use one vehicle simulator, which supports OBD-II
protocol, to generate the diagnostic messages, and employ an
OBD telematics app “ChevroSys Scan Free” to read ESVs
from the vehicle simulator. After recording the video of the
UI and capturing the diagnostic messages sent or received by
the app, DP-Reverser reverse engineers the formulas. Finally,
we verify the correctness of the obtained formulas with the
OBD-II standard (i.e., ground truth).
Result: For the 7 types of ESVs of OBD-II protocol listed in
Tab. 5, DP-Reverser correctly recover all formulas.

For the first three types of ESVs, the recovered formulas
are the same as that of ground truth. For the fourth ESV En-
gine Speed (RPM), the formula of ground truth contains two
variables (i.e., X0 and X1). Although the output of our sys-
tem only contains one variable (i.e., X0), our result is correct
because the real values of X1 are all 128 in real diagnostic
messages. Thus, the formula of ground truth can be simplified
to Y = 64X0 +32.

For last three types of ESVs, the ground truth includes two
formulas for each ESV because the ESV has two possible units.
However, DP-Reverser identifies one formula for each ESV,
because the app only uses one formula to parse the response
messages. Moreover, for Engine Coolant Temperature, the
formula of ground truth Y = 1.8X − 40 and the output of
our system Y = 1.7X − 22 look different. However, since
the values of X in traffic are in the range 0xA0-0xC0 (i.e.,

USENIX Association 31st USENIX Security Symposium 1947

Table 5: Result of reverse engineering the formulas of OBD-II
protocol: the request messages, the formulas in ground truth,
and the formulas inferred by DP-Reverser.

ESV
Request
Message

Formula
Ground Truth

Formula (GP)
System Output

Absolute Throttle
Position 01 11 Y = X

2.55
Y
10 = (X/100)

0.255

Calculated
Engine Load 01 04 Y = X

2.55
Y
10 = X/100

0.255

Fuel Tank
Level Input 01 2F Y = 0.392∗X Y

100 = 0.389∗ X
100

Engine Speed
(RPM) 01 0C Y =

256∗X0+X1
4 Y = 64X0 +32

Vehicle Speed
(Km/h or Mile/h) 01 0D Y = X or

Y = 0.621∗X
Y

100 = 0.619∗ X
100

Engine Coolant
Temperature(oC or oF) 01 05 Y = X−40 or

Y = 1.8∗X−40 Y = 1.7∗X−22

Intake Manifold Absolute
Pressure(KPa or inHg) 01 0B Y = X or

Y = X/3.39
Y
10 = X

100 /0.335

160-192), the output of the formula in the ground truth (i.e.,
Y = 1.8X − 40) is in the range 248-305. The output of the
recovered formula (i.e., Y = 1.7X −22) is in the range 250-
304.4. Thus, the output of these two formulas are almost the
same, and we regard the output of GP as a correct one.
Answer of Q2: The result shows that, for the CAN frames of
reading 7 types of ESVs with OBD-II protocol, the precision
of reverse engineering is 100%.

4.3 Result of UDS and KWP 2000 Frames
Approach: For the ESVs of UDS, we manually analyze the
frames and the corresponding actual ESVs shown on UI to
extract the data identifiers (i.e., DIDs) and infer the formulas.
These DIDs and formulas are used as the ground truth. For
the ESVs of KWP 2000, we use a document containing the
formulas KWP 2000 (provided by an experienced vehicle
researcher) as the ground truth. Since some ESVs do not have
formulas (e.g., the door status is open or closed), we only
extract the DID or local identifier used in the request message
(i.e., no formula can be extracted). To verify the correctness
of inferred formulas, we conduct an additional experiment by
using the ESVs displayed on the dashboard of real vehicles
as the ground truth.
Result: In total, we select 446 ESVs from these 18 vehicles.
For these ESVs, 290 of them contain formulas used when
parsing the response messages. Other 156 ESVs do not have
formulas (e.g., the door is open or closed). Tab. 6 lists the
precision of reverse engineering formulas with GP .

Overall, the precision of GP reaches 98.3%. Note that if
the coefficient in one inferred formula is very close to that of
the ground truth, we regard the inferred formula as a correct
one. The slight difference between the coefficient of inferred
formulas and the coefficient of ground truth is generated due
to two reasons: (i) There is a time interval between the time
receiving the response message and the time displaying the

Table 6: Result of ESV analysis: Number of ESVs with formu-
las (i.e., column “#ESV (formula)”), number of ESVs that GP
can infer formulas correctly (i.e., column “#Correct ESV”),
precision of inferring formulas with GP (i.e., column “Preci-
sion”), and the number of ESVs without formulas (i.e., column
“#ESV (Enum)”).

Car #ESV #Correct ESV Precision #ESV
(formula) (Enum)

Car A 28 28 100.0% 0
Car B 8 7 87.5% 0
Car C 5 5 100.0% 0
Car D 12 12 100.0% 5
Car E 5 5 100.0% 4
Car F 8 8 100.0% 5
Car G 5 4 80.0% 22
Car H 5 5 100.0% 13
Car I 11 9 81.8% 0
Car J 20 20 100.0% 20
Car K 41 41 100.0% 0
Car L 29 28 96.6 % 20
Car M 4 4 100.0% 14
Car N 26 26 100.0% 19
Car O 18 18 100.0% 9
Car P 7 7 100.0% 6
Car Q 18 18 100.0% 17
Car R 40 40 100.0% 2
Total 290 285 98.3% 156

ESV on the device screen. For some (X ,Y) pairs in the dataset,
X comes from the latest received message and Y has not been
updated. (ii) The stopping criterion of GP defines that if the
fitness of one latest formula has reached the threshold, the GP
will stop evolution.

Although some inferred KWP 2000 formulas are quite
different from that of ground truth, manual verification reveals
that they are equal when implemented in systems. We use two
ESVs to explain the reason.
. Vehicle Speed: The formula of ground truth contains two
variables (i.e., X0, X1). But the formula inferred by GP only
contains one (i.e., X1). The reason is that, in frames, the values
of X0 are all 0x64 (i.e., 100). The formula of ground truth will
be transformed to Y = X1 when X0 is constant value 100.
. Torque Assistance: In frames, X1 has two possible val-
ues (i.e., 0x7F and 0x81). The formula in ground truth will
change to Y = X0 ∗ (−0.001) and Y = X0 ∗ 0.001, respec-
tively. Moreover, the formula generated by GP will be Y =
X0 ∗ (−1.03/1000) and Y = X0 ∗ (0.97/1000). Thus, the for-
mulas in ground truth and GP are still the same.
Cause of inconsistency. We find that the inferred formula
of lateral acceleration contains only one variable (i.e., X1)
whereas the formula of ground truth contains two variables
(i.e., X0 and X1). This inconsistency is caused by the data in
the collected frames. More precisely, in these frames, all the
values of variable X0 is 0x00. Thus, the genetic programming
regards the values of X0 as constant and the inferred formula

1948 31st USENIX Security Symposium USENIX Association

only uses another variable X1.
Result validation with real vehicles. Since the real vehicles
display some ESVs on their dashboards, we can use them
as the ground truth of reverse engineering. In detail, we use
the diagnostic tools to read ESVs from the vehicles and then
combine the diagnostic messages and the inferred formulas to
obtain the possible ESVs shown on dashboards. We compare
the possible ESVs with the ESVs displayed on the dashboards
(recorded by camera) to check the correctness of the inferred
formulas. We use four real vehicles in this validation exper-
iment. The result in Tab. 7 shows that the inferred formulas
are correct for all these vehicles.

Table 7: Result of using real vehicles to evaluate the correct-
ness of reverse engineering the formulas of ESVs.

Vehicle ESV Formula (GP) Same
on vehicle dashboards System Output or not

Car F Engine speed Y = X
√

Car K Engine speed Y = X0 ∗X1/5
√

Car L Coolant Temperature Y = 0.5X
√

Car R Engine speed Y = 64.1X0 +0.241X1
√

Time cost. We measure the average time needed by genetic
programming to infer the formulas. The result listed in Tab. 8
shows that it costs about 201.40 and 192.19 seconds to infer
UDS and KWP 2000 formulas, respectively. One reason may
be that we set the maximum number of generations to 30
and each generation contains 1000 formulas to calculate their
fitness score (‘mean absolute error’). To shorten the time, we
will decrease the maximum number of generations and the
number of formulas in each generation in future work.

Table 8: Average time cost of inferring formulas (seconds).

Protocol Genetic Linear Polynomial
Programming Regression Curve Fitting

UDS 201.40 0.0009 0.0004
KWP 2000 192.19 0.0017 0.0006

Answer of Q3: The result shows that, for the frames of read-
ing 290 types of ESVs with UDS or KWP 2000, the precision
of reverse engineering is 98.3%.

4.4 Comparion with Alternative Algorithms
for Formula Inferring

Approach: Previous research LibreCAN [71] enhances
READ [60] to identify the fields contained in the CAN mes-
sages transmitted between ECUs. It shows that linear regres-
sion can be used to find the relation between these fields
and OBD sensors. Since READ [60] does not consider the

transmission layer protocol, it cannot correctly identify the
payload of a long diagnostic message before analyzing it. We
examine this issue and evaluate the precision of using linear
regression and polynomial curve fitting [63] to infer formulas
for comparison.
Result: We describe the result from two aspects: (1) Necessity
of payload recovering; (2) Precision of linear regression and
polynomial curve fitting.
(1) Necessity of payload recovering. A long diagnostic mes-
sage will be transmitted through multiple CAN messages.
Recovering the raw payload of a diagnostic message is the
first step before analyzing it. To measure the percentage of
CAN messages that should leverage the transport/network
layer protocol to assemble the payload, we examine the num-
ber (percentage) of each type of messages contained in UDS
and KWP 2000 traffic.

For UDS, we analyze the CAN messages of Car A (Skoda
Octavia). The captured traffic contains 31,963 messages.
Half of them (i.e., 17,601/31,963=55.1%) are single frames.
The multi-frame messages (i.e., first frames and continu-
ous frames) account for 32.0% (i.e., 10,213/31,963=32.0%).
Other frames are flow control frames.

For KWP 2000, we analyze the CAN messages of Car
B (Volkswagen Magotan) and C (Volkswagen Lavida) since
they implemented KWP 2000. The collected traffic contains
4,556 messages in total. We find that 3,425 (i.e., 75.2%) of
them needs to wait for the next frames. The remaining 1,131
messages (i.e., 24.8%) are the last frames of multi-frame
messages (i.e., do not need to wait for next frames).

The result shows that, for UDS, 32.0% CAN messages must
be processed by payload recovering. For KWP 2000, 75.2%
CAN messages must be processed by payload recovering.
Otherwise, we cannot extract fields from them.

Table 9: Number/Percentage of single frames and multi-
frames in UDS and KWP 2000 traffic.

Protocol # Single # Multi # Total
Frames Frames Frames

UDS 17,601 (55.1%) 10,213 (32.0%) 31,963
KWP 2000 1,131 (24.8%) 3,425 (75.2%) 4,556

(2) Precision of linear regression and polynomial curve fitting.
The performance of linear regression and polynomial curve
fitting is shown in Tab. 10. Overall, the precision of linear
regression reaches 43.8% and that of polynomial curve fitting
achieves 32.1%. In contrast, the GP algorithm employed by
our system has a much better precision (i.e., 98.3%).
Cause of inconsistency. Manual investigation shows that GP
outperforms linear regression and polynomial curve fitting
due to the following reasons:

(i) Some outliers are generated if the OCR engine fails
to correctly extract sensor values from the screenshots. For
example, in one screenshot, the actual ESV is “3.7”, but the

USENIX Association 31st USENIX Security Symposium 1949

Table 10: Precision of inferring formulas of UDS and KWP
2000 with linear regression (i.e., column “#Correct ESV (Lin-
ear Reg)”) and polynomial curve fitting (i.e., column “#Cor-
rect ESV (Polynomial)”).

Car #ESV #Correct ESV # Correct ESV
(formula) (Linear Reg) (Polynomial)

Car A 28 14 20
Car B 8 2 1
Car C 5 1 2
Car D 12 10 8
Car E 5 3 2
Car F 8 4 3
Car G 5 2 2
Car H 5 5 3
Car I 11 9 6
Car J 20 11 8
Car K 41 2 0
Car L 29 25 12
Car M 4 4 2
Car N 26 14 11
Car O 18 11 6
Car P 7 3 3
Car Q 18 7 4
Car R 40 34 28
Total 290 127 93

OCR engine outputs “8.0”. Another screenshot contains ac-
tual ESV “11.4”, but the OCR engine only extracts “4” from
it. Due to the incorrect sensor values, the factor related to the
variable of the inferred formula is affected, which is much
smaller than that of ground truth. We observe that GP is more
robust than linear regression. Other studies also show that GP
is robust to outliers/noise [40, 44, 52].

(ii) Linear regression can only infer linear formulas and
polynomial curve fitting can only find polynomial formulas.
For KWP 2000 protocol, if the formula has two variables
(i.e., X0 and X1), the linear formulas can be represented as
Y = β0X0 +β1X1 +X2. However, if the formulas of ground
truth contain non-linear elements, linear regression cannot
identify them. An example is “Engine Speed (RPM)” (i.e.,
Y = X0 ∗X1/5). Linear regression can only obtain the formula
Y = 0.45X0 + 17.85X1 + 498.47. Polynomial curve fitting
can find one formula Y = 0.032X0 ∗X1− 10X0 + 64.52X1 +
0.04X2

0 − 0.46X2
1 − 215. This formula contains X0 ∗X1, but

its coefficient is much smaller than that in the ground truth
(i.e., 0.2). GP can handle these non-linear formulas since it
uses syntax trees to represent the formulas. Both linear and
non-linear formulas can be inferred.

Time cost. Although the linear regression and polynomial
curve fitting cannot achieve high precision when inferring
formulas, their time cost is much smaller than that of GP (i.e.,
Tab. 8, less than one second for each ESV), because they do
not need to iterate a large number of times.

Answer of Q4: The result shows that, 32.0% CAN frames
for UDS and 75.2% CAN frames for KWP 2000 must be pro-
cessed by payload recovering. Otherwise, the fields in them
cannot be extracted. Moreover, when inferring formulas, the
linear regression algorithm only achieves 43.8% precision
and the polynomial curve fitting only achieves 32.1% preci-
sion. Their precision is much lower than that of DP-Reverser.

4.5 Result of Reverse Engineering ECR
Approach: We test controlling components of vehicles by
using the IO control service or input output control via locali-
dentifier service. We analyze the captured frames to infer the
procedure of sending different types of request messages.
Result: In total, we extracted 124 ECRs from 10 vehicles.
Five of them use IO control service of UDS (service ID is
“2F”) and other five of them use input output control via local
identifier service of KWP 2000 (service ID is “30”). We list
the number of identified ECRs of each vehicle in Tab. 11.

Table 11: Number of ECRs extracted from vehicles.

Car #ECR Service ID Car #ECR Service ID
Car A 11 2F Car D 5 30
Car E 3 30 Car F 5 30
Car H 6 2F Car I 10 2F
Car J 27 30 Car N 21 2F
Car O 4 2F Car Q 32 30

Although these components have different DIDs or local
IDs, their control procedures have similar patterns. To con-
trol one component (e.g., window or light), the controller
should send three request messages. If the component sends
one positive response message for each request message, the
component can be controlled successfully.
First Request: The controller sends the “Freeze current state”
message. The format is “2F {DID: 2 bytes} 02”. The last
byte 0x02 is the IO control parameter, which means freeze
current state (i.e., prepare to control). For example, the first
step of controlling the fog light is sending the request message
“2F 09 50 02”. When controlling other components of the
vehicle, we just need to change the values of DIDs.
Second Request: The controller sends the “Short term ad-
justment” message. The format is “2F {DID: 2 bytes} 03
{control state: n bytes}”. The byte 0x03 is the first byte
of ECR (i.e., IO control parameter), which means short term
adjustment (i.e., start controlling). Followed by the control
state. For example, to light up the fog lights on the left
hand for 5 seconds, the request message is “2F {DID: 09 50}
03 {control state: 05 01 00 00}”. To control the fog
lights on the right hand for 3 second, the request message
is “2F {DID: 09 50} 03 {control state: 03 00 00 00}”.
Only 2 bytes in the control state are modified (one byte for
the time duration of control and one byte for left/right side).
Third Request: The controller sends the “Return control to
ECU” message. The format is “2F {DID: 2 bytes} 00”. The

1950 31st USENIX Security Symposium USENIX Association

last byte 0x00 is the IO control parameter, which means return
control to ECU (i.e., the control is finished). For example, after
controlling the fog light, sending the request message “2F 09
50 00” returns the control to the ECU.
Answer to Q5: For the 124 ECRs of ten vehicles, we cor-
rectly extracted all ECRs. We also find that three messages
are required to control each vehicle component by using the
IO control service.

4.6 Formulas Extracted from Apps
Approach: When processing the response messages, if one
response message contains ESV, the telematics apps may
also use a formula to transform it to actual ESV. To extract
these formulas, we analyze 160 telematics apps: 38 apps are
downloaded from Google Play by searching the keywords
“vehicle diagnostic” and “vehicle OBD”. We also include all
122 apps from the data set of CANhunter [83].

For each app, we identify the data buffer that stores the
response message by calling framework APIs (e.g., Input-
Stream.read()). Then, we perform forward taint analysis on
the data buffer to identify the statements that process the
response message. If the statement includes mathematical
operators (e.g., +, ∗), we extract the formula from the state-
ment. We also extract the condition of using the formula by
utilizing the control dependency relation to identify the depen-
dent branch statement and then analyzing the constant values
contained in the branch statement. (More details in §9.2).
Result: Tab. 12 lists the number of formulas discovered from
apps. We only find three apps containing the formulas used
to process the response messages of UDS and KWP 2000.
In “Carly for VAG”, we obtain 90 UDS formulas and 137
KWP 2000 formulas. For example, if the DID is 0xF43C,
the corresponding formula is Y = 0.1X − 40. In “Carly for
Mercedes”, we extract 1624 UDS formulas and 468 KWP
2000 formulas. In “Carly for Toyota”, we get 7 KWP 2000
formulas. For example, if the request message is “21 1A”, the
formula Y = X is used to obtain the vehicle model speed.

Our tool discovers 12 apps containing formulas of OBD-II
protocol. Note that the standard of OBD-II [34] has defined
these formulas (e.g., engine coolant temperature Y = X−40).
Our system can also reverse engineer them. Manual inspection
of the result reveals that the formulas in 13 apps cannot be
extracted due to multiple reasons. For example, the request
message is sent by subclass and the response message is
parsed by the parent class, or the app only checks partial
bytes of response messages to determine the used formula.

We do not discover any KWP 2000 or UDS formulas from
other apps. One reason is that although some apps send re-
quest messages of KWP 2000 or UDS, they only use them
to read/clear DTC or read freeze frame (i.e., they do not use
KWP 2000 or UDS to read ESV). Moreover, since most vehi-
cles support OBD-II protocol, some apps only send request
messages of OBD-II protocol to read ESV.

Table 12: Telematics apps containing formulas.

APP Name Formula Type # Formula
Carly for VAG UDS 90

KWP 2000 137
Carly for Mercedes UDS 1624

KWP 2000 468
Carly for Toyota KWP 2000 7
inCarDoc OBD-II 82
Car Computer - Olivia Drive OBD-II 74
CarSys Scan OBD-II 64
Easy OBD OBD-II 55
inCarDoc Pro OBD-II 49
OBD Boy(OBD2-ELM327) OBD-II 45
FordSys Scan Free OBD-II 42
ChevroSys Scan Free OBD-II 40
ToyoSys Scan Free OBD-II 40
Obd Mary OBD-II 34
OBD2 Boost OBD-II 34
Obd Harry Scan OBD-II 28
Obd Arny OBD-II 27
MOSX OBD-II 24
Dr Prius Dr Hybrid OBD-II 22
Dacar Pro OBD2 OBD-II 21
OBD2 Scanner Fault Codes Desc OBD-II 16
Dacar Pro OBD2 OBD-II 14
Engie Easy Car Repair OBD-II 8
PHEV Watchdog OBD-II 8
Torque Lite(OBD2&Car) OBD-II 5
Kiwi OBD OBD-II 3
OBDclick OBD-II 2
Dr Prius Dr Hybrid OBD-II 1
Fuel Economy for Torque Pro OBD-II 1

We also investigate the number of ECUs and ESVs that can
be obtained from professional diagnostic tools and telematics
apps by using two vehicles (i.e., VW Passat, Toyota Corolla).
For VW Passat, the diagnostic tool (i.e., AUTEL 919) discov-
ers 18 ECUs, but only 10 of them can be discovered by the
app (i.e., “Carly for VAG”). Other ECUs (e.g., Airbag) are
missed by the app. For Toyota Corolla, the diagnostic tool
(i.e., AUTEL 919) discovers 31 ECUs, but only 14 of them
can be discovered by the app(i.e., “Carly for Toyota”). For
VW Passat, the diagnostic tool can read 203 ESVs (i.e., 173
KWP 2000 ESVs and 30 UDS ESVs). For Toyota Corolla, the
diagnostic tool can read 242 ESVs through UDS. However,
none of these ESVs can be read by the apps. For example, the
tool sends UDS request message “03 22 10 17” to Toyota
Corolla to get quantity of fuel injection cylinder 1. But this
request message cannot be discovered in any apps.

Answer of Q6: For the 160 telematics apps, we only find
three of them contain UDS or KWP 2000 formulas. Some
other apps only contain formulas of the OBD-II protocol.
A more detailed comparison with two vehicles shows that,
compared with telematics apps, the professional diagnostic
tools can discover more ECUs and read more ESVs.

USENIX Association 31st USENIX Security Symposium 1951

5 Related Work

To determine the registers of supervisory control and data
acquisition systems used to store constant, counter, or sensor
values, Erez et al. designed a decision tree [46]. However,
since it is based on fixed window size, it cannot identify the
fields whose length is not equal to the window. To identify
three kinds of fields contained in CAN messages, Markovitz
et al. dynamically changed the window size and checked the
number of values contained in the window [61].

To analyze the format of CAN messages, after putting mes-
sages of the same CAN ID in the same group, Marchetti et
al. proposed READ [60], which first calculates the bit flip
rate, bit flip magnitude and then uses them to determine phys-
ical (i.e., signal), counter, and CRC fields. Although READ
achieves high precision when processing an online dataset, it
can neither identify constant values and multiple value related
fields nor discover the type of signals stored in each field (e.g.,
engine RPM). Pes et al. proposed LibreCAN [71] to reverse
engineer the format of CAN messages. For the CAN mes-
sages collected from the vehicle, LibreCAN first enhances
READ [60] to identify fields storing ECU signal values. For
each field, LibreCAN uses cross-correlation to identify its
related powertrain-related signals. To identify CAN messages
related to body related events, LibreCAN filters out useless
messages with three stages. However, LibreCAN can neither
handle long messages transmitted via transport/network layer
protocols nor discover the nonlinear relationships between
fields and signals. CANHunter [83] performs dynamic force
execution to extract all messages sent by diagnostic apps.
However, it neither examines the diagnostic protocols nor
analyzes the processing of response messages.

Dynamic analysis has been used to recover the format of
network messages. Polyglot [42] records all instructions of
processing received messages and performs taint analysis to
infer the format. Polyglot integrates algorithms to identify
fields. To obtain outgoing message formats, Dispatcher [41]
performs backward taint analysis to build up the dependency
chain. To extract the structure of the given buffer, Dispatcher
checks the sources of current and previous buffer locations
are same or not. If false, there exists a boundary. To replay the
application communication, Replayer [68] builds a symbolic
formula of how the original host processed the communica-
tion. Then, it uses an off-the-shelf decision procedure to derive
an input tailored to a different host from the symbolic for-
mula. To construct protocol field tree, AutoFormat [58] infers
the message format based on the observation that bytes pro-
cessed under the same execution context belong to the same
message field. To recover the format of encrypted data (e.g.,
TLS encryption records), ReFormat [82] identifies the instruc-
tions of decryption algorithms and then uses AutoFormat [58]
to recover the message format. These approaches could re-
verse engineer the diagnostic protocols if we can control the
professional diagnostic equipments with root privilege.

6 Discussion
Limitations. DP-Reverser suffers from the following limita-
tions: (1) DP-Reverser requires access to both the OBD port
to collect the diagnostic messages and the diagnostic tools
to collect the sensor values. Otherwise, it does not work. (2)
Currently, DP-Reverser supports 14 kinds of functions (e.g.,
addition, subtraction, multiplication, division, square root, log,
absolute value, negative, maximum) in the genetic program-
ming library [30], without considering the non-trivial formu-
las (e.g., LFSRs, seed-key encryptions). (3) The performance
of DP-Reverser relies on the performance of the OCR engine
used to extract the sensor values from the GUI. (4) The pay-
loads of diagnostic messages should be recovered based on
the corresponding standards (e.g., ISO 15765-2 [11]), which
is the prerequisite domain knowledge to apply DP-Reverser.
(5) When analyzing the formulas contained in telematics apps,
the forward taint analysis cannot handle complex apps.

Future works. We will apply DP-Reverser to non-trivial for-
mulas to solve other practical problems in reverse engineering.
Moreover, we will enhance the performance of OCR engines
to make DP-Reverser more robust. We will improve our tool
to analyze complex telematics apps.

7 Conclusion
We propose DP-Reverser, the first automated framework to
reverse engineer the vehicle diagnostic protocols from pro-
fessional diagnostic tools. Besides the semantic information
of request messages in the diagnostic protocols, DP-Reverser
recovers the proprietary formulas used to process the response
messages. We implement DP-Reverser and conduct experi-
ments with 18 vehicles. The results show that it can accu-
rately reverse engineer the detailed information in the re-
quest/response messages of professional diagnostic tools.

8 Acknowledgement
We sincerely thank Prof. Van-Thuan Pham for shepherding
our paper and the anonymous reviewers for their constructive
comments. This work is partly supported by Hong Kong ITF
Project (No. ITS/197/17FP), Hong Kong RGC Project (No.
PolyU15223918), NSFC (No. 62002306), HKPolyU Start-up
Fund (ZVU7), CCF-Tencent Open Research Fund (ZDCK),
the Fundamental Research Funds for the Central Universities
(Zhejiang University NGICS Platform ZJUNGICS2021017,
K20200019), Leading Innovative and Entrepreneur Team
Introduction Program of Zhejiang (No. 2018R01005), and
National Science Foundation under Grant No. 1951729,
1953813, 1953893, and 1700544. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF.

1952 31st USENIX Security Symposium USENIX Association

References

[1] ISO 14230 Keyword Protocol 2000 Part 3: Imple-
mentation. http://read.pudn.com/downloads118/
ebook/500929/14230-3.pdf, 1996.

[2] Keyword Protocol 2000: Data Link Layer Recom-
mended Practice. http://www.internetsomething.
com/kwp/kwp2000_recommended_guidlines.pdf,
1997.

[3] ISO 14230-1. https://www.sis.se/api/document/
preview/612052/, 1999.

[4] ISO 14230-2. https://www.sis.se/api/document/
preview/612053/, 1999.

[5] ISO 14230-3. https://www.sis.se/api/document/
preview/895162/, 1999.

[6] Diagnostics on Controller Area Networks (CAN) - Part
3: Implementation of unified diagnostic services (UDS
on CAN). http://read.pudn.com/downloads506/
doc/2103567/ISO_15765-3.pdf, 2004.

[7] SAE J1979. https://law.resource.org/pub/us/
cfr/ibr/005/sae.j1979.2002.pdf, 2006.

[8] Unified diagnostic services (UDS) — Part 3: Uni-
fied diagnostic services on CAN implementation (UD-
SonCAN). https://www.iso.org/standard/55284.
html, 2012.

[9] Car hacking demonstration video. https://www.
youtube.com/watch?v=qt1xrRL9ULc, 2014.

[10] Zubie: This Car Safety Tool ’Could Have Given Hackers
Control Of Your Vehicle’. https://bit.ly/3adTPmq,
2014.

[11] Diagnostic communication over Controller Area Net-
work (DoCAN) — Part 2: Transport protocol and
network layer services. https://www.iso.org/
standard/66574.html, 2016.

[12] KWP 2000 and UDS Protocols for Vehicle Diagnos-
tics: An Analysis and Comparison. http://bit.ly/
2O1VNL6, 2018.

[13] Automotive most used protocols - KWP2000
and UDS. http://www.devcoons.com/
automotive-protocols-kwp2000-uds/, 2018.

[14] Experimental Security Assessment of BMW Cars: A
Summary Report. https://bit.ly/2BSP848, 2018.

[15] OBD2 PIDs for Programmers (Technical). http://
bit.ly/36RJUzH, 2018.

[16] Symbolic Regression and Genetic Program-
ming. https://jankrepl.github.io/
symbolic-regression/, 2018.

[17] What Is Kwp2000. https://gizaedu.weebly.com/
blog/what-is-kwp2000, 2018.

[18] CAN - ISO 11898 BUS-system for automo-
tive diagnostic and flash applications. https:
//automotive.softing.com/en/standards/
bus-systems/can-iso-11898.html, 2019.

[19] Controller Area Network (CAN) Overview. https:

//bit.ly/3BfL1sl, 2019.
[20] ISO 15765-2. http://canbushack.com/

iso-15765-2/, 2019.
[21] MPlayer. http://www.mplayerhq.hu/, 2019.
[22] OBD2 EXPLAINED - A SIMPLE INTRO (2019).

http://bit.ly/2FKQagH, 2019.
[23] OCR Engines. http://www.cvisiontech.com/

library/ocr/image-ocr/ocr-engines.html,
2019.

[24] Tesseract Open Source OCR Engine. https://github.
com/tesseract-ocr/tesseract, 2019.

[25] Timestamp Camera Free. http://bit.ly/2FNY1dz,
2019.

[26] UDS ISO 14229: Standardized CAN-based protocol for
diagnostics. https://automotive.softing.com/
en/standards/protocols/uds-iso-14229.html,
2019.

[27] UDS Protocol. https://www.piembsystech.com/
protocol/diagnostic-protocol/uds-protocol/,
2019.

[28] Unified diagnostic services (UDS) - Part 2: Session layer
services. https://www.iso.org/standard/77322.
html, 2019.

[29] VW Transport Protocol 2.0 (TP 2.0) for CAN bus.
https://jazdw.net/tp20, 2019.

[30] Welcome to gplearn’s documentation! https://
gplearn.readthedocs.io/en/stable/, 2019.

[31] Launch X431 V+ Full System Diagnostic Tool Bi-
Directional Scan Tool. http://www.x431tool.com/
wholesale/launch-x431-v-plus.html, 2020.

[32] Nonlinear Functions. https://bit.ly/3ck25QI,
2020.

[33] OBD-II (Check Engine Light) Trouble Codes. https:
//www.obd-codes.com/trouble_codes/, 2020.

[34] OBD ISO 15031. https://automotive.softing.
com/en/standards/protocols/obd-iso-15031.
html, 2020.

[35] OBD2 PIDs for Programmers (Technical). https://
shorturl.at/dmtIJ, 2020.

[36] AUTEL 919. https://item.jd.com/70636576685.
html, 2021.

[37] Toyota TIS Techstream. http://shorturl.at/zADOQ,
2021.

[38] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. The
traveling salesman problem: a computational study.
Princeton university press, 2006.

[39] argman. EAST: An Efficient and Accurate Scene Text
Detector. https://github.com/argman/EAST, 2020.

[40] G. Barlow and C. Oh. Robustness analysis of genetic
programming controllers for unmanned aerial vehicles.
In Proc. EuroGP, 2006.

[41] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling active botnet infiltration using au-
tomatic protocol reverse-engineering. In Proc. CCS,

USENIX Association 31st USENIX Security Symposium 1953

http://read.pudn.com/downloads118/ebook/500929/14230-3.pdf
http://read.pudn.com/downloads118/ebook/500929/14230-3.pdf
http://www.internetsomething.com/kwp/kwp2000_recommended_guidlines.pdf
http://www.internetsomething.com/kwp/kwp2000_recommended_guidlines.pdf
https://www.sis.se/api/document/preview/612052/
https://www.sis.se/api/document/preview/612052/
https://www.sis.se/api/document/preview/612053/
https://www.sis.se/api/document/preview/612053/
https://www.sis.se/api/document/preview/895162/
https://www.sis.se/api/document/preview/895162/
http://read.pudn.com/downloads506/doc/2103567/ISO_15765-3.pdf
http://read.pudn.com/downloads506/doc/2103567/ISO_15765-3.pdf
https://law.resource.org/pub/us/cfr/ibr/005/sae.j1979.2002.pdf
https://law.resource.org/pub/us/cfr/ibr/005/sae.j1979.2002.pdf
https://www.iso.org/standard/55284.html
https://www.iso.org/standard/55284.html
https://www.youtube.com/watch?v=qt1xrRL9ULc
https://www.youtube.com/watch?v=qt1xrRL9ULc
https://bit.ly/3adTPmq
https://www.iso.org/standard/66574.html
https://www.iso.org/standard/66574.html
http://bit.ly/2O1VNL6
http://bit.ly/2O1VNL6
http://www.devcoons.com/automotive-protocols-kwp2000-uds/
http://www.devcoons.com/automotive-protocols-kwp2000-uds/
https://bit.ly/2BSP848
http://bit.ly/36RJUzH
http://bit.ly/36RJUzH
https://jankrepl.github.io/symbolic-regression/
https://jankrepl.github.io/symbolic-regression/
https://gizaedu.weebly.com/blog/what-is-kwp2000
https://gizaedu.weebly.com/blog/what-is-kwp2000
https://automotive.softing.com/en/standards/bus-systems/can-iso-11898.html
https://automotive.softing.com/en/standards/bus-systems/can-iso-11898.html
https://automotive.softing.com/en/standards/bus-systems/can-iso-11898.html
https://bit.ly/3BfL1sl
https://bit.ly/3BfL1sl
http://canbushack.com/iso-15765-2/
http://canbushack.com/iso-15765-2/
http://www.mplayerhq.hu/
http://bit.ly/2FKQagH
http://www.cvisiontech.com/library/ocr/image-ocr/ocr-engines.html
http://www.cvisiontech.com/library/ocr/image-ocr/ocr-engines.html
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://bit.ly/2FNY1dz
https://automotive.softing.com/en/standards/protocols/uds-iso-14229.html
https://automotive.softing.com/en/standards/protocols/uds-iso-14229.html
https://www.piembsystech.com/protocol/diagnostic-protocol/uds-protocol/
https://www.piembsystech.com/protocol/diagnostic-protocol/uds-protocol/
https://www.iso.org/standard/77322.html
https://www.iso.org/standard/77322.html
https://jazdw.net/tp20
https://gplearn.readthedocs.io/en/stable/
https://gplearn.readthedocs.io/en/stable/
http://www.x431tool.com/wholesale/launch-x431-v-plus.html
http://www.x431tool.com/wholesale/launch-x431-v-plus.html
https://bit.ly/3ck25QI
https://www.obd-codes.com/trouble_codes/
https://www.obd-codes.com/trouble_codes/
https://automotive.softing.com/en/standards/protocols/obd-iso-15031.html
https://automotive.softing.com/en/standards/protocols/obd-iso-15031.html
https://automotive.softing.com/en/standards/protocols/obd-iso-15031.html
https://shorturl.at/dmtIJ
https://shorturl.at/dmtIJ
https://item.jd.com/70636576685.html
https://item.jd.com/70636576685.html
http://shorturl.at/zADOQ
https://github.com/argman/EAST

2009.
[42] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:

Automatic extraction of protocol message format using
dynamic binary analysis. In Proc. CCS, 2007.

[43] J. Canny. A computational approach to edge detection.
TPAMI, 1986.

[44] P. Day and A. Nandi. Robust text-independent speaker
verification using genetic programming. IEEE Tran.
TASLP, 2006.

[45] CSS Electronics. CAN BUS EXPLAINED - A SIMPLE
INTRO. https://bit.ly/3mm5up2, 2019.

[46] N. Erez and A. Wool. Control variable classification,
modeling and anomaly detection in modbus/tcp scada
systems. IJCIP, 2015.

[47] D. Forsyth and J. Ponce. Computer vision: a modern ap-
proach. Prentice Hall Professional Technical Reference,
2002.

[48] D. Frassinelli, S. Park, and S. Nürnberger. <<i know
where you parked last summer>> automated reverse
engineering and privacy analysis of modern cars. In
Proc. S&P, 2020.

[49] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, and G. Vigna. Triggerscope: Towards de-
tecting logic bombs in android applications. In Proc.
SP, 2016.

[50] F. Garcia and D. Oswald. A New Wireless Hack Can
Unlock 100 Million Volkswagens. https://bit.ly/
3iAUvXL, 2016.

[51] V. Hodge and J. Austin. A survey of outlier detection
methodologies. Artificial intelligence review, 2004.

[52] T. Hu, W. Banzhaf, and J. Moore. Robustness and evolv-
ability of recombination in linear genetic programming.
In Proc. EuroGP, 2013.

[53] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie,
and S. Wu. Too good to be safe: Tricking lane detection
in autonomous driving with crafted perturbations. In
Proc. USENIX Security, 2021.

[54] M. Kang and J. Kang. Intrusion detection system us-
ing deep neural network for in-vehicle network security.
PloS one, 2016.

[55] G. Kizilateş and F. Nuriyeva. On the nearest neighbor
algorithms for the traveling salesman problem. In Proc.
CCSEIT. 2013.

[56] M. Koistinen, K. Kettunen, and J. Kervinen. How to im-
prove optical character recognition of historical finnish
newspapers using open source tesseract ocr engine. Proc.
of LTC, 2017.

[57] Kwanwoo L. Cyber-Physical Systems (CPS) vs. IoT.
https://kwanwooleecom.wordpress.com/2018/
03/03/cyber-physical-systems-cps-vs-iot/,
2018.

[58] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic pro-
tocol format reverse engineering through context-aware
monitored execution. In Proc. NDSS, 2008.

[59] Suzanne Ma. Understanding the Travelling Sales-
man Problem (TSP). https://blog.routific.com/
travelling-salesman-problem, 2020.

[60] M. Marchetti and D. Stabili. Read: Reverse engineering
of automotive data frames. Trans. TIFS, 2018.

[61] M. Markovitz and A. Wool. Field classification, model-
ing and anomaly detection in unknown can bus networks.
Vehicular Communications, 2017.

[62] MathsIsFun. Linear Equations. https://www.
mathsisfun.com/algebra/linear-equations.
html, 2017.

[63] Mathworks. Polynomial Curve Fitting.
https://www.mathworks.com/help/matlab/
math/polynomial-curve-fitting.html, 2020.

[64] Mathworks. NTP: The Network Time Protocol. http:
//www.ntp.org/, 2021.

[65] C. Miller and C. Valasek. Adventures in automotive
networks and control units. Def Con, 2013.

[66] C. Miller and C. Valasek. Black Hat USA 2015: The
full story of how that Jeep was hacked. https://bit.
ly/3oGp16j, 2015.

[67] M. Nayak and A. Nayak. Odia characters recognition
by training tesseract ocr engine. IJCA, 2014.

[68] J. Newsome, D. Brumley, J. Franklin, and D. Song. Re-
player: Automatic protocol replay by binary analysis. In
Proc. CCS, 2006.

[69] T. Nguyen and C. Csallner. Reverse engineering mobile
application user interfaces with remaui (t). In Proc. ASE,
2015.

[70] I. Oliver, D. Smith, and J. Holland. Study of permutation
crossover operators on the traveling salesman problem.
In International Conference on Genetic Algorithms and
their applications, 1987.

[71] M. Pesé, T. Stacer, C. Campos, E. Newberry, D. Chen,
and K. Shin. Librecan: Automated can message transla-
tor. In Proc. CCS, 2019.

[72] ROSS-Tech. VCDS: Diagnostic Software for VW-
Audi Group Cars. https://www.ross-tech.com/
vag-com/, 2020.

[73] D. Simchi-Levi and O. Berman. Heuristics and bounds
for the travelling salesman location problem on the
plane. Operations research letters, 1987.

[74] C. Smith. The Car Hacker’s Handbook: A Guide for the
Penetration Tester. No Starch Press, 2016.

[75] R. Smith. An overview of the tesseract ocr engine. In
Proc. ICDAR, 2007.

[76] R. Smith. History of the tesseract ocr engine: what
worked and what didn’t. In Document Recognition and
Retrieval, 2013.

[77] R. Smith, D. Antonova, and D. Lee. Adapting the tesser-
act open source ocr engine for multilingual ocr. In
MOCR, 2009.

[78] F. Sommer, J. Dürrwang, M. Wolf, H. Juraschek, R. Ran-
ert, and R. Kriesten. Automotive network protocol de-

1954 31st USENIX Security Symposium USENIX Association

https://bit.ly/3mm5up2
https://bit.ly/3iAUvXL
https://bit.ly/3iAUvXL
https://kwanwooleecom.wordpress.com/2018/03/03/cyber-physical-systems-cps-vs-iot/
https://kwanwooleecom.wordpress.com/2018/03/03/cyber-physical-systems-cps-vs-iot/
https://blog.routific.com/travelling-salesman-problem
https://blog.routific.com/travelling-salesman-problem
https://www.mathsisfun.com/algebra/linear-equations.html
https://www.mathsisfun.com/algebra/linear-equations.html
https://www.mathsisfun.com/algebra/linear-equations.html
https://www.mathworks.com/help/matlab/math/polynomial-curve-fitting.html
https://www.mathworks.com/help/matlab/math/polynomial-curve-fitting.html
http://www.ntp.org/
http://www.ntp.org/
https://bit.ly/3oGp16j
https://bit.ly/3oGp16j
https://www.ross-tech.com/vag-com/
https://www.ross-tech.com/vag-com/

tection for supporting penetration testing. In Proc. SE-
CURWARE, 2019.

[79] H. Song, H. Kim, and H. Kim. Intrusion detection sys-
tem based on the analysis of time intervals of can mes-
sages for in-vehicle network. In Proc. ICOIN, 2016.

[80] Launch Tech. X-431 Pad III. https:
//launchtechusa.com/new-product-x431-pad3/,
2020.

[81] Q. Wang, Z. Lu, and G. Qu. An entropy analysis based
intrusion detection system for controller area network
in vehicles. In Proc. SOCC, 2018.

[82] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
Reformat: Automatic reverse engineering of encrypted
messages. In Proc. ESORICS, 2009.

[83] H. Wen, Q. Zhao, Q. Chen, and Z. Lin. Automated cross-
platform reverse engineering of can bus commands from
mobile apps. In Proc. NDSS, 2020.

[84] B. Williams. Intelligent Transport Systems Standards.
Artech House Publishers, 2008.

[85] L. Yu, J. Chen, H. Zhou, X. Luo, and K. Liu. Localizing
function errors in mobile apps with user reviews. In
Proc. DSN, 2018.

[86] S. Yu, C. Fang, Y. Yun, and Y. Feng. Layout and image
recognition driving cross-platform automated mobile
testing. In Proc. ICSE, 2021.

[87] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and
Y. Liu. Atvhunter: Reliable version detection of third-
party libraries for vulnerability identification in android
applications. In Proc. ICSE, 2021.

9 Appendix

9.1 Three categories of diagnostic tools

Professional handheld
diagnostic equipment

Professional diagnostic
software

OBD based telematics app

Figure 8: Three categories of diagnostic tools.

Fig. 8 shows three categories of diagnostic tools. (1) The
professional handheld diagnostic equipment can cover 90%

of vehicle models on the market. For each vehicle model, the
equipment can: a) Scan all ECUs to perform diagnoses; b)
Control ECUs to perform active test (e.g., turn fuel pump
on/off); c) Perform ECU coding (i.e., reprogram adaptive
data). (2) The professional diagnostic software can read data
flow from ECUs, scan trouble codes, or use OBD-II protocol
to read emission related data. (3) The OBD based telemat-
ics apps can read emission related data. If the apps or the
third-party libraries in these apps have the vulnerabilities [87]
or bugs [85] that can let attackers gain the root permission,
attackers can leverage these vulnerabilities to control the com-
munications between the apps and ECUs.

9.2 Response Analysis of Telematics Apps
When processing the response messages, if one response mes-
sage contains ESV, a formula will be used to transform it to
actual ESV. To extract these formulas, as shown in Alg. 1, we
first perform forward taint analysis to identify all the state-
ments that use the content of response messages. Then, we
extract the processing statements containing mathematical op-
erators (e.g., +,−,∗,/). We also identify the condition under
which the formula will be used.

Algorithm 1: Formula extraction of app
Input: Stmts: Set of statements contained in the app, APIs: Set of

framework APIs that read the response messages.
Output: Formulas: List of formulas extracted from the app,

Conditions: List of conditions of each formula.
1 Function FormulaExtraction(Stmts,APIs):
2 Formulas = [];
3 Conditions = [];
4 foreach stmt ∈ Stmts do
5 if stmt invokes api && api ∈ APIs then
6 ProcStmts = forwardTaintAnalysis(stmt);
7 foreach procstmt ∈ ProcStmts do
8 if procstmt includes math operations then
9 DDStmts=getDataDepStmts(procstmt);

10 f ormula=extractFormula(DDStmts);
11 Formulas.add(f ormula);
12 CDStmts=getControlDepStmts(procstmt);
13 condition=generateCondition(CDStmts);
14 Conditions.add(condition);
15 end
16 end
17 end
18 end
19 return Formulas, Conditions;

For each Android app, to identify the statements processing
the response message, we add a taint tag to the buffer stor-
ing response message and perform forward taint analysis. In
detail, for the statement that can receive response messages
(e.g., InputStream.read(byte[])), we identify the variable
of the data buffer and add a taint tag to it because it stores the
content of the response message (Alg.1 line 4-5). Then, we
perform forward taint analysis from these tainted variables
because the it can identify all statements that use the tainted

USENIX Association 31st USENIX Security Symposium 1955

https://launchtechusa.com/new-product-x431-pad3/
https://launchtechusa.com/new-product-x431-pad3/

1 $z0_17 = virtualinvoke $r7_18.<java.lang.String: boolean startsWith(java.lang.String)>("41 0C")
2 if $z0_17 == 0 goto $d1_2 = Phi($d1, $d1_1)
3 $r7_19 = virtualinvoke $r7_18.<java.lang.String: java.lang.String replace
 (java.lang.CharSequence,java.lang.CharSequence)>("41 0C", " ")
4 $r7_20 = virtualinvoke $r7_19.<java.lang.String: java.lang.String trim()>()
5 $r9 = virtualinvoke $r7_20.<java.lang.String: java.lang.String[] split(java.lang.String)>(" ")
6 $r7_21 = $r9[0]
7 $i2_3 = staticinvoke <java.lang.Integer: int parseInt(java.lang.String,int)>($r7_21, 16)
8 $r7_22 = $r9[1]
9 $i7 = staticinvoke <java.lang.Integer: int parseInt(java.lang.String,int)>($r7_22, 16)
10 $d0 = (double) $i2_3
11 $d0_1 = 64.0 * $d0
12 $d1 = (double) $i7
13 $d1_1 = $d1 * 0.25
14 $d0_2 = $d1_1 + $d0_1

Data dependency relation
Control dependency relation

Figure 9: Example of processing response message.
variables (Alg.1 line 6). For example, in Fig. 9, since the vari-
able $7_18 stores the hex string of a response message, we
extract line 1-14 by performing static taint analysis.

For each statement identified through forward taint anal-
ysis, we check if it contains mathematical operators (e.g.,
+,−,∗,/) or not (Alg.1 line 7-8). If true, we leverage the data
dependency relations to extract the statements calculating the
final result (Alg.1 line 9). We extract the formula from these
statements and add it to the output (Alg.1 line 10-11). For
example, in Fig. 9, line 11,13,14 are identified since they con-
tain mathematical operators. We focus on line 14 since it is
executed after lines 11 and 13. By analyzing the data depen-
dency relations of line 14, we discover that lines 13,12,9 and
lines 11,10,7 are used to calculate the final result. Thus, the
corresponding formula is “v1∗0.25+64∗v2”. The v1 and v2
are the int values extracted from the response message. Note
that the data dependency relation analysis stops at lines 7 and
9 since they extract int values from the response message.

To discover the condition under which the formula will
be used, for each processing statement with mathematical
operators, we leverage the control dependency relation to
identify the related branch statement (if, switch) (Alg.1 line
12). Control dependency means if the condition of the branch
statement is (not) satisfied, the processing statement will be
executed [49]. For each variable used in the branch statement,
we check the statement that defines it to discover which field
value of the response message is checked (Alg.1 line 13). We
record the condition in the output. For example, in Fig. 9,
the formula in line 14 is calculated when the condition in
line 2 is checked. We can infer that the formula is calculated
when the prefix of the response message is “41 0C” since
the variable $z0_17 in the branch statement is generated by
calling String.startsWith(“41 0C”).

9.3 Attack Real Vehicles With the Reverse En-
gineering Result

Approach To show the usage of the reverse engineering result
of diagnostic tools, we conduct experiment with four real
vehicles (i.e., BMW i3, Lexus NX300, Toyota Corolla, and
Kia). Based on the reverse engineering result, we send the
diagnostic messages to read data, control ECUs, or reset ECUs
of the vehicles. Then, we check if the attack success or not.
Result: We test the diagnostic messages shown in Tab. 13. All

of them succeed when the vehicles are running. For example,
by sending the diagnostic message 40 05 30 11 00 ... 00
to Toyota Corolla, we can successfully unlock all doors when
the vehicle is running.
Table 13: Using reverse engineered diagnostic messages to
attack BMW i3, Lexus NX300, Toyota Corolla, and Kia. Note
that part of each message is hidden to avoid being abused.

Diagnostic Message(BMW) Functions
29 03 22 DB ... E5 Read brake pressure
12 03 22 DE ... 9C Read accelerator position
43 05 31 01 ... 03 Control high beam (FLEL)
43 05 31 01 ... 01 Control low beam (FLEL)
60 05 31 01 ... 13 Control turn light (KOMBI)
01 02 ... 01 Reset collision safety module
60 02 ... 01 Reset combination instrument
Diagnostic Message(Lexus) Functions
03 22 ... 7B Read engine speed (Engine)
03 22 ... 59 Read throttle position (Engine)
04 30 01 ... 10 Control displayed speed (KOMBI)
04 30 02 ... 08 Control engine speed (KOMBI)
Diagnostic Message(Toyota) Functions
40 05 30 11 00 ... 00 Unlock all doors
40 05 30 1C 00 ... 00 Turn on the wiper
40 05 30 11 00 ... 00 Unlock the trunk
Diagnostic Message(Kia) Functions
04 2F B0 ... 03 Unlock central lock
04 2F B0 ... 03 Turn on all light on dashboard

9.4 Alignment of Diagnostic Messages and
Screenshots of GUI

We adopt two methods to ensure the alignment of diagnostic
messages and screenshots of GUI.

(1) For the app recording the video of GUI and the software
capturing the diagnostic messages, we modify their setting so
that they will use timestamps with the precision of millisec-
ond. Moreover, before recording the video and diagnostic
messages, we put the smartphone and Windows PC in the
same local area network. Then, they use the Network Time
Protocol(NTP) [64] to synchronize their system time.

(2) Before collecting the diagnostic messages of UDS or
KWP 2000, we first use the diagnostic tools to read ESVs
by using OBD protocol. We save the request and response
messages of OBD-II protocol and the video of GUI of di-
agnostic tools to perform the alignment. Since the standard
of OBD-II protocol is well-defined, we have the format of
each request message and formula used when parsing each
response message. Thus, we can infer the real ESVs of OBD-
II protocol based on the captured diagnostic messages. Given
one response message, we calculate the real ESV and then
search the real ESV on the screenshots of GUI. If the real ESV
is found on one screenshot and the timestamps of the diag-
nostic message and screenshot are very close, we align the
diagnostic message with the screenshot. We will use the time
offset between the diagnostic message and the screenshot in
the alignment of other diagnostic messages and screenshots.

1956 31st USENIX Security Symposium USENIX Association

	Introduction
	Threat Model and Background
	Threat Model
	CAN message.
	Diagnostic Protocols
	KWP 2000
	UDS

	Vehicle diagnostic tools

	System Design
	Data Collection
	Diagnostic Frames Analysis
	Screenshot Analysis
	Request Message Analysis
	Response Message Analysis

	Experiment
	Precision of the OCR engine
	Result of OBD-II Frames
	Result of UDS and KWP 2000 Frames
	Comparion with Alternative Algorithms for Formula Inferring
	Result of Reverse Engineering ECR
	Formulas Extracted from Apps

	Related Work
	Discussion
	Conclusion
	Acknowledgement
	Appendix
	Three categories of diagnostic tools
	Response Analysis of Telematics Apps
	Attack Real Vehicles With the Reverse Engineering Result
	Alignment of Diagnostic Messages and Screenshots of GUI

