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Abstract
We demonstrate the first downgrade attacks against RPKI.
The key design property in RPKI that allows our attacks is the
tradeoff between connectivity and security: when networks
cannot retrieve RPKI information from publication points,
they make routing decisions in BGP without validating RPKI.
We exploit this tradeoff to develop attacks that prevent the
retrieval of the RPKI objects from the public repositories,
thereby disabling RPKI validation and exposing the RPKI-
protected networks to prefix hijack attacks.

We demonstrate experimentally that at least 47% of the
public repositories are vulnerable against a specific version of
our attacks, a rate-limiting off-path downgrade attack. We also
show that all the current RPKI relying party implementations
are vulnerable to attacks by a malicious publication point.
This translates to 20.4% of the IPv4 address space.

We provide recommendations for preventing our down-
grade attacks. However, resolving the fundamental problem
is not straightforward: if the relying parties prefer security
over connectivity and insist on RPKI validation when ROAs
cannot be retrieved, the victim AS may become disconnected
from many more networks than just the one that the adver-
sary wishes to hijack. Our work shows that the publication
points are a critical infrastructure for Internet connectivity
and security. Our main recommendation is therefore that the
publication points should be hosted on robust platforms guar-
anteeing a high degree of connectivity.

1 Introduction
The BGP (Border Gateway Protocol) connects the differ-

ent organisational networks called ASes (Autonomous Sys-
tems) by propagating information about how to reach the
destinations in remote networks. This central role of BGP
makes it one of the most critical components of the Internet
infrastructure. Correct functionality of BGP is critical not
only for connectivity to services, but also for any security
and privacy mechanisms in the Internet, such as PKI and
Tor [10, 11, 38]. Any configuration error or attack can be dev-
astating to the security and stability of the Internet. Unfortu-

nately, the insecurity of BGP is the cause for frequent Internet
outages [22, 33, 39, 40] as well as traffic hijacks [8, 9, 34, 41].

RPKI aims to prevent prefix hijacks. To protect against
benign misconfigurations and malicious hijacks the IETF
standardised RPKI (Resource Public Key Infrastructure)
[RFC6480]. RPKI binds IP address’ blocks to the ASes that
own them using digital signatures. These signed bindings,
called ROAs (Route Origin Authorizations), are stored in pub-
lic RPKI repositories (called publication points) distributed
throughout the Internet [RFC6482]. Each AS can validate
that an AS that advertises an IP address block in BGP is au-
thorised to do so. This validation, called ROV (Route Origin
Validation), is performed by a relying party, which retrieves
the ROA objects from the public repositories. With RPKI
validation the BGP routers classify each route learned in BGP
into one of three possible route validation states: valid, invalid
or unknown. BGP routes with corresponding correct ROAs
are classified as valid. BGP routes with incorrect ROAs are
classified as invalid. For BGP routes where RPKI objects
cannot be retrieved, i.e., there is no valid ROA that covers the
IP address block, the validation result is unknown, in which
case RPKI is not used for making routing decisions in BGP.
This means when an ROA for a prefix cannot be retrieved, the
current RPKI deployments attempt to preserve reachability
even at cost of security. Our work demonstrates that this de-
sign choice makes the current RPKI infrastructure vulnerable.
We show how to downgrade the RPKI protection of ASes, by
disabling the RPKI validation of prefixes in BGP announce-
ments that they receive, as a result exposing them to BGP
prefix hijack attacks.

Downgrading RPKI security. We present the first RPKI
downgrade attacks. Our attacks prevent the relying party im-
plementations from connecting to the RPKI publication points
and retrieving the ROAs. The relying parties connect to the
publication points periodically every refresh interval, which
range between 10 minutes and 1 hour, depending on the rely-
ing party implementation. We develop an attack methodology
that requires an adversary to cause loss of only a handful of
packets between a relying party and a repository in a refresh



interval. If a relying party cannot connect to the repository,
once the cached objects are expired it will not apply RPKI
validation. Our measurements show that most objects have
validity of 24 hours. We therefore develop an iterative attack,
which is launched during the refresh intervals of the target
relying party, until the cached objects expire. Using Routina-
tor1, with its 10 minute refresh interval, as an example, the
adversary needs to cause loss of ca. 1.2K packets in 24 hours
in the worst case (Table 7) until the objects expire, and the
validation is not applied for making routing decisions in BGP.

We then develop a methodology for optimising the attack
using a malicious publication point, which causes the relying
party to stall, reducing the number of attack iterations to 1.

Low rate blocking. We develop a technique to cause off-
path packet loss that combines a low rate attack methodology
of [26] with rate limiting mechanism on the servers, for caus-
ing off-path packet loss. The idea is to send spoofed packets to
the target server using an IP address of a victim. This causes
the rate limiting mechanism to kick in, as a result the server
starts filtering all the packets that originate from that IP ad-
dress, even the genuine packets sent by the victim. In our
attack, the low rate bursts are synchronised with the intervals
at which the relying party sends queries to locate the publica-
tion points. The spoofed packets trigger rate limiting at the
server for that IP address exactly when the packets from the
relying party or its DNS resolver arrive. We find that against
some repositories as many as 2-3 packets suffice to trigger
the rate limit. Against most servers in the Internet just 1K
packets suffice to activate the filtering. In our measurements
we found 47% of the publication points to be vulnerable to
rate-limiting downgrade attack. This corresponds to 60% of
the RPKI protected IPv4 address space in the Internet.

Rate limiting is just one example method we use for caus-
ing off-path packet loss. Packet loss can be inflicted with other
techniques, e.g., by filling the IP defragmentation cache with
IP fragments, thus preventing genuine packets from being
reassembled [16, 23]. Furthermore, since RPKI is meant to
provide security against attacks by on-path adversaries, down-
grading RPKI is also appealing for strong adversaries that
control a router or a network which the packets traverse.

For attack to be effective it needs to be repeated iteratively,
until the objects expire. We show how to optimise this.

Stalloris attack. We develop an attack for stalling the rely-
ing parties, which allows us to reduce the refresh intervals of a
relying party, correspondingly reducing the iterations needed
for a successful RPKI downgrade attack we described above.
In fact, we show that a combination of Stalloris with just a
single iteration of low rate off-path packet loss attack suffices
to remove the RPKI validation. The idea behind our Stalloris
attack is to create a deep delegation path so that the relying
party opens RRDP connections to multiple publication points
controlled by the adversary. The attack is inspired by the

1According to our measurements, Routinator relying party is supported
by more than 66% of the ASes.

Slowloris DoS attack against TCP connections [12], where
the attacker opens multiple simultaneous HTTP connections
to the target, returning slow responses. In contrast just slowing
down the responses, in our Stalloris attack the adversary stalls
the relying party, by creating long delegations chains, which
the relying party traverses using multiple RRDP connections
to the publication points controlled by the adversary.

Combining our low-rate attack with Stalloris results in a
stealthy and efficient RPKI downgrade attack, which is also
extremely difficult to detect.

One attack affects multiple networks. The extent of our
downgrade attack against a relying party with a victim reposi-
tory is devastating for security and stability of all the networks
that depend on that relying party for RPKI validation, as well
as for all the prefixes that are covered by the ROAs in that
repository. First, most ROV supporting networks are large tier
1 providers and all major IXPs (Internet Exchange Points).
Smaller networks in the Internet perform RPKI “by-proxy”:
by trusting the ROV of the upstream provider or by trusting
the ROV performed by the route-server at the IXP2. This
means that an attack against the relying party at an IXP has
immediate implications for all smaller networks that depend
on it.

Second, the repositories host multiple ROAs, for many pre-
fixes. Blocking access to one public RPKI repository has
implications for all the prefixes that are covered by the ROAs
in that repository, and exposes all those prefixes to hijack
attacks. For instance, consider blocking a public RPKI reposi-
tory of an RIR, such as RIPE NCC, with a root certificate that
is used to delegate to multiple lower certificates in a delega-
tion chain. We quantify the scope of the networks affected by
our attacks.

Ethical considerations. Our attacks were carried out ethi-
cally against a BGP and delegated RPKI infrastructure that
we set up. We validated the attacks: (1) against the publication
points in the Internet using our own “victim” relying party,
and (2) against the relying parties using our own “victim”
publication point. Our evaluations are designed according
to the thresholds that the operators as well as the previous
work consider to be acceptable, and overall we use less traffic
volume than the recent off-path attacks [28, 29].

Our Contributions:
• The relying parties use different timing intervals for re-

trieving the RPKI objects from the publication points. Not
knowing these intervals renders not only the off-path attacks
impractical, but makes even the on-path Man-in-the-Middle
(MitM) attacks extremely challenging. We develop a method
to predict the refresh interval of the relying parties, which is
the first step towards making such off-path attacks practical.
We analyse the relying parties software and demonstrate that
we can accurately predict the timing intervals of the relying

2Using the numbers from https://rov.rpki.net there are 127 networks that
perform ROV: 34 implement the ROV by themselves, while the rest (93
networks) only depend on IXP route-servers to protect them.

https://rov.rpki.net


party software in RPKI protected networks in the Internet.
• We systematically analyse the interaction between the

different components in the RPKI ecosystem and perform a
detailed study of the code and the run time behaviour of pop-
ular relying party implementations. This allows us to identify
vulnerabilities that expose to our attacks. Our key observa-
tions lead to inference of the relying parties’ behaviour in the
Internet as well as to attacks for stalling their performance.
We use these insights to develop an off-path methodology for
disabling validation of RPKI supporting ASes.
•We set up an infrastructure for carrying out measurements

of RPKI and conduct an extensive study of the RPKI support-
ing networks (the relying parties and the repositories). Our
measurements provide new insights on the rate limiting in the
public repositories and in the nameservers of their correspond-
ing domains, as well as on the retrieval, validation and query
behaviour of the relying parties and the DNS resolvers that
they use. We find that all the relying party implementations
in the Internet have properties that expose them to downgrade
attacks. We also find that 47% of the publication points are
vulnerable to the off-path packet blocking attacks via rate-
limiting, hence their RPKI protection can be downgraded.
This is particularly critical for the 77% of the publication
points that are vulnerable to BGP sub-prefix hijack attacks.
•We demonstrate an example attack against one European

IXP, motivating the choice of such attacks against the IXPs.
•We provide recommendations for mitigating our attacks.

Nevertheless, the core problem with the “unknown’ RPKI val-
idation status is fundamental and cannot be easily resolved. If
the networks insisted on strict validation, classifying the result
of missing ROAs as “invalid”, our attack would block connec-
tivity for those networks to all the prefixes in the unreachable
publication point. Hence our main recommendations is that
the publication points should be more resilient and should be
hosted on stable infrastructure, such as cloud platforms.

Organisation. We provide a study of the RPKI ecosystem
in Section 2. In Section 3 we analyse the behaviour of the
relying parties. We introduce our off-path packet loss method
and its evaluation against RPKI infrastructure in Section 4. We
present the downgrade attack in Section 5. We explain how to
find the RPKI infrastructure of a target victim AS in Section 6
and describe an attack against IXP in Section 7. In Section 8
we explain our recommendations for mitigations. We review
related work in Section 9 and conclude in Section 10. We
provide background on RPKI in Section C in Appendix.

2 RPKI Ecosystem
We performed a study of RPKI deployment in the Internet

using a BGP and RPKI infrastructure that we set up. This
study forms the datasets of publication points (with their
domains and nameservers) and the relying parties (with their
DNS resolvers) that we evaluate throughout this work.

Measurement infrastructure. We set up a platform for
measuring the RPKI ecosystem. To create our platform we

register an LIR account with RIPE NCC and purchase an AS
under RIPE NCC and prefixes. We connect our AS to DE-CIX
internet exchange point in Frankfurt. We also protect our AS
with RPKI. For that purpose we create our own Certificate
Authority (CA) and a publication point.

Publication points and nameservers dataset. We extract
the list of all active RPKI publication points (aka public repos-
itories) from our running relying party. This list gives us 45
publication point domains resolving to 61 different addresses
and 124 nameservers.

Relying parties and resolvers dataset. We study the re-
lying party software in all the RPKI validating networks to
understand the refresh interval, as well as the query behaviour.
We collect a dataset of relying parties in all RPKI validating
networks. Since the query behaviour of a relying party is also
related to a DNS resolver it uses to find the publication point,
we also collect all the recursive DNS resolvers used by the
relying parties.

We find 2699 relying parties (RPs). We also measure how
many different resolvers are used by each RP. We evaluate the
number of different ASes in which the resolvers of the relying
parties are located. Out of the 2699 RPs, 2163 (80.1%) were
only using resolvers from a single AS, and 1117 (41.4%) were
using only a single resolver. Furthermore, 1984 RPs (73.5%)
used 5 or less resolvers. We also measured a significant
concentration of resolvers: 45.7% RPs use resolvers operated
by Google and 6.7% RPs use resolvers operated by Cloudflare.
On the other side, 1273 (47.2%) RPs were using a resolver in
their own AS3.

3 Analysis of Relying Party Behaviour
One of the key components of our downgrade attack is

the inference of the RPKI objects retrieval during refresh
intervals by the relying party software. We first perform a
study of retrieval periods by relying party implementations
via code analysis and dynamic executions. We explain this
behaviour with the most popular Routinator relying party
implementation (the relying party developed by NLnetlabs).
We then provide an analysis of the retrieval interval of the
other (less popular) relying party implementations.

3.1 Refresh Interval in Routinator
Our main observation is that the validation by the re-

lying party executes sequentially in periods. This conclu-
sion draws on the code analysis of the main function-
ality responsible for timing of the validation, based on
PayloadHistory::refresh_wait() method in payload.rs
and it is used in Server class in operation.rs. We illustrate
the query behaviour of the relying party (with a use case of
Routinator) to the publication point in Figure 1.

There are multiple rendezvous points in the class Server
and in the nested code used by this class, that depend on multi-

3Note that since some RPs use multiple resolvers, it might be that a RP
uses both, resolver from its own AS as well as some other ASes.
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Figure 1: Query behaviour of relying parties.

ple instances of various synchronisation primitives. Moreover,
the RTR server is asynchronous IO-bound service that runs
in a separate event-loop using Rust Tokio library. The entry
point to the asynchronous RTR code is in rtr.rs file.

(1) As we see, the refresh timing can be affected by mul-
tiple locks, including the one that depends on asynchronous
IO-bound RTR server that share data structures with the vali-
dation code. We tested ordinary use cases to quantify likeli-
hood of triggering of locking delays and we conclude that the
internal delays caused by locking are marginal. This observa-
tion improves the accuracy of our method of timing prediction
despite the internal complexity of the Routinator software.

(2) Under normal circumstances (no network outages nor
publication point timeouts) the refresh takes 15-45 seconds,
the first 5 seconds are spent by scanning the local cache, which
depends on the local storage speed. Because the validation
runs sequentially (see (1)) the length of the RRDP and rsync
refresh depends on the response times of the servers.

When a publication point is unreachable and the TCP/IP
stack fails to signal the unreachability over ICMP, there are
multiple timeouts, the most important ones for us are the
RRDP and rsync timeouts, both 300 seconds. This provides
an upper bound on the delay that can be caused by a single
unresponsive publication point.

(3) The time of refresh does not count in the refresh-period.
That is the reason why the mean time between refreshes is
625 seconds. We also measured distribution of the delays
between requests to RRDP and rsync publication points, and
plot the results with the histogram in Figure 2.
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3.2 Refresh Interval in Other Relying Parties
In addition to our in-depth analysis of Routinator, we anal-

yse the query behaviour of all major relying party (RP) imple-
mentations.

To measure the frequency of the request schedules of the
relying parties, we use our relying parties dataset, described
in Section 2. We log all the requests at our publication point

0 2000 4000 6000 8000 10000
time between requests (seconds), 1 day average

0

50

100

150

200

250

300

nu
m

be
r o

f a
ct

iv
e 

RP
s

RIPE NCC Validator
OctoRPKI
Routinator
fort

Figure 3: Distribution of time between requests at our PP.

and calculate statistics on the time-span between consecu-
tive queries sent by each relying party (differentiated by IP
address). We then correlate the results with a source code
analysis of the relying parties and use the User-agent header
sent in the case of RRDP as a source of information about
the relying party implementation. We show the distribution of
the time between 2 consecutive requests by the same relying
party in Figure 3.

In Table 1 we show the mean time and standard deviation
between 2 consecutive queries for each major relying party
implementation along with a theoretical value obtained from
the source code analysis. Our results show that the mean
experimental values are in the same range as the source code
values, but there is a significant deviation. As we showed for
Routinator, this deviation comes from the fact that Routinator
does not account for the time the RPKI update takes in the
sleeping interval and as such we conclude that this deviation
is the deviation of the duration of the update for different
relying parties. As shown in Figure 2, the deviation is much
smaller when only measuring a single relying party.

Relying party software
default refresh

interval (from code)
measured

µ (s) σ

Routinator 600 686.5 132.9
fort 3600 3634.5 86.1

Cloudflare-RRDP-OctoRPKI 1200 1465.0 167.8
RIPE NCC RPKI Validator 120 158.0 133.0

Table 1: Measured time between requests tsleep.

4 Off-Path Packet Blocking
An important aspect of our attack is to block packets re-

motely. We exploit rate limiting of servers to block responses
to the relying party, “simulating” packet loss. The target
servers are publication points as well as the DNS nameservers
which the DNS resolvers of the relying parties query to find
the publication points.

4.1 Rate-limit in DNS
DNS Response Rate Limiting (DNS RRL) [42] is a tech-

nique employed by recursive resolvers and authoritative name-
servers to reduce the impact of DNS amplification and reflec-
tion [37] attacks. When a DNS server uses DNS RRL, it
monitors the rate of requests coming from an individual client
(or address prefix), typically with a token-bucket scheme [17],



responses/s 3 4 445 1137 1142 1146 1146 1207 1212
answers/s 3 2 82 1137 1142 1146 1146 1207 1212

responses/s 1223 1287 1288 1296 1308 1309 1520 1642 2621
answers/s 1223 1287 1288 1296 1308 1309 12 1301 1236

responses/s 3248 3248 4000 ∞ ∞ ∞ ∞ - -
answers/s 16 16 88 3 7 7 7 - -

Table 2: DNS response-rate-limiting (RRL) in PP domains.

and will stop answering queries originating from this client
when the volume reaches a configured rate-limit.

We measure the rate limit in nameservers in the domains
of publication points, and in resolvers. Since public DNS
resolvers are often used by the resolvers of relying parties,
triggering rate limit in public DNS resolvers has a similar
effect on the losses to the resolver, like the rate limit in name-
servers.
4.1.1 DNS Nameservers

When a DNS server finds a client has reached its precon-
figured rate-limit, it has several methods of denying service
to the client. In practice, we find 2 common types of rate-
limiting in DNS servers, which are often combined and used
in an escalating way: (1) Dropping some (or no) responses4,
but respond to the rest with a empty DNS response with a
TC bit [30] set, which indicates to the client that it should
reconnect over TCP. (2) Dropping all the responses to a client
and do not answer any requests until there are more response-
tokens available.

The limits for both approaches can often be separately
configured in DNS servers5 and often, the first (1) method is
used with a low rate-limit, while the second (2) is used with a
higher limit [1].

Trigger rate-limit to block packets. To exploit the rate
limiting feature to deny service to a third party client, an
attacker can abuse the feature by sending spoofed requests
with the address of the client to the server. Upon reaching the
limit, the server will either send only truncated responses or no
responses at all, which affects all packets with the address of
the client. When sending back truncated responses, the client
has the option to still get served by connecting back via TCP,
so the attack has no further consequences6. However, when
the server uses the second technique and stops answering, the
client will instead assume that the server is unresponsive and
fail the resolution, which will cause the client, that requested
the resolution, to be unable to connect to the service at the
requested domain.

Measurement of rate limit in nameservers. We test the
rate-limiting in all nameservers responsible for publication

4In Bind9, this first limit only applies to "similar" queries, meaning that
queries which ask for a different domain or record type are not affected. We
do not consider this because in our case the attacker knows the domain and
can therefore spoof requests asking for the correct domain and type.

5In Bind9 with the ’responses-per-second’ and ’all-per-second’ settings.
6We tested the support of TCP in the resolvers of relying parties and found

that almost all resolvers where able to connect back using TCP, rendering
such an attack pointless.

Provider Address
responses

per sec
answers
per sec

Google 8.8.8.8 1500 500
Cloudflare 1.1.1.1 1000 -

Table 3: Rate-limiting in public resolvers.

points in our dataset, by probing the nameservers with differ-
ent query rates from 1/sec to 10000/sec for short periods of
time. We monitor the rate of responses and check whether the
responses are "slipped", i.e., do not contain answers but only
have the TC bit set. For each namesever, we then calculate
the effective number of responses and answers (i.e., responses
which contain answers and do not have the TC bit set) per
second by dividing the total number of responses by the test
duration. We consider a publication point vulnerable if all the
nameservers in its domain enforce a rate-limit. We list the
maximum number across all the nameservers per publication
point in Table 2 for all domains where such a limit could be
determined7.

In total, we find 25 RPKI repositories where all the name-
servers enforce rate-limiting. Out of these, we consider 21
vulnerable, since they will stop sending responses at some
point. The other 4 only "slip" responses, meaning that an at-
tack is not practical assuming the resolver is able to connect
via TCP. Furthermore 2 out of the 21, are particularly vulner-
able because of the very low rate-limit of only 3-4 responses
per second, which is very easy for an adversary to trigger.
4.1.2 Public DNS resolvers

We also test rate-limiting applied on client queries in the
2 major public resolvers which were used by the relying par-
ties in our dataset: Google (8.8.8.8) and Cloudflare (1.1.1.1);
45.7% of the relying parties use Google and 6.7% Cloudflare.

We find that operators of both resolvers enforce rate-limits,
which we list in Table 3: Google uses a rate-limit of 500
queries/s at which point some of the responses are slipped
(no answer, TC bit set) and a total response limit of 1500/s
at which point no answer is sent at all. Cloudflare uses a
total response limit around 1000/s but did not use the slip
mechanism. This numbers are inline with the documentation
provided by Google8.

Hence, adversaries can block responses to a relying party
by exploiting the rate-limit in public resolvers. Since both re-
solver infrastructures are anycast-routed, the adversary needs
to select an attack node at the same anycast-instance of the
resolver platform.
4.1.3 Caching and TTL

When exploiting the rate-limiting in nameservers to make
domain resolution unavailable, the adversary has to wait for
any cached records to be removed from the resolver’s cache.
We show experimentally that the TTL of publication point
URLs are low: over 93% of publication points have TTLs

7We removed the domain names for anonymity reasons.
8Google specifies a limit of 1500 queries/sec for their public resolver:

https://developers.google.com/speed/public-dns/docs/isp

https://developers.google.com/speed/public-dns/docs/isp
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Figure 4: A Record TTL distribution for Publication Points.

of 5 minutes and only 22% of resource records are 1 day or
longer. The distribution of the TTL values for A records for
publication points is plotted in Figure 4.

Furthermore, as we show, even the instances with high
TTLs are limited by the cap of the resolvers. In our experiment
with the resolvers of the relying parties we set the TTL of our
record to 48h, then trigger queries to that record and monitor
traffic at our nameservers. In Figure 5 we show the request
frequency for our resource record in a 48h observation period
where the yellow bars show the frequency and the blue bars
show the cumulative frequency of all the values below a given
point. According to the graph most resolvers have their own
individual maximum cache time for records. The median
value of the measured caches is 8h. This observation indicates
that even if publication points have large TTLs, the maximum
cache time parameter in resolvers would ignore high TTLs
and instead use smaller values.

4.2 Rate-limit in Publication Points
Additionally to rate-limiting in DNS servers, many oper-

ators also use rate-limiting in other services, either to pro-
tect the service against application-level DoS [31], TCP-Syn-
Flooding attacks [2], or to slow down port-scanning attempts
against the service [6]. Such rate-limits are typically imple-
mented in Firewalls [4] which monitor the connection at-
tempts by individual clients and drop any requests above a
certain preconfigured limit.

As this filtering happens right at the connection stage of
a TCP connection, attackers can exploit this to consume all
the connection attempts allowed for a client during a certain
time-period by sending a stream of spoofed TCP SYN packets
to the service. Similarly to the second method of rate-limiting
in DNS, this will lead the client to assume that the service is
unresponsive and eventually fail the connection attempt.

Measuring rate limit in PP. We test rate-limiting in pub-
lication points in terms of the number of TCP SYN packets
answered. We probe each publication point IP address in our
dataset with different rates of TCP SYN packets to the pub-
lication point TCP port and measure the amount of answers
received. To reduce the load on the servers caused by this
measurement, we limit our measurement to 6 seconds. If the
rate of answers sent back to our test machine is significantly
below the number of requests (TCP SYNs) sent, we consider
this answer rate as the rate limit of the server. We consider a
rate-limit to be hit when we see a response rate of under 90%
of the rate of TCP SYN packets sent during our 6 second test
interval.
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Figure 5: Request intervals for PP resolvers in hours.

A rate limit was hit in 8 servers out of 61 tested, listed in
Table 4. Out of these 8 servers, 7 where solely responsible for
serving the publication point URL and thus are vulnerable to
the low-rate attack. Similar to our evaluation of rate-limiting
in DNS nameservers, we observed 2 publications points where
the rate limit is particularly low.

rate-limit/s 10 60 2326 4667 4805 5394 5838 8842
only server yes yes yes yes yes yes yes no

Table 4: TCP SYN rate-limits in publication points.

4.3 Ethical considerations for RRL scans
Our experiments for determining the DNS RRL and TCP

SYN rate-limits are comparable to other experiments mea-
suring rate-limiting in remote servers [28]. In addition, we
communicated with DNS operators to coordinate acceptable
rates that do not affect the operation. This includes CZ.NIC
ccTLD for cz. that manages more than 1.4 M domains, a major
IXP NIX.CZ that operate J- and K-root anycast DNS servers,
WebGlobe (AS29134) - a large ISP that operates authorita-
tive DNS servers for more than 100k domains, and TI AG
(AS29655) - a major ISP that operate recursive DNS servers
for large FTTH metro network. From our survey of network
operators we found that "1000 DNS requests/sec" is not caus-
ing impact on authoritative DNS servers in the Internet, so
running an experiment that does not exceed this volume of
requests should not cause operational problems. We tested
the low rate attack using low rates and our tests lasted only 6
seconds in total. Given that modern nameservers are able to
serve 500000 answers per second without any problems [24],
at peak we have not even used 2% of the capacity of such
a nameserver for 6 seconds. We limit the experiment to 6
seconds per server, so that it is shorter than the connection
timeout of a typical client. In our queries we use the same
query (domain+type) and do not ask for DNSSEC records in
order not to increase the load. Finally, we only conduct the
experiment against one server at a time, so that the fallback
servers are not affected.

5 RPKI Downgrade Attacks
During the ROV a relying party uses information in the

RPKI to make routing decisions in BGP, i.e., to decide if
to accept an IP prefix and an origin AS pair. A relying party
queries the domain for each repository to locate the server that
hosts the repository, then connects to it to retrieve the RPKI
objects over RRDP or rsync. The valid ROAs are then used



Victim
Name
server

Publication
Point

Relying
Party

Resolver

BGP
Routers

Attacker

RRDP/rsync query

DNS
query

Spoofed
TCP SYNs

Spoofed 
DNS queries

LIR/RIR
2a

2b

3a

Query
Attacker PP

1
4 RTR

3b

Figure 6: Attack overview.

to classify the AS and prefix pairs in each BGP announce-
ment as valid, invalid or unknown. If the validation results
in status unknown, RPKI validation is not applied. In this
section we explain our RPKI downgrade attack, in order to
hijack the BGP prefix of the target AS. Our attack consists
of low-rate packet loss attack against the publication points
and of Stalloris attack against the relying party. We then eval-
uate and analyse the success probability of the attack against
RPKI-protected networks in the Internet.

5.1 Low-Rate Attack
Find relying party of victim AS. Assume that the two

victims are AS T and AS B. The adversary wishes to cause
AS T accept a hijacking BGP announcement for AS B. Both
AS T and AS B deployed RPKI. The adversary finds the
relying party of T and the DNS resolver that the relying party
on the victim AS T is using. The adversary also finds the
public repository (aka publication point) of B, which serves
the RPKI information for the prefix of B. We show how to
identify the relying party in Section 6 and the resolver in
Section 2.

Selectively dropping packets. Once the victim relying
party of network T and the public repository of network B are
identified, the attack consists of preventing the relying party
from communicating with the target public repository. This
can be achieved by dropping the packets exchanged between
the relying party and the public repository. For instance, the
adversary can continually flood the communication path be-
tween the relying party and the repository. Such an attack
requires substantial adversary capabilities and can be exposed
since such traffic volumes would also disrupt other services.

We use a rate-limiting based off-path attack methodology
we showed in Sections 4.1 and 4.2 in order to drop packets
exchanged between the relying party and the repository. We
experimentally found that many of the publication points
and the nameservers support rate limiting, see Tables 2 and
4. In addition, above 50% of the resolvers of the relying
parties use public upstream resolvers, which also enforce rate
limiting, hence extending the attack surface, Table 3. Our
measurements in Section 4 demonstrate that the rates for
blocking communication are moderate hence allow practical
attacks. However, since the attacker does not know when the
packets are exchanged, it would require to constantly run
the low rate attack exploiting rate limiting, which makes the
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Figure 7: RPKI manifest validity period in days.

overall attack not practical. We develop an adversarial strategy
to synchronise the low rate attack to the “refresh intervals” of
the relying party, during which the relying party queries the
public repository.

Predict the query interval of the target. In order to
launch network attacks to disrupt connectivity the adversary
needs to predict when the relying party initiates the query
interval. At that point the relying party starts connecting to
the repositories to request the RPKI objects. This phase is
accompanied with DNS queries, to locate the repository, and
connection establishment with RRDP or rsync. Predicting this
phase is believed to be difficult, especially for off-path adver-
saries, since they are not located on the path, hence cannot
see any communication exchanged between the relying party
and the public repository.

To be able to predict the retrieval interval our adversary sets
up the BGP and RPKI infrastructure, in delegated RPKI setup
(see description in Section 2). This enables our adversary to
directly receive communication from any relying party in the
Internet. In particular, also from the victim AS (step 1 in
Figure 6). Using our analysis in Section 3 we show that this
allows the adversary to predict the refresh interval since the
queries to all the repositories are sent concurrently in one bulk.
Hence, once queries from the relying party of AS T arrive at
the nameserver or the repository of the adversary, the adver-
sary can calculate the next query interval and synchronise its
attack accordingly. This ability to anticipate the queries al-
lows us to significantly reduce the volume of the attack while
improving its effectiveness. In Section 5.3 we show that this
approach allows to launch practical attacks against targets in
the Internet. Without the ability to synchronise the attack the
only strategy of the adversary would have been to continually
prevent communication between the relying party of T and
the target repository of B.

Attack until RPKI status “unknown”. As soon as the
query interval is found, the adversary needs to launch the
attack once in every refresh interval until the RPKI validation
is not be applied for making routing decisions (step 2a / 2b in
Figure 6). When the relying party cannot reach the publication
server (step 3a / 3b , Figure 6) and does not have the RPKI
objects for that AS in its cache, it will not be able to perform
the ROV validation. The RP will eventually change the RPKI
state of the target prefix to unknown and will update the BGP
routes (step 4 in Figure 6). If the objects are cached, the
adversary needs to wait until they expire.

How long does it take for cached objects to expire? Our
measurements show that ROA objects are typically valid for
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Figure 8: ROA objects validity period in years.

long time periods. Our measurements show that the median
validity of ROA objects is 545 days; see validity distribution
of ROA objects in Figure 8. However, for efficiency purposes
(to reduce the sizes of the revocation lists and the volume of
the BGP updates), the standard requires the relying parties
to only check the manifests. The publication servers and the
relying parties use the manifest files to signal changes in the
repositories and to avoid certain types of object deletion and
substitution attacks with older (but still valid) objects. All ob-
jects of stale manifest files and all the subtrees of these objects
should be treated as “suspicious” as instructed by [RFC6486].
We checked the behaviour of all the RPKI validator imple-
mentations (the list is in Figure 1, Section 3) and found that
they are all [RFC6486] standard compliant and strict towards
“suspicious” objects in their default settings, i.e., they discard
all the “suspicious” objects and the entire subtrees, for which
there are stale manifest files, and exclude them from the RPKI
validation.

How long does it take for manifests to expire? To an-
swer this question we performed a measurement of the valid-
ity period of the manifest files [RFC6486]. Each publication
server generally needs at least one manifest, but the structure
of the hosted RPKI system operated by RIRs provide a sep-
arate space and manifest file for each hosted customer. We
downloaded data of all the active RPKI publication servers
on July 15, 2021 and obtained 28330 valid manifest files.
We compute the distribution of the validity period lengths
and plot the results in Figure 7. The results are that there are
15018 (53.01%) manifest files with validity≤24 hours, 19836
(70.02%) that are valid for ≤48 hours, 24038 (84.85%) valid
≤96 hours and 25690 (90.68%) manifest files are valid for
≤15 days. Hence, in the worst case the adversary needs to
wait just one day until it can complete the attack on 53.01%
of the publication servers. However, in practice, manifest files
are not generated on the fly when they are downloaded by an
RP, but are re-generated periodically by publication points.
In Krill, an open source RPKI CA with a built in publication
point, we find that manifest files are re-generated once their
remaining validity period is below 6 hours. This means an
attacker can time his attack to a point in time when a manifest
file is about to reach 6 hours of remaining validity so he only
need to wait the remaining 6 hours for it to expire.

Once the manifest expires the RPKI status for that AS will
result in status unknown, instead of invalid. Consequently,
when making routing decisions and updating the forwarding
tables the border routers on that AS will not apply RPKI for
validating the BGP announcements of the origin AS whose
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Figure 9: Stalloris attack.

prefix the adversary wishes to hijack. The adversary can issue
a bogus BGP announcement to hijack the prefix of victim
B. Depending on the local preferences of T , if it accepts the
hijacking BGP announcement for B, all the communication
of the hijacked origin B will be sent through the adversary.
This is despite the fact that both T and B are RPKI-protected.

How many attack iterations are required to cause status
unknown? As an example we take manifest validity of one day
(24 hours) and we assume that the AS T uses the Routinator
relying party. Routinator uses 10 minutes refresh intervals,
which results in 144 attack iterations until the relying party of
T does not apply RPKI validation, exposing itself to accepting
hijacked BGP announcements. Although in most cases this
allows practical attacks (see analysis in Section 5.3) we can
further significantly reduce the attack complexity with an
optimisation that we develop. The optimisation allows to
reduce the attack iterations to as little as 1.

5.2 Stalloris Attack
We develop an attack to stall the relying party. This attack

can be used in combination with the low rate attack resulting
in overall optimisation of the iterations required to downgrade
RPKI.

Unlimited delegation paths. In our code analysis of the
relying party implementations we noticed that the relying
parties do not check the delegation path (length, depth or even
both). We use this observation to encode arbitrary long dele-
gation paths. First, quick background information. In RPKI
it is possible to delegate authority over an IP prefix and an
AS number: our adversary delegates the resources to itself,
e.g., to another repository under the subdomain that it set up.
The relying party starts the RPKI validation from the root,
this is the RIR, e.g., RIPE NCC. From there, it follows the
delegation to at least one resource pointing at the CA, which
points to the publication point. The relying party contacts
each publication point and every domain in the delegation
chain and downloads the data. When it identifies a new del-
egation chain, it contacts the publication point, retrieves the
data and stores it in the cache – this occurs within one refresh
period. If there is a delegation to the next level, during the
next refresh interval, the relying party will contact that publi-
cation point and download the certificates over RRDP again.
The publication points in a delegation can all be mapped to
the same IP address: As long as they are mapped to different



subdomains, from the perspective of the relying party these
are different publication points, and the relying party will
attempt to traverse all of them.

Stalling relying party. The idea of the attack is to set up
multiple publication points and to construct a long delega-
tion chain, which the adversary provides in an answer to the
target relying party, when it queries the publication point con-
trolled by the adversary. The adversary returns slow replies
in the RRDP transactions from all the publication points that
it controls, in order to degrade the performance of the victim
relying party. By slowing down the relying party, the adver-
sary reduces the number of refresh intervals, hence reducing
the number of iterations needed to launch the attack. We call
this attack Stalloris9, since it stalls the relying party, and is
inspired by the Slowloris DoS attack [12], where an adversary
initiates multiple slow HTTP connections to the victim server.

To increase stealthiness the adversary may limit the at-
tack to some selected victims. To the other relying parties
the adversary sends simple and valid answers. The adversary
responds with different certificates (with or without down-
stream delegation) to expose more levels in the delegation
chain only to the victim RP and not the rest of the world.
Hence only victim RP is affected, but not the others. Detect-
ing our attacks from logs or monitoring is tricky: servers may
become unreachable for legitimate reasons, operators cannot
differentiate such attacks from legitimate failures. We next
explain the steps of the attack.

This attack is illustrated in Figure 9: In step (1), the victim
RP connects to a adversarial PP to fetch the ROAs. In step (2)
the adversarial PP is configured to answer all requests as slow
as possible while avoiding errors in the victim RP by limiting
the transmission rate and artificially inflating the response
size. However, instead of providing the respective ROAs, the
adversary sets up multiple layers of sub-delegations to other
RPKI CAs which point back to other PPs in the adversary’s
infrastructure. To chase down the delegation chain, the victim
RP therefore has to connect back to another adversarial PP
in step (3), which again, responds slowly. This process is
repeated by the adversary. In step (4), after some time, the
cached manifest file from the victim RP times out because
it has not been refreshed due to the RP being stalled in the
process of downloading ROAs from the infrastructure of the
adversary. Therefore, when the RP performs the next RPKI
validation run, it removes the ROAs referenced by the stale
manifest and sets the RPKI state of the corresponding prefixes
to unknown, communicating these changes to the connected
BGP routers in step (5).

The Stalloris attack can be used as a supplementary optimi-
sation to our low rate attack, but cannot completely replace it.
Since the re-validation occurs after the refresh finishes, for a
successful downgrade attack the relying party needs to update
the cache once (i.e., successfully retrieve the RPKI objects),

9Loris is a slow animal https://en.wikipedia.org/wiki/Loris.

then to fail once (due to our low-rate packet blocking method)
and only then do we proceed to stalling the relying party (with
Stalloris). Combination of low-rate blocking attack with Stal-
loris results in an highly efficient attack; we provide analysis
of traffic volume for different attack combinations and con-
figurations of relying party and publication point in Section
5.3.

Duration of each delegation level. The processing of each
level in a delegation chain is limited by a timeout in the
relying party; in Routinator this is 300 seconds, see analysis
in Section 3.1. Hence, the adversary needs to keep the relying
party at each level for at most 300 seconds, otherwise the
relying party will timeout.

How many levels are needed? If the adversary creates a
delegation chain of 288 levels, it will cause the relying party
to be stalled for 300·288=86000= 24 hours. The adversary
can therefore combine this optimisation with our low rate
attack, hence reducing the number of iterations for attack. For
instance, if it creates 144 delegation path, it stalls the relying
party for 12 hours, and the adversary needs to launch the
low rate attack once. Given a 72 level delegation path, the
adversary needs to run the low rate attack every 6 hours.

Requirements on the adversary. The adversary needs to
control one AS and one /24 prefix, and can delegate them
over and over again. It does not actually need to split the pre-
fix in its delegations, and can make a long chain using the
same prefix. The adversary also needs to control a CA and a
publication point. The adversary needs to control a domain
for its publication point, and needs to create multiple subdo-
mains. Each subdomain is used to create a delegation level.
All these requirements are straightforward for adversary - we
validated this by acquiring and setting up routing and RPKI
infrastructure under RIPE NCC. Finally, the adversary needs
to generate multiple CA and publication point domains, all
can point to the same IP address. This step can be automated
with a script.

Evaluation in RP implementations. We evaluate our Stal-
loris attack against the major RP implementations, by mea-
suring the maximum time the relying parties can be stalled
on a single connection by not sending any data (and remain-
ing idle) and throttling the connection in combination with
artificially inflating the download size10. Additionally, we
evaluate the maximum certificate chain depth. The results of
our evaluations are listed in Table 5. Our findings are that
Routinator, Fort and OctoRPKI can be stalled between 5 to 10
hours per update, by maximising the connection time for each
publication point with the maximum chain depth. Note that
an adversary can also increase the chain width by delegating
to multiple sub-publication points at each level.

5.3 Success Probability Analysis
The overall success probability of our adversary depends

on 2 factors: successful blocking of an individual relying
10We used a 100MB inflated file at 100kbps.



HTTPS Rsync Max timeout
Relaying Party Idle Throttling Throttling Depth × depth

Routinator 300s 300s - 32 2.6h
Fort 24s 17 mins* - 31 9.1h

OctoRPKI 60s 60s 20 mins 30 30min/10h
Ripe-Validator 60s 0s - ∞ (∞)

*No timeout. Depends on file size and bandwidth limit set by the attacker.

Table 5: Stalling Results

party’s (HTTP or DNS) request and the number of requests
during the time period required for a successful attack.

The time period of an attack. Our attack uses the fact
that a relying party will switch a network’s RPKI status to
’unknown’ based on any break in the chain leading to the ROA
for this network. Since relying parties cache the contents of
RPKI repositories, the time period for an attack is therefore
the shortest remaining length of any certificate in the trust-
chain (i.e., often 6 hours). In our analysis we consider the
worst case, but in practice the manifests are not "signed on the
fly" when downloaded from a publication point, hence have a
shorter validity period. For a successful attack an adversary
should be able to deny connectivity to the publication point
of a repository typically for at most one day, see Section 5.1.

Query volume. Using the values from our relying party
and stub resolver analysis (Section 3), we compute the num-
ber of connection attempts during the attack period tattack of 1
day by multiplying with the expected number of repository up-
dates during that period (i.e., the inverse between 2 repository
synchronisation tsleep) and the number of retries nretries:

nattempts = tattack ·
3600s
tsleep

·nretries

We calculate the values for nattempts using 4 different example
scenarios in Table 6:

(1) An old manifest file which has only 6 hours of validity
left, combined with an Unbound resolver, in case the attacker
is able to deny all requests, which leads Unbound to "block"
the nameserver, effectively limiting the rate of DNS requests
to the nameserver to one per 15 minutes. (2) A fresh manifest
file which has 1 day of validity left, combined with a victim
relying party using Routinator on Linux and a Bind9 resolver.
(3) A fresh manifest file with 2 days of validity left, combined
with a victim relying party using RIPE NCC RPKI Valida-
tor and an Unbound resolver where the attacker is unable to
"block" the server, causing up to 16 retries per client DNS
query. (S) The attacker uses the Stalloris technique from Sec-
tion 5.2 to reduce the number of connection attempts by the
RP under the same conditions as scenario (2).

The first two scenarios represent the common values and
configurations we measured in the RPKI setups in the Inter-
net. The third scenario represents the theoretical worst case
scenario that we defined using worst case values we collected.
The last scenario uses the same values as scenario (2), but
assumes the attacker uses the Stalloris optimisation. Our anal-
ysis in this section uses the number of retries in Bind9 and

(Scenario) nattempts tattack tsleep nretries o
old unbound unbound

(1) 24 manifest (blocked) (blocked) 35
6 hours 900 s 1

fresh routinator bind9 /
(2) 864 manifest (normal) linux tcp 1247

1 day 600 s 6
long-valid RIPE NCC unbound

(3) 23040 manifest validator normal 33240
2 days 120 s 16
fresh routinator bind9 /

(S) 55 manifest (stalled) linux tcp 80
1 day 2.6 hours 6

Table 6: Number of connection attempts in different scenarios.

Unbound DNS resolvers software, as well as in Linux (the
OS in RPKI deployments of relying parties and publication
points) which we explored and summarised for interested
reader in Appendix, Section B.

Success probability. Based on the number of connection
attempts and the probability to deny a connection attempt, we
calculate that overall success to deny all connections during
an attack period tattack. The probability to deny a connection
attempt, is:

pconnectonce =
rlimit

1+ rattacker

where rattacker is the query rate of the attacker.
We calculate the total attacker success rate by deriving the

probability of denying not one but nattempts:

psuccess = (1− pconnectonce)
nattempts = (1− rlimit

1+ rattacker
)nattempts

Packet volume for a successful attack. For a given suc-
cess rate, we can obtain the relation between the rate limit
and the required rate of spoofed requests sent by the attacker,
which we call the overwhelming factor o:

o =
1+ rattacker

rlimit
=

1
1− nattempts

√
psuccess

We calculate this factor for a target success rate of psuccess =
50% in our 3 scenarios, which is listed in Table 6. In the best
case scenario, the attacker only needs to send roughly 35
times as many packets as the rate-limit to the publication
point or nameserver, while in the worst-case scenario, this
factor increases to 33240 times as many packets as specified
by the rate-limit.

When combining this factor with the measured rate-limits
from Sections 4.1 and 4.2, we can compute the required rate
of spoofed packets. For each attack scenario, we calculate the
rate rattacker for 3 example values for the rate-limit rlimit listed
in Table 7. Finally we combine the required rate rattacker with
the expected variance of the relying party update schedule
up to which an attacker can predict the next query (e.g., 30
seconds in Routinator, Figure 2).

Our analysis shows, that depending on the rate-limit and
attack scenario, the rate of spoofed packets for a success-
ful attack ranges between 105/s and 42,813,120/s for an un-
optimised attack (i.e., based only on iterative low-rate packet



(Scenario)
o rlimit rattacker

total packets
per update

(1)
35

3 105 3,150
60 2,100 63,000

1288 45,080 1,352,400
(2)

1247

3 3,741 112,230
60 74,820 2,244,600

1288 1,606,136 48,184,080
(3)

33240

3 99,720 2,991,600
60 1,994,400 59,832,000

1288 42,813,120 1,284,393,600
(S)
80

3 240 7,200
60 4,800 103,040

1288 103,040 3,091,200

Table 7: Packet volume for a successful attack based on anal-
ysis in Section 5.3.

blocking during multiple refresh intervals), with a reasonable
average-case of <74,820/s. To compare this attack volume to
other recent attacks: the recently proposed DNS cache poison-
ing attacks [28,29] require above 100K spoofed packets from
the attacker in the average case for identifying the correct port
and DNS TXID.

Our downgrade attack can be significantly optimised by
combining the low-rate packet blocking with Stalloris (Sec-
tion 5.2). For a successful Stalloris downgrade attack un-
der the same conditions as scenario (2) the required rate of
spoofed packets is reduced by the factor 16 from 74,820pkt/s
to 4,800pkt/s in the average case. This means that even in
unfavourable conditions, such as extremely high rate-limit
and a resolver performing maximal number of retries, using
the optimisation to stall the relying party makes the attack still
feasible. In fact, the devastating impact of the attack is dispro-
portional to its efficiency: the adversay can with just a single
such attack downgrade RPKI for all clients of a large provider
(see example of DE-CIX IXP, Section 7) to a large number
of Internet prefixes covered by the ROAs in the publication
point that the adversary blocks.

5.4 Vulnerable Networks
We calculate the number of networks vulnerable to removal

of RPKI protection in terms of network size. We consider all
network blocks vulnerable which are hosted on repositories
with rate-limiting (DNS or TCP) enabled, see Tables 2 and
4. We extract a mapping of publication point domains to
the ROAs hosted on these publication points from a running
Routinator instance to see which networks are affected by
removal of RPKI protection in the case this publication point
is targeted by an attacker. We also calculate the number of
networks which have RPKI protection by summing up the
network sizes of all ROAs in all repositories. Our calcula-
tion does not consider other methods of Denial-of-service,
such as rate-limiting in resolvers used by relying parties (See
Section 4.1), as these methods depend on the relying party
only and cannot be reliably measured in the internet without
causing collateral damage.

Our results are shown in Table 8. In conclusion we find
that 34.2% (IPv6: 40.0%) of the assigned address space has

total % of assigned % of ROA-
addresses address space protected

has ROA v4 64 * /8 34.2 % 100.0 %
v6 322 * /24 40.0 % 100.0 %

vulnerable v4 39 * /8 20.4 % 59.6 %
(all) v6 122 * /24 15.2 % 37.9 %

vulnerable v4 2 * /8 1.1 % 3.1 %
(low ratelimit) v6 10 * /24 1.3 % 3.2 %

Table 8: Networks vulnerable to removal of RPKI protection.

published ROAs, out of which 59.6% (IPv6: 37.9%) are po-
tentially vulnerable to removal of RPKI protection due to
our attack. Furthermore, in 3.1% (IPv6: 3.2%) of the address
space, these attacks are highly practical due to to low rate
limits at or below 60 requests/sec. These cases are made up
almost entirely from the customers of a single provider, which
is the only major operator of a publication point which such a
low rate limit11.

6 Find the Victim
In order to attack a target AS the adversary needs to identify

the relying parties that the victim AS uses for validating the
ROAs. We develop a methodology for associating between
an AS and a relying party that it uses in RPKI, with the con-
flicting ROAs that ROV measurements use [15, 20, 35, 36].
Our approach works by selectively presenting different sets
of conflicting ROAs to the relying parties while monitoring
the reachability of the corresponding network blocks. We
identify dependency by observing the routing decisions that
the routers make based on validated ROAs computed by the
relying party.

We assume that the target network is identified by an ASN
AST and that it enforces ROV. Furthermore, the AST an-
nounces NT IP prefixes PT

i , i∈ {1,2, . . . ,NT} that we identify
using the BGP table dump12.

Setup. Carrying out the procedure for associating a relying
party with IP address aRP to the target network AST requires
the following: A controlled network ASA (simulated attacker),
a BGP router in ASA that can announce IP prefixes PA

1 and
PA

2 to the Internet, the RPKI CA and the publication point
that we control fully and a valid RPKI delegation for these IP
prefixes towards our RPKI CA and PP.

Procedure. We execute the following steps to test if net-
work AST depends on the relying party with IP address aRP:

(1) Select a target IP addresses aT from one of the IP pre-
fixes {PT

1 ,P
T
2 , . . . ,P

T
N } announced by the AST . The selection

of the aT requires that this IP address respond to ICMP echo
requests or there is at least one publicly available TCP or
UDP service on the selected IP address and it can be eas-
ily probed for reachability. We assume that at least one such
IP address exists in the target network and furthermore we
assume that the routing policy is uniform for all prefixes
{PT

1 ,P
T
2 , . . . ,P

T
NT }.

11The other 2 repositories both hosted ROAs only for a small number of
relatively small network blocks.

12https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris/ris-raw-data

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data


(2) Announce IP prefixes PA
1 and PA

2 from ASA.
(3) Create two sets of ROAs for the prefixes PA

1 and PA
2 :

The first set is Σ = {ρ1,ρ2} where ρ1 = (PA
1 ,ASA,max_len =

p f xlen(PA
1 )) and ρ2 = (PA

2 ,ASA,max_len = p f xlen(PA
2 )),

p f xlen(P) denotes the true IP prefix length of the prefix P.
Both ROAs ρ1 and ρ2 are in agreement with the BGP an-
nouncements for PA

1 and PA
2 from the previous step. Further-

more we define the second ROA pair Σ = {ρ1,ρ2} where
ρ1 = (PA

1 ,X ,max_len = p f xlen(PA
1 )) and X 6= ASA. The

ROA ρ1 contradicts the PA
1 BGP announcement, hence the

validation outcome with ROA pair Σ is inverse from Σ for
prefix PA

1 , but the second prefix PA
2 is not blocked by ROV in

both cases for positive reachability verification.
(4) Set up a RPKI CA along with a modified publication

point that can sign both sets Σ and Σ and selectively respond
to RPs with the specific ROA set based on RRDP and rsync
query source IP address. We set up a delegation for prefixes
PA

1 and PA
2 to this CA and PP.

(5) We configure our PP from the previous step to respond
with ROA set Σ to all RPs except one with IP address aRP.
Only for this RP our PP responds with ROA set Σ. Hence
the RP with IP address aRP is the only RP that receives the
inverse ROA for PA

1 .
(6) We define (bi-directional) reachability test using ICMP

echo or the service selected for the specific destination IP
address in step (1):

R(s,d)=

 1 if the IP address d responds to a request
from IP address s

0 otherwise
The selected IP address aT in the target network is probed

from two distinct source IP addresses aA
1 ∈ PA

1 and aA
2 ∈ PA

2 .
The possible outcomes are:
• R(aA

1 ,a
T ) = 0∧R(aA

2 ,a
T ) = 1 and all intermediary net-

works on path between ASA and AST do not enforce ROV or
their RPs have already been identified and differs from aRP: It
indicates that AST enforced ROA set Σ. This set is distributed
only to RP with IP address aRP, hence the network AST uses
VRPs from this RP to implement ROV.
• R(aA

1 ,a
T ) = 1∧R(aA

2 ,a
T ) = 1: ROA set Σ is not enforced

in AST , hence the network AST does not use VRPs from RP
with IP address aRP to implement ROV.
• Any other result is considered invalid and therefore the

relationship between the AST and RP with IP address aRP can
not be determined.

Since we fully control the publication point, we collect all
the IP addresses of active relying parties and repeat the steps
(5) and (6) for each active RP IP address as the aRP. By this
method we can find a RP for a specific network.

Time complexity. Our measurements in lab using a mod-
ern Routinator v0.9.0 RP with a router as the RTR client
(Cisco ASR 9000 running Cisco IOS XR Release 7.4) show
that the changes propagate to the routers within few seconds
after the refresh. However, we expect that longer waiting
times between the RP setup and reachability tests are needed

to counter the batch-processing nature of the ROA valida-
tion and validated ROA payloads update workflow over RTR,
limiting the real speed to up to two rounds per hour.

7 Use Case: Internet Exchange Point (IXP)
The IXPs provide a high-capacity L2 interconnect between

the members - ISPs and networks of various sizes. Typically
networks in IXPs use route servers to avoid operational, ad-
ministrative and management challenges associated with set-
ting up and maintaining the BGP sessions among themselves.
In our example we use Frankfurt DE-CIX IXP, one of the
largest IXPs in the world, as a test case. In DE-CIX this
constitutes about 85% of the networks13, which were 1301
configured peers on Oct 5, 2021.

Adversary model. The attacker needs to be a member of
the IXP, which means that it has direct BGP connection to
the route servers and therefore it can effectively execute the
algorithm for associating the target network with the relying
party in an automated manner. In addition, the network of the
adversary needs to run the delegated RPKI infrastructure -
every network has the freedom to decide whether it operates
a delegated RPKI infrastructure or a hosted RPKI at the RIR
(Regional Internet Registry). Moreover, the attacker needs to
have access to the internal and public network management
and debugging tools provided by the IXP - Looking Glass
service, list of members with their peer IP addresses and port
state and statistics. All of these are provided to the members
at the IXP.

Reliance on the route server. The route servers in mod-
ern IXPs implement strict filtering rules14, that include ROV.
The members of the IXP prefer the routes from the IXP (ei-
ther from route servers or from direct BGP sessions) due to
the higher spare capacity, lower cost and direct path, in com-
parison with the upstream connectivity. This preference for
IXP routes is implemented by LOCAL_PREF attribute. Preferring
the IXP routes introduces a higher risk for BGP hijacking,
because LOCAL_PREF has one of the higher priorities in the
BGP best path selection algorithm [Section 9.1 in RFC4271].
Namely, once RPKI validation is removed the members at the
attacked IXP will be redirected to the attacker’s prefix. Our
measurements of the peers at the DE-CIX IXP show that they
do not perform checks themselves but only rely on the ROV
performed by the route server at the IXP.

The adversary can easily obtain access to the core Internet
infrastructure, allowing it to inject BGP routes that will be
preferred the other paths (even those with higher LOCAL_PREF).
We explain this in Appendix, Section A.

The aim of our attack is to inject and achieve a dissemina-
tion of an unauthorised route in BGP by the route server. The
route we want to inject would not pass ROV validation since
it violates the ROA of the victim AS (it maps the adversary’s
ASN to the prefix of the victim). Therefore, we first force the

13https://lg.de-cix.net/routeservers/rs1_fra_ipv4
14https://www.de-cix.net/en/locations/frankfurt/route-server-guide

https://lg.de-cix.net/routeservers/rs1_fra_ipv4
https://www.de-cix.net/en/locations/frankfurt/route-server-guide


relying party at DE-CIX to not perform RPKI validation for
the public RPKI repository that the victim AS uses. In this
attack we use our own AS as a victim with a public repository
that we control.

Injecting hijacking BGP announcements into IXP. The
steps of the attack are as follows: (1) we locate the relying
parties used by the route servers in the IXP. (2) Identify the
public RPKI repositories that published the ROAs relevant for
the IP prefix that we want to hijack. (3) Launch the downgrade
attack to degrade the RRDP or rsync service between the
PP and RP(s). (4) Wait for the manifests to run out of the
validity period so the RP(s) drop all the “suspicious” ROAs
according to [section 6.4 in RFC6486]. Finally (5) Announce
the unauthorised prefix to hijack the traffic of the victim AS.

Ethical considerations. Since Stalloris attack can stall an
IXP our evaluations were coordinated against our own relying
party. In our evaluations the publication point was targeting
only the relying party of our test AS, which was connected to
that IXP. The publication point provided a specially crafted
certificate with multiple downstream delegations to the rely-
ing party of our AS and normal certificates without multiple
delegations to all other relying parties. Hence only our "vic-
tim" relying party was affected, but not the others.

8 Countermeasures and Mitigations
We provide recommendations for resolving the core issues

as well as the technical issues that allow our specific RPKI
downgrade attacks.

Validation limit on delegation chains. The Stalloris at-
tack can be mitigated by restricting the maximum depth and
length of the delegation by enforcing a global limit on the
delegation chain. Our evaluations show that 32 would be
sufficient for all legitimate delegations. In addition, Asyn-
chronous I/O (e.g., with asyncio library) can be used to run
the refresh in parallel. Limiting the delegations would pre-
vent our Stalloris optimisation to the downgrade attack, but
since the low-rate downgrade attack is not implementation
dependent, this would not prevent the low-rate downgrade
attack. We experimentally showed that in many cases even
the non-optimised version of the low rate attack is practical.

“Unknown” RPKI validation status. The core problem
which exposes to downgrade attacks is that the adversaries can
cause RPKI validation to result in status “unknown”. A way to
fix this would be to return status “invalid” in situations where
ROAs cannot be located. The downside of this solution is that
benign network failures or misconfigurations would prevent
connectivity to the affected network prefixes. Furthermore,
because the repositories host many different ROAs, relying
parties could only block the complete address space delegated
to the affected publication point. In case of a RIR repository,
this would affect the complete Internet since all the RIRs can
generate ROAs for all network blocks. In addition, adversaries
could also exploit the strict validation to cause DoS attacks
by preventing access to the repositories thereby leading to

invalidation of legitimate network prefixes. It is important to
evaluate and analyse the tradeoff between the permissive and
the strict approaches and to identify what is more suitable for
Internet routing. In addition, every network should be able to
decide and configure this for their network themselves.

Distribution and redundancy. A significant weak link is
the single URL that is currently used to find the publication
point. Our proposal is to create multiple NS (nameserver)
records15 and to distribute the URLs of the publication points.
This would solve not only downgrade attacks but also the
benign failures. If one instance fails, you can try the others.
Multiple locations for retrieving the RPKI information would
introduce redundancy to avoid failures. In addition, it is im-
portant to host the publication points on robust platforms that
guarantee high degree of connectivity.

Rate limiting. The property which we used in this work
for developing the packet loss technique exploits rate limiting
in DNS or in publication points. Rate limiting threshold can
be increased or rate limiting can be applied over all source IP
addresses. This would make the attack via rate limiting more
difficult to launch. We caution however, that other techniques
can be used for launching our downgrade attacks, such as
packet loss with spoofed fragmented IP packets [15, 23] or
packet loss with an adversary that controls an intermediate
router and introduces selective losses into the traffic that tra-
verses it. Blocking different methods for causing packet loss
does not resolve the main problem which is inherent in the
behaviour of relying party implementations.

Randomisation of refresh interval. We recommend that
the refresh interval of the relying party implementations is
randomised. This would make our attacks difficult to launch
for MitM adversaries and almost impractical for off-path ad-
versaries, since the point in time when the attack needs to be
launched would be impossible to predict. Hence, to launch
our downgrade attack the adversary would need to constantly
prevent access to the repository, e.g., by continually flooding
the communication. This however, exposes the attack.

Eliminating manifests. Eliminating manifests and using
the actual validity of the ROAs could make it more difficult
to launch the attack since the adversary would need to wait
longer for RPKI objects to expire. The downside of this is
that eliminating the manifests would increase the revocation
lists and any changes in ROAs would create a lot of updates.
This would be especially significant for large providers, such
as RIRs, which host thousands of networks, and would result
in huge revocation lists. Manifests were introduced to avoid
long revocation lists - the relying party has to update only the
manifests but not the complete set of ROA objects.

9 Related Work
Deployment of RPKI. Gradually the deployment of RPKI

is increasing as more and more ASes create ROAs and start

15Currently the publication point domains use approx. 3 nameservers,
which is too few.



enforcing ROV to filter bogus BGP announcements. Measure-
ments of ROA objects and of ROV filtering show a stable
increase over the last decade, [13, 15, 18, 21], with occasional
failures in retrieving the ROAs [25]. A recent proposal [19]
automated the manual certification of IP prefixes, essentially
resolving the last obstacle towards large scale adoption of
RPKI.

Initial deployments of RPKI were characterised by a large
fraction of erroneous ROAs [15] that not only did not guar-
antee security but worse, ROV filtering of such ROAs cause
networks to lose legitimate traffic. Gradually the misconfig-
urations are being resolved, and since 2018 an increasing
number of networks are enforcing ROV [13].

The increased adoption of RPKI motivates closer inspec-
tion of the security of RPKI deployments. In this work to
create our dataset of ASes we collect the networks that de-
ployed RPKI. But in our work this is not the end, but only
the first step. We then evaluate vulnerabilities of the RPKI
deployments to downgrade attacks.

Vulnerabilities in RPKI. Limitations of RPKI as well as
possible misconfigurations were considered in previous work.
Research of NTP (Network Time Protocol) ecosystem [27]
suggested, without validating in practice, that shifting time
may affect different systems, including RPKI, by causing the
relying party to accept stale manifest as valid. In this case
RPKI validation is performed over a stale manifest. Another
concern with RPKI is the deliberate or accidental exposure to
IP prefix takedowns which causes prefix of the affected AS
to become unreachable [14]. A malicious registrar can issue
a certificate to invalidate a victim prefix, hence causing other
ASes to filter its traffic. Finally, recently [32] showed that
partial ROV deployment has only limited security benefits
and proposed an extension to ROV providing benefit against
sub-prefix hijacks also for early adopters. In our work we find
vulnerabilities in RPKI implementations and demonstrate
attacks against RPKI deployments in the Internet. Our attacks
apply even if RPKI is widely supported by all the ASes. Our
adversary is weak, it can only send packets from a spoofed IP
address but does not control a registrar.

Our attacks combine rate limiting at the servers with low
rate bursts of packets to cause loss of requests sent by the
relying parties. Low rate bursts were initially demonstrated to
cause practical reset of TCP connections [26]. We then show
how to optimise our low rate attacks with Stalloris attack. In
a Stalloris attack we set up a malicious publication point or a
CA, that exploits certain properties in relying parties, causing
them to stall.

The name of our attack draws from Slowloris [12], which
is a DoS attack against HTTP servers in which a malicious
client connects to the victim server by sending partial HTTP
requests at a exceptionally slow rate (only sending a few
bytes) in an attempt to exhaust the amount of HTTP connec-
tions a server can hold open at once. In a Stalloris attack, the
clients (relying parties) are the victims and the publication

points are malicious. The main aspect of our attack is to slow
down the relying parties by creating complex delegations
which cause the relying parties to stall. This attack can also
be enhanced by sending slow HTTP or rsync responses. In
addition, in contrast to Slowloris, our goal is not to deny ser-
vice to clients, but to slow down the relying parties so that
they do not finish their task.

10 Conclusions

The key prerequisite for delivering Internet services is con-
nectivity and RPKI is no exception to this. When RPKI cannot
retrieve an ROA to validate a route in BGP, a relying party
can lose connectivity to the IP addresses in the missing ROA.
The design choice that the inventors of RPKI made was to
give up the RPKI security for connectivity, introducing the
“unknown” status for RPKI validation, which allows to accept
routes without requiring a valid ROA. Our work however
shows that it is important to find the correct balance between
connectivity and security: RPKI is vulnerable to downgrade
attacks.

We develop a Stalloris RPKI downgrade attack, that inflicts
packet loss in a specific time interval synchronised with the
refresh interval of the relying parties in combination with an
attack that stalls the relying party. This causes the relying
party to give up the RPKI validation when performing routing
decisions in BGP. We devise an approach for inferring the
refresh interval, which makes the downgrade attacks practi-
cal not only for MitM, but also for off-path adversaries. We
demonstrate RPKI downgrade attacks with off-path adver-
saries by exploiting the rate limiting mechanism in servers in
the RPKI infrastructure. We show experimentally that 60% of
the RPKI protected networks are vulnerable to our downgrade
attacks with rate-limiting packet blocking. We further find
that 47 (77%) of the vulnerable publication points are also
vulnerable to sub-prefix hijack attacks. We caution that the
extent of the vulnerabilities is potentially larger since other
methods can be exploited for causing packet loss remotely.
Full adoption of RPKI does not prevent our attacks.

We recommend countermeasures to mitigate the threat.
Nevertheless our work shows that finding a balance between
connectivity and security is a challenging problem.
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A Obtaining Access to Infrastructure
IXP are open and anonymous places due to scale (Euro-

pean neutral IXPs have hundreds or even over a thousand
members) and there is a fierce competition drive prices for
entry-level ports to low or even symbolic prices, like 1 EUR
for 1 Gbps port (https://www.nix.cz/en/services). There are
resellers that offer VMs with the direct connectivity to sev-
eral IXPs ( https://ifog.ch/en/ip/ixp-access ), thus the attacker
can obtain access to the core Internet infrastructure that al-
lows him to inject BGP routes over the generally-preferred
path (with higher LOCAL_PREF) for prices as low as 25
EUR/month (plus a price for allocation/renting/stealing ASN).
We consider this environment to be a new attack surface on
BGP. The route-server side checks and ROV are therefore
needed and the IXP members depend on it to high extent
(most of the detected ROV adopters (see https://rov.rpki.net/ )
do not implement it internally, they are protected by a ROV-
enforcing route server in an IXP.

B Retries in Other Components:
Resolver and OS-level

Additionally to any application-level retries, we analyse
the number of network packets emitted by a relying party or
the resolver it is using.

Retries in DNS resolvers. We analyse the retransmission
behaviour in the two most commonly used recursive DNS
resolvers: Bind9 and Unbound. In bind Bind9, the number
of retries sent upon not receiving an answer to a DNS query
is controlled by the overall client query timeout and the in-
dividual timeouts after which a packet loss is assumed [1].
By default, the overall timeout is 10 seconds and the time
between queries starts at 800ms and is doubled after the forth
unanswered query. This results in 6 queries during the 10
second period.

In unbound, the behaviour is more sophisticated [7]: while
Unbound starts by sending up to 16 queries to a nameserver
in our tests, upon not receiving answers from a nameserver
it marks the nameserver as being unresponsive. This process
has two levels and on its highest level, where a nameserver is
marked as “blocked”, Unbound will only allow 1 query every
15 minutes to that individual nameserver and will answer all
other client queries with SERVFAIL immediately until an
answer from this nameserver is received again or the infor-
mation that the nameserver was blocked is cleared from the
cache after 15 minutes.

Retries in TCP. We also analyse the retransmission be-
haviour for TCP connection in the case the attacker is per-
forming the rate-limiting attack directly against the pub-
lication point. In linux the amount of TCP SYN pack-
ets is controlled by the tcp_synack_retries parameter
[5], which is set to 5 by default, which results in 6 pack-
ets in total. In windows, this number is controlled by
a TcpMaxConnectRetransmissions registry setting [3],
which is set to 2, meaning a number of 3 packets. Since most
relying party software is build for linux systems, we only take
this number into account in our calculations.

C RPKI Overview
BGP prefix hijacks. In a BGP prefix hijack an adversary

creates a bogus BGP announcement that maps the prefix of
the victim AS to its own ASN (AS number). As a result the
adversary can intercept traffic from all the ASes that have less
hops (shorter AS-PATH) to the attacker than to the victim
AS. The same-prefix hijack affects the traffic of the ASes that
prefer the attacker’s announcement. The effectiveness of the
same-prefix hijack attacks depends on the local preferences of
the ASes and the location of the attacker’s AS. The adversary
can also advertise a sub-prefix of the victim AS’s prefix. The
routers prefer more specific IP prefixes over less specific ones,
hence the longest-matching prefix (e.g., /24) gets chosen over
the less-specific prefix e.g., /20). Once a victim AS accepts
the hijacking announcement it sends all the traffic for that
sub-prefix to the adversary.

http://www.renesys.com/2013/11/mitm-internet-hijacking/
http://www.bgpmon.net/hijack-event-today-by-indosat/
https://www.bgpmon.net/turkey-hijacking-ip-addresses-for-popular-global-dns-providers/
https://www.bgpmon.net/turkey-hijacking-ip-addresses-for-popular-global-dns-providers/
https://ftp.isc.org/isc/pubs/tn/isc-tn-2012-1.txt


RPKI. RPKI associates public keys with IP prefixes
[RFC6480]. After certifying their IP prefixes, owners can
use their private keys to sign Resource Certificates (RCs) and
Route Origin Authorizations (ROAs), which authorise AS
numbers to advertise these prefixes in BGP. RCs and ROAs
are published on publication points (aka RPKI repositories),
which the relying parties periodically query to retrieve the
RPKI objects. The BGP routers then use the RTR protocol
[RFC8210] to fetch the validation results from the relying
parties parties and apply ROV filtering for routing decisions
in BGP.

RPKI supports a delegated and a hosted model. In the
delegated RPKI model, AS runs a CA as a child of RIR (or
NIR or LIR), generates its own certificate, gets it signed by the
parent CA. This model allows the AS to operate independent
of the parent RIR. For large operators of a global network, this
model is suitable so that they do not need to maintain ROAs
through the different web interfaces of the RIRs. This model
allows the owner to run his own CA, control the publication
point and maintain the ROAs. In the hosted-RPKI model,
RIRs host the CA, that is, the same entity that allocates IP

resources also runs the CA to validate the ROAs.
To find the publication servers the relying parties use

the DNS resolvers to lookup the hostnames of the repos-
itories. The relying party software starts at the top of the
cryptographically-signed chain that begins with the Trust An-
chor Locator (TAL). TAL contains the URLs of RRDP and/or
rsync servers and the fingerprint for download and validation
of the top level CA certificate.

Each of the five RIRs operate one top level RPKI CA for
the resources managed by that RIR, hence all the relying par-
ties need the current TAL for the RPKI CA of each RIR -
it has to be supplied by the operator or packaged with the
relying party software. Starting from TAL, the relying party
recursively contacts the publication points that form subtree
of the root CA. An RPKI certificate can delegate the resources
to a child publication server. The relying party traverses the
trees, downloads the RPKI certificates, validates them along
with other supplementary objects, manifests, CLRs and ROAs.
ROA is the leaf in the RPKI tree that holds the cryptograph-
ically signed triplets that constitute the final output that the
relying party provides to the border routers.
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