
uncontained: Uncovering
Container Confusion in the

Linux Kernel
Jakob Koschel*, Pietro Borrello*,

Daniele Cono D’Elia, Herbert Bos, Cristiano Giuffrida
*Joint first authors

1

Type confusion CS 101

void feedElefant(Animal *animal) {

 Elefant *elephant = (Elefant *)animal;

 …

}

Tiger *tiger = new Tiger();

feedElefant(tiger);

⚠

2

Type confusion in C

No class, no problem?

3

Type confusion in C

No class, no problem?

4

Wrong!

Teaser

We found more than 100 previously undiscovered invalid
"downcast" bugs in the Linux kernel!

The kernel had to upgrade the C standard.

5

cstruct list_head

Struct embedding in C

struct list_head

previous

next

6

cstruct list_head

Struct embedding in C

struct list_head

previous

next

struct my_struct

struct list_head
list

int number

struct my_struct *s = ...;

struct list_head *l = &s->list;

7

Struct embedding in C

struct list_head

previous

next

struct my_struct

struct list_head
list

int number

struct my_struct *s = ...;

struct list_head *l = &s->list;

We're upcasting!

8

Struct embedding in C

struct list_head

previous

next

struct my_struct

struct list_head
list

int number

struct list_head *l = ...;

struct my_struct *s = ❓
9

Struct embedding in C

struct list_head

previous

next

struct my_struct

struct list_head
list

int number

struct list_head *l = ...;

struct my_struct *s = container_of(l, struct my_struct, list);
10

Struct embedding in C

struct list_head

previous

next

struct my_struct

struct list_head
list

int number

struct list_head *l = ...;

struct my_struct *s = container_of(l, struct my_struct, list);

We're downcasting without any

runtime checks!

11

more than 50,000 occurrences of

container_of in the Linux kernel

with ~4,000 structure types!

12

Uncontained sanitizer

Idea 💡

13

struct my_struct

struct list_head
list

int number

Idea 💡

Uncontained sanitizer

14

struct my_struct

struct list_head
list

int number

Idea 💡

Uncontained sanitizer

15

struct my_struct

struct list_head
list

int number

Uncontained sanitizer

16

struct my_struct

struct list_head
list

int number

✅

Uncontained sanitizer

17

struct list_head list

Uncontained sanitizer

18

struct list_head list

Uncontained sanitizer

19

struct list_head list

Uncontained sanitizer

20

struct list_head list❌

Workflow

21

syzkaller

Instrument Fuzzing

Case Study

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

22

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study

23

struct sctp_bind_addr

struct list_head
address_list

...

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study

24

struct sctp_bind_addr

struct list_head
address_list

...

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study

25

struct sctp_bind_addr

struct list_head
address_list

...

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study

26

struct sctp_bind_addr

struct list_head
address_list

...

str
uct

 sc
tp_

bin
d_a

ddr

!=

str
uct

 sc
tp_

soc
kad

dr_
ent

ry

Bug Patterns

27

Incompatible
Container

Empty List
Confusion

Container with
Contract

Past the End
Iterator

Mismatch on
Data Structure

Operator

Past the End Iterator

struct usb_request *iter;

list_for_each_entry(iter, &request_list, list) {

 if (iter->req == req)

 break;

}

if (iter->req != req)

 return ERR;

28

struct list_head
request_list

Past the End Iterator

struct usb_request *iter;

list_for_each_entry(iter, &request_list, list) {

 if (iter->req == req) {

 found = true;

 break;

 }

}

if (!found)

 return ERR;

29

30

We built static dataflow analyzers and discovered an
additional 80 bugs with 5 different patterns

Conclusion

● Type confusions are not only a C++ problem
● container_of() causes type confusions all over the kernel
● Automatically discovered more than 100 bugs!
● Over 150 kernel patches submitted
● 8 CVEs assigned
● Caused the kernel to upgrade from c89 to c11

Questions?

 📧 j.koschel@vu.nl

 #sec23-0811-s1-t1 31https://www.phoronix.net/image.php?id=2022&image=c11_linux_kernel

mailto:j.koschel@vu.nl

