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Type confusion CS 101

void feedElefant(Animal *animal) {

  Elefant *elephant = (Elefant *)animal;

  …

}

Tiger *tiger = new Tiger();

feedElefant(tiger);

⚠
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Type confusion in C

No class, no problem?
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Type confusion in C

No class, no problem?
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Wrong!



Teaser

We found more than 100 previously undiscovered invalid 
"downcast" bugs in the Linux kernel!

The kernel had to upgrade the C standard.

5



cstruct list_head

Struct embedding in C

 

struct list_head

previous

next
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cstruct list_head

Struct embedding in C

 

struct list_head

previous

next

struct my_struct

struct list_head 
list

int number

struct my_struct *s =  ...;

struct list_head *l = &s->list;
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Struct embedding in C

 

struct list_head

previous

next

struct my_struct

struct list_head 
list

int number

struct my_struct *s =  ...;

struct list_head *l = &s->list;

We're upcasting!
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Struct embedding in C

 

struct list_head

previous

next

struct my_struct

struct list_head 
list

int number

struct list_head *l = ...;

struct my_struct *s = ❓
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Struct embedding in C

 

struct list_head

previous

next

struct my_struct

struct list_head 
list

int number

struct list_head *l = ...;

struct my_struct *s = container_of(l, struct my_struct, list);
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Struct embedding in C

 

struct list_head

previous

next

struct my_struct

struct list_head 
list

int number

struct list_head *l = ...;

struct my_struct *s = container_of(l, struct my_struct, list);

We're downcasting without any 

runtime checks!
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more than 50,000 occurrences of

container_of in the Linux kernel

with ~4,000 structure types!
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Uncontained sanitizer

Idea 💡
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struct my_struct

struct list_head 
list

int number



Idea 💡

Uncontained sanitizer
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Idea 💡

Uncontained sanitizer
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struct my_struct

struct list_head 
list

int number



Uncontained sanitizer
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struct my_struct

struct list_head 
list

int number

✅ 



Uncontained sanitizer
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struct list_head list



Uncontained sanitizer
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struct list_head list



Uncontained sanitizer
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struct list_head list



Uncontained sanitizer
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struct list_head list❌



Workflow
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syzkaller

Instrument Fuzzing



Case Study

struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...
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struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study
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struct sctp_bind_addr

struct list_head 
address_list

...



struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study
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...



struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study
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struct sctp_bind_addr *bind_addr = &asoc->base.bind_addr;

...

laddr = container_of(

bind_addr->address_list.next,

struct sctp_sockaddr_entry,

list)->a;

...

Case Study
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Bug Patterns
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Past the End Iterator

struct usb_request *iter;

list_for_each_entry(iter, &request_list, list) {

    if (iter->req == req)

        break;

}

if (iter->req != req)

    return ERR;
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struct list_head 
request_list



Past the End Iterator

struct usb_request *iter;

list_for_each_entry(iter, &request_list, list) {

    if (iter->req == req) {

        found = true;

        break;

    }

}

if (!found)

    return ERR;
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We built static dataflow analyzers and discovered an 
additional 80 bugs with 5 different patterns



Conclusion

● Type confusions are not only a C++ problem
● container_of() causes type confusions all over the kernel
● Automatically discovered more than 100 bugs!
● Over 150 kernel patches submitted
● 8 CVEs assigned
● Caused the kernel to upgrade from c89 to c11

Questions?

 📧 j.koschel@vu.nl

      #sec23-0811-s1-t1 31https://www.phoronix.net/image.php?id=2022&image=c11_linux_kernel
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