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Users may disagree about what 
constitutes toxic content online, leading 
to “gray areas” in automated classification



How do users from diverse backgrounds 
interpret toxic content online?
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Personalized abuse protections can help 
account for diverse perspectives in toxic 
content classification
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Current automated toxicity classifiers fail 
to generalize to users with varied lived 
experiences.



Building new anti-abuse defenses must 
take into account the diverse 
perspectives of Internet users.


