
Retrospective Provenance Without
a Runtime Provenance Recorder

Timothy McPhillips Shawn Bowers Khalid Belhajjame Bertram Ludäscher
University of Illinois (UIUC) Gonzaga University, Spokane Paris Dauphine University University of Illinois (UIUC)

tmcphillips@absoluteflow.org bowers@gonzaga.edu Khalid.Belhajjame@dauphine.fr ludaesch@illinois.edu

Abstract
The YesWorkflow (YW) toolkit aims to provide users of script-
ing languages such as Python, Perl, and R with many of the ben-
efits of scientific workflow automation. YW requires neither the
use of a workflow engine nor the overhead of adapting or instru-
menting code to run in such a system. Instead, YW enables sci-
entists to annotate their scripts with special comments that reveal
the main computational blocks and dataflow dependencies other-
wise implicit in scripts. YW tools extract and analyze these com-
ments, represent scripts in terms of entities based on a typical scien-
tific workflow model, and provide graphical workflow views (i.e.,
prospective provenance) of scripts. In this paper, we present a new
extension of YW for inferring retrospective provenance from script
executions without relying on a runtime provenance recorder. In-
stead we exploit the common practice of scientists to embed im-
portant pieces of provenance in directory structures and file names.
For such “provenance-friendly” data organizations, we offer a new
annotation mechanism based on URI templates. YW uses these to
link conceptual-level prospective provenance with data files created
at runtime, resulting in a powerful, integrated model of prospective
and retrospective provenance. We present scientifically meaningful
retrospective provenance queries for investigating an execution of
a data acquisition workflow implemented as a Python script, and
show how these queries can be evaluated using the YW toolkit.

1. Introduction
Despite the advantages that scientific workflow systems offer, many
workflows continue to be implemented using scripting languages
and executed outside of workflow management systems. This is due
in part to the convenience and familiarity of scripting languages
(such as Perl, Python, R, and MATLAB), and to the high pro-
ductivity many scientists experience when using these languages.
The YesWorkflow (YW) toolkit [YW15, MSK+15] aims to provide
such users of scripting languages with many of the benefits of sci-
entific workflow automation. Instead of requiring users to migrate
their scripts to a scientific workflow system, YW provides tools
for revealing the computational modules and dataflows otherwise
implicit in existing scripts. In the short term, this allows scientists
to immediately reap some benefits of workflow automation with-
out any change in their programming environment or code. Longer
term we envision that the YW approach will lead to a co-evolution
of script-based technologies and workflow tools on the one hand
and new ways of dataflow thinking by scientists on the other.

In the following, we develop one part of this vision, i.e., the
use of YW to reveal prospective and retrospective provenance
[ZWF06] from scripts, extending prior work that only provided
the former [MSK+15]. In order to use YW, an author marks up
scripts using simple, keyword-based annotations. These annota-
tions can be placed within any legal comments within a script, so

the YW approach and toolkit are language independent.1 Software
in the YW toolkit extract and analyze these comments, represent
the scripts in terms of entities based on a common scientific work-
flow model, and provide graphical workflow views of scripts. In
this way, users of YW-annotated scripts may explore and better
understand the expected behavior of scripts before running them,
using visualizations similar to those provided by workflow sys-
tems [LAB+06, WHF+13, FKCS14]. By publishing these work-
flow views, e.g., alongside the executable script in a software repos-
itory, or in the methods section of a scientific article, other potential
users can quickly get a conceptual-level overview of the approach
implemented by the script, which in turn facilitates reproducibility
and reuse [Gan13, SLP14].

From Prospective to Retrospective Provenance
In addition to prospective provenance, which captures the “recipe”
of how data products of a workflow or script are produced in
general, retrospective (or runtime) provenance often is required
to make effective use of products of a particular run of a script.
This type of provenance is especially important to capture when a
workflow or script operates on data collected from multiple sam-
ples or produces large numbers of data products (e.g., files) distin-
guished by their dependencies on different samples, experimental
conditions, or varying data processing parameters. In such situa-
tions, retrospective provenance enables the scientist to find, evalu-
ate, and understand the relationships between the numerous input,
intermediate, and final products of a script or workflow. Retrospec-
tive provenance also can serve to convince scientists that their pro-
grams have indeed executed as expected, or to help debug faulty
runs. Many scientific workflow systems offer runtime provenance
recorders to capture retrospective provenance [ABJF06, DBE+07,
BMR+08]. Similarly, a number of approaches have been developed
or are emerging that capture runtime provenance from scripts, e.g.,
noWorkflow [MBC+14] and others [Gan13].

Recorder-Free Retrospective Provenance
Although the initial focus of YesWorkflow has been on provid-
ing the prospective provenance benefits of workflow modeling, we
have begun implementing a new approach for inferring retrospec-
tive provenance using YW, while continuing to avoid the need to
add any runtime provenance recording capabilities to the system.
Our approach is based on the observation that in many science do-
mains, scripts for collecting or processing data often use naming
conventions for data resources that already record the essential in-
formation about key events that occur at runtime. For workflows
that take as input existing, staged sets of files and persist their in-
termediate and final results to new sets of files, a comparison of file
names, directory names, and directory structures for workflow in-

1 YW has been applied to Python, R, and MATLAB scripts already.



1 # @BEGIN collect data set
2 # @PARAM cassette id @PARAM accepted sample @PARAM num images @PARAM energies
3 # @OUT sample id @OUT energy @OUT frame number
4 # @OUT raw image path @AS raw image
5 # ... @URI file:run/raw/{cassette id}/{sample id}/e{energy}/image {frame number}.raw
6 run log.write("Collecting data set for sample {0}".format(accepted sample))
7 sample id = accepted sample
8 for energy, frame number, intensity, raw image path in collect next image(
9 cassette id, sample id, num images, energies,

10 "run/raw/{cassette id}/{sample id}/e{energy}/image {frame number:03d}.raw"):
11 run log.write("Collecting image {0}".format(raw image path))
12 # @END collect data set
13
14 # @BEGIN transform images
15 # @PARAM sample id @PARAM energy @PARAM frame number
16 # @IN raw image path @AS raw image
17 # @IN calibration image @URI file:calibration.img
18 # @OUT corrected image @URI file:run/data/{sample id}/{sample id} {energy}eV {frame number}.img
19 # @OUT corrected image path @OUT total intensity @OUT pixel count
20 corrected image path = "run/data/{0}/{0} {1}eV {2:03d}.img".format(sample id, energy, frame number)
21 (total intensity, pixel count) = transform image(raw image path, corrected image path, "calibration.img")
22 run log.write("Wrote transformed image {0}".format(corrected image path))
23 # @END transform images

Figure 1. YW-annotated fragment of a Python script for data collection from protein crystal samples. YW-annotations @BEGIN and @END
delimit code blocks; @IN and @OUT tags model relevant input and output data elements of a block; @PARAM identifies a block’s parameters.
@URI templates for raw images (line 5) and corrected images (line 18) link conceptual-level data elements such as raw image with
runtime resources (data files and their file paths). Executable script code is greyed out to emphasize YW-annotations. A program variable
(raw image path) is highlighted in the code (lines 8, 11, 21): aliases (lines 4, 16) are used to link such program-level objects to the scientist’s
concepts (here: raw image). Full example available from [MBL15].

puts and outputs often reveals much of the relevant computational
history of the new files. Indeed, this is how many scientists make
sense of the products of a script in the first place.

Our approach to reconstructing provenance using YW exploits
this common practice, and yields important runtime provenance
without any runtime overhead. The key idea is to let scientists
link their conceptual-level data elements via YW-annotations to the
“provenance-friendly” data organization they already apply in prac-
tice. This is achieved using a new URI 2 template annotation that
enables script authors to declare how inputs and outputs are named
and organized. After script execution, YW can then reconstruct run-
time provenance by matching these URI templates with the actual
names of data files and subdirectories that were created at runtime,
thus linking file-level retrospective provenance with conceptual-
level prospective provenance.

Related Work
A complementary approach [DBK+15] combines prospective YW
provenance with retrospective provenance from a runtime recorder
such as noWorkflow [MBC+14]. A key difference is that our “YW-
only” approach presented here does not incur any runtime over-
head, since retrospective provenance is reconstructed only after
a script has executed and using only those files that were read
and written by the scientist’s script. Conversely, the noWorkflow
provenance approach used in [DBK+15] logs additional runtime
provenance, typically at a much finer level of granularity. Runtime
provenance recording may introduce significant execution over-
head when not used with caution3. In our experience, important
retrospective provenance queries are typically well within the scope

2 Uniform Resource Identifier
3 This overhead is often described in terms of the computation required to
record the large numbers of events that occur during script execution. A

of the “provenance-recorder free” model afforded by YW. In Sec-
tion 4 we give such example queries, inspired by a real-world,
production-level workflow [TMG+13].

Finally, a distinctive feature of the annotation-based approach
employed by YW is that it allows scientists to quickly and easily
provide a model of their workflow that corresponds to the way
they think about it. This model is typically not apparent from, and
difficult to tease out of, a script or fine-grained runtime provenance
model that focuses on function calls and program variables.

The use of YesWorkflow with languages for personal data
spaces [VSDK+07, HBF+09] and workflow modeling languages
[Bow12, A+15, F+15] is an interesting topic for future research.

2. YesWorkflow Language
The steps required to use YesWorkflow to reveal the prospective
and retrospective provenance of the data products of a script are
as follows. As described in [MSK+15], the script author begins
by annotating the computational blocks and dataflows in the script
using expressions of the form @tag value . Here, @tag is one
of the recognized YW-keywords, after which a value follows,
separated by one or more whitespace characters.

YW then interprets the embedded, structured comments and
builds a simple workflow model of the script. This model repre-
sents scripts in terms of scientific workflow entities, i.e., programs,
workflows, ports, and channels:

• A program block (short: program or block) represents a com-
putational step in the script that receives input data and pro-
duces (intermediate or final) output data. A program is desig-

sometimes more significant storage overhead is incurred by a recorder that
saves every variable value for a script that reads or writes hundreds of files
each tens or hundreds of megabytes in size.



cassette_id

sample_score_cutoff

sample_spreadsheet
file:cassette_{cassette_id}_spreadsheet.csv

calibration_image
file:calibration.img

initialize_run

run_log
file:run/run_log.txt

load_screening_results

sample_namesample_quality

calculate_strategy

rejected_sample accepted_sample num_images energies

log_rejected_sample

rejection_log
file:/run/rejected_samples.txt

collect_data_set

sample_id energy frame_number
raw_image

file:run/raw/{cassette_id}/{sample_id}/e{energy}/image_{frame_number}.raw

transform_images

corrected_image
file:data/{sample_id}/{sample_id}_{energy}eV_{frame_number}.img

total_intensitypixel_count corrected_image_path

log_average_image_intensity

collection_log
file:run/collected_images.csv

Figure 2. Workflow graph generated from YW-annotations of the data collection script [MBL15]. Green boxes represent program blocks
annotated in the Python script, while yellow rounded nodes represent data elements that flow between blocks. Available URI templates are
depicted in the lower halves of data element nodes in the graph and specify the directory structure and file names for accessing or persisting
those data.

nated in a script by bracketing the relevant code between a pair
of @BEGIN and @END comments. These paired delimiters allow
program block declarations to be nested. Program blocks are
usually visualized as boxes.

• A port represents a way in which data flows into or out of
a program or workflow. Ports are identified by @PARAM, @IN,
and @OUT annotations in the comments. Both @IN and @PARAM
represent inputs to a block; the former indicates data to be
processed, while the latter implies a parameter controlling how
the block processes incoming data.

• A channel is a connection between an @OUT port of a program
and an @IN or @PARAM port of another program. YW infers
channels by matching the names of @IN and @OUT ports within
the same workflow. A block that contains one or more channels
is considered a workflow.

For more details about the YW annotations used for declaring
prospective provenance, see [MSK+15]. The remainder of the pa-
per describes (i) the new YW extensions for linking the script and
its prospective provenance to the script-external data objects (e.g.,
files); and (ii) how retrospective provenance can be reconstructed
and queried after script execution.

3. Reconstructing Runtime Provenance
New retrospective YesWorkflow capabilities are enabled when the
script author qualifies @IN and @OUT annotations that refer to ex-
ternal data resources using a URI template that declares the path
to the resource via an annotation of the form @URI template . If
the name of a resource does not vary between runs of the script,
this template is just the path to the file. In general though, URI
templates will include one or more template variables that distin-
guish the multiple files (or other data resources) written or read by
a script in a particular code block. The script in Fig. 1 shows (lines
4, 5) how a raw image data element is linked to both a program
variable raw image path and to the external data organization
via a URI template with variables. Such template variables (e.g.,
{sample_id} and {energy}) are enclosed in curly braces. Fol-
lowing a run of a script, YesWorkflow will use these URI templates
to discover the actual resources written or read during the run. By
matching the actual file paths with the URI templates, the template
variables are bound, thus yielding retrospective provenance infor-
mation that can be queried subsequently.

In summary, the steps taken by a scientist using YesWorkflow
effectively are envisioned as follows. The scientist first writes a
script, marks it up with YW annotations, visualizes it using the
YW toolkit, and confirms that the workflow model displayed by



YesWorkflow matches the scientist’s mental model of the script. To
employ YW for retrospective provenance management, the scien-
tist stages input data for an execution of the script, runs the script on
the staged input data, then immediately runs YW in reconstruction
mode to detect files (along with file metadata such as owner and
creation time) produced by the just-completed run of the script.
YesWorkflow saves the reconstructed provenance information as-
sociated with the latest run of the script so that it can be queried at
any later date even if the files produced by the run of the script are
subsequently deleted, renamed, or overwritten.

3.1 Example: Data Collection from a Set of Protein Crystal
Samples

We illustrate our approach using a Python script marked up with
YW-annotations. The script simulates a (simplified) portion of a
common data collection workflow used by macromolecular crystal-
lographers to collect X-ray diffraction data from a set of samples at
a synchrotron radiation beam line [TMG+13]. Fig. 1 depicts a code
fragment, while Fig. 2 shows the complete YW workflow graph.

The script loads previously measured data quality statistics for
each sample (in Figure 2, see the block load screening results)
from an input spreadsheet file associated with the sample cassette
used to store and transport the samples; rejects samples that do
not meet a minimum quality criterion; and calculates an optimal
data collection strategy (calculate strategy) for each accepted
sample (a data collection strategy here comprises a set of data col-
lection energies and a count of diffraction images to collect at each
energy). The script then collects a series of diffraction images for
each accepted sample in turn, saving each raw detector image to the
filesystem (collect data set). The raw images are organized by
sample cassette ID, sample name, and X-ray beam energy; images
in a sequence collected on the same sample at the same energy are
distinguished by a frame number. A subsequent step transforms
each raw image to a corrected image using a detector-specific cali-
bration image and saves the resulting corrected images in a differ-
ent set of output files and directories (transform images).

4. Querying Retrospective Provenance
Our approach to revealing the retrospective provenance of script
products in the absence of a provenance recorder is based on a
number of observations. Many scientists use directory structures
and directory and file names to organize data produced by scripts
and to denote their relationships. In particular, when scientists write
scripts they often have a set of retrospective provenance queries in
mind that are of such high priority that they want to be able to
answer them without interpreting the contents of log files. This is
especially important when individual log files are independently
written by different programs invoked by the single script. The
information required to answer these queries is therefore embedded
by scientists in filenames, directory names, and in the hierarchical
directory structures in which data is organized. Our response to
these observations is to let script writers describe this information
naturally via URI template expressions. In this way YesWorkflow
allows script writers to declare how script inputs and outputs are
named and organized based on actual data and metadata values
occurring at runtime.

With YesWorkflow we aim to make scientists even more pro-
ductive by eliminating the need to explore directory structures man-
ually. YW can implement the scientists’ high-priority questions as
provenance queries using the declared URI template information
together with dependencies introduced by YesWorkflow script an-
notations.

We report in this section a number of typical provenance queries
that are expressed against our example script. For each query we
begin by describing how a scientist would determine the answer

run/  

├──  raw  

│      └──  q55  

│              ├──  DRT240  

│              │      ├──  e10000  

│              │      │      ├──  image_001.raw  

...          ...  ...  ...  

│              │      │      └──  image_037.raw  

│              │      └──  e11000  

│              │              ├──  image_001.raw  

...          ...          ...  

│              │              └──  image_037.raw  

│              └──  DRT322  

│                      ├──  e10000  

│                      │      ├──  image_001.raw  

...                  ...  ...  

│                      │      └──  image_030.raw  

│                      └──  e11000  

│                              ├──  image_001.raw  

...                          ...  

│                              └──  image_030.raw  

├──  data  

│      ├──  DRT240  

│      │      ├──  DRT240_10000eV_001.img  

...  ...  ...  

│      │      └──  DRT240_11000eV_037.img  

│      └──  DRT322  

│              ├──  DRT322_10000eV_001.img  

...          ...  

│              └──  DRT322_11000eV_030.img  

│  

├──  collected_images.csv  

├──  rejected_samples.txt  

└──  run_log.txt  

  
Figure 3. Tree view of the directories and files created by the data
collection Python script.

by inspecting the names and organization of the files produced by
the script. We then provide a more general approach to answering
each query that does not depend on the exact directory structure
and file naming conventions used in the script (while continuing to
assume that sufficient information is recorded in such a manner that
a scientist could answer the question by hand and in the absence of
runtime provenance recording.)

Queries Q1 and Q2 represent script run reports, i.e., they an-
swer questions that the user may have about the samples used, ex-
perimental conditions employed, and results obtained by the script.
Queries Q3 and Q4, on the other hand, are backward and for-
ward lineage queries, respectively. Q3 identifies an intermediate
data product that a specific final product was derived from; Q4 de-
termines if there are any intermediate products for which there are
no corresponding final products (this is an example of a why-not
provenance query). Q5 can be viewed as a data lineage query that
reveals the physical provenance of a sample (the identity of a cas-
sette that stores a specific sample).

As shown below, these and similar queries are answered by gen-
erating a set of relations corresponding to a script’s workflow (as
defined by YesWorkflow annotations) as well as information about
resources and their metadata attributes (from the files generated by
a run of the script and the corresponding URI template informa-
tion). The result of this provenance reconstruction process gener-
ates the base relations shown in Table 1.



Base Relation Description
program(id,name,begin annot id,end annot id) Identifier, name, and annotation identifiers for begin and end of workflow program blocks
port(id,type,name,annot id) Identifier, type (in, out, or param), name, and annotation identifier of program ports
port alias(port id,alias name) Alias names optionally given to ports (specified via @AS annotations)
has in port(program id,port id) Input ports of program blocks
has out port(program id,port id) Output ports of program blocks
channel(id,binding) Assignment of port names (script variables) or aliases to channels
port connects to channel(port id,channel id) Assignment of ports to channels
port uri(port id,uri template) URI template optionally assigned to port
uri variable(id,name,port id) Identifier, name, and associated port of URI metadata variables
resource(id,uri) Identifier and expanded URI (file path) of resources created by a run of the script
resource channel(resource id,channel id) Resources that were input to or output by a channel during a run of the script

Table 1. Base relations generated by the YesWorkflow provenance reconstruction process.

(Q1) What samples did the run of the script collect images
from? The scientist’s solution is to look at the contents of the
run/raw/q55 directory (Fig. 3). The names of subdirectories are
the names of the samples collected on.

General solution using YW: Assume that ‘what samples’
means ‘what values of sample id as seen by collect data set’.
Then the solution is to look for all persisted outputs generated by
collect data set that include sample id in the expanded URI
template. Extract the value of sample id from each and return the
set of unique values. Q1 can be expressed as the Datalog query:

samples_used(SampleId) :-
resource_metadata(collect_data_set,raw_image,_,

sample_id,SampleId).

where resource metadata is a simple view expressed against the
provenance facts reconstructed by YW to obtain the program, port
name, and metadata information of resources:

resource_metadata(ProgramName,PortName,ResourceId,
VariableName,VariableValue) :-

program(ProgramId,ProgramName, _, _),
has_port(ProgramId,PortId),
port_name(PortId,PortName),
channel(ChannelId,PortName),
resource_channel(ResourceId,ChannelId),
uri_variable(VariableId,VariableName,PortId),
uri_variable_value(ResourceId,VariableId,VariableValue).

For our example, the above query will yield the answers DRT240
and DRT322.

(Q2) What energies were used during collection of images from
sample DRT322? The scientist’s solution is to look at the contents
of the run/raw/q55/DRT322 directory. The names of subdirecto-
ries indicate the values of the energies.

General solution using YW: Assume that ‘what energies’
and ‘from sample DRT322’ mean ‘what values of energy as seen
by collect data set when sample id equals DRT322 as seen
by collect data set’. Then the solution is to look for all per-
sisted outputs of collect data set that include both energy and
sample id in the expanded URI template for the output. Extract
the value of energy from each such path for which sample id
equals DRT322 and return the set of unique values. Q2 can be ex-
pressed as the Datalog query:

energies_used(EnergyValue) :-
resource_metadata(collect_data_set,raw_image,ResourceId,

sample_id,"DRT322"),
resource_metadata(collect_data_set,raw_image,ResourceId,

energy,EnergyValue).

For our example, the above query will yield the answers 10000 and
11000.

(Q3) Where is the raw image corresponding to corrected image
DRT322 11000ev 028.img? The scientist’s solution is to look at
the image files nested within the raw directory. Find the image file

that contains the values DRT322, 11000, and 028 in the file access
path.

General solution using YW: Assume that ‘raw image for
corrected image’ means ‘what file output by the port named
raw image with values for URI template variables equal to the
matching URI template expansion variables in the path to the file
DRT322 11000ev 028.img output by the corrected image port’.
Then the solution is to extract the URI template variable names
and values from the path to DRT322 11000ev 028.img output by
the port named corrected image, look at the paths for all files
output by the raw image port, and return the file whose path in-
cludes template variables with names and values matching those
for DRT322 11000ev 028.img (not all variables need be present
in both paths, but where the variable with same name is used the
values must match). Q3 can be expressed as the Datalog query:

raw_image_used(RawImageFile) :-
resource(CorrImage,"./run/data/DRT322/DRT322_11000eV_028.img"),
channel(RawImageChannel,raw_image),
resource_channel(RawImage,RawImageChannel),
depends_on(CorrImage,RawImage),
resource(RawImage,RawImageFile).

This query relies on a depends on relation that computes the
dependencies between resources based on their metadata values
and the workflow graph. In particular, a resource r2 is presumed
to have depended on a resource r1 if: (i) r1 is upstream of r2 in the
corresponding YW workflow graph (based on input-output ports
and channels defined in the script); (ii) r1 and r2 have at least one
metadata variable in common (based on their corresponding URI
templates); and (iii) the metadata variables in common between r1
and r2 have the same values for r1 and r2 (based on their expanded
URIs). Figure 4 gives a definition of the depends on relation as a
Datalog program.

(Q4) Are there any raw images for which no corrected image
was written? This is somewhat similar to Q3, but follows the
lineage in the “forward direction” and (unlike Q3) asks about the
absence of data. In this case the path to each file written by the
raw image port is examined, and a corresponding file written by
the corrected image port is sought. Return raw images for which
no corrected image is found. Q4 can be expressed as the Datalog
query:

no_corrected_image_written(RawImageFile) :-
channel(RawImageChannel,raw_image),
resource_channel(RawImage,RawImageChannel),
not corrected_raw_image(RawImage),
resource(RawImage,RawImageFile).

corrected_raw_image(RawImage) :-
channel(RawImageChannel,raw_image),
resource_channel(RawImage,RawImageChannel),
channel(CorrImageChannel,corrected_image),
resource_channel(CorrImage,CorrImageChannel),
depends_on(CorrImage,RawImage).



depends_on(R1,R2) :- upstream_resource(R2,R1), R1!=R2, common_metadata_var(R1,R2),
not common_metadata_values_differ(R1,R2),

common_metadata_var(R1,R2) :- uri_resource_var_value(R1,N,_), uri_resource_var_value(R2,N,_).
common_metadata_values_differ(R1,R2) :- resource_channel(R1,C1), resource_channel(R2,C2),

uri_resource_var_value(R1,N,V1),
uri_resource_var_value(R2,N,V2), V1!=V2.

uri_resource_var_value(R,N,V) :- uri_variable(X,N,_), uri_variable_value(R,X,V).
upstream_resource(R1,R2) :- resource_channel(R1,C1), port_connects_to_channel(P1,C1),

resource_channel(R2,C2), port_connects_to_channel(P2,C2),
port_dep_tc(P2,P1).

port_dep(P2,P1) :- has_in_port(B,P1), has_out_port(B,P2).
port_dep(P2,P1) :- has_in_port(_,P2), has_out_port(_,P1), channel(C,_),

port_connects_to_channel(P1,C), port_connects_to_channel(P2,C).
port_dep_tc(P2,P1) :- port_dep(P2,P1).
port_dep_tc(P2,P1) :- port_dep_tc(P2,P), port_dep_tc(P,P1).

Figure 4. A Datalog program for calculating resource dependencies (depends on) in YesWorkflow.

In this case, the corrected raw image relation finds those raw
images that do have a corresponding corrected image written. To
answer the query, we find exactly those raw images that are not in
the corrected raw image relation (thus implying the raw image
has no corrected image).

(Q5) What was the id of the cassette from which the sample
leading to DRT240 10000eV 010.img was taken? This query
shows how the retrospective data lineage information can be used
to track the physical provenance of samples. The general so-
lution here is to search the upstream lineage of data provided
to transform images, looking for URI templates that include
cassette id and sample id as template variables. Return the
value of cassette id that occurs in URI expansions where
sample id matches DRT240. Q5 can be expressed as the Data-
log query:
cassette_used(CassetteId) :-

resource(CorrImage,"./run/data/DRT240/DRT240_10000eV_010.img"),
program(TransformImages,transform_images,_,_),
has_in_port(TransformImages,InPort),
port_connects_to_channel(InPort,Channel),
resource_channel(Resource,Channel),
depends_on(CorrImage,Resource),
uri_resource_var_value(Resource,cassette_id,CassetteId).

For our example, the above query will yield the cassette id q55.

Example Code. The example Python code, along with the YW-
generated prospective provenance shown in Fig. 2, and some of
the YW-reconstructed retrospective provenance facts and rules are
available from our YW-repository [MBL15].

5. Discussion and Conclusions
The idea of using prospective and retrospective provenance for a
wide range of applications is not new (see, e.g., [ZWF06, MBZ+08,
FMS08]). It is widely known that by employing scientific workflow
systems, users can benefit from prospective provenance (through
workflow descriptions) and retrospective provenance (from runtime
provenance recording) information. In this paper, we have shown
that an annotation-based approach such as YesWorkflow can be
used to obtain prospective provenance from scripts and—as illus-
trated in this paper—retrospective provenance as well, without the
use of a runtime provenance recorder.

This retrospective provenance is easily obtained and combined
with prospective provenance using new YW annotations that de-
clare URI templates. For this simple approach to work, we make
the (realistic) assumption that scientists organize their data using
directories for staging and collecting data files. For example, Bow-
ers et al. [BMWL07] includes a detailed account of how a metage-
nomics researcher organizes his data and results in a nested folder

scheme. The URI template approach for declaring the layout of
data persisted by a workflow run in nested directories also has been
employed by the RestFlow scientific workflow system [TMG+13].

It is, however, important to note the limitations of our ap-
proach to reconstructing retrospective provenance as currently im-
plemented in YesWorkflow. Because the YesWorkflow tools are
not in any way invoked while a script is executing, no dependencies
between script inputs, intermediate data products, and final outputs
are directly observed or recorded at run time. Instead, associations
between input data, parameters, and intermediate and final data
products are inferred based on shared metadata values assigned to
data read or written by the script. The location of input and output
files, and the portions of file access paths that correspond to these
metadata values, are declared using YW annotations.

For queries Q3, Q4, and Q5 we define and use the depends on
relation that captures the assumption that—for this script—the ex-
istence or value of a data product (resource r) depends on another
data item r′ if r′ passes through a data channel leading to r; the
two data items are assigned at least one shared metadata variable;
and if all of the metadata variables shared by the two data items
r and r′ also have shared values. This rule is a generalization of
the (implicit) dependencies used by the scientist in the “manual”
scientist’s solutions described above. In future work we plan to add
support to YesWorkflow for explicitly declaring within YW annota-
tions precisely when such dependencies may correctly be inferred,
using fine-grained data dependency rules described in [BML12].

We have implemented and continue to improve the YW toolkit
[MSK+15, YW15]. Using simple YW-annotations, a scientist can
use our toolkit to easily and quickly4 create a high-level dataflow
model for a script-based workflow. Although more comprehensive
modeling, additional annotations, and a greater time commitment
are required to gain the full benefits of YW, the toolkit provides in-
crementally more benefits as more detail is added to the YW model
of a script. Since YW-annotations are embedded as comments in
the host language, our approach is language-independent, and can
be applied to any of the usual scripting or programming languages.
Although our example queries are expressed directly in Datalog,
we plan to provide scientists with additional capabilities within the
YW toolkit for performing these and other queries in a general way.
YesWorkflow users will not need to express their queries in Data-
log or understand how YesWorkflow represents and stores recon-
structed provenance information.

4 The first author of [BK14] reported that creating the initial annotations
for the YW-model depicted in [MSK+15] (for an R script used in [BK14])
took only half an hour.



Despite being a grass-roots effort that was launched only re-
cently, YW has already been successfully applied to real-world,
script-based workflows in R, MATLAB, and Python; application
domains include climate modeling, bioinformatics, and archaeol-
ogy [MSK+15]. In future work, we will explore other community
efforts to workflow modeling such as the Common Workflow Lan-
guage [A+15] and the Workflow Description Language [F+15] for
use in YesWorkflow.

Acknowledgments. Work supported in part by the National Sci-
ence Foundation under awards DBI-1356751 (Kurator), SMA-
1439603 (SKOPE), ACI-0830944 (DataONE).

References
[A+15] P. Amstutz et al. Common Workflow Language.

github.com/common-workflow-language, 2015.

[ABJF06] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance
collection support in the Kepler scientific workflow system.
In IPAW, 2006.

[BK14] R. K. Bocinsky and T. A. Kohler. A 2,000-Year re-
construction of the rain-fed maize agricultural niche in
the US Southwest. Nature Communications, 5, 2014.
doi:10.1038/ncomms6618.

[BML12] S. Bowers, T. M. McPhillips, and B. Ludäscher. Declarative
Rules for Inferring Fine-Grained Data Provenance from Sci-
entific Workflow Execution Traces. In Intl. Provenance and
Annotation Workshop (IPAW), pp. 82–96, 2012.

[BMR+08] S. Bowers, T. McPhillips, S. Riddle, M. K. Anand, and
B. Ludäscher. Kepler/pPOD: Scientific workflow and prove-
nance support for assembling the tree of life. In IPAW, 2008.

[BMWL07] S. Bowers, T. McPhillips, M. Wu, and B. Ludäscher. Project
histories: Managing data provenance across collection-
oriented scientific workflow runs. In Data Integration in the
Life Sciences (DILS), volume 4544 of LNCS, pp. 122–138.
Springer, 2007. Preprint.

[Bow12] S. Bowers. Scientific workflow, provenance, and data model-
ing challenges and approaches. Journal on Data Semantics,
1(1):19–30, 2012.

[DBE+07] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M.
McPhillips, S. Bowers, M. K. Anand, and J. Freire. Prove-
nance in Scientific Workflow Systems. IEEE Data Eng. Bull.,
30(4):44–50, 2007.

[DBK+15] S. Dey, K. Belhajjame, D. Koop, M. Raul, and B. Ludäscher.
Linking Prospective and Retrospective Provenance for
Scripts. In Intl. Workshop on Theory and Practice of Prove-
nance (TaPP), 2015.

[F+15] S. Frazer et al. Workflow Description Language.
github.com/broadinstitute/wdl, 2015.

[FKCS14] J. Freire, D. Koop, F. S. Chirigati, and C. T. Silva. Repro-
ducibility using vistrails. Implementing Reproducible Re-
search, page 33, 2014.

[FMS08] J. Frew, D. Metzger, and P. Slaughter. Automatic capture and
reconstruction of computational provenance. Concurrency
and Computation: Practice and Experience, 20(5):485–496,
2008.

[Gan13] C. Gandrud. Reproducible Research with R and R Studio.
CRC Press, 2013.

[HBF+09] C. Hedeler, K. Belhajjame, A. A. Fernandes, S. M. Embury,
and N. W. Paton. Dimensions of Dataspaces. In Dataspace:
The Final Frontier, pp. 55–66. Springer, 2009.

[LAB+06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the Kepler system. Concurrency and Com-
putation: Practice and Experience, 18(10):1039–1065, 2006.
DOI:10.1002/cpe.994.

[MBC+14] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and
J. Freire. noWorkflow: Capturing and Analyzing Provenance
of Scripts. In Intl. Provenance and Annotation Workshop
(IPAW), 2014.

[MBL15] T. McPhillips, S. Bowers, and B. Ludäscher.
yesworkflow.org/yw-tapp-15-recon, 2015.

[MBZ+08] P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. Goble.
Data lineage model for Taverna workflows with lightweight
annotation requirements. In IPAW, 2008.

[MSK+15] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Bel-
hajjame, K. Bocinsky, Y. Cao, J. Cheney, F. Chirigati,
S. Dey, J. Freire, C. Jones, J. Hanken, K. W. Kintigh, T. A.
Kohler, D. Koop, J. A. Macklin, P. Missier, M. Schild-
hauer, C. Schwalm, Y. Wei, M. Bieda, and B. Ludäscher.
YesWorkflow: A User-Oriented, Language-Independent Tool
for Recovering Workflow Information from Scripts. Inter-
national Journal of Digital Curation (IJDC), 10(1):298–313,
2015. Presented at IDCC’15, 30 Euston Square, London, UK.
doi:10.2218/ijdc.v10i1.370.

[SLP14] V. Stodden, F. Leisch, and R. D. Peng. Implementing repro-
ducible research. CRC Press, 2014.

[TMG+13] Y. Tsai, S. E. McPhillips, A. González, T. M. McPhillips,
D. Zinn, A. E. Cohen, M. D. Feese, D. Bushnell, T. Tiefen-
brunn, C. D. Stout, et al. AutoDrug: fully automated
macromolecular crystallography workflows for fragment-
based drug discovery. Acta Cryst, 500:69, 2013.

[VSDK+07] M. A. Vaz Salles, J.-P. Dittrich, S. K. Karakashian, O. R.
Girard, and L. Blunschi. iTrails: pay-as-you-go information
integration in dataspaces. In VLDB, pp. 663–674, 2007.

[WHF+13] K. Wolstencroft, R. Haines, D. Fellows, A. Williams,
D. Withers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Ne-
nadic, P. Fisher, et al. The Taverna workflow suite: design-
ing and executing workflows of Web Services on the desktop,
web or in the cloud. Nucleic Acids Research, 2013.

[YW15] YesWorkflow project site and README. yeswork-
flow.org/yw, 2015.

[ZWF06] Y. Zhao, M. Wilde, and I. Foster. Applying the virtual data
provenance model. In Intl. Provenance and Annotation Work-
shop (IPAW), 2006.

https://github.com/common-workflow-language
http://village.anth.wsu.edu/sites/village.anth.wsu.edu/files/publications/Bocinsky2014_NatComm_0.pdf
http://village.anth.wsu.edu/sites/village.anth.wsu.edu/files/publications/Bocinsky2014_NatComm_0.pdf
http://village.anth.wsu.edu/sites/village.anth.wsu.edu/files/publications/Bocinsky2014_NatComm_0.pdf
http://dx.doi.org/10.1038/ncomms6618
http://link.springer.com/chapter/10.1007%2F978-3-540-73255-6_12
http://link.springer.com/chapter/10.1007%2F978-3-540-73255-6_12
http://link.springer.com/chapter/10.1007%2F978-3-540-73255-6_12
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.3819&rep=rep1&type=pdf
http://link.springer.com/article/10.1007%2Fs13740-012-0004-y
http://link.springer.com/article/10.1007%2Fs13740-012-0004-y
https://github.com/broadinstitute/wdl
http://onlinelibrary.wiley.com/doi/10.1002/cpe.994/abstract
http://yesworkflow.org/yw-tapp-15-recon
http://ijdc.net/index.php/ijdc/article/view/370
http://ijdc.net/index.php/ijdc/article/view/370
http://dx.doi.org/10.2218/ijdc.v10i1.370
http://www.absoluteflow.org/Documents/tsai_autodrug_2013.pdf
http://www.absoluteflow.org/Documents/tsai_autodrug_2013.pdf
http://www.absoluteflow.org/Documents/tsai_autodrug_2013.pdf
http://yesworkflow.org/yw
http://yesworkflow.org/yw

