
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

TreeSync: Authenticated Group Management
for Messaging Layer Security

Théophile Wallez, Inria Paris; Jonathan Protzenko, Microsoft Research;
Benjamin Beurdouche, Mozilla; Karthikeyan Bhargavan, Inria Paris

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez

USENIX’23 Artifact Appendix: TreeSync: Authenticated Group
Management for Messaging Layer Security

Théophile Wallez
Inria Paris

Jonathan Protzenko
Microsoft Research

Benjamin Beurdouche
Mozilla

Karthikeyan Bhargavan
Inria Paris

A Artifact Appendix

A.1 Abstract

The artifact contains an executable specification of MLS, and
proofs for its TreeSync sub-protocol. It also contains code to
run the official MLS test vectors.

A.2 Description & Requirements

Running this artifact requires a computer with either Nix or
Docker installed. With Nix, the computer architecture must
be x86_64.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

https://github.com/Inria-Prosecco/treesync/
tree/7ea27ead0abc4e6bf47033f35a7eada233ac244e

A.2.3 Hardware dependencies

A computer with 8GB of RAM is enough to build and run the
artifact.

A.2.4 Software dependencies

All the dependencies are managed by Nix or Docker, hence
Nix or Docker are the only dependencies required to build the
artifact.

A.2.5 Benchmarks

As mentioned in the paper (section 5, table 2), we do run some
benchmarks. The benchmarks requires no additional data, and
they are executed at the same time as the tests, when running
the make check command.

A.3 Set-up

A.3.1 Installation

With Nix:

This command will compile Z3, F* and
other dependencies to the correct
version, and start a shell with the
correct environment.
nix develop

With Docker:

Build the docker image.
This will compile Z3 and F* to the
correct version.
docker build . -t treesync_artifact
Start the image and start a shell with
the correct environment.
docker run -it treesync_artifact

A.3.2 Basic Test

In a shell with the correct environment:

cd mls-star
This command will verify MLS*
make
This command will run tests of MLS*
make check

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): MLS* can be used as a reference implementation of
MLS. This is proven in the experiment (E1) that runs the
official test vectors.

(C2): The security of TreeSync is formally proved. This is
proven by experiment (E2) where we link theorem stated
in the paper, and formal theorems in F*.

(C3): Doing formal proofs for TreeSync allowed us to pro-
pose improvements to the standard. This is proven in the
experiment (E3) where we give links to pull-requests.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 57

https://github.com/Inria-Prosecco/treesync/tree/7ea27ead0abc4e6bf47033f35a7eada233ac244e
https://github.com/Inria-Prosecco/treesync/tree/7ea27ead0abc4e6bf47033f35a7eada233ac244e

A.4.2 Experiments

(E1): [15 human-minutes + 1 compute-hour + 4 GB disk]:
Run official MLS test vectors.
Preparation: Set up a correct environment, either with
Nix or Docker.
Execution: Go in the mls-star repository and launch
make check.
Results: The tests should succeed. For each test vector,
it should print something similar to:
Secret Tree: running tests for 2/7 ciphersuites...
Secret Tree: success!

(E2): [30 human-minutes + 1 compute-hour + 4 GB disk]:
Check that the formal theorems correspond to the prose.
Preparation: Set up a correct environment, either with
Nix or Docker.
Execution: Go in the mls-star repository and launch
make: this will verify with F* all of our theorems. Every
theorem mentioned in the paper is listed in the README
file, organized by section, with a link to the correspond-
ing source code. Check that they correspond to the prose.
Results: the theorems mentioned in the paper and the
formal theorems should correspond.

(E3): [30 human-minutes + 0 compute-minutes]: Look at our
MLS pull-requests.
Preparation: Start your favorite web-browser.
Execution: Compare section 6 of our paper, and the
following pull-requests:

• (disambiguate signatures) https://github.com/
mlswg/mls-protocol/pull/526

• (use tree-hash in parent-hash) https://github.
com/mlswg/mls-protocol/pull/527

• (strengthen the parent-hash link) https://github.
com/mlswg/mls-protocol/pull/713

Results: the pull-requests and our claims of standard
improvement should match.

A.5 Notes on Reusability
This artifact can be used for various purposes.

As a reference implementation, it can serve as a companion
to the standard to help understanding it, and understand the
security guarantees given by TreeSync.

As a proved specification, it can serve to test changes to
the protocol, by modifying the F* specification and update
the TreeSync Authentication Theorem (section 4.5).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

58 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/mlswg/mls-protocol/pull/526
https://github.com/mlswg/mls-protocol/pull/526
https://github.com/mlswg/mls-protocol/pull/527
https://github.com/mlswg/mls-protocol/pull/527
https://github.com/mlswg/mls-protocol/pull/713
https://github.com/mlswg/mls-protocol/pull/713
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

