
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Improving Logging to Reduce Permission
Over-Granting Mistakes

Bingyu Shen, Tianyi Shan, and Yuanyuan Zhou, University of California, San Diego
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-bingyu-logging

Improving Logging to Reduce Permission Over-Granting Mistakes

Bingyu Shen, Tianyi Shan, Yuanyuan Zhou
University of California, San Diego

Abstract
Access control configurations are gatekeepers to block un-

welcome access to sensitive data. Unfortunately, system ad-
ministrators (sysadmins) sometimes over-grant permissions
when resolving unintended access-deny issues reported by le-
gitimate users, which may open up security vulnerabilities for
attackers. One of the primary reasons is that modern software
does not provide informative logging to guide sysadmins to
understand the reported problems.

This paper makes one of the first attempts (to the best of our
knowledge) to help developers improve log messages in order
to help sysadmins correctly understand and fix access-deny
issues without over-granting permissions. First, we conducted
an observation study to understand the current practices of
access-deny logging in the server software. Our study shows
that many access-control program locations do not have any
log messages; and a large percentage of existing log messages
lack useful information to guide sysadmins to correctly un-
derstand and fix the issues. On top of our observations, we
built SECLOG, which uses static analysis to automatically
help developers find missing access-deny log locations and
identify relevant information at the log location.

We evaluated SECLOG with ten widely deployed server
applications. Overall, SECLOG identified 380 new log state-
ments for access-deny cases, and also enhanced 550 existing
access-deny log messages with diagnostic information. We
have reported 114 log statements to the developers of these
applications, and so far 70 have been accepted into their
main branches. We also conducted a user study with sysad-
mins (n=32) on six real-world access-deny issues. SECLOG
can reduce the number of insecure fixes from 27 to 1, and
also improve the diagnosis time by 64.2% on average.

1 Introduction
1.1 Motivation
Modern computer systems often rely on sysadmins to cus-
tomize access control policies to achieve the security goals
of an organization. Unfortunately, access control has been
reported as “profoundly broken” due to the prevalence of
misconfigurations [45,56,67]. Many recent security incidents
have shown that even subtle errors in the access control config-
urations can result in severe data breaches and system compro-
mises. For example, a misconfigured server of a billion-dollar
consulting services company exposed customers’ private in-
formation, certificates, 40,000 passwords, and other sensitive
data to the public [17]. More recent real-world newsworthy

Correct and safe fix

!" #$%&'()*+(,(-.*//*0& 10 222 3$%-.)4+534/(+(//5

6" #$%&'()*+(07&(- 10 1$(+0'*&(8 4/(-" 34/(-+(//5

9" :(.0;(1$(userlist_file <0&)*' (&1-= 10 %++07 %++ 4/(-/

+0'*&" 3$%-.)4+534/(+(//5

Attempts

Log message: get xxx.mp4
550 Permission Denied.

Problem: client could not download a file

><<(//?8(&*(8?@(<%4/(?1$(?/(-;(-A/ <0&)*'4-%1*0& 7*++ 8(&=

%<<(// 10)*+(.%1<$(8 7*1$ 1$(,%11(-& /,(<*)*(8 *& deny_file"

#$%&'(1$(,%11(-& *& 1$*/ (&1-= 7*++ %++07 807&+0%8 1$*/)*+("

Figure 1: Real world example of an access-deny issue for Vs-
ftpd. Sysadmins made several blind attempts due to lack of diagnos-
tic information, some of which introduced security vulnerabilities.
Our tool SECLOG can improve the log message by pinpoint the
relevant configuration deny_file in the log message.

security incidents caused by on access control misconfigura-
tions [29, 30, 32, 33, 46, 59, 72].

While access control misconfigurations can be introduced
during initial settings, many are caused when sysadmins
change configurations to resolve issues [61]. One of the
most prominent examples is access-deny issues, i.e., legit-
imate users are denied access to data that they are supposed to
have. As these users need to access the data to perform their
jobs, sysadmins need to diagnose the issue and change access
control settings to grant these users access.

However, server software often does not provide informa-
tive logging to guide sysadmins to understand the reported
problems, which may result in incorrect fixes. Figure 1 shows
a real-world access-deny issue in Vsftpd. The user was denied
from accessing files on the FTP server and the server log only
shows “Permission denied”. The sysadmin attempted sev-
eral fixes during the problem-solving process, some of which
opened up access to more users and introduced security holes
that can be easily exploited by malicious users. According to
a recent study on sysadmin practices based on sysadmin on-
line forums and mailing lists, 38.1% of the access-deny issues
were resolved by insecure modifications that over-granted
accesses, introducing security vulnerabilities [67].

Our main goal is not just about fixing the unintended
access-deny issue for that particular user: we are more con-
cerned about insecure “fixes” that over-grant the permissions.
After all, there can be many ways to “fix” such issues for that
particular user. For example, many incorrect fixes simply dis-
able the entire protection domain and make the object accessi-
ble to everyone [67]. While such a “fix” resolves the issue for
that particular user, it opens a big door for others, including

USENIX Association 32nd USENIX Security Symposium 409

!"#$%&'()&&*+,-,+./0#1%&'()&&!1(23456'&78&',1"!#

!"# $%&'(#)*((+),(-!"# .,/0'1234567

"5%.!"# $$%89::6%

; :<=+>?@A@>B:%.C>)4D!%-)0%),(-%!"#(&0)#E%FGHIJ &'(&*%0'(%
H(#K(#%4H(#%/-!%5"D(%,(#L"HH")-HMNJ%,/0'1234567

#(04#-%#(0+(##)#7

Silently ignoring the denied

access in reading config file

(a) Cherokee
!"#$%%&'()*+*+,-#./'0123!444!./'540%$657/82*7 "!#

!"#"$!%&'()*+),(#$"*-.&/#"&-01.+2$+!"%3.4%5556%7

89 .+"$.0%!"#$%&'()*('9!"#$%#& '%()%*+,* -. /! #012345"!

:

!"#"$!%;+"*-<()*+),(#$"*-.&/#"&-01.+2$+!"%3.4%5556%7

89 .+"$.0%!"#$%&'()*('9!"#$%#& '%()%*+ 6%+$07 /! #012345"!

:%

!"#"$!%+0=()*+),(#$"*-.&/#"&-01.+2$+!"%3.4%5556%7

89 .+"$.0 !"#$%&'()*('9!"#$%#& %183'016%1+ 89'*5 /! #012345"!

:

&0"%#$"*-.&/+($!+.1.+2$+!"3%.4%5556%7%

555

&>%1#$"*(.+!$?" @@%!"#$%&'()*('6%7%

#'(?-A(.+..-.1BCDEF(GHH4 .4 BCDEFIE1JKLMK6

NO!P #$"*-.&/#"&-0 >#&?$.+ >-. QRO!QNP R4.ST$!+.4 .ST$.&69

:

Invoke above functions

based on the request’s config.

All w/ the same error msg.

(b) Apache httpd

Figure 2: Two log message examples in two widely-used
web servers, Cherokee and Apache httpd. (a) Cherokee’s
directory opening is denied silently without any log messages.
This case was first identified by our work. The log message
patch (generated based on our tool SECLOG) has been ac-
cepted. (b) Apache denies access without logging specific root
cause, different causes (IP, method, environment) have only a
generic message, providing little information for diagnosis.

malicious users, to get into the system and access sensitive
data. Even worse, it can remain undetected until exploited by
malicious users, causing a major real-world security incident.

Therefore, to reduce the number of such security incidents,
it is important to help sysadmins to resolve access-deny issues
safely. While it is impossible to eliminate human mistakes
(after all, to err is human), one natural question is whether
system builders (i.e., server software developers) can improve
our software to help sysadmins diagnose and fix such issues.

Fortunately, the answer is ’Yes’. When a sysadmin tries to
fix an access-deny issue, the first step is to understand (1)Who
gets denied? (i.e., "subject"); (2)What operations get denied?
(i.e., "operation); and (3) What data is denied access? (i.e.,
"object"). These questions may sound trivial but on investiga-
tion are complicated. The "subject" may not be the user who
reported this issue, because today’s systems involve many
components such as application servers, databases, etc. Sim-
ilarly, the "object" and "operation" may not be that straight-
forward either. For example, for users who cannot access a
web page, their problem may be related to that page’s file
permission, or the clients’ IPs.

A common practice to understand access-deny issues is
to check the server logging. Unfortunately, logging practice
in today’s systems is ad-hoc and lacks critical details [67].
The incompleteness of access-deny related log messages is
reflected in two ways. First, some access control checks deny
permissions silently without any log at all to guide sysad-

mins. Figure 2a shows such an example in the Cherokee web
server [2]. If there is no log message at all, sysadmins have to
go on a wild goose chase. Sometimes sysadmins resort to the
online internet forums, but the inadequate log messages often
bring incorrect suggested fixes which can result in major se-
curity vulnerabilities [68]. Second, even when log messages
exist, the messages are often too generic, and lack critical
information related to subject, object and operation, all of
which are important for sysadmins to understand the root
cause and fix the settings safely. Figure 2b shows a real-world
example of denied access with only generic information in log
messages. Although there are three different possible reasons,
i.e., 1) HTTP request method, 2) IP, 3) environment variables,
that can result in access denial, it has only one log message:
AUTHZ_DENIED. While this may make the source code easy to
read, such generic error code provides very little value for
sysadmins to troubleshoot and fix the access-deny issue.

As such, it is critical to improve logging quality to provide
accurate information for sysadmins to fix access deny issues
correctly. Unfortunately, to the best of our knowledge very
little work has been done on this direction. The closest work
was efforts by Yuan et al. on improving log messages for the
purpose of software bug diagnosis [69, 71, 74]. While this
work is inspiring, logging for developers is different from
logging for sysadmins. To fix access-deny issues correctly,
log messages for sysadmins need to have different critical
information and thus different techniques need to be applied
to identify such information. More details about are in §6.

1.2 Our contributions
This paper makes one of the first attempts (to the best of
our knowledge) to help developers improve log messages for
sysadmins to diagnose and fix access-deny issues correctly
and safely. First, we studied five large open-source server
programs including Apache httpd, PostgreSQL, Vsftpd, NFS-
Ganesha, and Proftpd to understand the problems in access-
deny logging practice. Our study confirms our motivation that:
(i) many access control check locations do not have any log
statements for access-deny, leaving no information for sysad-
mins; (ii) Even for cases with access-deny log statements, a
large percentage of them lack relevant details such as subject,
object, and action of the denied access to guide sysadmins
understand and fix such issues (§2).

Second, we built a tool called SECLOG which employs
static analysis to automatically detect access control check
locations in various server applications. SECLOG identifies
missing access-deny log locations and relevant information at
log location. We evaluated SECLOG with ten widely deployed
server programs. Overall, SECLOG inserts 380 access-deny
log statements in these software, and also automatically en-
hances 550 existing log messages with relevant information.
We have reported 114 inserted or enhanced log messages to
the developers of these popular programs, so far 70 have been
confirmed and accepted into their main branches.

410 32nd USENIX Security Symposium USENIX Association

Furthermore, to evaluate the effectiveness of our inserted
or enhanced log messages, we conducted a user study with
sysadmins (n=32). Our user study results show that the log
messages enhanced by SECLOG can cut access-deny issue
diagnosis time by 64.2%. More importantly, with the original
log messages, the sysadmins introduced 27 over-granting se-
curity issues in their fixes, whereas only one such issue was
introduced with the enhanced log messages.

2 Understanding Access-deny logging in Real-
world Applications

Before we dive into a solution, we first aim to understand the
current status in access-deny logging practices and possible
opportunities for inserting such log messages with useful
information for sysadmins. We first conduct an empirical
study with five widely-deployed server software systems –
Apache httpd (webserver), PostgreSQL (database), Vsftpd
and Proftpd (FTP server), and NFS-Ganesha (NFS), written
in C/C++ languages. We focus on server software systems
because their access control settings are usually critical, and
over-granting permissions due to mistakes can lead to major
security incidents, as we have depicted in Section 1.

2.1 Methodology
To collect the access-deny log messages in software systems,
we first identify the access-deny program locations through
two kinds of program signatures, error code and access control
check functions. First, we collect error codes related to access
denial in each application from their official documentation
and manuals. For example, the error codes that would lead
to a 403 HTTP status include HTTP_FORBIDDEN, AUTHZ_DENID
in Apache httpd. From the location where the error code is
assigned and the propagation of the error code, we record the
log message that is specific to the denied access.

Second, we search by the code pattern that performs permis-
sion check to find the access-deny program locations. All the
studied applications use access control check (ACC) functions
to perform access check to system resources (e.g., file and
port), or perform application-specific access check (authoriza-
tion/authentication modules, DB privileges, ACL lists). Fig-
ure 2b shows the example authorization functions in Apache
httpd. Then we identify access-deny log messages by find-
ing the call sites of ACC functions and propagation of check
results. We remove the duplicates if one point can both be
identified by error code and ACC function.

Our study first focuses on access-deny log points that are
enabled by default during production such as Fatal, Error,
Warn verbosity levels. To be more comprehensive, we also
look into log points at more verbose levels that are usually
not enabled during production, such as Debug or Trace levels,
to further understand and expose issues in current practices
of access-deny logging. (Finding 1)

Second, we examine whether the log message at the access-
deny log point contains relevant information needed to under-

stand the reason for denial. More specifically, we classify the
information into the subject, access action and denied object
at each point. (Finding 2)

Third, to understand more about how those access log
messages were added, and whether they were added as af-
terthoughts, we also looked at the change history of the log-
ging at each access-deny program point in the public version
control repository. Only commits make changes to access-
deny log points are selected. (Finding 3)

We have two inspectors meet and discuss the standard for
the collected information before studying each software. Each
inspector independently investigates and records the informa-
tion of interest, including the root cause configuration, the
relevant variables in source code, and the request’s character-
istics such as subject, object, and action at the access-deny
program location. Then the two inspectors compared the re-
sults and discussed them with each other in iterations. All
results reached a consensus in the end.
Threats to Validity. Like all characterization studies, there
is an inherent risk that our study may be specific to the appli-
cations studied and thereby may not be generalized to other
software. While we cannot establish representativeness cate-
gorically, we have taken care to select diverse server software
systems that are widely used in different areas. Note that our
study only focuses on server software where access control
is critically important; the findings may not apply to client
or mobile applications. These studied programs also share
commonalities that all are open-source and written in C/C++,
which is common in popular server systems.

Another potential source of bias is that we may miss access-
deny points that use ad-hoc access control checks that can not
be identified by the error codes or ACC functions. In practice,
we found that the well-maintained server programs check for
access via ACC functions or differentiate the logging via error
codes. Ad-hoc checks which were treated as general errors by
the application developers, were also excluded by our study,
such as format checks of authorization headers.

2.2 Findings
Finding 1: Under the default verbosity mode, 14.1% to
64.7% of cases have no log messages at all when an access
is denied (Table 1). Such an overlook in software practices
makes it quite challenging for sysadmins to troubleshoot an
unintended access-deny issue and fix the access control setting
correctly without over-granting permissions and introducing
security vulnerabilities.

Compared to other logging, access-deny logging is more
important as it guides sysadmins in the right direction to fix
access control settings correctly. Unlike other misconfigu-
rations that usually have visible erroneous symptoms dur-
ing software execution, access-control misconfigurations that
over-granting permissions can go silent for months without
being noticed until being exploited by malicious users, caus-
ing catastrophic security incidents.

USENIX Association 32nd USENIX Security Symposium 411

Application At default level Only at debug level

Apache httpd 115 64.6% 10 5.6%
PostgreSQL 374 77.8% 0 0.0%
Vsftpd 61 85.9% 0 0.0%
NFS-ganesha 24 35.3% 38 55.9%
Proftpd 145 56.8% 25 9.8%

Table 1: The number of access-deny program points that have log
messages at default verbosity level and only at debug verbosity level.

App. Subject Action Object

Apache Server user, process ID HTTP methods; file perm. (rwx). Webpages,files
Postgre. DB user DB privileges Tables, schemas, etc.
Vsftpd FTP user; process ID FTP commands; file perm. (rwx). Files, directories.
NFS. Client IP, user name NFS commands (e.g., mnt) Files, dirs, NFS exports
Proftpd FTP user; process ID FTP commands; file perm. (rwx). Files, dirs.

Table 2: The subject, action and object in each application.

Apache httpd, NFS-ganesha and Proftpd contain some log
information only at debug-level logging. While this is better
than no log messages at all, the information may not be very
helpful because (1) sysadmins may not know that there exist
some log messages at debugging or tracing verbosity level
(since most sysadmins do not read source code [67]); (2) it
would require sysadmins to restart the software with debug-
ging level enabled and reproduce the denied request to get
the relevant information from log messages. As such, for the
following characteristics studies, we only focus on the default
level log messages.

Finding 2: Most existing access-deny log messages lack rele-
vant information to guide sysadmins, with 37.5-100% of the
log messages missing subject information, 0.0-64.7% miss-
ing action or access type information and 0.0-75.4% missing
information about the accessed objects. However, the ma-
jority (70.8% - 100%) of relevant information related to the
denied access is available within the same function of the
corresponding access check operation (Table 3).

We classify useful information for sysadmins into three
categories, subject, action and object, based on the specific
scenario of the access [44]. There are mainly two scenarios
of access-control checks which involve different subjects, ac-
tions or objects. The first scenario checks access to system re-
sources including files, network sockets, etc. In this scenario,
the subject is the role of server process in the OS; the action
is the operation to be processed on the resource (e.g., read
or write the file, bind network port); the object is the system
resource. The other scenario checks the access to application-
specific resources (e.g., authorization/authentication modules,
DB privileges, ACL lists). The subject is the role in the ap-
plication to perform the operation (e.g., the DB user or the
authenticated user in the web server); the action is the required
access to the resource (e.g., SELECT/REFERENCES privileges in
PostgreSQL); the object is the application-specific resource.
More details about the subject, object and action in each ap-
plication are shown in Table 2.

The information related to subject, action and object is fun-
damental for sysadmins to understand the access-deny issue
and come up with correct solutions. Missing any of the infor-
mation may cause additional difficulties for sysadmins. First,

App. Total Subject Action Object Same func.

Apache 115 102 88.7% 25 21.7% 18 15.7% 112 97.4%
Postgre. 374 275 73.5% 242 64.7% 107 28.6% 357 95.5%
Vsftpd 61 59 96.7% 20 32.7% 46 75.4% 61 100%
NFS. 24 9 37.5% 0 0.0% 6 25.0% 17 70.8%
Proftpd 145 145 100% 0 0.0% 0 0.0% 145 100%

Table 3: The number and percentage of log messages that do not
contain subject, action or object information; “Same func” is the
number of access-deny program points that have relevant information
within the same function of the check operation.

Application Add logs Revise logs

Apache httpd 40 511
PostgreSQL 165 1728
NFS-ganesha 7 344
Proftpd 33 1209

Table 4: The number of patches that added or revised access-deny
logging statements in source code. Vsftpd does not have a public
version control repository and was excluded from this study.

subject information is necessary to know who is being de-
nied. However, among all software, only a few percentages of
log messages include subject information. One might assume
the subject information is the legitimate user who reported
the access-deny issue. But for many software programs, it
is more complicated. For example, in most database servers,
DB user is usually the database account used by application
server to perform the operation requested by the end user,
which is different from the end user. For file accesses, sub-
ject information is usually the server process, but it would
be more complicated if setgid or setuid are used. Second,
the action (access type) information is critical for sysadmin
to grant only necessary privileges. For example, PostgreSQL
utilizes logging templates in may places, but the template only
includes the denied object, such as “permission denied for

table %s”. They do not have information related to the user
role or required privileges while PostgreSQL has 12 distinct
levels of privileges [8]. Third, the object information is use-
ful to know what data access is denied. Sysadmins usually
need to inspect the ACLs associated with the object to decide
how to change the privileges.

Fortunately, the majority of the relevant information is avail-
able within the same function of the access check operation as
shown in Table 3. This means that when developers write the
access-deny log statements in the source code, they could have
included the relevant information without much complexity.

Finding 3: Access-deny logging practice is ad-hoc and many
existing log messages are added as afterthoughts (Table 4).
We find that many efforts from the developers are needed
to add and revise the access-deny logging statements. The
patches are made to (1) add new log message in previously
silently denied program location or (2) revise existing log
message to include additional information (e.g., file name).
The added information was crucial to help sysadmins resolve
the denied access, but would require huge efforts from experts
to find and understand the denied locations, which calls for
the need for an automated tool to assist the developers.

412 32nd USENIX Security Symposium USENIX Association

3 Challenges and Design Choices

Motivated by our real-world applications observation, we aim
to design and build a tool, called SECLOG, to help software
developers to enhance access-deny log messages and also in-
sert missing log messages to provide guidance for sysadmins
to fix access-deny issues without over-granting permissions.
To achieve this goal and improve the quality of access-control
logging in general, there are three fundamental challenges.

1. How to log: How to maintain high-quality log statements
in a continuous software development process.

2. Where to log: How to identify the access-control check
(ACC) program locations (including missing ones) in large
server software and where to place the log statements.

3. What to log: How to find the critical information to add
into log statements that can guide sysadmins in solving
the access-deny issues safely and correctly.

We discuss the challenges and design choices in detail, as
well as compare them with the alternative approaches.

3.1 How to Log

Software code is constantly evolving to meet the dynamic
needs, which also requires developers to spend efforts to main-
tain high-quality log statements. However, current access-
deny logging practice is ad-hoc as it relies on developers to
manually identify log locations and add useful logging infor-
mation at each location (c.f. §2). One simpler approach is to
provide the developers with a logging library to guide/enforce
developers writing better log messages. While it is possible
to manually make an improvement at each access-check pro-
gram location, this process is tedious and error-prone because
(1) there are hundreds of ACC program locations in server
software (e.g., more than 300 access-check points in large
software like PostgreSQL) and (2) for each location, devel-
opers need to examine the entire call chain to search for log
statements or the lack of such statements, as well as to identify
critical information related to the access denial.

We design SECLOG to automate the process with the help
of static analysis for the following considerations. First, the
source code contains rich information related to the denied
access, which could be extracted with static analysis (Find-
ing 2 in §2). Second, static analysis can go through all the
access-control check locations to identify inadequate or miss-
ing log messages, which would be challenging for developers
to manually go over. Third, the automated process could be
integrated to the CI pipelines to help with code review, which
enforces consistent logging practice for even new contribu-
tors. Though SECLOG still requires some annotations from
developers, this as a one-time small effort would benefit the
code development process in the long run.

3.2 Where to Log
3.2.1 Where to Find ACC Locations

It is challenging to identify ACC locations across different
server applications because each application performs various
access control checks on the requests. Manually identifying
each location in a large server application requires expertise
and huge efforts.

SECLOG addresses this problem by leveraging the common
adoption of ACC functions to reduce the input from develop-
ers while achieving a high coverage of access check locations.
To understand the percentage of access-check locations cov-
ered by ACC functions, we performed a measurement on the
five applications in §2. We find that the majority (65.6%-
100%) of access check program points can be identified by
ACC functions. (More details in Appendix A.1.) Using ACC
functions allows SECLOG to identify up to more than 300 ac-
cess control check locations in large software like PostgreSQL
with no more than 34 ACC functions (Table 17).

Although ACC functions still have to be annotated by de-
velopers, the effort is much lower than manually inspecting
hundreds of access-check points. The developers can easily
identify these ACC functions in modules related to system
resources access (e.g., file or network), or application-specific
checks in access control related source files. As shown in
Evaluation §5.3, even novice developers could annotate the
ACC functions with high coverage in a short amount of time.

3.2.2 Where to Place Log Statements
After SECLOG finds all ACC program locations, the second
challenge is where the existing or new (to be added by SE-
CLOG) access-control log statements should be placed. One
approach would be placing the log statements inside the ACC
function instead of after ACC function’s call sites. However,
the call site contains more relevant information for sysadmins
to resolve the access-deny issues. According to our study,
68-100% relevant information related to the denied access is
available within the same function of the call site of ACC func-
tions (Table 3). Besides, the majority of access-deny logging
statements are at ACC functions’ call sites instead of inside a
check function (More details in §A.1 Table 18). Placing the
logging statements at call sites, SECLOG can improve exist-
ing logging statements without intrusive logic modifications
to source code.

Another alternative approach is to always add after the
check at the call site, regardless of whether the access result is
denied or not. This approach would have two disadvantages.
First, too much logging will introduce higher performance
overhead and downgrade the server throughput [60]. Second,
too much logging can overwhelm sysadmins to find the related
log message when they need to fix issues like an unintended
access-deny case reported by a legitimate user.

In sum, SECLOG decides to place the log statements after
the call sites of ACC functions only when the access is de-

USENIX Association 32nd USENIX Security Symposium 413

nied. To achieve this, we design a semantic pattern matching
algorithm to identify the access-deny paths in Section 4.1.

3.3 What to Log

The third challenge would be what should be included in the
access-deny log messages to help sysadmins fix the access-
deny issues correctly. A naive solution would be to include all
the parameters of the ACC function as relevant information
since they are used to perform access control checks. How-
ever, it is imprecise and misses the opportunity to collect spe-
cific denied reasons. First, not all function parameters are in-
volved in the decision of whether the access would be denied.
Logging unrelated information may confuse the sysadmins.
Second, the parameters may be a large object represented as
a struct with many fields (e.g., the request object in Apache
httpd contains more than 100 fields). Only the fields that cause
the access denied are relevant and should be logged. Third,
some accesses may be denied in an ACC function for differ-
ent reasons. Figure 3 shows that the cherokee_mkdir_p_perm

function could be denied for two reasons: (1) denied to create
a new directory with the specified mode, or (2) denied to open
an existing directory with certain permissions. To guide sysad-
mins for an unintended access-deny case, it is more useful to
give the specific information in the log message.

1. Access control check function

Deny path 1 return value

Deny path 2 return value
variables on path1

variables on path2

2. Access control check function call site

Figure 3: Collecting access-deny information inside the access
control check function. With the result check function specifies
retval != ret_ok, SECLOG detects two different access-deny return
points and constructs two slices with backwards slicing. The first
sliced path extracts mode whereas the second one is related to perm.

To find precise information related to access control from
source code, SECLOG identifies the information relevant to
the access from two sources: (1) inside the ACC function and
(2) at the ACC function’s call site. To ensure the collected
information is only related to the denied access, SECLOG
performs backward slicing from the access-deny return value
inside the ACC function and data dependency analysis to
find the related variables. We discuss more about the analysis
process in Section 4.2.

Figure 4: Workflow of SECLOG

!! "#$"% &$'()**)+, +, +&$,),- . /)0$1 '$23', 2#$ "#$"% '$*302 .* *2.23* *2'3"2

!"#"$!%" !"#!$%&'#(%'#)*+,,+&(-!"&$'" &./%"0(12#34&./5

,6)7!6 8209%6348209,5 .&&2 !)#06#:;

!"#"$!%" !"#$%&'()*+",-./, &01%2#)3$(44 &0156",-./, !$#7%,46!$#7"5

().8 8&3(/8&3(5 9:;

<<<6 ==6>)>,

",#,."6?6/2(/@%&'()%'(-8>"">&)+4&0156!$#7"56/8&3(A?BCDE%FGHEICJKF:L

>! +M +",#,."<8#1&- ?? NO%FPPOP:: 7&,& &.,L

1. Access control check function

2. Access control check function call sites

())*+)#,726%!"#!$%+(6%<-!"#"$!%" ,6067,:4=4

&,"$&- ,6067,>*0/&) ?@4AB%CDDBD;4

E

3. Result check function

Return true when the access control

check function’s return value

represents access denied

Figure 5: An access control check function example from NFS-
Ganesha. The function check_open_permission returns a struct to
represent error status. The result check function (provided by the
developers) determines whether the return value of the access control
check function indicates “access denied”.

4 Design and Implementation

SECLOG targets large server software where over-granting
permissions and security incidents can cause major incidents.
Since most server software was written in C/C++, SECLOG
is built on top of LLVM compiler frameworks that can handle
C/C++ programs. SECLOG’s static analysis algorithms can
be easily extended to handle Java applications.

The overview workflow of SECLOG is shown in Figure 4.
SECLOG operates on the LLVM bitcode of the application and
processes the IR representation of the source code. Besides,
SECLOG takes two types of annotations from the develop-
ers: (1) A list of developer-selected ACC functions in the
target software, and (2) the corresponding result check func-
tion paired with the ACC function that is used to determine
whether the access is denied based on the return value of
ACC functions. For example, if the return value from an ACC
function is not NO_ERROR, then it is access-denied. One exam-
ple ACC function and corresponding result check function is
shown in Figure 5.

SECLOG further performs analysis to identify (1) where
to log (§4.1) and (2) what to log (§4.2). SECLOG produces a
report including the list of access-control log locations, the
type of log at each location (existing or new), and the list
of relevant variable names at each location. Developers can
utilize SECLOG’s report to generate the final human-readable
log messages. SECLOG can also be configured to instrument

414 32nd USENIX Security Symposium USENIX Association

!"#$ %&'()"*+,-./0 1/22#,#3

45 6 7'((!"#!$%&'#(%'#)*+,,+&(./0

4- 6 8#37'&3 4'(("7' 3" #9:;

&3"<+ 45= 4-

4> 6 8#37'&3 4&3'3?& 3" #@;

4: 6 8#37'&3 4'(("7' 3" #@;

A+A7*B.4>= 4:0

4C 6 D+3+(+A+,3*3<.4&3'3?&= E= E0

49 6 ("'$ #>-= #>-;F4C

4G 6 #7A* +H 49= E

8< 4G= 43<?+= 4%'(&+

I
(a) Simplified LLVM IR (b) OpNode tree

!!

E

E= E

Iacc

Icond

!"#$%

!"#"$"%"&#'#(

!"#$%

!"#$%

(c) Reducted OpNode Tree

!!

E

Iacc

IcondIacc

branch condition Icond

!"#"$"%"&#'#(

E= E

Figure 6: Result checking operations in LLVM IR for call site’s
code snippet fsal_open2() in Figure 5. The corresponding OpNode

tree is constructed and reducted for matching in Algorithm 1.

the bitcode by inserting the pairs of variable names and values
at each logging location with provided logging functions.

4.1 Identify Where to Log
SECLOG identifies the logging locations with the help of ACC
functions as discussed in §3.2.1. To achieve this goal, SE-
CLOG will first perform static analysis to identify the access-
control check locations. Then SECLOG places the log state-
ments only when the access is denied at the check location,
by identifying the access-deny paths at the ACC function call
site. We discuss the detailed analysis algorithms as follows.

4.1.1 Identify Access-control Check Locations
SECLOG identifies the log location by first extracting the call
graphs from the bitcode. With the help of call graph, SECLOG
can comprehensively find all the call sites of ACC functions
where the access is checked. Most ACC functions in the same
software follow a similar convention to indicate access denial
in the same software. This makes it easier for developers to
provide result check functions.

We find that function pointers are used as special ACC
functions in certain C-based applications, such as Apache
httpd. The application uses function pointers in a struct as
a function template to call different ACC functions at any
call site. However, the use of function pointer makes the log
messages at the function call sites less specific, since the dif-
ferent access control check functions may be called at the
same site, but fails for different reasons, as shown in Figure
2b. To find the call sites via the function pointers, we require
the developers to annotate the specific field in the struct that
represents the function pointers to ACC functions. Then SE-
CLOG identifies all possible functions that can be assigned
to this type of pointer. This helps us extend the call graph
between the call site of function pointer and the real ACC
functions to conduct the remaining analysis.

4.1.2 Identify where to Place Access-Deny Logs

As discussed in §3.2.2, SECLOG decides to place the log
statements only when the access is denied. This requires SE-
CLOG to identify the existing access-deny path in the source
code. If there is an access-deny path (i.e., the code snippets
at the ACC function’s call site to check whether the ACC

function’s return value represents access-deny), the snippets
would be similar to the operations included in the result check
function. Figure 6(a) shows the corresponding LLVM IR of
the example function’s call site in Figure 5. The ACC func-
tion check_open_permission returns a struct of error status.
To perform the check in LLVM IR code, the call site performs
several operations to retrieve one field in the struct and check
if that field represents the access is denied.

To capture the result checking operations and identify
access-deny paths, as detailed in Algorithm 1, SECLOG per-
forms a semantic pattern matching process by using the pro-
gram slicing technique with data flow analysis starting from
each access-deny program location. The algorithm will match
the result check function with the denied branch.

Semantic pattern matching algorithm. The result check
function takes the return value of the ACC function as an
input, and returns true when the access is denied as shown
in Figure 5. The algorithm perform the analysis to match the
result check function with the denied branch in two steps.

First, for each call site, SECLOG identifies the call instruc-
tion Iacc (i.e., the instruction that invokes the ACC function)
and the branch conditions impacted by Iacc. It performs intra-
procedural static forward slicing that has data dependency on
Iacc. Sacc is the set of all instructions in Iacc’s forward slice. SE-
CLOG then computes the set of all related conditional branch
instructions in Sacc: {Icond |Icond ∈ Sacc∩Type(Icond)=branch}.

Second, SECLOG performs a semantic pattern matching
between the result check function and the paths between Iacc
and all branch instructions Icond in Sacc. This step prunes
out infeasible paths that do not match with the operations.
Algorithm 1 OpNodeTreeMatch() lists the core steps.

• Construct the operation OpNode from instructions in Sacc.
Each instruction in Sacc can be mapped to a OpNode that
includes the instruction (i.e., operation), the operands, and
the defined type of the LLVM IR in the SSA style.

• Construct OpNode tree backwards from Icond . The root of the
tree is the OpNode of Icond , while the leaves of the tree can
only be Iacc or constants types. The OpNode tree of the result
check function Rcheck can be constructed similarly between
the input parameter and Rcheck’s return value.

• Reduce OpNode tree. The operations in defined EQUIV type
like load, store, cast can be removed, so that the two
OpNode trees can be matched in the simplest form.

• Match OpNode tree. The final operation matching between
the two trees uses the MatchTree() procedure in Algo-
rithm 1. The matching algorithm returns None if no match,
otherwise it outputs the true or false branch for the branch in-
struction as the access-deny branch. Note that SECLOG also
performs simple logic transformations, to ensure that the
branch condition like rv == -1 can match with specified re-
sult check functions like bool check(rv){return rv < 0;}.
This can be further improved by a formal SAT solvers [31].

USENIX Association 32nd USENIX Security Symposium 415

Algorithm 1: OpNodeTreeMatch

struct {
instr: the original instruction I;
operands: operands of I;
type: Defined type of I, (e.g. EQUIV type includes
store,load,cast instructions)

} OpNode;
Function OpNodeTreeMatch(Icond, Iacc, Rcheck, Sacc):

Input: Icond: branch condition instruction;
Iacc: call instruction of access check function;
Rcheck: OpNode tree root of the result check function;
Sacc: the instructions tained by Iacc;
ins_map←{} . mapping from instruction to OpNode;

for Ii ∈ Sacc do
. convert Ii to OpNode

ins_map[Ii]←OpNode(Ii,Operands(Ii),Type(Ii))
root← ins_map [Icond] . root is the tree from Icond
root← ReduceTree(root, ins_map)
return MatchTree(root, Rcheck)

Function ReduceTree(root, ins_map):
if root.type= EQUIV then

root.operands [0] = . EQUIV only has 1 operand

ReduceTree(ins_map [root.operands [0]])
else

for operand ∈ root.operands do
ReduceTree(operand, ins_map)

return root
Function MatchTree(root, Rcheck):

r_match← []; retval← 0
if root.type= Rcheck.type then

. Recursively match operands of root and Rcheck

r_match←matchAllOperands(root, Rcheck)
if None /∈ r_match then

if Value(root) = ¬Value(Rcheck) then
retval= 1− retval

return retval
return None

4.1.3 Identify Existing Logs or Add New Ones

To avoid redundant logging, SECLOG finds whether the
access-deny log statements already exist inside the ACC
function. SECLOG performs static backward slicing from the
access-deny return values to search for a logging statement.

SECLOG first searches for logging statements specific to
the denied access at the ACC function call site. We count
them as specific for the denied access only when the basic
block where the log statement lies in the denied branch (iden-
tified from our previous step), but does not post-dominate the
allowed branch.

An access-deny error may be logged in the upper caller
function by propagating the error code. SECLOG records the
return value and performs data flow analysis in the call chain
to check if the return value is propagated back to its caller
in the call chain. SECLOG recursively looks at upper caller
function at up to three levels for efficiency considerations.

If no access-deny branches were found, SECLOG can op-

Figure 7: An example from Vsftpd showing the benefit of col-
lecting relevant information at a caller of an ACC function. By
tracking data dependency at the call site of vsf_util_bind, SECLOG

adds these port settings in the corresponding access-deny log state-
ments to provide more information for sysadmins.

tionally instrument the bitcode by inserting a checker by call-
ing the result check function. To avoid affecting the original
semantics, the checker was inserted immediately after the
basic block where the ACC function was called. Inside the
branch, only a log statement is added.

4.2 Identify What to Log

Based on the characteristics of ACC function, SECLOG iden-
tifies the information relevant to the access from two sources:
inside the ACC function and at the ACC function’s call site.
Inside the ACC function. For each access-deny return value
in the ACC function, SECLOG performs backward slicing to
find a slice from the access-deny return value backward to
the beginning of the function. Then SECLOG extracts all live-
in variables [16] (i.e., function parameters, global variables,
constants), on which the access-deny return value has a data
or control dependency. The variables collected along each
deny slice are added separately to represent various reasons
for denials (e.g., Figure 3). Those variables are also used
in analysis at the call site. If the access check function is a
library call (i.e., the source code can not be analyzed), the
above analysis is skipped and all function parameters are
treated as relevant.
At the ACC function’s call sites. ACC function’s call sites
have specific context information that is useful to guide sysad-
mins. From the function parameters, SECLOG traces back to
the global variables of the configuration settings, and adds
them into the corresponding access-deny log statements. (e.g.,
Figure 7). More specifically, SECLOG collects live-in vari-
ables starting from the relevant variables identified inside
the ACC function in the previous step. These variables are
data-dependent on the relevant variables in ACC function. To
collect such information, SECLOG performs a revised back-
ward slicing which only performs the static backward slicing
on the data flow graph.

5 Evaluation

We evaluate SECLOG to answer the following questions: First
(§5.1), how effective is SECLOG in improving existing access-

416 32nd USENIX Security Symposium USENIX Association

Applications Category LOC # ACC func. # Res. func. Anno. Time Analysis
Time (mins)

Apache httpd [1] Web server 199K 18 4 - 45
PostgreSQL [7] Database 886K 34 2 - 354
vsftpd [11] FTP 16K 17 3 - 0.2
NFS-ganshea [5] NFS 165K 9 3 - 14.0
Proftpd [9] FTP 228K 32 2 - 10.1
Postfix [6] Mailserver 124K 13 3 72 32.1
HAProxy [3] Proxy server 167K 5 3 55 4.7
Cherokee [2] Web server 62K 12 3 32 0.2
Redis [10] Key-value 134K 5 3 35 0.6
mSQL [4] Database 35K 3 1 20 0.3

Table 5: Evaluated applications. Applications in gray are covered
in our study (§2). We added five other software to evaluate the
generality of SECLOG. ACC func: the number of ACC function. Res.
func: the number of types of the result check functions. Anno. Time:
average time in minutes that were spent on annotating the ACC
and result check functions. Analysis time is total running time for
SECLOG to analyze the application. More discussions are in §5.3.

control log statements and identifying missing log locations?
Second (§5.2), how effective are SECLOG-enhanced logging
statements in helping the administrators in solving real-world
access-deny issues? Third (§5.3), how much effort is it for
the developers to use SECLOG? Lastly (§5.4), how efficient
is SECLOG’s analysis and what is the runtime overhead to
the server software? The experiments were conducted on a
machine with Intel Core i7-7700 CPU (3.6GHz, 8 cores), 16
GB RAM, 1 TB HDD with Ubuntu 16.04.

5.1 Improve Access-Deny Logging
To evaluate the effectiveness of SECLOG in improving ex-
isting access-control log statements and identifying missing
logging locations, we applied SECLOG on ten server applica-
tions and verified the enhanced log messages and new ones.

Appl. Existing logs New logs
New vars. # # Vars.

Apache. 93 5.62 44 7.05
Postgre. 203 2.61 121 4.16
vsftpd 39 1.67 9 2.44
NFS. 8 3.00 20 5.90
Proftpd 145 4.03 111 4.13
Postfix 8 8.75 36 14.28
HAProxy 3 3.33 10 6.40
Cherokee 11 2.18 23 3.35
redis 11 1.82 6 3.00
mSQL 19 2.00 - -

Table 6: Evaluation results for SECLOG improvement of exist-
ing and new log statements. This table shows (1) The number of
existing log messages enhanced by SECLOG and the average num-
ber of additional variables added per existing log statement. (2) The
number of newly added log messages by SECLOG and the average
number of relevant variables per new log statement.

I Number of improved log messages. Table 6 shows the
number of existing log messages enhanced by SECLOG and
new log statements added by SECLOG, for the ten evaluated
software applications, and the diagnostic information (repre-
sented as numbers of variables) added into the logging state-
ment. SECLOG automatically inserted 6 to 121 log statements
into these applications at those access-deny program locations
that have no log in the call path. For the existing log messages,
SECLOG has added about 1.67-8.75 additional variables per

Appl. # exi. logs #(%) covering all vars. in the log #(%) missing any vars.

Apache 93 73 (79.5%) 20 (21.5%)
Postgre. 203 203 (100%) 0 (0.0%)
vsftpd 39 39 (100%) 0 (0.0%)
NFS. 8 5 (62.5%) 3 (37.5%)
Proftpd 145 144 (99.4%) 1 (0.6%)
Postfix 8 7 (87.5%) 1(12.5%)
HAProxy 3 2 (66.7%) 1(33.3%)
Cherokee 11 11 (100%) 0 (0.0%)
redis 11 11 (100%) 0 (0.0%)
mSQL 19 19 (100%) 0 (0.0%)

Table 7: SECLOG’s coverage of the variables in existing log
statements. The variables in the existing logs are manually picked
by developers. We consider a log statement covered by SECLOG

only when all variables in the log statement are present in SECLOG-
identified variables; otherwise it is regarded as missed.

log message. For newly added log messages, there are about
3.0 to 14.28 variables per log message on average.

The number of SECLOG-enhanced log statements varies
with the number of access-control checks in the software due
to (1) software size and (2) the design of ACC code. The
larger software like Apache, PostgreSQL and Proftpd con-
tains a higher number of checks. However, in software like
redis/NFS-ganshea, the number of ACCs is small despite the
software being large in terms of LOC. This may be because
the design of ACC code varies based on the nature of each soft-
ware. The web servers and database servers have many access
control privileges and authentication/authorization modes,
therefore the access control checks are conducted in many
program locations. In contrast, the file system server or the
memory cache server (redis/NFS-ganshea) mainly rely on file
system protection and have fewer access control checks.

I Cases confirmed and accepted by developer. We took a
step further to report the SECLOG-enhanced log messages to
the open-source projects. Note that some applications (e.g.,
vsftpd) do not have a formal forum for us to report issues, so
we did not report them. We have submitted 114 enhanced log
messages as patches to the developers of those applications
that have formal forums. When we contact the developers,
we prioritized submitting patches to those who responded to
our initial patches. So far 70 of 114 have been accepted and
merged in their main branches.

I Coverage of variables in existing log messages. To un-
derstand the accuracy of SECLOG-identified variables, we use
the variables in existing log messages as the ground truth to
compare with SECLOG’s outputs. These variables are man-
ually picked by developers. We consider one log message
covered by SECLOG only when all the existing variables in
the log message are in the SECLOG-identified variables; oth-
erwise it is regarded as missed. As shown in Table 7, SECLOG
achieves a high coverage in all applications.

We further looked into the log messages with variables
missed by SECLOG. There are mainly two reasons. First, the
variables logged by developers are not used in this access-
control check. For example, in the 3 cases missed in NFS,
developers choose to log the client’s IP address when they
perform the authentication (i.e., checking credentials). Simi-

USENIX Association 32nd USENIX Security Symposium 417

Appl. # exi. Subject Action Object
logs before after before after before after

Apache. 93 3 (3.2%) 88 (94.6%) 88 (94.6%) 93 (100%) 79 (84.9%) 93 (100%)
Postgre. 203 0 (0.0%) 203 (100%) 0 (0.0%) 152 (74.9%) 203 (100%) 203 (100%)
vsftpd 39 3 (7.7%) 26 (66.7%) 5 (18.2%) 39 (100%) 9 (23.1%) 33 (84.6%)
NFS. 8 0 (0.0%) 8 (100%) 1 (12.5%) 8 (100.0%) 0 (0.0%) 2 (25.0%)
Proftpd 145 0 (0.0%) 90 (62.1%) 145 (100%) 145 (100%) 145 (100%) 145 (100%)
Postfix 8 0 (0.0%) 7 (87.5%) 6 (75.0%) 8 (100%) 1 (12.5%) 4 (50.0%)
HAProxy 3 2 (66.7%) 3 (100%) 3 (100%) 3 (100%) 2 (66.7%) 2 (66.7%)
Cherokee 11 1 (9.1%) 9 (81.8%) 10 (90.9%) 10 (90.9%) 10 (90.9%) 10 (90.9%)
redis 11 0 (0.0%) 11 (100%) 9 (81.8%) 11 (100%) 5 (45.5%) 6 (54.5%)
mSQL 19 0 (0.0%) 19 (100%) 0 (0.0%) 11 (57.9%) 0 (0.0%) 11 (57.9%)

Table 8: Evaluation results of SECLOG’s improvement on the
existing log statements. For each application, we compare the num-
ber and percentage of log messages containing subject, action and
object before and after SECLOG’s improvement.

Appl. # new logs Subject Action Object

Apache 44 41 (93.2%) 44 (100%) 44 (100%)
Postgre. 121 121 (100%) 111 (91.7%) 121 (100%)
vsftpd 9 9 (100%) 9 (100%) 7 (77.8%)
NSF. 20 20 (100%) 20 (100%) 20 (100%)
Proftpd 111 102 (91.9%) 111 (100.0%) 111 (100.0%)
Postfix 36 36 (100%) 36 (100%) 31 (86.1%)
HAProxy 10 10 (100%) 10 (100%) 8 (80.0%)
Cherokee 23 18 (78.3%) 23 (100%) 20 (87.0%)
redis 6 6 (100%) 6 (100%) 6 (100%)
mSQL - - - -

Table 9: The number and percentage of newly added log mes-
sages by SECLOG containing subject, action and object.

larly, for 7 cases in Apache, developers log the requested URL
when the code checks access for requested files. Second, the
variables logged by developers mismatched SECLOG’s out-
puts. For example, for 9 cases in Apache, developers logged
the filenames which are missed by SECLOG. This is because
the file operation only uses the file descriptor to perform
the check. SECLOG could not find the filename previously
associated with the descriptor in the upper call chain.
I Improvements on subject/action/object information.
To understand the improvement of log messages, we further
classify the existing variables and newly added variables into
subject, action and object based on the characteristics of each
application. The results are shown in Table 8 and Table 9 for
existing and newly added log statements respectively. For the
existing log messages in Table 8, SECLOG can systematically
improve the log message with variables related to subject,
action and object. For subject, SECLOG can find process id
for file accesses, and user info for the SQL queries in different
applications; For action, SECLOG can find the access mode
or privileges related to the access; For object, SECLOG can
find the variables related to files, DB or table names.

However, SECLOG still can not identify all the informa-
tion related to subject, action or object from the source code
because the check may not involve all the attributes. For ex-
ample, in 25.1% of the cases where SECLOG can not identify
the action in PostgreSQL, the code simply checks whether
the user is the owner of the object (e.g., table). Similarly, SE-
CLOG can not identify the object in the authentication checks
where the check only involves attributes related to the subject.

I Helpfulness of SECLOG-identified variables. We con-
ducted a survey to quantitatively evaluate the helpfulness of
the information in SECLOG-identified variables in diagnosing
access-deny issues. We choose three commonly used appli-
cations, Apache, PostgreSQL and vsftpd, and in each appli-

Appl. SECLOG Random

Apache 3.63 1.43
Postgre. 4.25 1.39
vsftpd 3.88 1.22

Table 10: Average helpfulness rating of variables in a 5-point
Likert scale, with 1 as not helpful and 5 as extremely helpful.

Figure 8: The distribution of SECLOG-identified informa-
tion helpfulness ratings. The rating is on a 5-point Likert
scale, with 1 as not helpful and 5 as extremely helpful.

cation, we randomly selected 10 access-deny program points
improved by SECLOG. For each program point, we carefully
designed an access-denied scenario that would be denied ac-
cess at the program point. Then we show the participants with
the meaning of the SECLOG-identified variable and the actual
value at the access-deny program point. To compare with
the helpfulness of SECLOG-identified variables, we randomly
selected two additional variables at the access-deny program
point (i.e., within the call site of ACC function based on the
LLVM IR code). One example question is shown [15]. For
each scenario, participants are asked to rate the helpfulness of
each variable on a 5-point Likert scale, with 1 as “not helpful”
and 5 as “extremely helpful”. To avoid overwhelming the
respondents with too many questions, only four scenarios are
randomly drawn for each respondent. Participants were not
compensated for our survey.

We distributed our survey through the software’s mailing
list and slack channel, subreddits of sysadmin forums. In
total, we received 108 valid responses (36 for Apache, 42
for PostgreSQL and 30 for vsftpd). No personal identifiable
information is collected in the survey.

Results. The average helpfulness ratings of SECLOG-
identified variables and randomly selected variables are shown
in Table 10. In all three applications, the helpfulness ratings
of SECLOG-identified are between 3 (moderately helpful)
and 5 (extremely helpful), which are significantly higher than
randomly selected variables (p<0.005, Mann-Whitney U test).

The distribution of helpfulness ratings in SECLOG-
identified variables is shown in Figure 8. For all applications,
more than 50% of variables have ratings higher than 4 (very
helpful) and more than 75% are higher than 3 (moderately
helpful). In PostgreSQL, SECLOG can help identify the ac-
cessed table name (object), required privilege (object) and the
user who is executing the query (subject) in all the locations,
which are all regarded as very helpful.

We further look at the variables with ratings lower than
3 (moderately helpful) in Apache and vsftpd. This is be-

418 32nd USENIX Security Symposium USENIX Association

Problem Description

vsftpd-1 Users could not download the txt file because of misspelled
regex patterns in configuration deny_file

vsftpd-2 User could not login because the user customized config. file
is not owned by root.

vsftpd-3 User could not retrieve directory listing in the passive mode
because the allocated port is being used by other application.

Postgres-1 The SQL query is denied because the user lacks USAGE

privilege on the schema and INSERT privilege on the table.
Postgres-2 The SQL query is denied because the user lacks EXECUTE

privilege to run the functions in the schema.
Postgres-3 The SQL query is denied because the user lacks REFERENCES

privilege when creating a table with foreign key reference.

Table 11: Six real-world access-deny issues from vsftpd and
PostgreSQL evaluated in our user study. They were selected from
real cases from the online sysadmin forums.

cause for library calls that SECLOG cannot analyze, SECLOG
treats all parameters as related to avoid losing useful informa-
tion, which may include additional less useful information.
In Apache, 7 out of 12 variables are the apr_file_t object
which stores the file handle, which are the parameters of lib-
calls. Similarly in vsftpd, 3 out 5 variables are introduced as
libcall parameters. Future improvements may further prune
such variables by adding filters for specific variable types.

5.2 User Study on SECLOG
To evaluate the effectiveness of SECLOG in helping sysad-
mins fix issues accurately without introducing permission
over-granting security mistakes, we conducted a controlled
user study. Our study was approved with an IRB exempt status.
All our study involving human subjects (i.e., questionnaire
survey and user study) were approved by the university’s In-
stitutional Review Board (IRB) with an IRB exempt status.
We took several measures to protect the participants’ rights.
First, the researchers who conduct the study were trained with
ethics for user research courses before the study. Second, the
participants were informed of the purpose, rights and risks
before the study and the study is totally voluntary. The partic-
ipants were informed that they can opt out anytime and they
still get compensated for their time in the study. Third, no
personal identifiable information is collected or stored during
the study.

We crawled the real-world problems related to the software
from sysadmin forums (e.g., stackexchange, stackoverflow)
and the software’s administration mailing list, and further fil-
tered the access control related cases with keywords filtering.
We examined the cases and found the common ones as our
user study cases. Finally, we used six real-world problems
from two server software (vsftpd and PostgreSQL) as shown
in Table 11. For example, problem 3 in vsftpd is related to the
common port range settings in FTP the server that was posted
in many threads [12, 13]. We also use the real-world issue in
Figure 1 as problem 2 in vsftpd.

We recruited our participants from each server’s user mail-
ing list and Slack workspace, and sysadmins Reddit. In total,

(%) of insecure Problem 1 Problem 2 Problem 3
solutions Original SECLOG Original SECLOG Original SECLOG

vsftpd 1 (6.25%) 0 (0.0%) 6 (37.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
PostgreSQL 8 (50.0%) 0 (0.0%) 4 (25.0%) 1 (6.25%) 8 (50%) 0 (0.0%)

Table 12: The number and percentage of insecure fixes in each prob-
lem that over-granted permissions and introduced security issues,
in the group with original logs and SECLOG-enhanced logs. More
details of the insecure fixes are in Table 13.

we recruited 32 work professionals. The participants were
compensated for their time with a $30 giftcard.
Methodology. The study is conducted remotely using Zoom
for communication due to COVID-19. The participants ssh to
a remote server to resolve the designed problems. Each user
is asked to resolve six problems in Table 11. We randomly
allocate the participants to the group with SECLOG-enhanced
log messages (group A) and the group with original software
(group B). The only difference between the groups is the
information in the log messages.

Before the study for each server application, we give the
participants 30 minutes to read a detailed guide on how to
manage the servers with the specific sections in the official
manual related to our study. Then we ask the participant to
solve a warm-up case for each server program to help them
get familiar with the server environment, such as the location
of configuration files and commands to modify the settings.
The warm-up case is not included in our results.

After the warm-up question, we give them three problems
from each server application. The order of the problems is
randomized. Each problem is given 30 minutes. If they cannot
finish during the given time, we count it as 30 minutes, which
penalizes the enhanced group since many participants with
the original software could not resolve the problem within the
maximum time. We also record how they resolve the problem
by recording their commands and modifications, and then
evaluate whether the fixes over-grant the permissions and
introduce security issues.

After all problems are finished, participants can optionally
participate in a short interview. We show the participants both
the original and enhanced log messages. We ask the partic-
ipants whether and how they would change their solutions
and reasons for changes; And the participants will rate the
usefulness of both log messages on a 5-point Likert scale.
One survey question example is shown in [15].

I Insecure fixes. We record all the changes made by the
participant during the study. We regard the solution as secure
if the solution only grants necessary privileges to solve the
access-deny issue in each problem; If the solution grants ex-
cessive privilege to the denied user or other users, it is regard
as insecure. For example in PostgreSQL problems, the solu-
tion is insecure if the participant grants more privileges than
required to execute the original SQL. In problem Postgres-3,
only REFERENCES privilege is required; however, half of the
participants in group with original log messages fix the prob-
lem by granting ALL privileges on the table to the denied user.

USENIX Association 32nd USENIX Security Symposium 419

Problem Solution description Consequence Number of
occurrences

vsftpd-1 1. Delete other configuration options related to userlist
Previous settings limit that only users on userlist can
login; after the change every user can login. 1

1. Delete configuration option user_config_dir
All the configurations customized by each user under
user_config_dir do not take effect. 4

vsftpd-2
2. Change permission of config file
/etc/user_config_dir/ftpuser1 to 777 All users in the system can read/write/execute the file. 1

3. Delete the configuration option userlist and other options.
Previous settings limit that only users on userlist can
login; after the change every user can login. 1

1. Grant ALL privileges on the table to user and
grant all privileges on the schema to user.

The user has more privileges than required to execute the query,
including DELETE or UPDATE privileges. 3

PostgreSQL-1 2. Grant ALL privileges on the schema to user.
The user has excessive privileges on the schema, e.g., with
the UPDATE privilege, the user can modify the schema. 3

3. Grant ALL privileges on the table to user.
The user has excessive privileges on the table,
e.g., with the DELETE privilege, the user can delete the table. 1

4. Grant INSERT on all tables in the schema to user.
The user has INSERT privileges on all the tables,
so the user can modify other tables. 1

1. Grant ALL privileges on all functions in the schema to user. The user can execute all the defined functions in the schema. 2
PostgreSQL-2 2. Grant EXECUTE on all functions in the schema to user. The user can execute all the defined functions in the schema. 1

3. Grant ALL privileges on all tables in the schema to user and
grant ALL privileges on all functions in the schema to user.

The user has all the privileges to the tables and functions
in the schema. 1

PostgreSQL-3 1. Grant ALL privileges on the table to user. The user has more privileges than required REFERENCES on the table. 8

Table 13: Description for the insecure fixes for the problems in user study.

of unfinished Problem 1 Problem 2 Problem 3
participants Original SECLOG Original SECLOG Original SECLOG

vsftpd 1 (6.25%) 0 (0.0%) 9 (56.25%) 0 (0.0%) 4 (25.0%) 0 (0.0%)
PostgreSQL 0 (0.0%) 0 (0.0%) 2 (12.5%) 0 (0.0%) 1 (6.25%) 0 (0.0%)

Table 14: The number and percentage of participants in each prob-
lem who cannot resolve the problem in the 30-minute time period in
the group with original logs and SECLOG-enhanced logs.

This may be because REFERENCES is a less common privilege,
and the original log messages only tell sysadmins a generic
warning of "Permission denied" but did not explicitly tell them
what privilege it lacks. As such, some participants just gave
random tries like granting SELECT/CREATE privileges. When
it did not work, they just chose to grant ALL to resolve the
problem.

Table 12 shows the number of insecure fixes (e.g. fixes
that over-grant permissions and introduce security issues)
introduced by the participants during the study. We find that
the group with original log messages (group B) introduces 27
insecure fixes in total. In contrast, the group with SECLOG-
enhanced log messages (group A) only has one insecure fix
(in problem Postgres-2). The result shows that diagnostic
information added by SECLOG) are effective to reduce the
number of insecure fixes by sysadmins.

I Diagnosis time. Besides the number of incorrect fixes, we
find that with the help of SECLOG enhanced log messages, the
participants are more likely to have a much faster diagnosis
and fix time. As shown in Table 14, all participants in group
A completed the task. In contrast, around one-fifth (18/96)
of the tasks in group B were not completed within the time
limit. For example, 9 out of 16 participants in group B could
not finish task vsftpd-2. The original log message only gives
a generic warning of “The config file is not owned by root”,
but does not pinpoint where the config file is, which makes

Figure 9: The comparison of average completion time ex-
cluding insecure fix cases. The error bar represents the 95%
confidence interval.

Helpfulness Original SECLOG-Enhanced
Rating Avg. Median Distribution Avg. Median Distribution

vsftpd-1 1.80 2 4.36 4

vsftpd-2 2.28 2 4.64 5

vsftpd-3 1.32 1 4.80 5

Postgres-1 2.40 2 4.52 5

Postgres-2 2.44 2 4.56 5

Postgres-3 2.16 2 4.60 5

Table 15: Helpfulness ratings of original and enhanced log messages
in the problems. All questions are on a likert scale where 1 is “not
helpful” and 5 is “extremely helpful”.

the participants mistakenly look into the default config file.
Excluding all the insecure fixes, Figure 9 shows that group
A is 2.79x faster in completing the tasks than group B. The
differences between group A and group B are all significant
(p<0.05, Mann-Whitney U test) excluding problem vsftpd-1.

I Post-study helpfulness survey of whole log messages.
The participants can optionally participate in a short interview
to review the original and SECLOG-enhanced log messages
and rate the helpfulness. One survey question example is
shown in [15]. In total, 11 participants in group A and 11 in
group B participated in the interview. For participants who
chose to grant ALL privileges in the PostgreSQL problems,

420 32nd USENIX Security Symposium USENIX Association

Workload # Access Deny % Slowdown % Log size increase %

Course 42K 0.6% 0.0% 0.3%
Group 250K 13.0% 4.7% 23.8%

Table 16: Performance overhead of Apache httpd with SE-
CLOG-enhanced logs. The data in gray are characteristics of the
workload. “Deny” is the percentage of accesses with access-denied
status. “Slowdown” is the total execution time to replay the work-
load; “Log size” is the size of error log.

they noticed that excessive privileges were granted and would
choose to give only necessary privilege if they had seen the
enhanced message.

25 participants finished the helpfulness ratings of log mes-
sages in the six problem on a 5-point Likert scale. The results
are shown in Table 15. We find that the enhanced log messages
are rated as more helpful than the original messages. In par-
ticular, the original log message in problem vsftpd-3 was only
rated as 1.32 (close to “not helpful”). The log message only
shows “vsf_sysutil_bind”. As one participant commented that

“the old log messages were only written so that the original
developers of the software would understand.” In comparison,
the enhanced log messages give more detailed information
about the errors, with a rating of 4.80.

Limitation. The user study has limitations as it is conducted
in a controlled environment and users may have different
levels of experience and expertise. We tried several things
to reduce the bias: (1) We recruited 32 users with relevant
server management experiences; (2) We randomly and evenly
distributed them to two groups; (3) We provided each with a
guide and related manual sections and gave them 30 mins to
read these guides; (4) We gave them warm-up questions to
get them more familiar with the software and environment.

5.3 Efforts in Adopting SECLOG

I Number of annotations. We annotated the ACC func-
tions and result check functions in ten open-source server
software including web servers, databases, FTP, proxy servers,
etc. Table 5 lists the evaluated software. The number of ACC
functions in each software is small (3-34), which varies with
the application type and code base size. Each ACC function
pairs with one result check function, but many ACC functions
that have the same format to represent the return value can
share the same result check function. In fact, each evaluated
software only has 1-4 types of result check functions.

I Manual efforts in annotation. Two authors measure the
time that they each spent on annotating the ACC functions and
the result check functions for five new applications that are
not studied in Section 2. As shown in Table 5, the annotation
time is usually less than 1 hour since the number of ACC
functions is small. We did not measure the time spent on the
five applications covered in Section 2 because we studied
them extensively to understand their practices.

To further measure the manual efforts in using SECLOG,
we recruited two graduate students (no co-authors of this pa-

per) to annotate the ACC functions and result check functions.
The detailed methodology and results are presented in [15].
From the study, we find that even for developers have less
experience and knowledge of the software, they are able to
find the ACC functions and annotate the result check func-
tions with high coverage (>90%) in a short amount of time
(avg. 25 minutes). The manual efforts required for software
maintainers could be even smaller.

I Efforts in using SECLOG’s outputs to write log mes-
sages. When the authors submit patches based on SECLOG’s
outputs, the main efforts are spent on understanding the mean-
ings of the variables in the context of each application and
correlating them to write log messages; the other efforts are
mainly development efforts including finding appropriate log-
ging functions and testing.

To further evaluate the efforts, we conducted a study with
three developers to write log messages with SECLOG’s out-
puts. The detailed methodology and results are presented
in [15]. From this study, we find that the developers try to un-
derstand the meaning of SECLOG-identified variables based
on the code logic and software documentation. The average
time to write one log message is 4.33 minutes. The written log
messages are syntactically different from the final log mes-
sages accepted by the developers, but they are semantically
equivalent, i.e., covering the same information (More details
in [15]). The efforts spent by maintainers who are familiar
with the code logic could be even less.

5.4 Performance and Overhead
We first measure the performance of SECLOG’s static analy-
sis. The result (Table 5) shows that the analysis time is almost
proportional to the number of ACC functions’ call sites in the
application. We optimize the analysis time by allowing SE-
CLOG to re-use the analysis result of functions via summaries.
SECLOG is single-threaded but it can be further parallelized
by analyzing function summaries concurrently.

Next, we measure the performance overhead of Apache
httpd’s SECLOG-enhanced version. All enhanced/inserted log
messages have ERROR log level which is enabled by default.
We use two real-world workloads from a university CS de-
partment’s websites. Course hosts courses pages and Group

hosts one research group’s website. The result is shown in
Table 16. (1) For the throughput, we find that on the Group

workload, the throughput was downgraded by 4.7%. This
may because the percentage of the access-denied requests
is higher. (2) For the error log size, it increased by 26% on
the Group workload. We also calculated the average size of
access-deny log messages caused. The performance overhead
may be larger with a higher percentage of access denial. For
potential optimizations, developers may need to improve the
common path, i.e., reduce the logging overhead on common
types of access-deny errors.

USENIX Association 32nd USENIX Security Symposium 421

6 Related Work

Improving log messages for bug diagnosis. LogEn-
hancer [71] and its follow-up works [70, 74] improve logging
to collect more diagnostic information for software develop-
ers to troubleshoot software bugs. As briefly discussed in §1,
we differ from their work in several major ways: (1) They tar-
get to collect intermediate variable values to help developers
narrow down the search paths for root cause analysis. Our
work focuses on adding/enhancing access-deny log messages
for sysadmins to understand and fix the reported access-deny
issue correctly without over-granting permissions or introduc-
ing security issues. As sysadmins do not refer to source code
or even have access to source code [67], logging intermediate
variables is meaningless to sysadmins. (2) Different goals
also lead to different technical challenges and solutions. Their
work started from a failure or an error to backtrack important
intermediate control variables values to help developers re-
duce the search space, whereas SECLOG starts from access
check function call sites, and conduct both backward and for-
ward data and control flow analysis to identify access-deny
path, relevant information such as subject, object and action
which determine the outcome of an access check function. In
a way, while we also consider control-dependency, SECLOG
looks more into data flow from the result of an ACC function,
whereas their work focuses more on control flow analysis to
narrow down the possible execution path for developers.
Access-deny issues characteristic study. Xu et al. [67] stud-
ied the access-deny issues from a Human-Computer Inter-
action (HCI) perspective by looking at the practices of how
sysadmins resolving access-deny issues from online forums.
However, no solution was proposed and evaluated in their
study. Our work not only provides additional insights to their
findings (e.g., Finding 3 on commit history) but also provides
a solution to enhance access-deny log messages and insert
new log statements.
Access control management. Many access control models
have been proposed to cope with different application con-
text, including basic access control matrix [44], discretionary
access control [52] for file systems, role based access control
for databases [36], attribute based access control for Apache
web server [42], and numerous variants [38, 63]. The com-
plex models as well as the different syntax and schema in
various software make it hard for sysadmins to manage the
policies [18]. Two lines of works have been proposed to help
sysadmins in the management process.

The first line of work facilitates proactive access control
management with tools and frameworks, such as customizing
access control frameworks based on usage context [27, 40,
64], simplifying the implementation of policies [25, 62] and
automatically generating secure policies based on security
goals [20, 22, 51]. Our work is orthogonal to these works
by providing a general approach to improving the access-
control logging which aims to help sysadmins gather useful

information when an access-deny issue happens.
Another line of work focuses on passively detecting the

misconfiguration mistakes by finding inconsistencies in the ac-
cess control policies. Various approaches have been proposed
including data mining [19, 28, 66, 73], testing [48, 49], and
verification [37, 43]. These works aim to detect the inconsis-
tencies in the configurations by comparing the configuration
against security property from specifications, which are usu-
ally provided manually by the sysadmins, or by comparing
with other correct systems. In contrast, SECLOG aims to help
sysadmins before they make configuration changes — the in-
formation enhanced by SECLOG would provide more insights
in the troubleshooting process.

Least-privilege policy generation. A line of work has been
proposed to use the audit log data to generate least-privilege
policies in different environments [24, 50, 54, 55, 57]. Pol-
gen [57] first proposed to generate SELinux policies based on
the interaction patterns between different security contexts.
Molly et al. propose to mine roles and identify redundant
or unused roles from access usages logs with a learning ap-
proach [24, 50]. Sanders et al. conducted a series of work
to generate least-privilege policies from audit logs with a
counting-based model based on time window [53], and further
propose Privilege Error Minimization Problem to minimize
the over-privilege or under-privilege in RBAC [54] and ABAC
models [55]. These works detect the over-privileged policy
only after the over-privileged access is recorded in the access
log. In contrast, we are helping sysadmins to understand and
fix unintended access-deny issues correctly in order to prevent
insecure fixes and over-privileged user accesses.
Empirical studies on security practices of sysadmins.
There are a few empirical and HCI studies on some reasons
or phenomenons of sysadmin mistakes. Fahl et al. [35] ob-
served that a large percentage of sysadmins who operate on
HTTPS websites used non-validating certificates deliberately,
because of little tooling support and few affordable certificate
options. Dietrich et al. [34] found that besides personal and
environmental factors, the systems’ poor support can cause
misunderstanding and misconfigurations. Li et al. [47] found
that sysadmins have faced challenges in updating server pro-
grams such as handling update-caused issues and deploying
updates without disruptions. Continella et al. [26] identified
misconfigurations that could cause unsecured Amazon s3
buckets and suggested stricter default policies and warnings
for sysadmins to mitigate this issue. These works motivate
for better support and assistance for sysadmins in managing
server software. Our work is exactly along this direction.

7 Discussions and Limitations
Generating human-readable log messages. SECLOG can
not generate human-readable log messages automatically. In-
stead, SECLOG can insert variable names and values in the
log messages. To make the log messages understandable by
sysadmins, the semantics of log messages still need to be pro-

422 32nd USENIX Security Symposium USENIX Association

cessed by the developers. Developers can also design utility
functions to automatically process the semantics of certain
types of variables to readable strings. Moreover, SECLOG
can show all the identified locations and variables to help
developers to know where to enhance or add access-deny log
statements. SECLOG can be used as a plugin in programming
IDE and suggest developers with the potential log locations
and information. Some recent works [41] may be combined
with SECLOG to generate human-readable log messages.

Coverage of ACC locations and relevant information. SE-
CLOG may miss ACC locations if developers do not provide a
complete list of ACC functions, or the software performs ad-
hoc checks without ACC functions. As discussed in §5.3, the
new developers can find ACC functions with high coverage
in a short amount of time; for software maintainers, the effort
could be less. The developers may also refactor some code to
adopt general ACC functions instead of ad-hoc checks.

SECLOG may also miss relevant information that is far in
the call chain. However, this should not be common since
Finding 2 shows – most (70.8%-100%) of the relevant in-
formation is usually available in the same function. Besides,
tracking further in the call chain may include too much irrele-
vant information that can confuse sysadmins.

Security and privacy concerns. Server logs contain valu-
able information for developers and administrators in the
troubleshooting process, which may be leveraged by attackers
to gain system details. Therefore, various laws and standards
have been proposed to enforce the compliance requirement in
log storage, analysis and disposal [21, 39]. SECLOG assumes
that the server logs should be kept secure from attackers.

As a static analysis tool, SECLOG cannot differentiate what
information is considered sensitive and what should not be
visible to sysadmins. Existing works on automatic private
information filtering techniques [23, 58, 65, 75] can be com-
bined with SECLOG to filter variables that may potentially
leak private user information. In addition, when the SECLOG-
identified information is processed by developers, developers
can decide whether the information is sensitive and should be
included in the log message.

Providing Secure fixes. Even though SECLOG can provide
more information for sysadmins to understand unintended
access-deny issues correctly, SECLOG cannot solve the prob-
lems for sysadmins. This means that SECLOG cannot elimi-
nate the chance of sysadmins making mistakes. As we have
shown in our user study, while SECLOG can significantly re-
duce the number of insecure fixes from 27 to 1, there is still
one insecure fix even with SECLOG enhanced log messages.
Logging Templates. Logging templates are adopted in many
applications to report error messages for specific type of er-
rors. One potential approach to improve logging quality is to
enforce the logging practice via logging template. With the
logging templates, developers only need to fill in the variables
required by the template to generate the final log message.

However, if the template lacks detailed information, the logs
will systematically lack information in all places. Therefore,
it is promising to improve the logging templates to help de-
velopers write better log messages. SECLOG can be used
to detect the missing information in the logging templates
and developers may use the detected missing information to
improve the logging templates, too.

8 Conclusion
This paper focuses on helping developers to improve access-
deny log messages for sysadmins to fix access-deny issues
correctly and safely. We first conducted a study on five large
server programs, to understand the current status of access-
deny logging practices. Based on our findings, we designed
and implemented a tool called, SECLOG, that can help de-
velopers find missing log locations and identify relevant in-
formation at the log location. Our evaluation on ten server
software and user study show that SECLOG is effective in
helping developers to improve the quality of access-deny log
messages and reducing the insecure fixes made by sysadmins.
SECLOG’s source code is publicly available at [14].

References

[1] Apache httpd web server. https://httpd.apache.org/.

[2] Cherokee web server. http://cherokee-project.com/.

[3] HAProxy. https://www.haproxy.com/.

[4] Mini SQL (mSQL). https://hughestech.com.au/products/
msql/.

[5] NFS Ganesha File Server. https://fedoraproject.org/wiki/
Changes/NFSGanesha.

[6] Postfix. http://www.postfix.org/.

[7] PostgreSQL. https://www.postgresql.org/.

[8] PostgreSQL official docs. https://www.postgresql.org/docs/
12.

[9] ProFTPD. http://www.proftpd.org/.

[10] Redis. https://redis.io/.

[11] Vsftpd. https://security.appspot.com/vsftpd.html.

[12] vsftpd passive mode refused. https://serverfault.com/
questions/344540/vsftpd-error-500-oops-vsf-sysutil-

bind.

[13] vsftpd problem: 500 OOPS: vsf_sysutil_bind.
https://www.linuxquestions.org/questions/linux-server-
73/vsftpd-problem-500-oops-vsf_sysutil_bind-675699/.

[14] SecLog’s source code repo (anonymized for double-blind re-
view). https://anonymous.4open.science/r/AceInstrument-
F4BA/, 2022.

[15] Supplementary Materials. https://ucsdopera.github.io/
seclog/supplementary.pdf, 2022.

[16] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers,
principles, techniques. Addison wesley, 7(8):9, 1986.

USENIX Association 32nd USENIX Security Symposium 423

https://httpd.apache.org/
http://cherokee-project.com/
https://www.haproxy.com/
https://hughestech.com.au/products/msql/
https://hughestech.com.au/products/msql/
https://fedoraproject.org/wiki/Changes/NFSGanesha
https://fedoraproject.org/wiki/Changes/NFSGanesha
http://www.postfix.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/12
https://www.postgresql.org/docs/12
http://www.proftpd.org/
https://redis.io/
https://security.appspot.com/vsftpd.html
https://serverfault.com/questions/344540/vsftpd-error-500-oops-vsf-sysutil-bind
https://serverfault.com/questions/344540/vsftpd-error-500-oops-vsf-sysutil-bind
https://serverfault.com/questions/344540/vsftpd-error-500-oops-vsf-sysutil-bind
https://www.linuxquestions.org/questions/linux-server-73/vsftpd-problem-500-oops-vsf_sysutil_bind-675699/
https://www.linuxquestions.org/questions/linux-server-73/vsftpd-problem-500-oops-vsf_sysutil_bind-675699/
https://anonymous.4open.science/r/AceInstrument-F4BA/
https://anonymous.4open.science/r/AceInstrument-F4BA/
https://ucsdopera.github.io/seclog/supplementary.pdf
https://ucsdopera.github.io/seclog/supplementary.pdf

[17] Bradley Barth. Accentuate the negative: Accenture
exposes data related to its enterprise cloud platform.
https://www.scmagazine.com/home/security-news/data-
breach/accentuate-the-negative-accenture-exposes-data-

related-to-its-enterprise-cloud-platform/, Oct. 2017.

[18] Lujo Bauer, Lorrie Faith Cranor, Robert W Reeder, Michael K
Reiter, and Kami Vaniea. Real life challenges in access-control
management. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 899–908, 2009.

[19] Lujo Bauer, Scott Garriss, and Michael K Reiter. Detecting
and resolving policy misconfigurations in access-control sys-
tems. ACM Transactions on Information and System Security
(TISSEC), 14(1):1–28, 2011.

[20] Matthias Beckerle and Leonardo A Martucci. Formal defini-
tions for usable access control rule sets from goals to metrics.
In Proceedings of the Ninth Symposium on Usable Privacy and
Security, pages 1–11, 2013.

[21] Joel Brenner. Iso 27001 risk management and compliance.
Risk management, 54(1):24–29, 2007.

[22] Seraphin Calo, Dinesh Verma, Supriyo Chakraborty, Elisa
Bertino, Emil Lupu, and Gregory Cirincione. Self-generation
of access control policies. In Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies,
pages 39–47, 2018.

[23] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. Better
bug reporting with better privacy. ACM SIGOPS Operating
Systems Review, 42(2):319–328, 2008.

[24] Suresh Chari, Ian Molloy, Youngja Park, and Wilfried Teiken.
Ensuring continuous compliance through reconciling policy
with usage. In Proceedings of the 18th ACM symposium on
Access control models and technologies, pages 49–60, 2013.

[25] Yi Fei Chen. Usability of the access control system for openl-
dap. Master’s thesis, University of Waterloo, 2019.

[26] Andrea Continella, Mario Polino, Marcello Pogliani, and Ste-
fano Zanero. There’s a hole in that bucket! a large-scale anal-
ysis of misconfigured s3 buckets. In Proceedings of the 34th
Annual Computer Security Applications Conference, pages 702–
711, 2018.

[27] Antonio Corrad, Rebecca Montanari, and Daniela Tibaldi.
Context-based access control management in ubiquitous envi-
ronments. In Third IEEE International Symposium on Network
Computing and Applications, 2004.(NCA 2004). Proceedings.,
pages 253–260. IEEE, 2004.

[28] Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg. Baaz:
A system for detecting access control misconfigurations. In
USENIX Security Symposium, pages 161–176, 2010.

[29] Jessica Davis. 63,500 patient records breached by
New York provider’s misconfigured database. https:

//www.healthcareitnews.com/news/63500-patient-record
s-breached-new-york-providers-misconfigured-database,
Apr. 2018.

[30] Jessica Davis. Long Island provider exposes data of
42,000 patients in misconfigured database. https:

//www.healthcareitnews.com/news/long-island-provid
er-exposes-data-42000-patients-misconfigured-database,
Mar. 2018.

[31] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[32] Safety Detectives. Australian sports fan portal leaks 132GB
of private data. https://www.safetydetectives.com/blog/
bigfooty-leak-report/, 2020.

[33] BOB DIACHENKO. Document Management Company
Left Credit Reports Online. https://securitydiscovery.com/
document-management-company-leaks-data-online/, 2019.

[34] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte,
and Tobias Fiebig. Investigating system operators’ perspective
on security misconfigurations. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, pages 1272–1289, 2018.

[35] Sascha Fahl, Yasemin Acar, Henning Perl, and Matthew Smith.
Why eve and mallory (also) love webmasters: a study on the
root causes of ssl misconfigurations. In Proceedings of the 9th
ACM symposium on Information, computer and communica-
tions security, pages 507–512, 2014.

[36] David Ferraiolo, D Richard Kuhn, and Ramaswamy Chan-
dramouli. Role-based access control. Artech house, 2003.

[37] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and
Michael Carl Tschantz. Verification and change-impact anal-
ysis of access-control policies. In Proceedings of the 27th
international conference on Software engineering, pages 196–
205, 2005.

[38] Eric Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan,
and Vijay Karamcheti. drbac: distributed role-based access
control for dynamic coalition environments. In Proceedings
22nd International Conference on Distributed Computing Sys-
tems, pages 411–420. IEEE, 2002.

[39] J Frields. National industrial security program. operating man-
ual supplement. Technical report, DEPARTMENT OF DE-
FENSE WASHINGTON DC, 1995.

[40] Mansura Habiba, Md Rafiqul Islam, and ABM Shawkat Ali.
Access control management for cloud. In 2013 12th IEEE
International Conference on Trust, Security and Privacy in
Computing and Communications, pages 485–492. IEEE, 2013.

[41] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu.
Characterizing the natural language descriptions in software
logging statements. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering,
pages 178–189, 2018.

[42] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey
Voas. Attribute-based access control. Computer, 48(2):85–88,
2015.

[43] Karthick Jayaraman, Vijay Ganesh, Mahesh Tripunitara, Mar-
tin Rinard, and Steve Chapin. Automatic error finding in access-
control policies. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 163–174,
2011.

[44] Butler W Lampson. Protection. ACM SIGOPS Operating
Systems Review, 8(1):18–24, 1974.

424 32nd USENIX Security Symposium USENIX Association

https://www.scmagazine.com/home/security-news/data-breach/accentuate-the-negative-accenture-exposes-data-related-to-its-enterprise-cloud-platform/
https://www.scmagazine.com/home/security-news/data-breach/accentuate-the-negative-accenture-exposes-data-related-to-its-enterprise-cloud-platform/
https://www.scmagazine.com/home/security-news/data-breach/accentuate-the-negative-accenture-exposes-data-related-to-its-enterprise-cloud-platform/
https://www.healthcareitnews.com/news/63500-patient-records-breached-new-york-providers-misconfigured-database
https://www.healthcareitnews.com/news/63500-patient-records-breached-new-york-providers-misconfigured-database
https://www.healthcareitnews.com/news/63500-patient-records-breached-new-york-providers-misconfigured-database
https://www.healthcareitnews.com/news/long-island-provider-exposes-data-42000-patients-misconfigured-database
https://www.healthcareitnews.com/news/long-island-provider-exposes-data-42000-patients-misconfigured-database
https://www.healthcareitnews.com/news/long-island-provider-exposes-data-42000-patients-misconfigured-database
https://www.safetydetectives.com/blog/bigfooty-leak-report/
https://www.safetydetectives.com/blog/bigfooty-leak-report/
https://securitydiscovery.com/document-management-company-leaks-data-online/
https://securitydiscovery.com/document-management-company-leaks-data-online/

[45] Butler W Lampson. Computer security in the real world. Com-
puter, 37(6):37–46, 2004.

[46] Richard Lawler. Capital One data breach affected 100 million
in the US. https://www.engadget.com/2019/07/29/capital-
one-data-breach/, Jul. 2019.

[47] Frank Li, Lisa Rogers, Arunesh Mathur, Nathan Malkin, and
Marshini Chetty. Keepers of the machines: Examining how
system administrators manage software updates for multiple
machines. In Fifteenth Symposium on Usable Privacy and
Security ({SOUPS} 2019), 2019.

[48] Evan Martin and Tao Xie. Automated test generation for
access control policies via change-impact analysis. In Third
International Workshop on Software Engineering for Secure
Systems (SESS’07: ICSE Workshops 2007), pages 5–5. IEEE,
2007.

[49] Evan Martin and Tao Xie. A fault model and mutation test-
ing of access control policies. In Proceedings of the 16th
international conference on World Wide Web, pages 667–676,
2007.

[50] Ian Molloy, Youngja Park, and Suresh Chari. Generative mod-
els for access control policies: applications to role mining over
logs with attribution. In Proceedings of the 17th ACM sym-
posium on Access Control Models and Technologies, pages
45–56, 2012.

[51] Qun Ni, Jorge Lobo, Seraphin Calo, Pankaj Rohatgi, and Elisa
Bertino. Automating role-based provisioning by learning from
examples. In Proceedings of the 14th ACM symposium on
Access control models and technologies, pages 75–84, 2009.

[52] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul
Mahajan. Trusted computer system evaluation criteria. In
National Computer Security Center. Citeseer, 1985.

[53] Matthew Sanders and Chuan Yue. Automated least privi-
leges in cloud-based web services. In Proceedings of the
fifth ACM/IEEE Workshop on Hot Topics in Web Systems and
Technologies, pages 1–6, 2017.

[54] Matthew W Sanders and Chuan Yue. Minimizing privilege
assignment errors in cloud services. In Proceedings of the
Eighth ACM Conference on Data and Application Security and
Privacy, pages 2–12, 2018.

[55] Matthew W Sanders and Chuan Yue. Mining least privilege at-
tribute based access control policies. In Proceedings of the 35th
Annual Computer Security Applications Conference, pages 404–
416, 2019.

[56] Sara Sinclair and Sean W Smith. What’s wrong with access
control in the real world? IEEE Security & Privacy, 8(4):74–77,
2010.

[57] Brian T Sniffen, David R Harris, and John D Ramsdell. Guided
policy generation for application authors. In SELinux Sympo-
sium, 2006.

[58] Kunal Taneja, Mark Grechanik, Rayid Ghani, and Tao Xie.
Testing software in age of data privacy: A balancing act. In
Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engi-
neering, pages 201–211, 2011.

[59] Biometric Update. Biometrics company allegedly leaves
unhashed fingerprint data of thousands exposed to inter-
net. https://www.biometricupdate.com/202003/biometrics-
company-leaves-unhashed-fingerprint-data-of-thousands-

exposed-to-internet, 2020.
[60] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen.

Wikipedia workload analysis for decentralized hosting. Else-
vier Computer Networks, 53(11):1830–1845, July 2009. http:
//www.globule.org/publi/WWADH_comnet2009.html.

[61] Verizon. 2020 Data Breach Investigations Report.
https://enterprise.verizon.com/resources/reports/
2020-data-breach-investigations-report.pdf, 2020.

[62] Artem Voronkov. Usability of Firewall Configuration: Making
the Life of System Administrators Easier. PhD thesis, Karlstads
universitet, 2020.

[63] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-
based encryption for fine-grained access control in cloud stor-
age services. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 735–737, 2010.

[64] Hua Wang, Yanchun Zhang, and Jinli Cao. Access control
management for ubiquitous computing. Future Generation
Computer Systems, 24(8):870–878, 2008.

[65] Rui Wang, XiaoFeng Wang, and Zhuowei Li. Panalyst: Privacy-
aware remote error analysis on commodity software. In
USENIX Security Symposium, pages 291–306, 2008.

[66] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen,
Haochen Huang, Tianyin Xu, Yuanyuan Zhou, Cindy Moore,
Xinxin Jin, and Tianwei Sheng. Towards continuous access
control validation and forensics. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, pages 113–129, 2019.

[67] Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan Zhou. How
do system administrators resolve access-denied issues in the
real world? In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pages 348–361. ACM,
2017.

[68] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei
Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy.
Do not blame users for misconfigurations. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 244–259, 2013.

[69] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay U Jain, and Michael Stumm.
Simple testing can prevent most critical failures: An analysis
of production failures in distributed data-intensive systems. In
11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), pages 249–265, 2014.

[70] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M
Lee, Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage. Be
conservative: Enhancing failure diagnosis with proactive log-
ging. In Presented as part of the 10th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI}
12), pages 293–306, 2012.

[71] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and
Stefan Savage. Improving software diagnosability via log en-
hancement. ACM Transactions on Computer Systems (TOCS),
30(1):1–28, 2012.

USENIX Association 32nd USENIX Security Symposium 425

https://www.engadget.com/2019/07/29/capital-one-data-breach/
https://www.engadget.com/2019/07/29/capital-one-data-breach/
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf

[72] ZDNet. Database leaks data on most of Ecuador’s
citizens, including 6.7 million children. https:

//www.zdnet.com/article/database-leaks-data-on-most-
of-ecuadors-citizens-including-6-7-million-children/,
2019.

[73] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan
Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan
Zhou. Encore: Exploiting system environment and correlation
information for misconfiguration detection. In Proceedings
of the 19th international conference on Architectural support
for programming languages and operating systems, pages 687–
700, 2014.

[74] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan,
and Yuanyuan Zhou. Log20: Fully automated optimal place-
ment of log printing statements under specified overhead thresh-
old. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 565–581, 2017.

[75] Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Abdelwa-
hab Hamou-Lhadj. Mobilogleak: A preliminary study on data
leakage caused by poor logging practices. In 2020 IEEE 27th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 577–581. IEEE, 2020.

A Appendix
A.1 Additional Observations
We performed additional studies on the five real-world server
applications used in Section 2. These observations are helpful
to design of SECLOG but may not provide additional insights
to understand the access-deny logging for the general audi-
ence. We append the observations here for reference.

Application # ACC function # Call sites

Apache HTTPD 18 141 (79.2%)
PostgreSQL 34 319 (66.3%)
Vsftpd 17 52 (73.2%)
NFS-ganesha 15 40 (65.6%)
Proftpd 32 256 (100%)

Table 17: The number of access control check (ACC) function and
the number of access-check program points that are identified by the
ACC functions.
Observation 1: A small (15-34) number of ACC functions
are used to perform access checks in many (40-319) program
locations for different kinds of purposes (Table 17).

The studied applications commonly use ACC functions
to perform checking in modules related to network, files, or
authentication and authorization. These ACC functions are
called in the majority (65.6%-100%) of access check pro-
gram points. Only in a small number of cases, the application
may perform ad-hoc checks for certain operations without
directly calling an ACC function. For example, Vsftpd di-
rectly checks whether the anonymous user is allowed against
server configurations in the initialization phase. ACC func-
tions are called in many different locations of the source code.
On average, one ACC function has 6.1 call sites. For exam-
ple, pg_class_aclcheck in PostgreSQL which is used to check

whether the user has certain privileges to access a table, has 42
different call sites in its source code. Without tooling support,
large number of access check locations make it challenging
for developers to ensure good logging at every single point.

Application Has log at caller Has log in ACC func. w/o logs

Apache HTTPD 100 (58.1%) 15 (8.7%) 72 (41.8%)
PostgreSQL 211 (66.1%) 100 (31.3%) 108 (33.9%)
Vsftpd 35 (67.3%) 8 (15.4%) 10 (19.2%)
NFS-ganesha 14 (35.0%) 1 (2.5%) 26 (65.0%)
Proftpd 146 (57.0%) 8 (3.1%) 110 (43.0%)

Table 18: The number of access-check program points identified by
the ACC function where there are log statements at the function’s
call site, inside the function, or no log statements.

Observation 2: Comparing all logging locations in the
source code, logging at access control check function’s call
site is more common than other locations in source code
(Table 18).

We zoom in to understand where the log messages are
placed in today’s practice. Developers usually place log mes-
sages at the ACC function’s call sites instead of inside the
ACC function itself. The main advantage of placing messages
at a call site is that it can log more relevant information. Only
in a few cases, the developers choose to add log messages
only inside the access control check function. Note that in
PostgreSQL, all the ACC functions have log messages inside
the function, but there are also logged messages at the func-
tion’s call site. If SECLOG follows the common practice to
place the logging statements at the call site of ACC functions,
SECLOG can reuse most of the existing access-deny logging
statements and avoid some performance overhead.

426 32nd USENIX Security Symposium USENIX Association

https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/
https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/
https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/

	Introduction
	Motivation
	Our contributions

	Understanding Access-deny logging in Real-world Applications
	Methodology
	Findings

	Challenges and Design Choices
	How to Log
	Where to Log
	Where to Find ACC Locations
	Where to Place Log Statements

	What to Log

	Design and Implementation
	Identify Where to Log
	Identify Access-control Check Locations
	Identify where to Place Access-Deny Logs
	Identify Existing Logs or Add New Ones

	Identify What to Log

	Evaluation
	Improve Access-Deny Logging
	User Study on SecLog
	Efforts in Adopting SecLog
	Performance and Overhead

	Related Work
	Discussions and Limitations
	Conclusion
	Appendix
	Additional Observations

