
STATE OF
SOFTWARE SECURITY

2016

1 � �
There’s a real threat in vulnerable
software components that’s more
prevalent than most people think.

Approximately 97% of Java
applications have a component
with at least one known
vulnerability.

4 � �
Existing security measures intended
to protect web applications
routinely fail, with over half of web
applications affected by misconfigured secure
communications or other security defenses.
These vulnerabilities, which require runtime
dynamic testing of web applications, also may
cross organizational boundaries because they can
be corrected in runtime.

3 � � �No single technology will solve root causes in security.
Software composition analysis is important, but it won’t address similar
problems outside of components. And our report shows statistically that
static and dynamic analysis highlight different developer mistakes.

6 � �The top quartile of
organizations fix
almost 70% more
vulnerabilities than the
average organization.

7 � ��Best practices like remediation
coaching and eLearning can
improve vulnerability fix rates by as
much as 6x. Developers who test unofficially
using Developer Sandbox scanning improve
policy-based vulnerability fix rates by about 2x.

8 � �
�DevOps is real. We are seeing
some development teams
officially scan applications

700 to 800 times
 in an 18-month period.

2 � � �
Third-party vulnerabilities
are usually a good warning
that organizations should look for
the root problem in their own code.
The same deserialization vulnerability found in a
version of Apache Commons Collections library used
in 21% of Java applications was present in developer-
authored code used in 25% of Java applications.

5 � �
Healthcare as an industry now has
the lowest vulnerability fix rate,
second-lowest OWASP pass rate
and the highest prevalence of cryptographic
and credentials management issues. In light of
recent ransomware
and other cyber
attacks on healthcare
organizations, the
industry’s low scores
on these application
security benchmarks
is troubling.

97%

EXECUTIVE SUMMARY

KEY TAKEAWAYS

70%

3 State of Software Security 2016

For the seventh year running, Veracode presents the security industry an

in-depth view of valuable application security statistics through the State

of Software Security (SOSS). This is no mere survey report. The metrics

presented here are based on real application risk postures, drawn from

code-level analysis of billions of lines of code across 300,000 assessments

performed over the last 18 months.

Veracode’s intention is to provide security practitioners with tangible

AppSec benchmarks with which to measure their own programs

against. We’ve sliced and diced the numbers to offer a range of

perspectives on the risk of applications throughout the entire

software lifecycle. This includes statistics on policy pass rates against

security standards, the statistical mix of common vulnerability types

found in applications, flaw density and average fix rate.

Last year the report spent considerable time examining benchmarks

by industry vertical performance. This volume follows up on those

measurements with some valuable updates. But before doing so,

Volume 7 of SOSS takes a close look at remediation analysis statistics

and third-party component vulnerabilities across all industries.

In examining overall industry remediation trends, the report offers some

important insight to practitioners about how well their peers are following

up on first-time security scans to continually improve security. Additionally,

the analysis closely examines some important factors that will impact

how effectively organizations are improving their vulnerability fix rates.

Meanwhile, the spotlight on third-party component vulnerabilities sheds

some light on common vulnerability tendencies, specifically within Java

components. The analysis provides conclusions that can help practitioners

get a better handle on the implications of component risk against overall

application risk.

OVERVIEW

4 State of Software Security 2016

Before we dive into more detailed explorations of remediation practices,

industry benchmarks and the intricacies of component vulnerabilities, we

felt it important first to get a level-set on the overall state of enterprise

software security.

One thing to keep in mind when looking at these overview stats and many

others deeper into the report is that unless otherwise noted, the statistics

here are based upon software never before scanned for security flaws. In

essence, these are the raw numbers that reflect the initial security of the

code before any remediation efforts have been made or rescanning has

taken place.

Based on our long-running research into these raw numbers, we can say

with some degree of accuracy that for the most part they have tended to

remain fairly consistent year over year. These consistent measurements

show that for the most part:

The fact that this number fundamentally doesn’t change year over year

indicates that there’s a lot of software out there that has still not been

brought through a formal security improvement process—whether

unremediated legacy code or new code that’s not developed via a rigorous

secure software development lifecycle (SDLC).

This steady raw state of software security should underline for organizations

the fact that even companies with mature application security programs

only scan a fraction of their portfolio. And those are the ones that are doing

it well. There are many others that aren’t doing it at all. This is not meant to

be disheartening. Instead, it offers some perspective on the breadth of the

problem and the need for sustained and continuous improvement.

Fewer than 4 out of 10
applications pass security policy requirements
on initial assessment.

OVERALL STATISTICS

5 State of Software Security 2016

OVERALL OWASP
TOP 10/SANS TOP 25
POLICY PASS RATES
Bearing that in mind, let’s start first with some simple pass-fail rates from

two different perspectives. The first is measured against compliance with

the OWASP Top 10 Project standards. The second is measured against SANS

Top 25 standards. While there’s certainly overlap, each set of standards are

based on criteria that build slightly different risk pictures for metrics-oriented

security teams. OWASP is very tightly focused on web applications from the

point of view of that threat space. Meanwhile, though Veracode hasn’t talked

a lot about the SANS standards in past software security reports, they offer

another take based on a slightly different set of threats that includes categories

such as those only relevant for client-side applications, for instance.

Interestingly, the pass-fail rates are very similar when comparing these

benchmarks side by side, with a difference of just five percentage points

between them. This gives security managers some food for thought when

it comes to not sweating the small stuff. The conclusion here may be that

it isn’t as important which benchmark is used to measure the overall state

of your code base, just so long as you do choose a benchmark to calculate

improvements in application risk posture.

IT ISN’T AS
IMPORTANT WHICH
BENCHMARK IS
USED TO MEASURE
THE OVERALL
STATE OF YOUR
CODE BASE, JUST
SO LONG AS YOU
DO CHOOSE A
BENCHMARK
TO CALCULATE
IMPROVEMENTS
IN APPLICATION
RISK POSTURE.

Percentage of applications passing OWASP Top 10 policy

 DID NOT PASS PASSED

38.6%61.4%v7 - 2016

32.3%67.7%v6 - 2015

0 20 40 60 80 100

Percentage of applications passing CWE/SANS Top 25 policy

 DID NOT PASS PASSED

34.2%65.8%

0 20 40 60 80 100

6 State of Software Security 2016

THIRD-PARTY VERSUS
INTERNAL PASS RATES
One trend that Veracode has been tracking over the history of the

SOSS is the surprising disparity in pass rates when comparing internally

developed applications to commercially developed applications.

It may seem counterintuitive, but year after year our data shows that

commercially developed software performs no better in initial scans than

internally developed software. In fact, it usually performs significantly

worse. These pass rates are based both upon applications from the

technology industry vertical, which includes commercial software

applications, as well as commercial applications submitted on behalf of

enterprises and assessed through Veracode’s vendor application security

testing (VAST) program.

This data continues to prove out our annual observations on this front.

And, in fact, while internally developed applications showed a small uptick

in improvement over time, commercial software actually trended down

slightly compared to last year. This finding puts to bed vague vendor hype

around unsubstantiated efforts to build assurance into their products. It

reaffirms the need for organizations to demand better proof of software

security from their vendors and to perform due diligence around all

applications, including commercial software.

OWASP Top 10 policy compliance of commercially developed vs. internally developed applications

 DID NOT PASS PASSED

Internally developed (SDLC)

Commercially developed (Third party)

Passed 2015

37%
28%

License type

39%61%

25%75%

0 20 40 60 80 100

7 State of Software Security 2016

OVERALL VULNERABILITY
PREVALENCE

When breaking down vulnerabilities by common categories, we do base all of our findings

on the MITRE common weakness enumeration (CWE) taxonomy. However, the level of detail

of CWE categories makes it such that there are too many categories to quickly and easily communicate the most

common broad classes of vulnerabilities that present themselves in applications. In order to solve that problem,

we roll up numerous CWE categories into about 30 higher level categories and present here the top 10 most

prevalent to occur in first-time application scans.

Here are some definitions to understand what’s included in these top 10 broad categories, as well as a handful
of others referenced later in the report:

Authentication Issues:

This category is for vulnerabilities that weaken

the mechanisms an application uses to identify a

real user. Flaws include using insecure mechanisms

like the DNS to establish identity, allowing cross-site

request forgery, allowing login with very common

username/password combinations or allowing login

via SQL injection.

CRLF Injection:

This includes any vulnerability that enables

any kind of Carriage Return Line Feed (CRLF)

injection attacks. Included here are flaws involving

improper output neutralization for logs and

improper neutralization of CRLF in HTTP headers.

Code Quality:

These are sloppy issues in code quality that could

eventually impact the security of the application.

Some examples include improper resource

shutdown or release, leftover debug code and

using the wrong operator when comparing strings.

Command or Argument Injection:

One of the most severe categories of vulnerabilities,

these issues allow an attacker to run arbitrary

commands on the server hosting the application,

giving them complete control of the environment.

�Credentials Management:

These are errors in the handling of user credentials

that can enable attackers to bypass access controls.

Some of the most common errors include hard-

coded passwords and plaintext passwords in

config files and elsewhere.

Cross-Site Scripting (XSS):

These are vulnerabilities that give attackers

the capability to inject client-side scripts into

the application, potentially bypassing security

controls in the process.

�Cryptographic Issues:

This includes a number of risky cryptographic

practices, including using broken crypto algorithms,

improperly validating certificates, storing sensitive

information in cleartext and employing inadequate

encryption strength.

8 State of Software Security 2016

Deployment Configuration:

These are vulnerabilities that are related to an

insecure configuration of an application at runtime,

such as incorrect use of the HttpOnly flag on

cookies, or incorrect configuration of a cross-

domain security policy in a Flash object or in

JavaScript code.

Directory Traversal:

These are flaws that open up the possibility

of attacks that give malicious actors the

capability to gain unauthorized access to

restricted directories and files.

Encapsulation:

These are vulnerabilities that involve code that

doesn’t sufficiently encapsulate critical data

or functionality. This includes trust boundary

violations, protection mechanism failures and

deserialization of untrusted data.

Information Leakage:

These are flaws that allow the application

to reveal sensitive data about the application,

environment or user data that could be leveraged

by an attacker to hone future successful attacks

against the application.

Insufficient Input Validation:

Tainted input is the root cause of many security

headaches. This category includes a number of input

validation flaws that open up the application to

malformed input that can cause security issues. This

includes vulnerabilities involving open redirect and

unsafe reflection.

Server Configuration:

Like deployment configuration issues, these are

failures to configure the application securely. These

flaws include forced downgrades in encryption,

enabling proxy access to secure resources elsewhere

on the network and easily compromised storage of

sensitive information about users or sessions.

Session Fixation:

These are authentication-related vulnerabilities

where the application fails to correctly invalidate

an expired session, allowing an attacker to

impersonate a user.

SQL Injection (SQLi):

One of the most severe categories of this group,

these are any vulnerabilities that allow the attacker

to gain unauthorized access to a back-end database

by using maliciously crafted input.

Top 10 vulnerability categories overall

CATEGORY	 % APPS
Information Leakage	 72%

Cryptographic Issues	 65%

Code Quality	 62%

CRLF Injection	 53%

Cross-Site Scripting	 50%

Directory Traversal	 49%

Insufficient Input Validation	 44%

Credentials Management	 41%

SQL Injection	 32%

Encapsulation	 25%

In looking at these overview statistics of vulnerability prevalence, it is interesting to note that while XSS and SQLi

vulnerabilities do garner the most front-page news today due to the severity of their consequences, they are far

from the most common vulnerability types. There are numerous other vulnerability categories out there that occur

in the wild much more prolifically, many of which contain some pretty severe individual vulnerabilities within them.

For example, take the occurrence of hard-coded passwords within the credentials management category. Just that

single vulnerability type alone occurs more frequently than SQLi flaws. Nevertheless, SQLi’s appearance in 32% of

applications makes it the most prevalent severe vulnerability. The existence of XSS in fully half of all newly scanned

applications makes it the most frequently occurring serious vulnerability.

Some individual vulnerability statistics worth noting
that bubbled up from these overall vulnerability categories:

of all applications used
some kind of hard-coded

password (Credentials
Management)

35%

of all applications
use broken or risky

cryptographic algorithms
(Cryptographic Issues)

39%

of all applications were
vulnerable to open

redirect attacks that give
remote attackers the

power to redirect users
to arbitrary websites

(Input Validation)

28%

of all applications mix
trusted and untrusted
data in the same data
structure or structured

message, making
it easier to trust
unvalidated data

16%

9 State of Software Security 2016

And here's how commonly these top ten vulnerabilities were found within applications scanned for the first time.

These percentages were calculated based on an aggregate of both static and dynamic application tests.

10 State of Software Security 2016

Drawing the lens tighter on the breakdown of vulnerability prevalence, we also found some

interesting differences in the distribution of vulnerabilities when we compared it based on

the type of testing used to scan code.

The table below compares side-by-side the prevalence of vulnerabilities in previously untested

applications when scanned by dynamic versus static testing techniques. When looking at it from

this view, it becomes clear that there are significant differences in the types of vulnerabilities that

are commonly discovered by looking at applications dynamically at runtime, as compared

to static tests in a non-runtime environment. While often viewed as more thorough than dynamic

testing, the data here makes it clear that there are actually numerous types of vulnerabilities that

dynamic testing does a better job unearthing. Taking a look at the top five dynamic categories,

one can see that two of them are significantly more prevalent than their static rank would

indicate and one category is not present at all.

The major takeaway here is that neither type of test is necessarily better than the other, they’re

just different. As such, it is important for security managers to remember that no single testing

mechanism is going to solve all of their application security problems. It takes a balanced

approach to properly evaluate and mitigate the risks.

Information Leakage	 1	 86%	 1	 69%

Cryptographic Issues	 2	 58%	 3	 65%

Deployment Configuration	 3	 57%	 na	 na

Encapsulation	 4	 39%	 11	 22%

Cross-Site Scripting (XSS)	 5	 25%	 6	 52%	

Credentials Management	 6	 15%	 8	 43%	

Session Fixation	 7	 12%	 15	 15%

Server Configuration	 8	 10%	 24	 3%

SQL Injection	 9	 6%	 9	 35%	

Authentication Issues	 10	 4%	 23	 na	

Insufficient Input Validation	 11	 3%	 7	 48%	

Directory Traversal	 12	 2%	 5	 54%	

Code Injection	 13	 1%	 21	 4%

Command or Argument Injection	 14	 1%	 13	 15%

CRLF Injection	 15	 <1%	 4	 59%

Top 15 vulnerabilities: Dynamic vs static

STATIC VERSUS DYNAMIC
VULNERABILITY PREVALENCE

CWE CATEGORY DYNAMIC
RANK

DYNAMIC
% APPS

AFFECTED

STATIC %
APPS

AFFECTED

STATIC
RANK

11 State of Software Security 2016

There’s also one final observation to note about the top vulnerabilities

found by dynamic testing. When we look at three of the top

four vulnerability categories—cryptographic issues, deployment

configuration and encapsulation—we start to see that these can all be

lumped into a broader class of flaws that involve the misconfiguration

of protection mechanisms.

In essence, developers are introducing vulnerabilities by poorly

configuring elements that are actually meant to keep application data

safe. This could mean utilizing SSL incorrectly or using secure cookies

the wrong way. For applications that use Flash, it could mean accepting

the wrong cross-domain policies, which an attacker could use to

maliciously manipulate what’s going on in the Flash object. It could also

include the improper use of security headers. For example, there’s a

header value that can be sent in a web application that tells a browser

to turn on protection against cross-site scripting, and it turns out that

a lot of developers get that wrong.

Security teams that facilitate dynamic testing for the discovery

of these misconfigurations present some invaluable learning

opportunities to developers who can stand to improve the use

of existing security mechanisms.

DEVELOPERS ARE INTRODUCING
VULNERABILITIES BY POORLY CONFIGURING
ELEMENTS THAT ARE ACTUALLY MEANT
TO KEEP APPLICATION DATA SAFE.

12 State of Software Security 2016

While it is important to understand the universal state of vulnerabilities across the entire code base,

security practitioners will find some of the most useful metrics for AppSec improvement revolve

around the impact that reassessment and remediation can have upon flaw density and fix rates.

The following statistics are where the rubber meets the road when it comes to the incremental

improvements that can be achieved through a programmatic approach to application security.

REASSESSMENT RATES
Let’s start first with how often organizations are reassessing applications in order to track

improvements over time once remediation efforts have been made following the initial scan.

Reassessments are crucial for not only determining if fixes have been made, but also if any new

vulnerabilities have been introduced as a result of the remediation process. On a positive note,

we’ve passed the tipping point where the majority of applications are rescanned once they’ve

been initially tested. However, it is important to keep in mind that a single assessment is still a

popular use case for many applications.

Key reassessment statistics

1 See appendix for more detailed information about
the methodology behind these reassessment rates

AVERAGE # OF SCANS PER APP 7
MEDIAN # OF SCANS PER APP 2

REMEDIATION ANALYSIS

Only one scan

40%
Rescanned at least once1

60%

13 State of Software Security 2016

SOME APPLICATIONS WERE SCANNED AGAINST

SECURITY POLICIES AS MUCH AS 776 TIMES IN 18

MONTHS

THAT’S 1.4 TIMES PER DAY

•	 WHEN SCANNED IN SANDBOX MODE NOT

TRACKED BY SECURITY/COMPLIANCE TEAMS, SOME

APPLICATIONS WERE SCANNED ALMOST 6 TIMES

PER DAY

Some applications were scanned against security
policies as much as 776 times in 18 months

That’s 1.4 times per day

When scanned in sandbox mode not tracked by
security/compliance teams, some applications
were scanned almost 6 times per day

SIGN OF DEVOPS AND
CONTINUOUS DELIVERY?

1

2

3

Our figures show that for the most part, organizations perform a small

number of rescans in order to get their tested applications in line with

policy. Approximately 51% of applications receive between two to 15 scans

in an 18-month period.

However, there are a statistically significant number of applications

receiving much more reassessment activity. Approximately 9% of all

applications get more than 15 policy scans within that same time period.

The max number was 776 scans, or more than 1.4 scans per day; this

number was even higher when testing in off-the-record Developer

Sandboxes, approaching six scans per day. Security practitioners should

pay attention to these extreme numbers at the maximum range as they

indicate a coming sea change in new methods of development. This level

of frequency suggests a move toward DevOps and continuous delivery

development patterns that emphasize small incremental improvements

to code that utilize integrated scanning practices.

Flaw density can be a tricky metric to track, but when used well it can

provide good visibility into risk reduction trends across an entire code

base. By keeping tabs on flaw density per MB of code, it is possible to

track an apples-to-apples comparison of how vulnerability-ridden the

application remains over time, even as it changes in size by adding or

subtracting functionality, libraries and more. This foundational metric

also offers a good measuring stick to track how certain remediation actions

and educational initiatives impact the overall security of code over time.

For example, we can see by comparing the flaw density on first assessment versus

reassessment of applications how much impact was made through remediation efforts.

Across our entire customer base, we have found that there’s an average of a 46% reduction

in flaw density through formal AppSec processes that involve application scanning.

When organizations start to take their AppSec process to the next level through more advanced

best practices, the risk reduction grows even more dramatic. For example, organizations that

employ remediation coaching services see a 1.45x improvement in flaw density reduction from

their efforts. And those who arm their developers with eLearning opportunities are logging a

whopping 6x improvement in flaw density reduction through their remediation practices.

2 See appendix for more
detail on methodology
behind flaw density statistics

FLAW DENSITY

Reduction in flaw density - first assessment vs. reassessment2

 FIRST SCAN LATEST SCAN

All apps
67 flaws/MB

36 flaws/MB

Reduction in flaw density via eLearning

 FIRST SCAN LATEST SCAN

DIFFERENCE
9.1%

DIFFERENCE
6xDIFFERENCE

55.0%

No eLearning
subscription

eLearning
subscription

46.23
42.01

68.06
30.64

Reduction in flaw density via remediation coaching

 FIRST SCAN LATEST SCAN

REDUCTION
43.6%

DIFFERENCE
1.45xREDUCTION

63.5%

No readout
requested

Readout
requested

68.55
38.66

59.57
21.74

14 State of Software Security 2016

15 State of Software Security 2016

FIX RATE:
FIXED VERSUS FOUND
In the State of Software Security v6, we looked for the first time at fix rates
of vulnerabilities. The idea behind this metric is to track the number of
vulnerabilities fixed as a percentage of the total number of vulnerabilities
found. As we reviewed the data from v6 over the last year, we realized that
there was an overlooked factor that could potentially be distorting our fix
rate calculations, namely reopen rates.

The Veracode Application Security Platform identifies four possible states
for a static or dynamic vulnerability: New, Open, Fixed, and Reopened. The
key to understanding the distortion lies in the final two vulnerability types:

• �“Fixed” is used for vulnerabilities that were found in an early scan that
are no longer found in a subsequent scan; and

• �“Reopened” identifies a vulnerability that was found in an earlier scan,
marked as “Fixed” in a subsequent scan, and then reappeared in a later scan.

We recognized that there was a greater impact on fix rates from
vulnerabilities that were reopened than originally thought. The problem
happens if a scan does not identify a vulnerability correctly as having
been found in a prior scan. Both static and dynamic testing in Veracode’s
analysis have features designed to ensure that we do everything possible
to “re-find” previously found vulnerabilities and therefore avoid prematurely
closing a vulnerability.

Based on these methods, we’ve found that the number of reopened
vulnerabilities present in reassessed applications are statistically significant
and need to be included as a part of fix-rate metrics. We believe that
reopen rates represent one of two scenarios:

1	 �Changes in application scope, such as a developer not submitting
part of an application for scan.

2	�Vulnerability fixes successfully completed in an early scan that are
inadvertently undone in a later scan. This may be done by accidentally
undoing a code protection on an existing code path, or inadvertently
opening a new unprotected code path to the same line of code.

We have adjusted the fix rate calculation to account for this and are
restating the fix rates from v6 to include reopened vulnerabilities as well.
Whenever we cite a fix rate in this study, it is calculated including the
reopen rate: “fixed vulnerabilities” minus “reopened vulnerabilities,” divided
by “all vulnerabilities found.”

Overall, the organizations in the study fixed about 54% of the vulnerabilities
found during the period, when adjusting for fixed vulnerabilities that were
later reopened. This remediation rate includes both vulnerabilities found
and fixed during the study and vulnerabilities fixed that were found prior
to the study (“security debt”). This is an improvement from the fix rate in
SOSS v6, which was 51%.

WE RECOGNIZED
THAT THERE WAS
A GREATER IMPACT
ON FIX RATES FROM
VULNERABILITIES
THAT WERE
REOPENED THAN
ORIGINALLY
THOUGHT.

16 State of Software Security 2016

The overall fix rates detailed in the image above are calculated against

statistics drawn from what the Veracode Application Security Platform

calls the “Policy Space.” These are on-the-record assessments that

are evaluated against an organization’s official application security

policy, with the results available for review in the management console.

These measurements from the policy space present a valuable tool for

accountability and compliance prior to software release, but the pressure

to improve these metrics can sometimes provide a perverse incentive for

developers to assess less frequently throughout the SDLC.

Developers can grow very frustrated when they work to improve the

overall security of their applications through frequent testing only to

be hammered for policy violations while the application is still in active

development. In order to encourage testing early and often by developers,

Veracode also offers “Developer Sandbox” testing that offers an assessment

space that isn’t tied to compliance metrics and whose output is private to

the developer. These sandbox scans give the developer the flexibility to

continually improve code through frequent assessment via full application

scans or scans of single components.

The telling thing about Developer Sandbox assessments is that they don’t just

take the heat off of developers and make them more likely to cooperate with

the security team. They also do a lot to improve long-term application security.

That’s reflected in fix-rate statistics if you start tracking them by whether or not

Developer Sandbox tests were completed prior to Policy Space tests.

When we look at the fix rate of organizations that don’t utilize sandbox code,

their average fix rates are well below the average. Meanwhile, organizations

that perform even just one sandbox scan during early stages of the SDLC

report above-average fix rates.

These statistics from the figure to the

left are a testament to the power of

developer-led efforts to push security

"to the left" through security testing

and remediation earlier in the SDLC.

Average fix rates

 VOLUME 7 VOLUME 6

54%

51%

0 20 40 60 80 100

Improvement in fix rates via off-the-record developer scanning
(Developer Sandbox)

 NO SANDBOX SCANS AT LEAST ONE SANDBOX SCAN

30%

59%

0 20 40 60 80 100

17 State of Software Security 2016

WHAT DOES “GOOD” LOOK LIKE?
Veracode’s analysis of remediation statistics find that even the most average of application

security programs is able to move the needle on application risk postures in statistically

meaningful ways. However, we see the cream truly rise to the top when examining the top

quartile of performers, both within small and large application security programs.

To help organizations benchmark themselves against the very best in application security

practices, we’ve taken a detailed look at vulnerability fix rates of top performers versus average

performers. The categories were further bisected by large programs (more than 20 applications

managed) and small programs, for more accurate points of reference.

For large programs, top performers did 68% better than their average-performing counterparts.

This kind of drastic difference illustrates how dramatically a program can improve through

establishment of best practices. Many of these practices have already been highlighted in the

report above. They include:

•	 readout calls for remediation coaching;

•	 eLearning subscriptions to improve developer skills;

•	 using more than one assessment technique;

•	 leveraging Developer Sandbox testing
	 for more frequent unofficial scans; and

•	 tracking progress against the benchmarks
	 presented in this report.

Remediation in top-quartile programs

 MEAN FIX RATE MEDIAN FIX RATE TOP QUARTILE FIX RATE

56%

13%
29%

64%

38%38%

PROGRAM SIZE : <20 applications PROGRAM SIZE : >20 applications

100

80

60

40

20

0

SPOTLIGHT ON
COMPONENT USAGE

New this year to the SOSS is a spotlight analysis on component usage. Continued

pressure to build high-quality software with ever-shorter development cycles and

the ongoing explosion of new architecture patterns, such as microservices, has developers

doubling down on the already prevailing dependence of third-party components in enterprise applications.

Given this, Veracode wanted to gain a better understanding of the high-level of third-party component usage and

how this relates to the overall state of software security.

This year we started this exploration through a close look at component usage by Java developers in particular—

we’ll likely continue this discussion next year with further analysis.

 COMMON JAVA VULNERABILITIES
In order to set the stage for vulnerability analysis, we started with a basic look at the most common Java

components used by our customers overall.

20 most used Java components overall

COMPONENT NAME		 VERSION	 % APPS

aopalliance-1.0.jar		 1.0	 39.5%

portlet-api_2.0_spec-1.0.jar	 1.0	 38.2%

dom4j-1.6.1.jar		 1.6.1	 29.7%

commons-logging-1.1.1.jar	 1.1.1	 28.5%

commons-httpclient-3.1.jar	 3.1	 26.0%

commons-collections-3.2.1.jar	 3.2.1	 25.0%

portal-service.jar		 6.2.2	 23.6%

util-taglib.jar		 6.2.3	 23.2%

activation-1.1.jar		 1.1	 23.1%

jstl-1.2.jar		 1.2	 23.0%

commons-lang-2.6.jar	 2.6	 18.4%

stax-api-1.0.1.jar		 1.0.1	 17.5%

commons-beanutils-1.7.0.jar	 1.7.0	 16.2%

antlr-2.7.7.jar	 	 2.7.7	 16.1%

commons-digester-1.8.jar	 1.8	 15.8%

log4j-1.2.17.jar		 1.2.17	 14.7%

stax-api-1.0-2.jar		 1.0-2	 14.5%

xpp3_min-1.1.4c.jar	 	 1.1.4c	 14.4%

xml-resolver-1.2.jar	 	 1.2	 14.1%

commons-discovery-0.2.jar	 0.2	 13.8%

19 State of Software Security 2016

Most used Java components with critical vulnerabilities

LIBRARY	 VERSION	 % OF JAVA
		 APPLICATIONS

commons-collections-3.2.1.jar	 3.2.1	 25.0%

commons-fileupload-1.2.1.jar	 1.2.1	 10.4%

batik-css-1.7.jar	 	 1.7	 9.5%

batik-util-1.7.jar	 	 1.7	 9.4%

commons-fileupload-1.2.jar	 1.2	 9.3%

batik-ext-1.7.jar	 	 1.7	 9.2%

spring-web-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.7%

spring-core-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.7%

spring-beans-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.6%

spring-context-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.5%

spring-expression-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.4%

spring-jdbc-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.4%

struts-1.2.9.jar	 	 1.2.9	 4.3%

spring-aop-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.3%

spring-asm-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.3%

spring-tx-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.2%

spring-context-support-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 4.2%

spring-orm-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 3.8%

spring-jms-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 3.8%

spring-webmvc-3.1.1.RELEASE.jar	 3.1.1.RELEASE	 3.8%

OF ALL JAVA
APPLICATIONS
ASSESSED HAD
AT LEAST ONE
COMPONENT
WITH A KNOWN
VULNERABILITY,
REGARDLESS
OF SEVERITY.

When we saw the most common component was an odd AOP Alliance

JAR file, it gave us pause, but then we realized that it is actually a

dependency of the Spring framework that isn’t necessarily selected or

installed by the typical developer on purpose. In a similar vein, we found

that there are a number of cases where there’s a library repeating certain

kinds of groupings, such as a number of components from Apache

Commons that are clustered in the top 10 instances of this list.

The big observation here is that when we really dig into the most common

components used in the enterprises, there are a lot of hidden surprises as

dependencies come into play. This can pose a real challenge when tracking

common component vulnerabilities. For example, Commons-collections-3.2.1

is the sixth most common component overall and the most prevalent

component with high vulnerabilities, as you’ll see in the table below.

OVERALL

97%

The table to the right was

compiled by focusing on all

Java component versions

that had a Common

Vulnerability Scoring System

(CVSS) score of 6.1 or higher.

Prevalence was based on

the percentage of Java

applications affected and

the percentage of all static

applications assessed

during this period.

20 State of Software Security 2016

This distribution gives us a good platform to start making some vital observations about component vulnerabilities.

For example, the most commonly occurring vulnerable component was released in July of 2013, but the vulnerability

in question wasn’t identified and patched until November 2015. This was in response to a Java deserialization

vulnerability that wasn’t known at the beginning of the data collection period, so a lot of organizations may not have

known they had a problem at the time that the component was assessed. The vulnerability is observed in more than

30% of Java applications—we’ll dig further into this in the case study in the section below. Meanwhile, the second

most prevalent component vulnerability was released in January 2008 and patched in 2010 with a vulnerability

observed in over 12% of all Java applications.

The point here is that while the high prevalence of the most common vulnerability is understandable given the

relatively recent patching of the component, the second most common vulnerability was patched some time ago.

This shows that many organizations may not even realize that they’ve got a risk in that particular component.

Another additional observation we found was that version prevalence doesn’t correlate with risk. When we took a

look at the struts library midway down the table, we found that while a decent proportion of apps use a relatively

safe version of the application, many more are still using moderately or very risky old versions of the library.

Struts version distribution

P
R

E
V

A
LE

N
C

E
 (

%
)

25

20

15

10

5

0

25

20

15

10

5

0

2.
0

.5

2.
0

.6

2.
0

.8

2.
0

.9

2.
0

.1
1

2.
0

.1
1.

1

2.
0

.1
1.

2

2.
0

.1
2

2.
0

.1
4

2.
1.

2

2.
1.

6

2.
1.

8

2.
1.

8
.1

2.
2.

1

2.
2.

1.
1

2.
2.

3

2.
2.

3.
1

2.
3.

1

2.
3.

1.
1

2.
3.

1.
2

2.
3.

4

2.
3.

4
.1

2.
3.

7

2.
3.

8

2.
3.

12

2.
3.

14

2.
3.

14
.3

2.
3.

15
.1

2.
3.

15
.2

2.
3.

15
.3

2.
3.

16

2.
3.

16
.1

2.
3.

16
.2

2.
3.

16
.3

2.
3.

20

2.
3.

20
.1

2.
3.

24

2.
3.

24
.1

21 State of Software Security 2016

Our data shows that failing to upgrade components increases risk over

time. For example, the newer versions marked with the green check do not

have zero vulnerabilities. They had zero known vulnerabilities at the time

the data was pulled; all of the versions have vulnerabilities now.

Security teams need to encourage and facilitate application developers

in paying attention to the composition of their applications and keeping

open-source libraries up to date.

One final component vulnerability distribution observation to note is

that even though they may have similar patterns of component usage in

internally developed code, different industries vary when it comes to the

distribution of their third-party component risk. For example, financial

services has been looking at component risk for a while and has relatively

low exposure to top threats like the Java deserialization vulnerabilities in

Commons Collections, whereas the tech industry has very high exposure.

DIFFERENT
INDUSTRIES
VARY WHEN IT
COMES TO THE
DISTRIBUTION
OF THEIR
THIRD-PARTY
COMPONENT RISK.

Tech

Financial
Services

Government

Healthcare

Manufacturing

Other

Retail and
Hospitality

 INDUSTRY	 COMPONENT	 VERSION	 % OF JAVA APPS
				 IN INDUSTRY

commons-collections-3.2.1.jar 3.2.1 67.9%
commons-fileupload-1.2.1.jar 1.2.1 20.3%
spring-aop-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.6%
spring-beans-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.6%
spring-context-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.6%
spring-core-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.6%
spring-expression-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.6%
spring-web-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.5%
spring-context-support-3.1.1.RELEASE.jar 3.1.1.RELEASE 18.5%
shiro-core-1.2.0.jar 1.2.0 18.4%

commons-collections-3.2.1.jar 3.2.1 22.4%
batik-ext-1.7.jar 1.7 13.4%
batik-css-1.7.jar 1.7 13.2%
batik-util-1.7.jar 1.7 13.2%
commons-fileupload-1.2.jar 1.2 12.2%
commons-fileupload-1.2.1.jar 1.2.1 8.6%
commons-fileupload-1.2.2.jar 1.2.2 5.4%
commons-fileupload-1.2.2.jar 1.1 3.7%
postgresql-9.1-901.jdbc4.jar 9.1-901.jdbc4 3.5%
spring-beans-3.0.5.RELEASE.jar 3.0.5.RELEASE 3.0%

commons-collections-3.2.1.jar 3.2.1 16.0%
commons-collections-3.2.1.jar 1.1 9.5%
commons-fileupload-1.1.1.jar 1.1.1 6.9%
struts-core-1.3.8.jar 1.3.8 6.9%
struts-taglib-1.3.8.jar 1.3.8 6.9%
struts-el-1.3.8.jar 1.3.8 6.5%
struts-extras-1.3.8.jar 1.3.8 6.5%
struts-faces-1.3.8.jar 1.3.8 6.1%
struts-mailreader-dao-1.3.8.jar 1.3.8 6.1%
struts-scripting-1.3.8.jar 1.3.8 6.1%

commons-collections-3.2.1.jar 3.2.1 42.1%
batik-util-1.7.jar 1.7 17.5%
commons-fileupload-1.2.1.jar 1.2.1 17.5%
commons-fileupload-1.2.2.jar 1.2.2 15.8%
batik-css-1.7.jar 1.7 14.0%
batik-ext-1.7.jar 1.7 14.0%
commons-fileupload-1.3.jar 1.3 7.0%
axis2-1.4.1.jar 1.4.1 5.3%
commons-fileupload-1.2.jar 1.2 5.3%
spring-jdbc-3.0.7.RELEASE.jar 3.0.7.RELEASE 5.3%

commons-collections-3.2.1.jar 3.2.1 20.4%
commons-fileupload-1.2.jar 1.2 8.0%
commons-fileupload-1.2.1.jar 1.2.1 7.5%
batik-css-1.7.jar 1.7 7.0%
batik-util-1.7.jar 1.7 6.8%
batik-ext-1.7.jar 1.7 6.4%
commons-fileupload-1.2.2.jar 1.2.2 4.8%
commons-fileupload-1.1.1.jar 1.1.1 3.3%
spring-asm-3.1.2.RELEASE.jar 3.1.2.RELEASE 2.8%
spring-beans-3.1.2.RELEASE.jar 3.1.2.RELEASE 2.8%

commons-collections-3.2.1.jar 3.2.1 26.7%
batik-css-1.7.jar 1.7 10.1%
batik-util-1.7.jar 1.7 9.9%
batik-ext-1.7.jar 1.7 9.7%
commons-fileupload-1.2.jar 1.2 8.9%
commons-fileupload-1.2.1.jar 1.2.1 6.0%
commons-fileupload-1.2.2.jar 1.2.2 5.2%
spring-core-3.1.0.RELEASE.jar 3.1.0.RELEASE 4.7%
spring-web-3.1.0.RELEASE.jar 3.1.0.RELEASE 4.7%
spring-aop-3.1.0.RELEASE.jar 3.1.0.RELEASE 4.6%

org.springframework.aop-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.asm-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.beans-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.context-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.context.support-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.core-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.expression-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.oxm-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.transaction-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%
org.springframework.web-3.0.5.RELEASE.jar 3.0.5.RELEASE 16.2%

Distribution of risk by industry

23 State of Software Security 2016

Apache Commons Collections version prevalence

COMPONENT NAME	 VERSION	 % APPS AFFECTED
commons-collections-3.2.1.jar	 3.2.1	 26.3%

commons-collections-3.2.jar	 3.2	 11.8%

commons-collections-3.1.jar	 3.1	 9.4%

commons-collections.jar	 Unknown	 2.9%

commons-collections4-4.0.jar	 4.0	 2.3%

commons-collections-2.1.1.jar	 2.1.1	 2.2%

commons-collections-3.2.2.jar	 3.2.2	 1.8%

commons-collections-2.1.jar	 2.1	 1.7%

commons-collections4-4.1.jar	 4.1	 0.6%

commons-collections-3.0.jar	 3.0	 0.5%

commons-collections-2.0.jar	 2.0	 0.1%

 PREDATES INTRODUCTION OF THE VULNERABILITY
 VULNERABLE
 PATCHED TO REMOVE THE VULNERABILITY

A COMPONENT’S CRITICAL
VULNERABILITY CASE STUDY
In the previous section, we already started to explain some of the significance around the most commonly present

component with critical vulnerabilities, commons-collections-3.2.1.jar. The background around this component and

its most dangerous vulnerability deserves an even more complete explanation, as it has some important security

considerations wrapped around its story.

In January 2015, an exploit framework was released for a previously theoretical vulnerability related to a program-

ming practice called “deserialization.” This lets you read an object from disk and use it in an application. The bug

would allow an attacker to execute arbitrary code while the object was being deserialized—basically, do anything

they wanted on the vulnerable machine.

In November 2015, researchers published exploits for five widely used systems—JBoss, IBM WebSphere, Jenkins,

OpenNMS and the Oracle WebLogic server—all leveraging a deserialization vulnerability in Apache Commons

Collections. This was no longer a theoretical vulnerability but a highly exploitable, widespread issue. The Apache

Commons project issued patches for the vulnerability, which affected all versions of Commons Collections 3.x up to

and including v. 3.2.1 and v4.0. The patches, v3.2.2 and 4.1, eliminated the vulnerability.

How widely used was the core shared object? As shown above, the Apache Commons Collections v. 3.2.1 component

was the single most prevalent vulnerable component version across our entire data set of Java applications, being

found in 25.0% of all Java applications. In some industries the risk was even higher, with this version being found in

67% of all Java applications in the technology industry vertical.

And that was just the version in which the vulnerability was first found; when looking at all vulnerable versions, 50.3%

of all applications Veracode scanned contained a vulnerable version of the Apache Commons Collections library.

24 State of Software Security 2016

The problem goes even further. A Java library that uses Apache Commons

Collections and does deserialization may also exhibit the vulnerability. Caleb

Fenton at Sourceclear has assembled a candidate list of libraries that may be

vulnerable to deserialization exploits thanks to their use of Apache Commons,

including Apache Hadoop Common, Jasper Reports, OWASP ESAPI (when

using Base64.decodeToObject) and others.1 It should also be noted that

Apache Commons Collections is not the only library that performs unsafe

deserialization; vulnerabilities related to serialization and deserialization were

disclosed in 2016 in Apache ActiveMQ and Apache Camel.

What do we learn from this? The Java deserialization vulnerability in

Apache Commons Collections is an interesting example of an open-source,

third-party component vulnerability, because it went from unknown

to critical and highly exploitable, and because it was widely used in a

variety of standard “infrastructure” applications—web servers, application

servers, CI servers, etc. But it’s worth noting that the issue was not just in

the infrastructure applications, but in any application that uses Apache

Commons Collections v.3.0 - 3.2.1 or 4.0. Addressing this vulnerability

requires a broader response than just patching servers; it requires visibility

into the component supply chain for all of your applications.

Even Broader Implications of the Apache Commmons
Collections Deserialization Vulnerability

And it’s broader than that, as well. Veracode introduced a check for unsafe

deserialization (CWE 502) in a customer’s own Java code—not in an open-

source component—in our November 2015 release. In the four months from

then to the end of our data set for this volume of State of Software Security,

we detected the vulnerability in 24%, or almost one in four, of all Java

applications scanned. The prevalence was substantially higher in commercial

software, where we found the vulnerability in 41% of all applications.

This simply reinforces the point that one application security technology is

not sufficient to guard against the vulnerability landscape. A combination

approach is needed that leverages appropriate checks for your own code

and for the code in your software supply chain.

Newly discovered vulnerabilities are rarely only in open-source code; you

need to be able to look for them in closed source as well.

For a proper application security program, you need to be able to look at

vulnerabilities in open-source and commercial components, code written by

your team, and code written by your suppliers as well.

1 Fenton, Caleb, “Commons Collections Deserialization Vulnerability Research Findings,” SRC:CLR (blog), 2015-12-02.

25 State of Software Security 2016

In the last volume of SOSS, Veracode spent a considerable amount of time telling the story of stack ranking of

industry performance and taking an overall look at the numbers based on verticals. We believe it is important to

continue to look at industry performance, which is why we’re issuing another update to show how things have

changed since 2015, and also spending some time analyzing healthcare peformance, especially in the light of

growing healthcare breach incident rates over the past year.

FIRST-TIME PASS RATES BY INDUSTRY
Based on OWASP policy compliance pass rates for first-time scans, we can see that the data shows government with

the lowest pass rate for the second year running, with healthcare edging down to second from the bottom category

based on pass rank. On a positive note, we saw slight improvement in every industry vertical except financial services.

The slight slide back in financial services illustrates the same factors we discussed in the first section of this volume

of SOSS with regard to first-time scan pass rates. Even in a sector like financial services with a high degree of

application security maturity compared to other industries, we’re still just as likely to see small down trends in initial

pass rates due to the nature of the unimproved corps of applications.

Until an organization gets to a point where every piece of software

an organization has ever written prior to secure SDLC practices has

been inspected, there’s no reasonable expectation that the next set of

applications tested will be any better than the ones tested before.

Most organizations have more software written than the project that

they’re starting, so even if they put a secure development initiative in place

they shouldn’t expect to see the fruits of that in first-time quality right

away. It takes a long time for that to happen.

OWASP policy compliance by industry vertical

 % NOT PASSED % PASS % PASS 2015

Other		 59%	 40%	 30%

Financial Services		 61%	 39%	 42%

Manufacturing		 61%	 39%	 35%

Government		 75%	 25%	 24%

Retail and Hospitality		 62%	 38%	 30%

Tech			 62%	 38%	 32%

Healthcare	 	 67%	 33%	 31%

SPOTLIGHT ON
INDUSTRY PERFORMANCE

26 State of Software Security 2016

INDUSTRY VERTICAL
FIX RATES
The first-time pass-rate measurement conundrum is why it is crucial to

look at other metrics to get a ‘true-north’ measure of the state of software

security by industry. One of the most telling, in our mind, is the vulnerability

fix rate we discussed at the end of the remediation analysis section above.

As we explained, we restated our figures from the last volume to better account

for the incidence of reopened vulnerabilities. With that adjustment in mind, the

table below shows what industry performance looked like this year and last year.

Healthcare’s bottom performance on fix rate is troubling. Healthcare lags

the top performer, manufacturing, in its fix rate by a two-to-one ratio. Does

the gap reflect an inability to appropriately address vulnerabilities once

they’ve been found, or does it point to some other structural constraint

that holds healthcare back?

Fix Rate by Industry Vertical

 ADJ FIXED V6 ADJUSTED FIXED % 2016 REOPEN %

Financial services		 51%	 59% 22%

Manufacturing		 66%	 71%	 15%

Government		 58%	 57% 25%

Healthcare		 34% 34% 7%

Retail & Hospitality	 57%	 67% 23%

Other		 40% 36%	 16%

Tech		 42.4% 42.2%	 12.6%

INDUSTRY VERTICAL VULNERABILITY
CATEGORY PREVALENCE
As shown in the fix rates detailed below, there’s clearly room for improvement no matter the sector. So, let’s look at

where each industry will likely need to focus its efforts. The distribution of vulnerabilities found in first-time scans

based on industry also offers some significant observations.

Top 10 vulnerability categories by industry vertical

CWE CATEGORY	 % APPS

MANUFACTURING	

Information Leakage	 26.2%
Code Quality	 26.1%
Directory Traversal	 24.0%
Cryptographic Issues	 22.9%
CRLF Injection	 21.0%
Cross-Site Scripting	 20.4%
Insufficient Input Validation	 17.6%
Credentials Management	 14.6%
SQL Injection	 13.9%
Time and State	 11.1%

HEALTHCARE	

Cryptographic Issues	 72.9%
Information Leakage	 65.6%
Code Quality	 60.1%
Insufficient Input Validation	 52.3%
CRLF Injection	 48.2%
Credentials Management	 47.7%
Directory Traversal	 45.9%
Cross-Site Scripting (XSS)	 45.4%
SQL Injection	 28.4%
Time and State	 23.4%

GOVERNMENT	

Information Leakage	 69.3%
Cross-Site Scripting (XSS)	 68.5%
Code Quality	 62.3%
Cryptographic Issues	 56.1%
Insufficient Input Validation	 54.6%
CRLF Injection	 50.3%
Directory Traversal	 44.4%
SQL Injection	 40.0%
Credentials Management	 30.8%
Time and State	 21.3%

FINANCIAL SERVICES	
Code Quality	 66.8%
Information Leakage	 65.7%
Cryptographic Issues	 62.0%
CRLF Injection	 59.5%
Directory Traversal	 51.5%
Cross-Site Scripting (XSS)	 51.0%
Insufficient Input Validation	 49.7%
Credentials Management	 41.2%
SQL Injection	 31.3%
Time and State	 24.4%

CWE CATEGORY	 % APPS

RETAIL & HOSPITALITY
Code Quality	 69.0%
Cryptographic Issues	 68.7%
Information Leakage	 67.0%
CRLF Injection	 57.7%
Directory Traversal	 55.5%
Insufficient Input Validation	 48.2%
Cross-Site Scripting (XSS)	 45.9%
Credentials Management	 38.6%
SQL Injection	 33.5%
Time and State	 27.0%

TECHNOLOGY
Information Leakage	 74.4%
Code Quality	 73.3%
Cryptographic Issues	 67.5%
CRLF Injection	 62.4%
Directory Traversal	 53.0%
Cross-Site Scripting (XSS)	 51.1%
Credentials Management	 46.6%
Insufficient Input Validation	 44.7%
SQL Injection	 32.4%
Time and State	 29.2%

OTHER
Cryptographic Issues	 64.0%
Information Leakage	 62.1%
Code Quality	 59.0%
CRLF Injection	 49.2%
Directory Traversal	 48.4%
Credentials Management	 44.2%
Cross-Site Scripting (XSS)	 43.4%
Insufficient Input Validation	 39.4%
SQL Injection	 27.6%
Time and State	 20.4%

28 State of Software Security 2016

As we can see in the table immediately above and the one on the previous page, government organizations are still

most likely to have both SQLi and XSS vulnerabilities in their code, a repeat from 2015. One thing we’d like to draw

readers’ attention to is the fact that healthcare organizations are most likely to be struck by cryptographic and

credentials management issues. Given the concern for sensitive patient data under HIPAA regulations, we believe

that these data endangering vulnerabilities are noteworthy.

When we compare healthcare performance in cryptographic and credentials management issues versus a sector

like retail and hospitality, the long-running impact of the prescriptive nature of PCI DSS compliance compared

to HIPAA’s outcome-oriented compliance goals could be coming home to roost. One other note, given these

distributions and also fix-rate performance, is that manufacturing’s outpacing of other industries could be indicative

of that vertical’s underlying DNA, which focuses around quality in every aspect of production and could be

displaying that with regard to code quality.

On the industry front, we also wanted to take one final look at vulnerability distribution further broken out by

programming language.

As you can see here, there are some noticable trends that present themselves. For example, the rapid adoption of

JavaScript for server-side and mobile use in healthcare, retail and financial services is giving rise to more prevalence

in these vulnerabilities across their portfolios.

Meanwhile, as tech and retail and hospitality organizations make bigger investments in mobile, we’ll continue to see

a rise in Android and iOS vulnerability incidence.

Programming language breakout by industry vertical

PROGRAMMING
LANGUAGE

FINANCIAL
SERVICES

MANUFACTURING TECH RETAIL AND
HOSPITALITY

OTHER GOVERNMENT HEALTHCARE

.Net 38.33% 33.76% 27.59% 40.68% 27.66% 52.20% 46.90%

Java 47.29% 39.09% 46.86% 37.24% 42.10% 35.05% 25.22%

C++ 1.46% 8.39% 3.40% 2.70% 3.18% 0.00% 0.00%

ColdFusion 0.14% 7.28% 0.45% 0.34% 0.73% 1.52% 0.88%

Javascript 4.98% 2.62% 5.74% 7.77% 6.92% 3.49% 11.50%

Android 1.38% 1.09% 5.48% 3.38% 4.25% 0.46% 3.54%

iOS (Objective-C) 1.52% 1.71% 4.82% 3.38% 4.60% 0.00% 7.52%

Classic ASP 1.33% 3.42% 0.45% 0.96% 0.30% 1.97% 0.44%

PHP 2.12% 1.42% 4.34% 2.37% 9.49% 5.16% 1.33%

VB6 0.84% 0.91% 0.22% 0.34% 0.43% 0.15% 0.00%

COBOL 0.48% 0.05% 0.18% 0.39% 0.00% 0.00% 0.00%

Ruby 0.03% 0.08% 0.16% 0.06% 0.00% 0.00% 0.88%

Other
(J2ME, Windows Mobile)

0.09% 0.16% 0.29% 0.39% 0.35% 0.00% 1.76%

Prevalence of selected high profile vulnerabilities by industry vertical

VERTICAL	 CROSS-SITE	 SQL INJECTION	 CRYPTOGRAPHIC	 CREDENTIALS
	 SCRIPTING		 ISSUES	 MANAGEMENT
Manufacturing	 20.4%	 13.9%	 22.9%	 14.6%

Healthcare	 45.4%	 28.4%	 72.9%	 47.7%

Government	 68.5%	 40.0%	 56.1%	 30.8%

Financial Services	 51.0%	 31.3%	 62.0%	 41.2%

Retail & Hospitality	 45.9%	 33.5%	 68.7%	 38.6%

Technology	 51.1%	 32.4%	 67.5%	 46.6%

Other	 43.4%	 27.6%	 64.0%	 44.2%

ABOUT THE DATASET
The data represents 337,742 application assessments submitted for analysis during the 18-month period from October

1, 2014 through March 31, 2016 by large and small companies, commercial software suppliers, open-source projects and

software outsourcers. In most analyses, an application was counted only once, even if it was submitted multiple times as

vulnerabilities were fixed and new versions uploaded. The report contains findings about applications that were subjected

to static analysis, dynamic analysis, software composition analysis, and/or manual penetration testing through Veracode’s

cloud-based platform. The report considers data that was provided by Veracode’s customers (application portfolio

information, such as assurance level, industry, application origin) and information that was calculated or derived in the

course of Veracode’s analysis (application size, application compiler and platform, types of vulnerabilities, Veracode Level

(predefined security policies which are based on the NIST definitions of assurance levels).

Many applications are written in more than one programming language. In cases where results are reported by

programming language, we examine the individual executable units of the application (modules, libraries), and

report the primary programming language as being the language of the largest executable unit.

REASSESSMENT RATE METHODOLOGY
When we include all scan types, including those that may result in shutting down a site (specifically Dynamic MP),
the rates of assessment break down as follows:

APPENDIX

Histogram, # of Scans Per App

Median #
of scans
per app:
2

Avg #
of scans
per app:
7

Exploring the data further and
restricting to deeper, “per-app” scan
types (Static, DynamicDS), we find:

40%
Only one scan

60% Rescanned
at least once

56% Assessed
more than once

44%
Only assessed once

The distribution is almost identical when looking
at static only when policy scans are used.

F
R

E
Q

U
E

N
C

Y

12,000

10,000

8,000

6,000

4,000

2,000

0

OF SCANS
1 5 92 63 74 8 151413121110 More

30 State of Software Security 2016

We then re-run the histograms looking at static when sandboxes are included.

FLAW DENSITY MEASUREMENT
METHODOLOGY
•	 Veracode supports multiple assessment technologies

•	 In Static and DynamicDS, rescans are used to

•	 verify fixes made after reviewing the results of the first scan

•	 ensure new vulnerabilities were not introduced

• 	 check for newly discovered threats that may have been latent
in the code but, thanks to new technology, can now be found

•	 Two ways to do rescanning

	 • ��Policy scan - default behavior, each scan evaluated against
policy to calculate compliance, full application scan
assumed

	 • �Sandbox scan - optional, private sandboxes available, not
evaluated against policy, may be partial or full application scan

Where we have looked at flaw density

measurements, we have only evaluated

flaw density within policy scans. We have

not included flaw density in sandboxes,

as the customer may not scan the same

scope of the application in a sandbox as

in a policy scan. Where we have looked at

sandbox use, we have only looked at how

it affected flaw density in the policy scans

for the applications where sandboxes

were used.

BIN	 S+DS, POLICY SCAN ONLY %	 S, SANDBOXES %
1	 40%	 38%

2	 15%	 13%

3	 9%	 8%

4	 6%	 6%

5	 5%	 4%

6	 3%	 4%

7	 3%	 3%

8	 2%	 2%

9	 2%	 2%

10	 1%	 2%

11	 1%	 1%

12	 1%	 1%

13	 1%	 1%

14	 1%	 1%

15	 1%	 1%

More	 9%	 12%

31 State of Software Security 2016

Flaw density by programming language and industry

State of Software Security Volume 7 includes data about average flaw density (the number of flaws, or

vulnerabilities, per megabyte of executable code) as a way to measure remediation activity. We provide the

following tables of average flaw density by language for reference.

Note: It is important to not draw too many conclusions from flaw density differences, as flaw density is affected

by many factors. Language-specific differences in flaw density may be caused by the richness of the system APIs

for a scripting language, which instruction sets are enabled in the compiler, 32-bit code versus 64-bit code (64-bit

executables are much larger than 32-bit ones with the exact same source files), etc. Likewise, flaw density distributions

within an industry are affected by language choice and application size as well as inherent application risk. Some of the

same challenges apply to other measures of defect density, such as defects per KLOC (thousand lines of code).

Flaw density by programming language Flaw density by industry vertical

LANGUAGE FLAW
DENSITY
PER MB

FLAW DENSITY
PER MB (HIGH/
VERY HIGH)

.Net 19.3 3.3

Android 5.7 0.2

Classic ASP 849.9 400.0

C++ 12.7 3.2

COBOL 33.0 2.8

ColdFusion 52.8 38.5

iOS (Objective-C) 3.7 0.1

J2ME 40.3 0.0

Java 35.3 3.8

JavaScript 40.1 4.7

PHP 60.6 18.2

Ruby 2.3 0.2

VB6 66.3 14.4

INDUSTRY
VERTICAL

FLAW
DENSITY
MB

FLAW DENSITY
PER MB - VH/H

Financial services 33.18 4.26

Manufacturing 387 213.06

Government 48.95 5.90

Healthcare 10.03 1.70

Retail & Hospitality 28.49 3.09

Other 69.03 7.39

Tech 23.32 1.87

32 State of Software Security 2016

Industry verticals

This report condenses information about applications coming from 34 different industry classifications into seven

industry verticals. The component industry classifications come from Data.com via Salesforce.com, but Veracode

has created the industry verticals below to simplify the analysis. A mapping of the component industries to industry

verticals is provided below.

CO M P O N E N T I N D U ST R I E S A S D E F I N E D I N DATA .CO M

Manufacturing
Manufacturing, Aerospace

Retail and Hospitality
Retail, Hospitality

Other
Other, Biotechnology, Education, Entertainment,

Transportation, Not for Profit, Apparel,

Communications, Engineering, Media, Media

& Entertainment, Food & Beverage, Utilities,

Energy, Machinery, Construction, Chemicals,

Not Specified, Shipping, Business Services,

Automotive & Transport, Beverages, Recreation,

Real Estate, Membership Organizations,

Environmental, Consumer Services

Tech
Technology, Telecommunications,

Electronics, Software,

Security Products and Services,

Consulting, Computer Hardware

Financial Services
Banking, Finance, Insurance

Government
Government

Healthcare
Healthcare, Pharmaceuticals

Veracode’s cloud-based service and systematic approach deliver a simpler and more scalable solution for reducing
global application-layer risk across web, mobile and third-party applications. Recognized as a Gartner Magic Quadrant
Leader since 2010, Veracode secures hundreds of the world’s largest global enterprises, including 3 of the top 4 banks
in the Fortune 100 and 20+ of Forbes’ 100 Most Valuable Brands.

L EARN M ORE AT WWW.VERACODE .COM, ON THE VERACODE BLOG, AND ON TWIT T ER .

How are you tackling application security?
Get our tips and advice on starting or managing
an AppSec program with our Ultimate Guide
to Getting Started With Application Security.

STATE OF
SOFTWARE SECURITY

2016

http://www.veracode.com
http://www.veracode.com/blog
https://twitter.com/Veracode
https://info.veracode.com/whitepaper-ppc-ultimate-guide-to-getting-started-with-application-security.html
https://info.veracode.com/whitepaper-ppc-ultimate-guide-to-getting-started-with-application-security.html

