
CHEX: Multiversion Replay with Ordered Checkpoints
Naga Nithin Manne

∗

Argonne National Lab.

Lemont, IL, USA

nithinmanne@gmail.com

Shilvi Satpati

DePaul University

Chicago, IL, USA

ssatpati@depaul.edu

Tanu Malik

DePaul University

Chicago, IL, USA

tanu.malik@depaul.edu

Amitabha Bagchi

IIT, Delhi

Delhi, India

bagchi@cse.iitd.ac.in

Ashish Gehani

SRI

Menlo Park, CA, USA

ashish.gehani@sri.com

Amitabh Chaudhary

The University of Chicago

Chicago, IL, USA

amitabh@uchicago.edu

ABSTRACT
In scientific computing and data science disciplines, it is often nec-

essary to share application workflows and repeat results. Current

tools containerize application workflows, and share the resulting

container for repeating results. These tools, due to containeriza-

tion, do improve sharing of results. However, they do not improve

the efficiency of replay. In this paper, we present the multiver-

sion replay problem, which arises when multiple versions of an

application are containerized, and each version must be replayed

to repeat results. To avoid executing each version separately, we

develop CHEX, which checkpoints program state and determines

when it is permissible to reuse program state across versions. It

does so using system call-based execution lineage. Our capability

to identify common computations across versions enables us to

consider optimizing replay using an in-memory cache, based on

a checkpoint-restore-switch system. We show the multiversion

replay problem is NP-hard, and propose efficient heuristics for it.

CHEX reduces overall replay time by sharing common computations

but avoids storing a large number of checkpoints. We demonstrate

that CHEXmaintains lightweight package sharing, and improves the

total time of multiversion replay by 50% on average.

PVLDB Reference Format:
Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish

Gehani, and Amitabh Chaudhary. CHEX: Multiversion Replay with

Ordered Checkpoints. PVLDB, 15(6): 1297-1310, 2022.

doi:10.14778/3514061.3514075

PVLDB Artifact Availability:
The source code, data, and/or other artifacts are available at https://github.

com/depaul-dice/CHEX.

1 INTRODUCTION
Suppose that Alice is researching different image classification

pipelines. She has a large labeled set of images and progressively

tries different combinations of preprocessing steps and neural net-

work architectures. For example, she may replace an entire step

∗
Work done as part of a summer internship at DePaul.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.

doi:10.14778/3514061.3514075

with one that is more sophisticated but slower, or vice-versa. As she

makes changes, she keeps a copy of the previous versions in sepa-

rate Jupyter notebooks. We call these her different program versions;
they are similar to different experiments in scientific computing.

Once done, Alice would like to share her different program versions

with Bob so that he can independently repeat and regenerate the

results and verify Alice’s work. We say Bob faces the multiversion
replay problem: executing all the versions given to him by Alice as

efficiently as possible where (i) many versions repeat some of the

same preprocessing steps, but (ii) without reusing any of Alice’s

own computation. In this paper, we address this problem.

Collaborative scenarios such as the one above arise routinely in

scientific computing and data science, where sharing, repeating,

and verifying results is common. Several tools have been recently

proposed for sharing and reproducing such scenarios [1, 8, 22, 41–

44, 57]. These tools audit the execution of a program, and create

a container-like package consisting of all files referenced by the

program during its execution. This package can then be used to

repeat results in different environments. These tools have much

to offer; they do not, however, exploit the efficiency possible by

solving the multiversion replay problem. As the reproduction of

results becomes increasingly time consuming [53], addressing such

problems is critical.

One of the above tools is the Sciunit system [1, 55], developed

by some of the co-authors. It allows multiple versions of a program

to be included in the same package and shared for repetition. We

noted that having two or more versions in the same package sets

up a natural opportunity for reusing computations that are often

common across versions—i.e., a number of versions may perform

the same computations for quite some time before they branch

out as the researcher tries out different options. But, in order to

accurately identify computations that can be reused across versions,

we need to be able to determine the point to which the execution

of two versions can be treated as equivalent and from which point

the execution branches. We develop a methodology to identify

common computations in program code fragments or cells of the
versions. This methodology depends on lineage audited during

program execution [38, 42, 43]. For repetition, at Bob’s end, we share

computational state across versions in the form of checkpoints.

Let us now see with an example how sharing computational state

across versions via checkpoints creates an opportunity to optimize

computational time when repeating multiple versions.

Suppose that Alice has shared with Bob a package with three

versions. Assume Alice has developed her code using a notebook,

1297

https://doi.org/10.14778/3514061.3514075
https://github.com/depaul-dice/CHEX
https://github.com/depaul-dice/CHEX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514075
https://www.acm.org/publications/policies/artifact-review-and-badging-current

and her first version is divided into two cells that take time 1 minute

and 10 minutes, respectively (Figure 1 left). Her second version has

the same first two cells but she adds a third cell. Her last version,

which processes the dataset, has the same first cell, but diverges

after that, and cells 2 and 3 now takes 11 and 2 minutes, respectively.

Now, during repetition, if Bob checkpoints cell 𝑏 while computing

𝑣1 and then restores that checkpoint for 𝑣2, he can complete 𝑣2

in just 1 unit of time (saving 11 units in 𝑣2). This checkpoint is,

however, not useful for 𝑣3 since cell 𝑏 has been changed to 𝑑 in this

version. Observe, that although 𝑎 is common across all three ver-

sions, checkpointing 𝑎, instead of 𝑏, is not optimal. In the example

on the right, on the other hand, checkpointing 𝑎 is the better option

since the bulk of the computation takes place in 𝑎. The example

b

a1

10 b

a

c1

d

a

e

11

Tb = (1+10)+(1)+(1+11+2) = 26
Ta = (1+10)+(10+1)+(11+2) = 35
Checkpointing location ‘b’ is better

2

b

a

1

10

b

a

c1

d

a

e

2

1

Ta = (10+1)+(1+1)+(1+1)= 15
Tb: (10+1)+(1)+(10+1+1) = 24
Checkpointing location a is better

Store 1 checkpoint
v1 v2 v3 v1 v2 v3

Figure 1: Deciding checkpoint location depends on cost and
size estimates of the cells.

above leads to the question:Why doesn’t Bob just checkpoint both
𝑎 and 𝑏? Storage is cheap after all! Indiscriminate caching, how-

ever, is not a practical solution: In machine learning examples, e.g.,

checkpointing all cells across versions (as our experiments indicate)

can lead to a memory requirement in the range of 50-550GB, for

even moderately-sized multiversion programs. Thus, we consider a

limited in-memory space as this avoids additional I/O costs from

checkpointing. Limited space leads to an optimization problem:

As we will show, given limited space and multiple versions with

different cost and size estimates of cells, deciding checkpoint loca-

tions for efficient replay of all versions is an NP-hard problem. We

present efficient heuristics to solve this problem.

The CHEX system. We present CHEX, a system for efficient multi-

version replay that uses recorded lineage shared in container-like

auditing systems to (i) determine when the program state is identi-

cal across versions, and (ii) decides which common computations

to save in an in-memory, limited-size cache, and where to con-

tinue recomputing. Effectively, CHEX computes an efficient plan

for Bob to use his cache to repeat Alice’s multiversion program

with minimum computation cost. Subsequently CHEX repeats the
computation according to this plan.

To execute the multiversion program, we first need a plan for

sharing and reusing computational state across versions. A pos-

sible approach would be to reuse program elements such as the

output of functions, expressions, or jobs. Such reuse approaches

were examined in [16–18]. However, these methods make assump-

tions about the programs—they are limited to programs with no

side-effects and apply to specific (functional or interpreted) pro-

gramming languages. Such assumptions are too restrictive in a

sharing scenario.

Our approach is program-agnostic and we, instead, use check-

points. A checkpoint saves the computational state at a specific

program location so that the same program can be restored from

the location at a later time. To share computations, we extend

checkpoint-restore to checkpoint-restore-switch, in which a system

checkpoints a common computational state and and restores it later

to resume a different version of the program.

The challenge of checkpoint-restore-switch, however, is deter-

mining locations at which to checkpoint, since ideally programs

may be checkpointed after each instruction. Even if we decide at a

fixed number of program locations, before reusing a checkpoint we

must verify that two versions share the same computational state at

a given program location. In this paper we solve this dual challenge
by showing that when a program is divided into cells, computational
state can be shared across versions by using fine-grained execution
lineage. Dividing a program into cells is used in read-evaluate-print

(REPL) programming environments, which are increasingly pop-

ular [26]. However, CHEX does not necessitate that a user employ

REPL style; it transparently divides a program into REPL-style cells.

This paper contributes the following:

Maintains lightweight package sharing. CHEX does not require

users like Alice to share checkpoints as part of the shared pack-

age. Instead, CHEX audits the execution of each version to record

execution details. We note that in reproducibility settings, it is not

desirable to allow Alice to share her checkpoints since that defeats

the purpose of reproducibility.

Merging versions based on lineage. CHEX compares fine-grained

lineage to check if the program state is common across cell versions.

It combines versions into an execution tree.
Deciding checkpoint location.Given that themultiversion replay

problem under space constraints is computationally intractable, we

rely on depth-first-search (DFS) traversals of the execution tree to

help us identify a subset of possible checkpointing decisions for the

execution units of the program. We call the members of this subset

DFS-based replay sequences.We propose two heuristic algorithms

for deciding which cell state to checkpoint such that the multiple

versions can be replayed in a minimum amount of time.

Experiments on real and synthetic datasets. We experimented

with real machine learning and scientific computing notebooks as

well as synthetic datasets, showing that CHEX improves the total

time of multiversion replay by 50%, or correspondingly replays

twice the number of versions in a given amount of time. We show

that the overheads of creating execution trees is significantly lower

than the gain from replay efficiency.

Working prototype system:We have developed a prototype CHEX
system, which given an execution tree performs multiversion re-

play. CHEX currently uses standard auditing methods, developed by

us [1, 55], to build execution trees and determine cell reuse. For

multiversion replay, we extended these methods to work with in-

teractive Jupyter notebooks, as well as, transform regular programs

to REPL-style computation via code-style paragraphs.

2 BACKGROUND
We briefly describe the REPL environment under which CHEX oper-

ates. CHEX is not limited to the REPL environment but this is easy

to illustrate visually so we adopt this for ease of exposition. We

discuss generalization to other environments in Section 9.

1298

Figure 2: An illustration of REPL programs. The left program
𝐿1 trains a machine learning model (resnet18) on a training
dataset and evaluates its accuracy on a test dataset. The right
program 𝐿2 is the same, except that it adds a preprocessing
step to the training dataset. 𝐿1 has 5 cells, 𝐿2 has 6 cells.

REPL or Read-Evaluate-Print-Loop is a programming environ-

ment. A popular example is the Jupyter notebook. As shown in

Figure 2, it contains code partitioned into cells. Developers typically
use a separate cell for each “step" of the program: preprocessing the

dataset, training the model, etc. This allows them to interactively

test each step before writing the next. One restriction is that control

flow constructs, such as if-blocks, loops, cannot be split across cells.

We denote a REPL program by an ordered list of cells, e.g., the left
program in Figure 2 is denoted 𝐿1 = [𝑥1, 𝑥2, . . . , 𝑥5], and the right

program as 𝐿2 = [𝑦1, 𝑦2, . . . , 𝑦6].
In a typical REPL execution, cells are executed in sequence from

the first to last. While the Jupyter notebook allows out-of-order

cell execution, we do not consider such execution. (We elaborate

on this constraint further in Section 9.) The state of the program at

the end or beginning of each cell is termed the program state. The

program state at any point of execution consists of the values of all

variables and objects used by the program at that point — intuitively,

it is all the contents of the memory associated with the program.

So, e.g., for the program 𝐿 = [𝑥1, 𝑥2, . . . , 𝑥5], the corresponding

program states are [𝑝𝑠0, 𝑝𝑠1, . . . , 𝑝𝑠5], in which 𝑝𝑠𝑖−1 denotes the
program state just before cell 𝑥𝑖 is executed. The state 𝑝𝑠0, which

is just before the first cell is executed, includes the value of the

environment and any initial input.

CHEX works in combination with an auditing system which mon-

itors executions and provides the following details about each pro-

gram state, 𝑝𝑠𝑖 :

• computation time, 𝛿𝑖 , the time to reach the program state 𝑝𝑠𝑖
from its predecessor 𝑝𝑠𝑖−1,

• size, 𝑠𝑧𝑖 , size of the program state 𝑝𝑠𝑖 ,

• code hash, ℎ𝑖 , computed by hashing code in cell 𝑖 , and

• lineage, 𝑔𝑖 , which is determined by combining the predecessor

cell’s lineage with the sequence of system events that are trig-

gered by program instructions in the cell 𝑖 and the hashes of the

associated external data dependencies. Thus, 𝑔𝑖 = (𝑔𝑖−1, ℎ𝑖 , 𝐸𝑖),

where 𝐸𝑖 is the ordered set of system events in cell along with

the hash of the content accessed by the event. Initially, 𝑔0 = {}.
To see why 𝑔𝑖 is defined so, we note that the execution of the

program code in cell 𝑖 (and the code in previous cells) resulted in

𝑝𝑠𝑖 . Therefore, 𝑝𝑠𝑖 at the end of a cell’s execution depends on its (i)

initial environment, (ii) code that is run, and (iii) external input data.

The environment is determined by the execution state at the start

of the cell. Thus, (i) and (ii) are captured via 𝑔𝑖−1 and ℎ𝑖 . Further,
every external input data file 𝑓 is accessed via a system call event.

For each such event, we record a hash of its contents of 𝑓 in 𝐸𝑖 .

Figure 3 shows the audited information for the two programs,

𝐿1 and 𝐿2. The ordered set of system events for the third cells of

the two programs are shown in the shaded box below.

Figure 3: Auditing of programs 𝐿1 and 𝐿2 in terms of 𝛿 , 𝑠𝑧, ℎ, 𝑔.
Events in 𝐸3 show a forked process, open of an external file
along, and read of data content, denoted by its hash value.
We determine how to check if 𝐸3 across versions is equal in
Section 6.

3 CHEX OVERVIEW
As we see in Figure 2, the two programs behave the same till the

end of the third cell (𝑥3 in 𝐿1, 𝑦3 in 𝐿2) and then diverge. If the

audited lineage, as shown in Figure 3, is established to be the same,

then the program state at the end of 𝑥3 can be used before 𝑦4. i.e,

we can skip executing cells 𝑦1 to 𝑦3. CHEX uses recorded lineage to

determine when the program state is identical across versions, and

decides which common computations to save. We now present a

high-level block diagram of CHEX in Figure 4.

CHEX has two modes: audit and replay. It is used in audit mode

to audit details of executions on Alice’s side. Details of multiple

executions, i.e. the 𝛿 , 𝑠𝑧, ℎ and 𝑔 of each cell across versions are

represented in the form of a data structure called the Execution
Tree. We discuss the execution tree and how it is created in detail

in Section 6. CHEX creates a package of all Alice’s versions and their
data, binary, and code dependencies, along with the execution tree.

This package can now be shared with Bob.

1299

ALICE BOB

Audited
Execution

�훿i, szi, gi, hi Execution Tree

Package
Files

Replay
Order

Replay

Cache

cache
size

Shared Package

Figure 4: CHEX Overview.

CHEX is used in replay mode on Bob’s side. It first determines an

efficient replay sequence or replay order, i.e., a plan for execution

that includes checkpoint caching decisions. To do so CHEX inputs
a cache size bound, 𝐵, and then executes a heuristic algorithm on

the execution tree received from Alice to determine the most cost

efficient replay sequence for that cache size. Computing a cost-

optimal replay sequence for multiple versions of a program with a

cache bound is an NP-hard problem as we show in Section 4 and

so we describe some efficient heuristics for this purpose (Section 5).

Finally, once the replay sequence is computed, CHEX uses this replay
sequence to compute, checkpoint, restore-switch REPL program cells

or evict stored checkpoints from cache.

Our assumptions. Our basic assumption is that Bob wishes to

independently verify the results from Alice’s versions but is time

constrained to repeat all her versions. We do not make any assump-

tions on the types of edits that differentiates one version from the

next. Thus, Alice can change values of parameters, specifications of

datasets, models, or learning algorithms. She can also add or delete

entire cells. We illustrate possible changes via red boxes (Figure 2)

across program versions. We only assume that edits result in valid

executions, which do not terminate in an error, and, each version

is executed in the natural order, top to bottom.

4 THE MULTIVERSION REPLAY PROBLEM
We now describe the multiversion replay problem. Figure 6 sum-

marizes the symbols used in Section 2. In the replay mode, CHEX
inputs an execution tree, 𝑇 , and a fixed cache size, 𝐵, to solve the

multiversion replay problem. We define the execution tree as:

Definition 1. (Execution Tree) An execution tree 𝑇 = (𝑉 , 𝐸) is
a tree in which each program state is mapped to a node and equal
program states across the different versions are mapped to the same
node. Each root to leaf path in 𝑇 corresponds to a distinct version 𝐿𝑖 .

Example. Figure 5 shows the execution tree created from five ver-

sions. In this tree, each root to leaf path corresponds to version 𝐿𝑖 .

In 𝐿1 there is an edit to settings of the program at cell 𝑏, resulting in

𝐿2 and a branch at 𝑎, the last common node across 𝐿1 and 𝐿2. Simi-

larly, in 𝐿3 there is a dataset change to 𝐿2 at cell 𝑒 , resulting in 𝐿3
and a branch at 𝑐 , the last common node across 𝐿2 and 𝐿3. The com-

mon nodes till a branch in the tree correspond to the subsequence

of cells that are equal across versions. The tree branches at a cell

node, subsequent to which cells are not reusable. CHEX computes

cell equality using execution lineages. We will discuss how this is

done via system calls in detail in Section 6. Intuitively, establishing

cell equality makes program states reusable across versions.

Figure 5: The enhanced specifications of versions (without
lineages for simplicity) represented as a tree. The cell 𝑖 ap-
pears similar to ℎ but has a changed program state due to
edited 𝑓 . Both𝑚 and 𝑛 proceed from 𝑖’s state.

The multiversion replay problem is an optimization problem that

arises when multiple versions of a program, each previously exe-

cuted, are replayed as a collection. Once the multiversion program

is represented as an execution tree it is clear that there is some

advantage in not replaying the common prefixes of this tree.

Example. If we replay the five versions of Figure 5 sequentially we
incur total cost of 129. On the other hand, assuming a cache size

of 25, if we store the checkpoint at common prefixes, restore-switch
the checkpoint later to avoid computing the common prefix for

the next version, and evict the previous checkpoint to store a new

one, the replay cost is reduced to 114 as shown in the first replay

sequence of Figure 7. In the second figure we see that a different

set of checkpointing decisions can improve the cost even when

the cache size remains the same. Finally we see that increasing the

space to 50 further improves replay costs to 95.

Under these operations, and given an execution tree and a fixed

amount of space for storing checkpoints, the multiversion replay

problem aims to determine a replay sequence that has the minimum

replay costs. We define a general replay sequence as follows:

Definition 2 (Replay seqence). Given execution tree 𝑇 =

(𝑉 , 𝐸) and a cache of size 𝐵, a replay sequence 𝑅 consists of𝑚 steps
such that step 𝑡 specifies the operation𝑂𝑡 performed and the resulting
state of the checkpoint cache 𝑆𝑡 , i.e.,

𝑅 = [(𝑂𝑡 , 𝑆𝑡) : 0 ≤ 𝑡 ≤ 𝑚]

We will use the term replay order interchangeably with the term
replay sequence.

At the initial step 𝑆0 is empty and the root of the tree is computed.

At any given step 𝑡 , 𝑂𝑡 is of one of the following four types. Here,

𝑢 𝑗 and 𝑢𝑘 are nodes in 𝑉 , the vertices of 𝑇 .

• Compute 𝐶𝑇 (𝑢 𝑗): computes 𝑢 𝑗 ;

• Checkpoint 𝐶𝑃 (𝑢 𝑗): checkpoints 𝑢 𝑗 into the cache;

• Restore 𝑅𝑆 (𝑢 𝑗 , 𝑢𝑘): restores a previous checkpointed 𝑢 𝑗 in
cache and switches to 𝑢𝑘 where 𝑢 𝑗 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢𝑘); and

• Evict 𝐸𝑉 (𝑢 𝑗): evicts a previous checkpoint 𝑢 𝑗 from cache;

1300

𝐿𝑗 REPL program version

𝑥𝑖 Cell in 𝐿𝑗

ℎ𝑖 Hash of source code in 𝑥𝑖

𝑔𝑖 Cumulative hash of source code and ext. dependencies till 𝑥𝑖

𝑝𝑠𝑖 Program state at end of 𝑥𝑖

𝑠𝑧𝑖 Size of 𝑝𝑠𝑖

𝛿𝑖 Computation time to reach 𝑝𝑠𝑖 from 𝑝𝑠𝑖−1
𝑇 Execution tree combining overlapping 𝐿𝑗 ’s

𝐵 Fixed cache size

𝑅 Replay sequence for𝑇

𝑂𝑡 Operation at step 𝑡 in 𝑅

𝑆𝑡 Set of program states in cache after step 𝑡 in 𝑅

𝛿 (𝑅) Computation time for 𝑅

Figure 6: Notation used in Section 2 and Section 4

The cache size can never exceed 𝐵, i.e. |𝑆𝑡 | ≤ 𝐵 for 0 ≤ 𝑡 ≤ 𝑚.

Further, an operation 𝑂𝑡 at step 𝑡 can only be performed on 𝑢 𝑗 , 𝑢𝑘
under the following constraints:

• Checkpoint from working memory: A node in the execution

tree is checkpointed only if it was computed in some previ-

ous step, after which there are only some evictions (to make

space), if at all, i.e., if 𝑂𝑡 = 𝐶𝑃 (𝑢 𝑗) =⇒ 𝑆𝑡 = 𝑆𝑡−1 ∪ {𝑢 𝑗 }
and 𝑂𝑡−𝑖 = 𝐶𝑇 (𝑢 𝑗), for some 1 ≤ 𝑖 ≤ 𝑡 , and 𝑂𝑡 ′ = 𝐸𝑉 (𝑢𝑡 ′)
for 𝑡 − 𝑖 < 𝑡 ′ < 𝑡 .

• Restore from cache and switch to child: A node is restored

only if it was in cache in a previous step, and without alter-

ing cache state, switches to one of its children in the exe-

cution tree, which is computed next i.e., if 𝑂𝑡 = 𝑅𝑆 (𝑢 𝑗 , 𝑢𝑘)
=⇒ 𝑢 𝑗 ∈ 𝑆𝑡−1, 𝑆𝑡 = 𝑆𝑡−1, 𝑂𝑡+1 = 𝐶𝑇 (𝑢𝑘).

• Evict from cache: A node is evicted from cache and alters its

state, i.e., if 𝑂𝑡 = 𝐸𝑉 (𝑢 𝑗) =⇒ 𝑢 𝑗 ∈ 𝑆𝑡−1, 𝑆𝑡 = 𝑆𝑡−1 − {𝑢 𝑗 }.
• Continue computation: Continue computing a node if its

parent was being computed or if its parent was restored, i.e.,
if 𝑂𝑡 = 𝐶𝑇 (𝑢 𝑗) =⇒ 𝑂𝑡−1 = 𝐶𝑇 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢 𝑗)) or 𝑂𝑡−1 =

𝑅𝑆 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢 𝑗), 𝑢 𝑗) and 𝑆𝑡 = 𝑆𝑡−1 or t= 1 and 𝑢 𝑗=root of

the tree 𝑇 .

We assume the operations generate complete and minimal se-
quences. A replay sequence is complete if all leaf nodes of the tree𝑇

appear in 𝑅, and is minimal if no 𝑢 𝑗 that is in cache is recomputed.

Problem 1 (The Multiversion Replay Problem (MVR-P)).

Given tree 𝑇 (𝑉 , 𝐸), the multiversion replay problem is to find a com-
plete replay sequence 𝑅 that minimizes

𝛿 (𝑅) =
|𝑅 |=𝑚∑︁
𝑖=0

𝛿𝑂𝑡
,

in which 𝛿𝑂𝑡
= 𝛿 𝑗 , when 𝑂𝑡 = 𝐶𝑇 (𝑢 𝑗), and 𝛿𝑂𝑡

= 0 otherwise.

In MVR-P, we assume the cost of checkpoint, restore-switch, and

evict operations to be negligible. Thus, the only cost considered

is the cost of computing the cells. Determining the minimum cost

replay order leads to a natural trade-off between computational cost

of cells and fixed-size cache storage occupied by the checkpointed

state of the cells. Thus, to optimally utilize a given amount of

storage we must determine for each cell whether its next cell be

recomputed, or some other cell be recomputed by checkpointing

the state of the current cell. We state that determining the replay

order is computationally hard.

a b d k cg le

a

h f i m

a
Cache
State

Replay
Order

 B = 25, Replay cost = 115

c

i

f

n j

f f

a a cCache
State

Replay
Order

B= 50, Replay cost = 95

c i

n j

f ff
i f i

a aCache
State

Replay
Order

B = 25, Replay cost = 99

c

n

i i

o

a c f j

L1

a b d kg

a b d kg

c le h

c le h

L2 L3 L4 L5

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

f i m

f i m

RS(u,v):CT(u): uCP(u):u
v

u
EV(u): u

a c

a c

a c

φ

φ

φ

φ

c

c

p

o

o p

p

Figure 7: Replay sequences for the execution tree in Figure 5
showing use of operations and the state of the cache.

Theorem 1. MVR-P is NP-hard.

We show that the decision version of MVR-Pis NP-hard. Given

an execution tree 𝑇 , a cache size parameter 𝐵 > 0 and a total cost

parameter Δ > 0, define 𝑅𝑃 (𝑇, 𝐵,Δ) to be the decision problem

with answer YES if there is a replay sequence of𝑇 with cost at most

Δ and size of cache at most 𝐵, and with answer NO otherwise.

The proof is by reduction from the decision version of bin pack-

ing. In outline, the proof works by constructing an execution tree

whose depth 1 nodes have checkpoint sizes corresponding to the

size of the items to be packed into bins in the bin packing problem.

The 𝐵 of 𝑅𝑃 (𝑇, 𝐵,Δ) is set to the size of the bins. In order to force

caching, we keep Δ small and add nodes below the depth 1 nodes

so that each of the level one nodes has to be cached when first

computed. We are able to show that by carefully adding subtrees

below the depth 1 nodes we are able to prove a tight relationship

between the two problems, i.e., the bin packing decision problem

gives a Yes answer iff 𝑅𝑃 (𝑇, 𝐵,Δ) gives a yes answer.
We omit the proof due to space restrictions, referring the reader

to the full version of this paper available at [34].

5 HEURISTIC SOLUTIONS
From Theorem 1 we know that it is unlikely we will find polyno-

mial time solution to MVR-P. Accordingly, we present two efficient

heuristics for this problem. Both heuristics restrict our exploration

of the search space to solutions in which the execution order of

the nodes of the execution tree corresponds to a DFS traversal of

the tree—a natural, simple order in which to approach the replay

of the tree. In order to formalize this notion we present some defi-

nitions. In the following, for sake of brevity, we specify only the

compute 𝐶𝑇 (𝑢 𝑗) type operations in replay sequences. The other

operations (checkpoint, restore, evict) are separately specified. In

this briefer format, each step of a replay sequence is of the form

(𝑢𝑡 , 𝑆𝑡) specifying that at step 𝑡 , 𝑢𝑡 is computed, and the resulting

cache is 𝑆𝑡 .

Definition 3 (Ex-Ancestor replay seqence). Suppose 𝑇 =

(𝑉 , 𝐸) is an execution tree. Given any replay sequence 𝑅 = {(𝑢𝑡 , 𝑆𝑡) :
1 ≤ 𝑡 ≤ 𝑇 } we define its first appearance order to be 𝑖1 < 𝑖2 < · · · <
𝑖 |𝑉 | such that𝑢𝑖 𝑗 is the first appearance of a node 𝑣 𝑗 of T in 𝑅. We call
the indices 𝑖1, . . . , 𝑖 |𝑉 | as first appearances and all other indices as

1301

repeat appearances. For a replay sequence 𝑅, for each 𝑗 ∈ {2, . . . , |𝑉 |}
the sequence of cells 𝑢𝑖 𝑗−1+1 . . . 𝑢𝑖 𝑗−1 is called the helper sequence for
𝑣 𝑗 . If the helper sequence for 𝑣 𝑗 forms a path from an ancestor of 𝑣 𝑗
to 𝑣 𝑗 for each 𝑗 then 𝑅 is called an ex-ancestor replay sequence.

We observe that in an ex-ancestor replay sequence if the helper

sequence of 𝑣 𝑗 is non-empty then it either begins with the root of

𝑇 or with a node whose parent is in 𝑆𝑖 𝑗−1 .

We illustrate this definition with an example. Consider the tree

in Figure 5. Assume for now that cache size 𝐵 = 0 and consider the

following replay sequence:

𝑎, 𝑏, 𝑑, 𝑔, 𝑘, 𝑜, a, 𝑐, 𝑒, ℎ, 𝑙, a, c, 𝑓 , 𝑖,𝑚, a, c, f, i, 𝑛, 𝑝, a, c, f, 𝑗

where bold font indicates repeat appearance nodes. Here the indices

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 21, 22, and 26 are first appearances

and all others are repeat appearances. Let’s take the example of

node 𝑛. It’s first appearance index is 21. Its helper sequence extends

from indices 17 to 20 and contains a, c, f, i. This is a simple path in

the tree beginning from the node containing 𝑎 which is an ancestor

of 𝑛. In fact it is easy to verify that this sequence is an ex-ancestor

replay sequence.

The question arises: Are there meaningful replay sequences that

are not ex-ancestor replay sequences? For example, would it make

sense tomodify𝑛’s helper sequence andmake it a, c, 𝑒, f, i. It appears
that the extra computation of 𝑒 is superfluous and so a priori it is

not obvious that such replay sequences are meaningful from the

point of view of efficient replay. Therefore we focus on ex-ancestor

replay sequences. We conjecture that an optimal solution to MVR-P

will be such a sequence.

Definition 4 (DFS-based replay seqence). Suppose𝑇 = (𝑉 , 𝐸)
is an execution tree for a collection of traces C. We say a complete
and minimal replay sequence 𝑅 is a DFS-based replay sequence if
𝑅 is an ex-ancestor sequence and the first appearance order of 𝑅 is a
DFS-traversal order of 𝑇 .

Note that first appearance sequence of the example discussed

below Definition 3 gives us a DFS-traversal of 𝑇 . Hence this is a

DFS-based replay sequence for the tree of Figure 5.

Now assume a cache size 𝐵 = 25 and the caching decisions made

according to the first replay sequence in Figure 7.
1
The correspond-

ing replay sequence is similarly: 𝑎, 𝑏, 𝑑, 𝑔, 𝑘, 𝑜, 𝑐, 𝑒, ℎ, 𝑙, 𝑓 , 𝑖,𝑚, i, 𝑛, 𝑝, 𝑗 .
Since 𝑎, 𝑐, and 𝑓 are cached at appropriate junctures, the only node

with a non-empty helper sequence is 𝑛 and the length of this se-

quence is just one, i.e., there is only one cell that has to be recom-

puted apart from its first appearance computation. For the second

and third sequence in Figure 7 the number of recomputations are

similarly three (a, c, f) and zero respectively.

We are able to explicitly bound the number of DFS-based replay

sequences.

Proposition 1. Suppose 𝑇 = (𝑉 , 𝐸) is an execution tree for a
collection of traces C such that |𝑉 | = 𝑛 and the height of 𝑇 is ℎ. Let
𝑏𝑢 be the number of children of node 𝑢 ∈ 𝑉 and let

¯𝑏 :=
1

𝑛

∑︁
𝑢∈𝑉

𝑏𝑢 log𝑏𝑢 .

Then, the number of DFS-based replay sequences of𝑇 is𝑂 (2𝑛 (ℎ+logℎ+ ¯𝑏)).
1
All three replay sequences in Figure 7 are DFS-based.

Proof. Let us fix a DFS traversal order. The helper sequence

preceding (and including) each node can be at most ℎ in length and

hence the length of a replay sequence can be no longer than ℎ𝑛.

Since each helper sequence is an ex ancestor path to a node of the

tree, we can have at most ℎ choices of a helper sequence at each

node. Therefore there are at most ℎ𝑛 different sequences that can

qualify to be DFS-based replay sequences. Note that at each point

of one of these sequences of cells we can decide to either cache the

cell that we have just computed (this may require the eviction of

something previously cached) or to not cache it. Hence there are at

most 2
𝑛ℎ

replay sequences associated with each of the ℎ𝑛 different

sequences that we got for a single DFS traversal order. This gives

us an upper bound.

To compute the number of DFS traversal we simply permute the

children visited by DFS at each step to get

∏
𝑢∈𝑉 𝑏𝑢 ! which can be

rewritten as 2
𝑛 ¯𝑏

by using Stirling’s approximation. Multiplying we

get the result. □

Since ℎ is Ω(log𝑛) from Proposition 1 it appears that the space

of possible solution is superexponential. In order to control the

complexity of our solutions we restrict the solution space in two

different ways and define two heuristics.

5.1 Persistent Root Policy Greedy Algorithm
Within the space of DFS-based replay sequences, for our first heuris-

tic, we propose the following caching policy: A cell can be cached
only when it is first computed. Once cached the cell remains in the
cache till every leaf of the subtree rooted at the node containing cell is
computed. We call this the DFS Persistent Root policy.

Given a DFS traversal order this policy reduces the size of the

solution space to 𝑂 (2𝑛) which is still exponential in the size of the

tree. We present a greedy algorithm called Persistent Root Policy
Greedy (PRP) that helps find a good solution in polynomial time.

We present the listing of PRP as Alg. 1. The algorithm begins with

the baseline cost (stored in min) of a DFS-based replay sequence in

which no node is cached and seeks out the node of the tree whose

addition to the list 𝑆 achieves the maximum improvement over the

baseline. This process continues incrementally while it is possible

to include another node in the list. The process will stop when the

subroutine DFSCost tells us that there is no node remaining in𝑉 \ 𝑆
that can be included in 𝑆 . Typically this will happen because for

every node 𝑢 remaining in 𝑉 \ 𝑆 , the cache will be full when it

is encountered in the DFS order. In such a situation DFSCost will
return∞. This algorithm takes 𝜃 (𝑛2) time to find each candidate to

include in the list of nodes to be cached, and there are potentially

𝑂 (𝑛) such nodes. Therefore the time complexity of this algorithm

is 𝑂 (𝑛3). However there is no guarantee of optimality.

PRP is a greedy algorithm that seeks, at each iteration, to pick

for caching the vertex of the execution tree that minimizes the

cost. However, it can be easily modified to choose a vertex that

minimizes the cost incurred per unit of cache memory consumed.
Normalizing by size is a common measure for object caches [7,

32]. We experimentally study both these variants in Section 7. We

will refer to the cost-minimizing version as PRP-v1 and the ratio

minimizing version as PRP-v2.

1302

Algorithm 1 A greedy algorithm that takes as input execution

tree𝑇, and a cache size parameter 𝐵. It outputs list 𝑆 of nodes to be

cached under the DFS Persistent Root policy.

1: function PRP(𝑇, 𝐵)
2: 𝑆 ← ∅
3: 𝑓 ← True ⊲ 𝑓 is True while greedy is able to extend its solution

4: 𝑟 ← root(𝑇)
5: Set min← DFSCost(𝑟, 𝑆, 𝐵, 0) ⊲ The function gives us the cost of a DFS-

based replay sequence for𝑇 given a list of nodes 𝑆 that must be cached when first computed.

6: while 𝑓 is True and 𝑆 ≠ 𝑉 do
7: 𝑓 ← False

8: for each 𝑢 ∈ 𝑉 \ 𝑆 do
9: if DFSCost(𝑟, 𝑆 ∪ {𝑢}, 𝐵, 0) < min then
10: 𝑓 ← True ⊲ We can extend the solution

11: 𝑢∗ ← 𝑢 ⊲ 𝑢∗ is the current best candidate
12: if 𝑓 is True then
13: 𝑆 ← 𝑆 ∪ {𝑢∗}
14: min← DFSCost(𝑟, 𝑆, 𝐵, 0)

15: return 𝑆

1: function DFSCost(𝑢, 𝑆, 𝐵, 𝑏) ⊲ 𝑢 is a node of𝑇 ; 𝑏 is the cache budget used by

the path from the root of𝑇 to𝑢 . Called with𝑢 = root(𝑇) and 𝑏 = 0 this returns the cost of

computing the entire tree.

2: if 𝑢 ∈ 𝑆 and 𝑏 + 𝑠𝑧𝑢 > 𝐵 then
3: return∞ ⊲ Cache size infeasibility detected

4: 𝑐𝑢 ← cost of computing 𝑢 from nearest ancestor in 𝑆

5: if 𝑢 has no children then
6: return 𝑐𝑢

7: sum← 0

8: for each 𝑣 that is a child of 𝑢 do
9: if 𝑢 ∈ 𝑆 then
10: sum← DFSCost(𝑣, 𝑆, 𝐵, 𝑏 + 𝑠𝑧𝑢)
11: else
12: sum← DFSCost(𝑣, 𝑆, 𝐵, 𝑏) + 𝑐𝑢 ⊲ 𝑢 is not cached so must be

recomputed for each child

13: if 𝑢 ∈ 𝑆 then
14: sum← sum + 𝑐𝑢 ⊲ 𝑢 must be computed once

15: return sum

5.2 Parent Choice Algorithm
Wenow present a second heuristic that, while still not being optimal,

searches a superset of the portion of the solution space searched

by PRP. For each 𝑢 ∈ 𝑉 it seeks to partition the children of 𝑢

into two sets: 𝑃𝑢 of nodes for which it is better to cache 𝑢 for the

computation of the corresponding child subtrees, and 𝑃𝑢 for which

it is not. As in Persistent Greedy, caching choices once made persist

here as well.

The listing of the essential recursive Parent Choice is presented

as Alg. 2. When called with (𝑢, 𝑆) we explore the situation in which

we are given the set 𝑆 of ancestors of 𝑢 that will be in cache while

the subtree rooted at 𝑢 is computed. In case 𝑢 happens to be a leaf,

no further decisions are needed, and we simply return the cost of

computing 𝑢 given cache 𝑆 (Lines 2-4). Else, we need to determine

what is best for each child 𝑢𝑖 of 𝑢: Should the subtree rooted at

𝑢𝑖 be computed with 𝑆 as is, or is it better to augment the cache

with 𝑢 (denoted 𝑆+𝑢). In the former the subtree may be forced to

Algorithm 2 A recursive algorithm the computes for a tree rooted

at 𝑢 the lowest DFS-based replay cost for a given cache 𝑆 . The child

subtrees of 𝑢 are allowed to choose between executing with 𝑆 or in

addition caching 𝑢.

1: function ParentChoice(𝑢, 𝑆)

2: if 𝑢 is a leaf then
3: 𝑎 ← nearest ancestor of 𝑢 in 𝑆

4: return cost of computing 𝑢 from 𝑎

5: ⊲ If 𝑎 doesn’t exist, return cost of computing𝑢 from scratch.

6: 𝑆+𝑢 ← 𝑆 ∪ {𝑢} ⊲ 𝑆+𝑢 is cache that also includes𝑢 .

7: if size of cache 𝑆+𝑢 > 𝐵 then
8: ⊲ Caching𝑢 is not a option; process its children with 𝑆 .

9: 𝑃𝑢 ← ∅; 𝑃𝑢 ← 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢).
10: return

∑
𝑢𝑖 ∈𝑃𝑢 ParentChoice(𝑢𝑖 , 𝑆)

11: 𝑃𝑢 ← ∅, 𝑃𝑢 ← ∅
12: ⊲ 𝑃𝑢 will collect the nodes for which caching parent𝑢 is cheaper.

13: for each 𝑢𝑖 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢) do
14: cost(𝑢𝑖 , 𝑆+𝑢) ← ParentChoice(𝑢𝑖 , 𝑆+𝑢)
15: cost(𝑢𝑖 , 𝑆) ← ParentChoice(𝑢𝑖 , 𝑆)
16: if cost(𝑢𝑖 , 𝑆+𝑢) ≤ cost(𝑢𝑖 , 𝑆) then
17: 𝑃𝑢 ← 𝑃𝑢 ∪ {𝑢𝑖 }
18: else
19: 𝑃𝑢 ← 𝑃𝑢 ∪ {𝑢𝑖 }
20: return

∑
𝑢𝑖 ∈𝑃𝑢 cost(𝑢𝑖 , 𝑆+𝑢) +

∑
𝑢𝑖 ∈𝑃𝑢 cost(𝑢𝑖 , 𝑆)

recompute 𝑢 multiple times, in the latter cache space which may

be more useful down the subtree is used up. The two costs are

computed recursively (Lines 14-15), and the child is assigned to

the set 𝑃𝑢 or 𝑃𝑢 corresponding to the lower cost (Lines 16-19)).

Note that when adding 𝑢 to the cache is infeasible, i.e. |𝑆+𝑢 | > 𝐵,

we make the first choice for each node, i.e. assign them all to 𝑃𝑢 .

(Lines 7-10). Finally, we return the cost value up the recursion stack

(Line 20).
2

The essential recursive algorithm PC needs to be implemented

using standard dynamic programming memoization and backpoint-

ers (see, e.g., [11]). Once a call with input (𝑢, 𝑆) is complete, the

corresponding return cost value and the two sets 𝑃𝑢 and 𝑃𝑢 are

recorded. The initial call is with (root(𝑇), ∅). This returns the cost of
the optimal replay sequence for the entire𝑇 . To construct the replay

sequence itself, “follow the backpointers”: Start with 𝑢 = root(𝑇)
and 𝑆 = ∅. If for the corresponding call, 𝑃𝑢 is not empty, compute

𝑢 (possibly by restoring the closest ancestor in the current cache)

and checkpoint it. Update 𝑆 to include 𝑢. Then recursively compute

the subtrees rooted at the nodes in 𝑃𝑢 . Next update 𝑆 to remove

𝑢. Following this, recursively compute the subtrees rooted at the

nodes in 𝑃𝑢 , if any.

The above implementation takes time and space proportional to

the total number of child nodes encountered over all recursive calls.

For each 𝑢 ∈ 𝑉 , at most one recursive call is made for each possible

set of ancestors in the cache. The number of different ancestor sets

is at most 2
ℎ
. Thus the total time taken is 𝑂 (2ℎ ∑𝑢∈𝑉 𝑏𝑢).

2
We do not explicitly show the cost of computing 𝑢 in order to cache it for 𝑃𝑢 . This

cost is offset by the same cost incurred by the first child subtree in 𝑃𝑢 , as shown, but

not actually paid since 𝑢 is already in cache when it is executed. The case of 𝑃𝑢 = ∅
has a further optimization that is possible; see the full version of this paper [34].

1303

6 EXECUTION TREE
We now discuss how CHEX constructs the execution tree at Alice’s

end. As per Definition 1, an execution tree merges equal program

states of different versions into a single node in the tree. Given

the per cell values of state computation time 𝛿𝑖 and size 𝑠𝑧𝑖 , state

lineage 𝑔𝑖 , and state code hash ℎ𝑖 , we use the following conditions

to identify equal program states:

Definition 5 (State eqality). Given two program versions 𝐿1
and 𝐿2, state 𝑝𝑠𝑖 in 𝐿1 is equal to state 𝑝𝑠 𝑗 in 𝐿2, denoted 𝑝𝑠𝑖 = 𝑝𝑠 𝑗 , if
and only if (i) ℎ𝑖 = ℎ 𝑗 , (ii) 𝑔𝑖 = 𝑔 𝑗 , and (iii) 𝛿 and 𝑠𝑧 costs are similar.

In other words we say that two states are equal if they are

reusable i.e., they are (i) equal at code syntactic level, (ii) after

cell execution, result in the same state lineage (note state lineage

of 𝑖𝑡ℎ cell depends on state lineage of previous cell), and (iii) have

roughly similar execution costs. Program state does not remain

equal when cell code is edited, which changes the hash value of

that cell and any subsequent cell. Similar states across versions

also do not remain equal if costs change drastically, i.e., computed

on different hardwares (viz. GPU vs CPU). Equating state lineage

depends on the granularity at which the system events are audited.

Since in CHEX, lineage is audited at the level of system calls, there

are some pre-processing steps that are necessary to establish equal-

ity, such as accounting for partial orders, abstracting real process

identifiers, and accounting for hardware interrupts. We describe

these issues below.

Lineage equality implies that at end of cell 𝑖 of version 𝐿1, 𝑔𝑖 is

the same as that at end of cell 𝑖 of version 𝐿2. This is true if and only

if the sequence of system call events (and their parameters)—till 𝑖 in

𝐿1 and 𝑖 in 𝐿2—exactly match. But if a cell, e.g., forks a child process,

which itself issues system calls, then each version’s sequence will

contain the parent calls and the child process calls interleaved in

possibly different orders.

In Figure 3 the parent process forks a child and then issues

a ‘mem’ memory call, and the child process itself issues ‘exec’,

‘open’, and ‘read’ calls. As the figure shows, it is possible that in the

sequence for version 𝐿1 the ‘mem’ access is before the ‘read’, while

for 𝐿2 it is after. If we want to correctly determine that the state in

𝐿1 is identical to that in 𝐿2 at this point, we need to recognize that

the sequence of system calls is an arbitrary total order imposed

on an underlying partial order. The partial order for 𝐿1 and 𝐿2 is

identical, while the total order can differ.

In our implementation, we reconstruct the underlying partial

order when we detect asynchronous computation, and match it

to identify equality of program states in different versions. This is

achieved by separating the events into PID-specific sequences and

then comparing corresponding sequences. The above comparison

is established by abstracting process identifiers to their logical

values. Memory accesses cannot be abstracted and we just count

the number of accesses in a cell. Comparison must also account

for external inputs in addition to system events. As Figure 3 shows

the hash of external dataset file ‘new_fashion’ is changed from

‘b2e1772’ to ‘6789b34. Thus, the two cells cannot be equated even

though the order of system call sequence in 𝐸 is the same.

A related nuance is due to hardware interrupts. If 𝑃1 experiences

a hardware interrupt and 𝑃2 does not, we make the safe choice:

assume the program states are not equal. (It is easy to make the

opposite choice, by simply ignoring hardware interrupts.)

7 EXPERIMENTAL EVALUATION
We now describe CHEX’s implementation and present an extensive

evaluation of CHEX for multiversion replay.

Implementation. CHEX is implemented in C and Python. CHEX
relies on Sciunit [1] for monitoring the application on Alice’s side

and it relies on Checkpoint/Restore in Userspace (CRIU) [10] to

checkpoint/restore program states. CHEX maintains a ramfs cache

to maintain checkpoints. These checkpoints are of the process

corresponding to the REPL program and not of the container that

Sciunit creates.

We use CRIU as a checkpointing mechanism. This is precisely

to enable checkpoint of a process independent of its programming

language
3
. CRIU does not freeze the state of the container but

just the application process. Currently, CHEX is integrated with the

IPython kernel. In future, we plan to integrate CHEX with Xeus [9],

which will help us extend CHEX to C programs as well. For the

purposes of reproducibility we have made available the code for

the audit and replay mode of CHEX at [40].

We used a combination of real-world applications and synthetic

datasets for evaluation. We ran all our experiments on a 2.2GHz

Intel Xeon CPU E5-2430 server with 64GB of memory, running

64-bit Red Hat Enterprise Linux 6.5. The heuristics were developed

in Python 3.4.

Real-world Applications. We searched GitHub and identified

compute- and data-intensive notebooks, i.e., the programmer had al-

ready divided the code into cells. Most of these notebooks were pub-

lished as artifacts in specific domain conferences (pre-established

to be reproducible), and they were described as compute- and data-

intensive.

We used four neural network machine learning applications

(ML) and two scientific computing (SC) applications. Table 1 de-
scribes the characteristics of these notebooks. For the majority of

the applications, the number of versions was determined in consulta-

tion with the notebook authors, by identifying meaningful changes

to parameter values. Other notebooks were changed similarly. Total
replay cost is the time to run all the versions with no cache. Total
checkpoint size is the space required if each corresponding cell of the
execution tree is checkpointed. Cell compute range and Cell check-
point size represents the range of cell compute time and checkpoint

size ranges, respectively. The changed parameter row mentions

application parameters that were changed to create versions. The

only way we created versions was by changing parameters. We did

not modify any other part of the programs.

The case of the parameter epochs in ML notebooks is special. In

our case, theML notebooks embed deep neural networks, in which

typically the compute-intensive part is the back propagation during

the training phase. Back propagation is usually implemented as

an iterative for-loop, whose upper bound is defined by the epochs
parameter. Changing epochswill change the training length and the

number of iterations in the for-loop. Such a change to create a new

version, however, will also re-run the entire training phase again,

3
Native serializations, viz. Pickle, provide only a slight performance benefit (1-2%).

1304

Table 1: Six Real-world Applications

Dataset: ML1 ML2 ML3 ML4 SC1 SC2

Description
Neural

Networks

[49, 50]

Stock

Prediction

[27, 28]

Image

Classification

[33]

Time-Series

Forecast [13]

Gas Market

Analysis

[2]

Spatial

Analysis

[45, 46]

Changed parameter models, hyperparameters, test metrics, datasets, epochs datasets and input parameters

Number of versions 25 24 32 36 12 23

Version Length 9 - 13 9 7 - 8 17 18 33

Total (no-cache) replay cost (s) 33390 298 2127 10696 7126 10826

Cell compute range (s) 0.0005 - 1073 0.0003 - 8.5 0.008 - 50 0.01 - 240 0.0003 - 926 0.0002 - 224

Total checkpoint size (GB) 57 37 106 566 13 14

Cell checkpoint size (GB) 0.2 - 1.8 0.2 - 0.38 0.4 - 2 1.3 - 11 0.077 - 0.100 0.040 - 0.050

(a) ML1 (b) ML2 (c) ML3

(d) ML4 (e) SC1 (f) SC2

Figure 8: Performance of DFS algorithms on 6 real-world applications. 𝑋 denotes the size of the largest checkpoint cell as
specified in the last row of Table 1. The 𝑦-axis is truncated to show finer performance variations between algorithms.

Table 2: Three Synthetic Datasets

Dataset: CI DI AN
Max. Branch-out Factor 4 4 4

Max. Version Length 6 6 6

Number of versions 20 20 20

Total (no-cache) replay cost (s) ∼20000 ∼5000 ∼20000
Cell compute range (s) 100 - 600 100 100 - 600

Total storage size (GB) ∼22 ∼18 ∼18
Cell checkpoint size (GB) 0.5 0.1 - 0.6 0.1 - 0.6

which will include the training iterations performed in the previous

version. Therefore to create a version when the change is to epochs,
we do not modify the value in-place. Instead we add a new cell.

This cell consists of the author-provided training loop but with

a incremental range of epochs starting from the last epoch value

of the previous cell. This way of modifying the epoch parameter

introduces no change to the code and corresponds to incremental

training, which is often used in ML to take advantage of previous

computations.

Synthetic. To test the sensitivity of our heuristics we randomly

generated synthetic execution trees with different costs and sizes.

We controlled the tree structure using the following parameters:

max. branch out factor: The maximum number of branches possible

at a node. Each branch is constructed with a 50% probability. This

leads to trees in which many nodes have a single child. This is what

we have observed in real notebooks.

max. version length: The number of cells in each version. In general,

the length for each version is different because of the randomization

described above.

max. number of versions: The number of leaves in the execution tree

generated by using max. branch out factor and max. version length.
Using the above parameters, we generate three synthetic datasets:

• Compute intensive (CI): In the CI tree, the compute cost (𝛿) of

cells is high and the checkpoint cost (𝑠𝑧) is modest.

• Data intensive (DI): In the DI tree, the checkpoint cost (𝑠𝑧) of
cells is high and compute cost (𝛿) is modest.

• Analytic (AN): In the AN tree, compute and checkpoint costs

i.e., 𝛿 and 𝑠𝑧 increase with version length.

1305

Table 2 presents the total compute time and total storage size as

well as the compute and storage ranges per cell.

Baselines. IncPy [17, 18] avoids recomputing a function with the

same inputs when it is called repeatedly or across program versions.

Despite our best attempts we could not get IncPy to run with our

real datasets. IncPy is not longer actively maintained and is Python

2.7 based which creates conflicts with more recent notebooks. We

simulated the Vizier system, by taking one notebook version at

a time [6], and using the simple caching policy that is used for

Vizier: Least Frequently used (LFU), which is a standard caching

algorithm. We adapt LFU to our case by checkpointing every cell

of the first version of a notebook till the cache space fills up. As

subsequent versions arrive, the cache eviction policy is decided

by the measure 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × # 𝑜 𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑡𝑟𝑒𝑒/𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒 , i.e.,
retaining cells which are used frequently and are responsible for

larger subtree, normalized by their size. Least recently used, another

standard caching algorithm, is not relevant in our case due to the

depth-first replay order.

7.1 Experiments
We first evaluate the benefit different algorithms provide in terms

of reduction in replay time. We then evaluate the overhead of oper-

ating CHEX.

7.1.1 Comparing decrease in replay cost via different algo-
rithms. Persistent Root Policy (PRP) and Parent Choice (PC) make

different choices with respect to cells that must be retained in cache

for recomputation. In this experiment, we evaluate how those deci-

sions compare with the (LFU) baseline. Recall that PRP has two

versions: PRP-v1, in which we cache checkpoints greedily based

on contribution to reduction in cost, and PRP-v2, in which we

normalize the cost reduction by the checkpoint size.

To compare algorithmic performance, we choose a cache size

that is equal to the largest checkpoint size in a notebook and com-

pute total replay time. The 𝑦-axis is initialized with a non-zero

value to show finer comparisons between algorithms. For both PC
and PRP algorithms on real-world applications, as is expected, Fig-

ures 8(a)-(f), show decreasing compute times (𝑦-axis) as the cache

size is increased (𝑥-axis). We also see PRP and PC always perform

substantially better than LFU, and PC reduces total compute cost

more than either of the PRP versions.

Both these result trends are not exhibited in Figure 8(e) (SC1)
and, to an extent, in Figure 8(d) ML4. In (e), as we observe, none

of the algorithms, including the baseline LFU, show any benefit of

caching. This is because in this notebook only the last cell of each

version is compute-intensive, and none of the intermediate cells

are cache-worthy. In (d), similarly, most computation is towards

the later cells; PRP and PC still find some ways to optimize which

LFU cannot find. The effect of reuse of intermediate results is well-

demonstrated when comparingML4 and SC2which exhibit similar

total replay costs. However, there is a much greater reduction in

total replay cost in SC2 (from 100% to 18%) as there are several

compute-intensive pre-processing steps in the earlier cells of the

notebook, where as in ML4 most computation occurs towards the

later cells.

Analyzing deeper we also observe these trends: (i) Sometimes,

initially, PRP performs better, and this happens due to small cache

size effect, since PC becomes a clear win with some additional cache

space; (ii) PRP-v1 performs better than PRP-v2 indicating that

eviction on a cost/size measure leads to more greedy eviction policy

where checkpoints are evicted which need to recomputed later; and

finally (iii)ML1,ML3 and SC2 are compute-intensive notebooks.

Using the PC algorithm, these notebooks show a reduction of 60-

65% in their compute time at a size of the cache which is at most

double the size of the largest checkpoint cell in the notebook. This

indicates that smart algorithms can provide significant benefits

even with small cache sizes. We obtain similar results for synthetic

datasets, and, for lack of space, only include the figures for synthetic

results in the extended version of the paper [34].

7.1.2 Determining number of versions replayed with fixed
cache size. We also examine the direct benefit of a system like

CHEX for users. For most users CHEX will be configured with a given

amount of cache space. Users, however, have time constraints. Thus

we determine, for given cache sizes, number of versions that can be

replayed with CHEX in a given amount of time, on the AN dataset.

Figure 9(a) presents the result (number of versions (𝑦-axis) for the

amount of time it takes to replay them (𝑥-axis)) for a given cache

size, the value being either: no cache, 0.25GB, 0.5GB, and 1GB. The

Figure shows that a user can run 50% more number of versions

by doubling the space for the same fixed amount of time. To be

able to run larger number of runs for the same amount of time

has implications for scaleable collaborative sharing and artifact

evaluation use cases.

Figure 9: (a) For given cache sizes, number of versions that
can be replayed with CHEX in a given amount of time, on the
AN dataset. (b) The overhead of auditing 𝛿, 𝑠𝑧, 𝑔 and ℎ in real
world applications with > 5 minutes of replay cost.

7.1.3 Time and space required to run CHEX. We first determine the

cost of auditing an application in CHEX.

Cost of Auditing. CHEX performs auditing of state for each version

of an application in terms of computation time 𝛿 , state size 𝑠𝑧, state

code hash ℎ, and state lineage 𝑔. We report both normal execution

and audited execution as a percentage of the total time of using

CHEX on a real application.

Amongst these audited quantities, the primary overhead is the

additional time required to audit the application for state lineage,

i.e., 𝑔. We further divide time to audit for 𝑔 into time required

to (i) monitor and log system events in the application, and (ii)

the time required to compute the hash of any external content

1306

(a) (b) (c)

Figure 10: Algorithm complexity of AN workloads: (a) running time, (b) storage size for PC, and (c) number of
checkpoints/restore-switch for PC

that is referenced. As Figure 9(b) shows, a 15-25% of total auditing

overhead is added across all applications. We are reporting 5 out of

six applications asML2 has relatively insignificant running time

to begin with.

Also the time to perform cell equality and construct the execution

tree is negligible. Alice shares a package with the execution tree,

the size of which is less than 1KB.

Cost of computing cache eviction decisions.We have shown

the multiversion replay problem to be NP-hard; PRP and PC are

heuristic algorithms, and thus have some time and space cost of

making the cache eviction decisions. In this experiment, we mea-

sure the cost of using PRP and PC algorithms in comparison to

LFU in terms of running time, space used, and number of times

checkpoint/restore call was made. We experimented with the AN
synthetic dataset.

The variability in running time of the algorithms with cache

size is negligible (∼[0.05%]). Therefore, we fix the cache size to

1GB and show the variation with respect to two other parameters,

the number of nodes in the tree, i.e., tree size and the different

algorithms. Figure 10 (a) shows that PC is better than PRP in terms

on run-time overhead, but in terms of space, it does incur a cost.

PRP has negligible state maintenance as it uses the execution

tree to determine the order. However, PC takes storage, because

it has to store all possible combinations of execution orders for

different cache eviction sizes to get the most optimal one. Figure 10

(b) shows the increase in storage for different tree sizes as cache

size is increased. Despite these differences, we highlight that the

runtime and memory overheads of both algorithms is much lower

(0.5-2%) than the overall compute time and storage of multiversion

execution of any given real dataset.

The above experiment measures decision-making time and space.

In practice to implement the decisions we must account for in-

memory checkpoints and restore (C/R) time. In general, time to

C/R are proportional to the size of the checkpointed state and

are negligible. So we measured the number of times C/R were

performed to check if small C/R costs adds to the overall latency

of multiversion execution (Figure 10 (c)). As we see C/R costs are

negligible, and decision making accounts for the primary cost.

Apart from the experiments reported above, we attempted a

comparison between PC and an optimal algorithm,using the AN
dataset for comparison. For optimal, we wrote our problem, the

MVR-P, as an Integer Linear Program (ILP) and attempted to solve

it with the Couenne optimizer [30]. The Couenne timeout was set

as ten minutes. For tree size of 2-6 nodes, Couenne finished finding

a solution in less than 10 seconds, but after that the time starts

increasing exponentially. At 12 versions and an execution tree of

20 nodes, the optimal solution could not be found within the set

time out. On increasing the number of versions, it took more time

to find the optimal solution than naive replay (without cache). On

the other hand, as we show in Figure 10(a) we took milliseconds to

find a solution for more than a tree-size of 30.

Since we only found optimal solution for small trees, in terms of

the quality of the solution, we found the replay cost of PC similar

to optimal. For larger tree sizes, it may give better cost estimates,

but given the large running time of optimal for larger and complex

instances, we assess, it is not worth it. Finally, the overhead of

implementing the decisions in CHEX is too small to be measured

and often smaller than the variance between multiple runs.

8 RELATEDWORK

Tools and hubs for sharing and reuse. Sharing and replaying

is essential for verifying, and reproducing complex applications.

Several user-space virtualization based tools have recently been

proposed to enable sharing and repeating computations [8, 19, 22,

41, 43, 55]. These tools do not address multiversion replay. In a

virtualization package, code and data remain separate as files or

databases [43]. Computational notebooks, which combine code and

data, have received wide attention recently for sharing and use [26].

Notebook sharing, like package sharing, is easy but (re-)execution
across versions remains sequential. Nodebooks [58] and Vizier [6]

are specialized notebook clients that support and store notebook

versions at a cell level. Neither, however, compute deltas between

versions or trade computation for storage. Our work complements

specialized notebook systems used for interactive development [24],

and given lineage from these systems [31], replay can be enabled.

Execution lineage. There are several provenance models for cap-

turing execution lineage [52]. In this paper, we adopt the system-

event trace analysis process that is also used in other whole system

provenance tracking methods [3, 15, 51].

Data caching. Data management systems have a rich history of

employing object caches that tradeoff space for time to improve

performance of applications. Semantic caching allows caching of

query results [12, 48], web-object caching allows caching of web ob-

jects [7, 23], and query-based object caching allows database object

caching based on queries [32]. In all of these works, the workload

sequence is not known. In the multi-query scenarios [48] the work-

load is presented as set of queries and hence there is the possibility

of caching the results of common sub-expressions and reusing them

1307

across queries. However, efficient reuse in the multi-query setting

primarily involves searching through the space of query answering

plans to identify plans that could potentially lead to optimal reuse.

In certain cases not finding the optimal plan and blindly reusing

common subexpressions may blow up the computation time be-

cause a large join may be required. Our scenario appears similar

but we do not have the wiggle room provided by the semantics of

a query, nor the potential pitfalls associated with blind reuse.

State management for recomputation. [54] provides an excel-

lent survey of state management for computation. State can be

recomputed from lineage or state can be stored ‘as-is’. In SciInc [56]

state is recomputed from lineage that is versioned. Versioned lin-

eage or causality-based versioning [36, 56] leads to correct compu-

tation of state for incremental replay. In this work, on the contrary,

we are concerned with state that is stored ‘as-is’. Several works

store ‘as-is’ state—this state is state of a variable, query, program,

or configuration [54]. Similar to [20, 21, 25, 39], in this work, our

operator is program state. However, in these works the purpose is

fault-tolerance, and so the system periodically checkpoints but does

not consider space limitations. We determine a limited number of

checkpoints of program state to save in-memory space, and using

lineage, choose to simply recompute when efficient. To reduce space

an alternative would be to incrementally checkpoint as explored

in differential flows [35, 37] and query re-optimization [29]. These

approaches are not extendable to checkpoints of program state,

which is an in-memory map. Very recently checkpointing was used

to improve efficiency, but the checkpoint frequency is periodic [14].

Checkpoint location. Deciding when to checkpoint has received

attention in HPC scheduling [5, 47]. A primary objective is to mini-

mize the amount of computation that needs to be redone in case

the system fails. In HPC workflows, the checkpoint also has an

overhead. We consider machine learning and scientific computing

programs in which the checkpoint overhead is nearly zero.

Closer in spirit to our work is the DataHubs [4] system that

seeks to maintain multiple versions of large data sets without fully

replicating them. In this system some versions are stored fully

materialized and others are stored only as deltas linked to other

versions. The problem is to trade off total storage required versus

time taken to recreate a version. At a glance, it is possible to think

that the program states of the cells of our multiversion program can

be aligned with the data sets considered in DataHubs. However, the

fundamental difference is that DataHubs assumes each version of a

data set has already been created the first time. Thus, they assume

that at least one version of the data set is stored in its entirety. In

CHEX, the equivalent thing would be for Alice to share some of the

program states generated in her execution with Bob. This defeats

the entire purpose of independent repetition by Bob.

9 DISCUSSION
We now discuss any assumptions that CHEX makes and our results.

We assumed that CHEXworks with REPL cells, but, in general, we do
not constrain users like Alice to program with REPL interfaces. If

the code is not developed via a REPL interface, CHEX preprocesses it
into cells, akin to a program developed via a REPL interface, before

monitoring. This preprocessing takes care to not split functions

or control flows into separate cells. Thus every input program is

automatically transformed into an equivalent REPL program and

then entered into the CHEX.
We have assumed multiple versions for a given program. We

make no assumptions on the types of edits that constitutes a ver-

sion on Alice’s side. Thus, Alice can change values of parameters,

specifications of datasets, models, or learning algorithms. She can

also add or delete entire cells. In practice we have found such ver-

sions to not correspond to development versions but as separate

branches in version-control repositories. In workflow systems they

also correspond to independent, but related, experiments.

We have only demonstrated a scenario in which Alice shares

notebooks with Bob for multiversion replay. A more evolved back-

and-forth sharing of packages, one that accounts for any previous

multiversion replay decisions to be persisted, will require further

changes both to the system and the algorithm. In such a scenario, if

the caches persist, some intermediate results are available for free

and the algorithm needs to accommodate for that accordingly. This

scenario is part of our future work.

Finally, our experiments show that CHEX significantly decreases

the replay time for notebooks and allows a user to execute a far

higher number of versions in a given amount of time. The benefit

arises particularly for notebooks where pre-processing or training

steps are compute and data-intensive. In particular, if all computa-

tion is conducted in the last cell, then opportunities for optimization

on intermediate results reduce drastically. In this case, one option

is to encourage the developer to further divide the last cell, which

creates further opportunities of optimization. If the cell cannot be

divided, then one may employ a hybrid approach of using function-

based caching within this cell. This may, however, require some

analysis of the program in the last cell.

10 CONCLUSION
In this work we have highlighted the need for improving the ef-

ficiency of multiversion replay. Our work shows that execution

lineage can be used to establish cell equality and reuse shared pro-

gram state to optimize replaying of multiversions. We show that

optimizing is not trivial and, given a fixed cache size, MVR-P is

NP-hard and present two efficient heuristics for reducing the total

computation time. We develop novel checkpoint-based caching sup-

port for replaying versions and show that CHEX is able to reduce the
compute time of several machine learning and scientific computing

notebooks using a cache size that is smaller than the checkpoint

size of a notebook.

In the future, we wish to extend CHEX for queries and the stan-

dard database provenance model. This problem seems akin to how

we previously extended provenance-based application virtualiza-

tion [42] to database virtualization [43]. We also wish to explore

how CHEX can incorporate program restructuring, which happens

during interactive notebook development leveraging recent prove-

nance models developed in this area [6, 24, 31] and developing

corresponding online algorithms.

ACKNOWLEDGMENTS
This work is supported by National Science Foundation under

grants CNS-1846418, NSF ICER-1639759, ICER-1661918 and a De-

partment of Energy Fellowship.

1308

REFERENCES
[1] 2017. Sciunit. https://sciunit.run/. [Online; accessed 10-Sep-2021].

[2] Bahuisman. 2018. Natural-Gas-Model. https://github.com/bahuisman/

NatGasModel. [Online; accessed 10-Dec-2021].

[3] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, and Andy Hopper.

2013. OPUS: A Lightweight System for Observational Provenance in User Space.

In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13). 1–4.
[4] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya

Parameswaran. 2015. Principles of dataset versioning: exploring the recre-

ation/storage tradeoff. Proceedings of the VLDB Endowment 8, 12 (2015), 1346–
1357.

[5] Mohamed-Slim Bouguerra, Denis Trystram, and Frédéric Wagner. 2012. Com-

plexity analysis of checkpoint scheduling with variable costs. IEEE Trans. Comput.
62, 6 (2012), 1269–1275.

[6] Michael Brachmann,William Spoth, Oliver Kennedy, Boris Glavic, HeikoMueller,

Sonia Castelo, Carlos Bautista, and Juliana Friere. 2020. Your notebook is not

crumby enough, REPLace it. In Conference on Innovative Data Systems Research
(CIDR).

[7] Pei Cao and Sandy Irani. 1997. Cost-aware www proxy caching algorithms.. In

USENIX Symposium on Internet Technologies and Systems. 193–206.
[8] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-

proZip: Computational Reproducibility With Ease. In SIGMOD’16. 2085–2088.
[9] Jupyter Community. 2016. C++ implementation of the Jupyter Kernel protocol.

https://github.com/jupyter-xeus/xeus.

[10] The CRIU Community. 2019. Checkpoint/Restore In Userspace. https://criu.org/.

[Online; accessed 8-Jan-2019].

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press, Chap-

ter 15.

[12] Shaul Dar, Michael J Franklin, Björn Þór Jónsson, Divesh Srivastava, and Michael

Tan. 1996. Semantic Data Caching and Replacement. In Proceedings of the 22th
International Conference on Very Large Data Bases. 330–341.

[13] Joseph Eddy. 2019. Time-Series Forecasting. https://github.com/JEddy92/

TimeSeries_Seq2Seq. [Online; accessed 10-Dec-2021].

[14] Rolando Garcia, Eric Liu, Vikram Sreekanti, Bobby Yan, Anusha Dandamudi,

Joseph E Gonzalez, Joseph M Hellerstein, and Koushik Sen. 2020. Hindsight

logging for model training. Proceedings of the VLDB Endowment 14, 4 (2020),
682–693.

[15] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Audit-

ing in Distributed Environments. In Proceedings of the 13th International Middle-
ware Conference (Middleware ’12). 101–120.

[16] Pradeep Kumar Gunda, Lenin Ravindranath, Chandu Thekkath, Yuan Yu, and

Li Zhuang. 2010. Nectar: Automatic Management of Data and Computation in

Datacenters. In Proceedings of the 9th Symposium on Operating Systems Design
and Implementation (OSDI). 75–88.

[17] Philip Guo and Dawson Engler. 2011. Using Automatic Persistent Memoization

to Facilitate Data Analysis Scripting. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, 287–297.

[18] Philip J. Guo and Dawson Engler. 2010. Towards Practical Incremental Recompu-

tation for Scientists: An Implementation for the Python Language. In Proceedings
of the 2nd Workshop on the Theory and Practice of Provenance (TAPP’10). 6–6.

[19] Philip J. Guo and Dawson Engler. 2011. CDE: Using System Call Interposition

to Automatically Create Portable Software Packages. In 2011 USENIX Annual
Technical Conference (USENIX ATC 11). 21–21.

[20] Doug Hakkarinen and Zizhong Chen. 2012. Multilevel diskless checkpointing.

IEEE Trans. Comput. 62, 4 (2012), 772–783.
[21] Jeong-Hyon Hwang, Ying Xing, Ugur Cetintemel, and Stan Zdonik. 2007. A

cooperative, self-configuring high-availability solution for stream processing. In

2007 IEEE 23rd International Conference on Data Engineering. IEEE, 176–185.
[22] Yves Janin, Cédric Vincent, and Rémi Duraffort. 2014. CARE, the Comprehensive

Archiver for Reproducible Execution. In Proceedings of the 1st ACM SIGPLAN
Workshop on Reproducible Research Methodologies and New Publication Models in
Computer Engineering (TRUST ’14). 1–7.

[23] Shudong Jin and Azer Bestavros. 2000. Popularity-aware greedy dual-size web

proxy caching algorithms. In Proceedings 20th IEEE International Conference on
Distributed Computing Systems. IEEE, 254–261.

[24] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking

dependencies of cells. In 9th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2017). 17–17.

[25] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. 2008. Fault-

tolerant stream processing using a distributed, replicated file system. Proceedings
of the VLDB Endowment 1, 1 (2008), 574–585.

[26] Sam Lau, Ian Drosos, Julia MMarkel, and Philip J Guo. 2020. The Design Space of

Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.

In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–11.

[27] Xinyi Li. 2020. Stock Prediction Using Financial News. https:

//github.com/AI4Finance-LLC/Financial-News-for-Stock-Prediction-using-

DP-LSTM-NIPS-2019. [Online; accessed 5-Dec-2021].

[28] Xinyi Li, Yinchuan Li, Hongyang Yang, Liuqing Yang, and Xiao-Yang Liu. 2019.

DP-LSTM: Differential privacy-inspired LSTM for stock prediction using finan-

cial news. 33rd Conference on Neural Information Processing Systems (NeurIPS
2019) Workshop on Robust AI in Financial Services: Data, Fairness, Explainability,
Trustworthiness, and Privacy (2019).

[29] Mengmeng Liu, Zachary G Ives, and Boon Thau Loo. 2016. Enabling incremental

query re-optimization. In Proceedings of the 2016 International Conference on
Management of Data. 1705–1720.

[30] Robin Lougee-Heimer. 2003. Convex Over and Under ENvelopes for Nonlinear

Estimation. https://www.coin-or.org/Couenne/. [Online; accessed 21-July-2021].

[31] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and

Aditya Parameswaran. 2021. Fine-grained lineage for safer notebook interactions.

Proceedings of the VLDB Endowment 14, 6 (2021), 1093–1101.
[32] Tanu Malik, Randal Burns, and Amitabh Chaudhary. 2005. Bypass caching: Mak-

ing scientific databases good network citizens. In 21st International Conference
on Data Engineering (ICDE’05). IEEE, 94–105.

[33] NithinManne. 2020. Image Classification. https://www.kaggle.com/nithinmanne/

fashionmnist. [Online; accessed 10-Dec-2021].

[34] Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish Gehani,

and Amitabh Chaudhary. 2022. CHEX: Multiversion Replay with Ordered Check-

points. arXiv:2202.08429 [cs.DB]

[35] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow. In CIDR.
[36] Kiran-Kumar Muniswamy-Reddy and David A. Holland. 2009. Causality-based

Versioning. Transactions of Storage 5, 4 (Dec. 2009), 1–28.
[37] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

[38] Yuta Nakamura, Tanu Malik, and Ashish Gehani. 2020. Efficient Provenance

Alignment in Reproduced Executions. In 12th International Workshop on Theory
and Practice of Provenance (TaPP 2020). 6–12.

[39] Bogdan Nicolae and Franck Cappello. 2013. AI-Ckpt: leveraging memory access

patterns for adaptive asynchronous incremental checkpointing. In Proceedings
of the 22nd international symposium on High-performance parallel and distributed
computing. 155–166.

[40] Tanu Malik Nithin Naga Manne. 2021. The CHEX System. https://bitbucket.org/

depauldbgroup/storagevscompute/src/optimal/.

[41] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and

Nimrod Partush. 2017. Engineering record and replay for deployability. In 2017
USENIX Annual Technical Conference. 377–389.

[42] Quan Pham, TanuMalik, and Ian Foster. 2013. Using Provenance for Repeatability.

In USENIX Theory and Practice of Provenance (TaPP’13). Article 2, 2:1–2:4 pages.
[43] Quan Pham, Tanu Malik, Boris Glavic, and Ian Foster. 2015. LDV: Light-weight

database virtualization. In 2015 IEEE 31st International Conference on Data Engi-
neering. IEEE, 1179–1190.

[44] Quan Pham, Severin Thaler, Tanu Malik, Ian Foster, and Boris Glavic. 2015.

Sharing and Reproducing Database Applications. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1988–1991. https://doi.org/10.14778/2824032.2824118

[45] Michael Rilee. 2020. STARE Cookbooks: STARE+Dask-Demo. https://bit.ly/

37dlK4B. [Online; accessed 10-Dec-2021].

[46] Michael Rilee, Niklas Griessbaum, Kwo-Sen Kuo, James Frew Frew, and Robert

Wolfe. 2020. STARE-based Integrative Analysis of Diverse Data Using Dask Par-

allel Programming. Proceedings of ACM SIGSPATIAL conference (SIGSPATIAL’20)
(2020), 417–420.

[47] Yves Robert, Frédéric Vivien, and Dounia Zaidouni. 2012. On the complexity of

scheduling checkpoints for computational workflows. In IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN 2012). IEEE,
1–6.

[48] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. 2000. Efficient

and extensible algorithms for multi query optimization. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 249–260.

[49] Hojjat Salehinejad. 2020. EPruning (EDropout). https://github.com/sparsifai/

epruning. [Online; accessed 10-Dec-2021].

[50] Hojjat Salehinejad and Shahrokh Valaee. 2020. EDropout: Energy-Based Dropout

and Pruning of Deep Neural Networks. arXiv preprint arXiv:2006.04270 (2020),
arXiv–2006.

[51] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2014. Looking inside

the black-box: capturing data provenance using dynamic instrumentation. In

International Provenance and Annotation Workshop. Springer, 155–167.
[52] Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Vermeulen,

Ashish Gehani, Herbert Bos, and Paul Groth. 2016. Trade-Offs in Automatic

Provenance Capture (IPAW 2016). Springer-Verlag, 29–41.
[53] Victoria Stodden, Matthew S Krafczyk, and Adhithya Bhaskar. 2018. Enabling the

Verification of Computational Results: An Empirical Evaluation of Computational

Reproducibility. In Proceedings of the First International Workshop on Practical

1309

https://sciunit.run/
https://github.com/bahuisman/NatGasModel
https://github.com/bahuisman/NatGasModel
https://criu.org/
https://github.com/JEddy92/TimeSeries_Seq2Seq
https://github.com/JEddy92/TimeSeries_Seq2Seq
https://github.com/AI4Finance-LLC/Financial-News-for-Stock-Prediction-using-DP-LSTM-NIPS-2019
https://github.com/AI4Finance-LLC/Financial-News-for-Stock-Prediction-using-DP-LSTM-NIPS-2019
https://github.com/AI4Finance-LLC/Financial-News-for-Stock-Prediction-using-DP-LSTM-NIPS-2019
https://www.coin-or.org/Couenne/
https://www.kaggle.com/nithinmanne/fashionmnist
https://www.kaggle.com/nithinmanne/fashionmnist
https://arxiv.org/abs/2202.08429
https://bitbucket.org/depauldbgroup/storagevscompute/src/optimal/
https://bitbucket.org/depauldbgroup/storagevscompute/src/optimal/
https://doi.org/10.14778/2824032.2824118
https://bit.ly/37dlK4B
https://bit.ly/37dlK4B
https://github.com/sparsifai/epruning
https://github.com/sparsifai/epruning

Reproducible Evaluation of Computer Systems. ACM, 3.

[54] Quoc-Cuong To, Juan Soto, and Volker Markl. 2018. A survey of state manage-

ment in big data processing systems. The VLDB Journal 27, 6 (2018), 847–872.
[55] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. 2017. Sciunits:

Reusable Research Objects. In IEEE eScience. 374–383.
[56] Andrew Youngdahl, Dai Hai Ton That, and Tanu Malik. 2019. SciInc: A Container

Runtime for Incremental Recomputation. In IEEE eScience. IEEE, 291–300.

[57] Zhihao Yuan, Dai Hai Ton That, Siddhant Kothari, Gabriel Fils, and Tanu Malik.

2018. Utilizing Provenance in Reusable Research Objects. Informatics 5, 1 (2018),
14. https://doi.org/10.3390/informatics5010014

[58] K Zielnicki. 2017. Nodebook. https://multithreaded.stitchfix.com/blog/2017/07/

26/nodebook/ [Online; accessed 10-July-2021].

1310

https://doi.org/10.3390/informatics5010014
https://multithreaded.stitchfix.com/blog/2017/07/26/ nodebook/
https://multithreaded.stitchfix.com/blog/2017/07/26/ nodebook/

