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ABSTRACT
Subsequence matching is an important and fundamental problem

on time series data. This paper studies the inherent time com-

plexity of the subsequence matching problem and designs a more

efficient algorithm for solving the problem. Firstly, it is proved

that the subsequence matching problem is incomputable in time

𝑂 (𝑛1−𝛿 ) even allowing polynomial time preprocessing if the hy-

pothesis SETH is true, where 𝑛 is the size of the input time series

and 0 ≤ 𝛿 < 1, i.e. , the inherent complexity of the subsequence

matching problem is 𝜔 (𝑛1−𝛿 ). Secondly, an efficient algorithm for

subsequence matching problem is proposed. In order to improve

the efficiency of the algorithm, we design a new summarization

method as well as a novel index for series data. The proposed algo-

rithm supports both Euclidean Distance and DTW distance with

or without z-normalization. Experimental results show that the

proposed algorithm is up to about 3 ∼ 10 times faster than the

state of art algorithm on the constrained z-normalized Euclidean

Distance and DTW distance, and is up to 7 ∼ 12 times faster on

Euclidean Distance.
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1 INTRODUCTION
Time series data are common in industry and daily life, such as

wind speed collected by sensors, prices of stocks, and body move-

ments measured by wearable devices. All these information can

be abstracted as a series of real numbers representing the chang-

ing data with the elapse of time. We assume that the data arrives

at equal time intervals in this paper. Therefore, a time series 𝑆 of

length 𝑛 is formalized as an ordered sequence of 𝑛 real numbers, i.e.

𝑆 = (𝑠1, 𝑠2, 𝑠3, .....𝑠𝑛). An𝑚-length subsequence of 𝑆 is a sequence

defined as 𝑆𝑚
𝑖

= (𝑠𝑖 , 𝑠𝑖+1, 𝑠𝑖+2, .....𝑠𝑖+𝑚−1), where 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1
and𝑚 > 0.

There are two important types of similarity search on series data.

One is whole sequence matching, which is to find the similar series

of the query in a set of series [7, 25, 30].

The other is subsequence matching, which is one of the most

important but time consuming operation on time series data. This

paper focuses on the subsequence matching problem.

Subsequence matching problem is frequently involved in many ap-

plications such as motif discovery, anomaly detection and financial

analysis [2, 12, 23, 31–34]. It takes a data series 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑛), a
query series𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑚) and threshold 𝜖 > 0 as its input, and

outputs the result 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖) = {𝑋 |𝑋 = 𝑆
|𝑄 |
𝑖
∧ 𝐷 (𝑋,𝑄) ≤ 𝜖, 1 ≤

𝑖 ≤ 1, 2, ..., 𝑛 −𝑚 + 1}, where 𝐷 (𝑋,𝑄) is a distance measurement

defined on 𝑋 and 𝑄 .

The subsequence matching problem has attracted lots of research

interests. The first algorithm for subsequence matching on Euclidean
Distance is proposed in [8]. Then, other two algorithms, called Dual

Match and General Match, are proposed with improved segmen-

tation strategy [17, 18]. Zhu et al. propose envelope technics to

deal with DTW distance [33]. Further more, multiple distance mea-

surements are supported in [9]. In addition, there are also hash

based approximate solutions to improve the query efficiency [1].

Besides, Edit Distance and its variants are also used in subtrajectory

similarity search [5, 6, 15, 20, 24, 26].
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The above efforts focused on searching subsequences on raw

series. Recently, the importance to support subsequence matching

between z-normalized subsequences is recognized [16, 19, 29]. The

z-normalized form of series 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑚), denoted by �̂� , is

�̂� = ( 𝑥1 − `𝑋
𝜎𝑋

,
𝑥2 − `𝑋
𝜎𝑋

, ...,
𝑥𝑚 − `𝑋
𝜎𝑋

),

where `𝑋 = 1

𝑚

∑︁𝑚
𝑖=1 𝑥𝑖 and 𝜎𝑋 =

√︂
1

𝑚

∑︁𝑚
𝑖=1 (`𝑋 − 𝑥𝑖 )2.

Z-normalization is necessary for recognizing similar series with

tolerance for vertical scaling and horizontal shifting [10]. For exam-

ple, two stocks with similar trend may have significant difference

in their prices. Therefore, directly applying distance functions on

the raw subsequences would not be able to reasonably reveal their

similarity.

Considering two |𝑄 |-length subsequences of 𝑆 , 𝑋 and 𝑋
′
, which

are illustrated in Figure 1. Although the shape of 𝑄 is more similar

to 𝑋 rather than 𝑋
′
, Euclidean Distance or DTW would report that

compared with 𝑋 , subsequence 𝑋
′
is more similar to 𝑄 . Therefore,

sometimes it is not only reasonable but also essential to normalize

𝑄 , 𝑋 and 𝑋
′
into �̂� , �̂� and 𝑋

′ˆ
first, and then comparing 𝐷 (�̂�, �̂� )

and 𝐷 (�̂�, 𝑋 ′ˆ ). Z-normalization is useful, but the normalized series

are incomputable in preprocessing without the knowledge of |𝑄 |,
which brings troubles to index-based methods. Therefore, there are

only a few algorithms support for Z-normalization.

Figure 1: An illustrative example of subsequence matching.

UCR suite [19] provides the first practical solution to the subse-

quence matching problem on z-normalized subsequences. However,

it requires to scan 𝑆 for each query. To the best of our knowledge,

KV-Match [29] and ULISSE [16] are the state-of-art approaches that

support z-normalization without the need for scanning the whole

series.

However, ULISSE has two drawbacks. The first one is that ULISSE

requires 𝑙𝑚𝑖𝑛 ≤ |𝑄 | ≤ 𝑙𝑚𝑎𝑥 , where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are predefined

constants. Therefore, it cannot handle query series of arbitrary

lengths. The second one is that the results of the z-normalization

may not satisfy the user’s requirements in some applications, such

as IoT. As indicated in [29], because z-normalization completely

eliminates the differences among themeans and standard deviations

of series, which may carry important information for identifying

the series of interest.

The KV-match algorithm proposes to add a constraint for sub-

sequence matching and overcomes the above drawbacks. Specif-

ically, the constraint is denoted as 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2] × [𝛼1, 𝛼2],
{𝛼 ′

1
, 𝛼
′
2
, 𝛽
′
1
, 𝛽
′
2
} ⊂ R, which represents a legal "rectangle" range

of the mean and standard deviation for any 𝑋 ∈ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖). It
is required that the mean of 𝑋 , denoted by `𝑋 , and the standard

deviation of 𝑋 , denoted by 𝜎𝑋 , must satisfy (`𝑥 , 𝜎𝑥 ) ∈ 𝑅𝑐𝑜𝑛𝑠 , i.e.
,`𝑋 ∈ [𝛽1, 𝛽2] and 𝜎𝑋 ∈ [𝛼1, 𝛼2].

However, the efficiency of KV-match is sensitive to 𝑅𝑐𝑜𝑛𝑠 . As

shown by the experiments in [29], the time cost varies more than

20 times with different constraint 𝑅𝑐𝑜𝑛𝑠 . Actually, KV-Match is not

efficient if the "size" of 𝑅𝑐𝑜𝑛𝑠 , which is (𝛽2 − 𝛽1) × (𝛼2 − 𝛼1), is big.
To overcome the disadvantage of KV-Match, this paper proposes

a more efficient algorithm to reduce the effect of relative big 𝑅𝑐𝑜𝑛𝑠
by using a new index. This algorithm consists of the following three

phases.

Phase one calculates a candidate set based on the proposed sum-

marization method and 𝑅𝑐𝑜𝑛𝑠 .

Phase two estimates a rough range of `𝑋 and 𝜎𝑋 according to

the index, which is denoted by 𝑅𝑋 = [𝛽 ′
1
, 𝛽
′
2
] × [𝛼 ′

1
, 𝛼
′
2
] for each

candidate subsequences 𝑋 . Then, the candidate subsequences are

filtered according to the new constraint 𝑅𝑐𝑜𝑛𝑠 ∩ 𝑅𝑋 rather than

𝑅𝑐𝑜𝑛𝑠 .

Phase three is to simply verify the candidates by retrieving data

from 𝑆 , and output 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖).
Note that 𝑅𝑐𝑜𝑛𝑠 is an input of KV-Match and could be big. Un-

fortunately, the size of 𝑅𝑋 is much smaller than the size of 𝑅𝑐𝑜𝑛𝑠
for any 𝑋 since 𝑅𝑋 only relies on the index. Thus, the proposed

algorithm is much more efficient. In addition, the estimation on the

lower bound of 𝐷 (𝑋,𝑄) is tighter based on the new summarization

method, and further reduces the number of candidates.

Besides, the inherent complexity of the subsequence matching
problem has been proved. To the best of our knowledge, this is the

first work on the inherent complexity of the subsequence matching
problem.

The major contributions of this paper are as follows.

(1) The inherent time complexity, 𝜔 (𝑛1−𝛿 ), of the subsequence
matching problem is proved for the first time, that is, sub-
sequence matching problem is not computable in 𝑂 (𝑛1−𝛿 )
even with any polynomial time preprocessing if SETH

1
is

true, where 𝛿 ∈ (0, 1) and 𝑛 is the length of 𝑆 .

(2) A new summarizationmethod, called Extended Piecewise Ag-
gregate Approximation (𝐸𝑃𝐴𝐴), is proposed. 𝐸𝑃𝐴𝐴 has the

following advantages: 1) 𝐸𝑃𝐴𝐴 provides an upper bound

for Euclidean Distance as well as 𝐷𝑇𝑊 , which can deal

with both nearest and furthest neighbor queries with the

same data structure, and 2) 𝐸𝑃𝐴𝐴 supports the estimation of

𝑅𝑋 , which improves the efficiency of solving subsequence

matching problem.

(3) A new index is proposed based on 𝐸𝑃𝐴𝐴 summarization. In

addition, an efficient algorithm for solving the subsequence
matching problem is proposed, which uses the lower bound-

ing functions and cascading filter strategy proposed in this

paper.

(4) Experimental results show that 𝐸𝑃𝐴𝐴 is able to provide

high quality distance lower bound of z-normalized Eu-

clidean Distance and z-normalized 𝐷𝑇𝑊 Distance. Besides,

the proposed algorithm is up to 3 ∼ 10 times faster than

KV-match on the constrained z-normalized 𝐸𝐷 and 𝐷𝑇𝑊

distance, and is up to 7 ∼ 12 times faster than KV-match on

Euclidean Distance.

The rest of this paper is organized as follows. Section II intro-

duces related preliminaries, defines the problem, and analyzes the

1
Let 𝑠𝑘 ∈ R to be the infimum of 𝛿 that k-SAT problem can be solved in𝑂 (2𝛿𝑛 ) time,

where 𝑛 is the number of variables in the given k-SAT instance. Strong Exponential

Time Hypothesis (𝑆𝐸𝑇𝐻 ) is the conjecture that 𝑠3 > 0 and 𝑠∞ = 1 [11].
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inherent complexity of the problem. Section III presents the 𝐸𝑃𝐴𝐴

method and the related lower bounding functions. Section IV dis-

cusses a new index based on 𝐸𝑃𝐴𝐴 and the proposed algorithm

for subsequence matching problem in details. Section V evaluates

𝐸𝑃𝐴𝐴 summarization mathod and compares the proposed algo-

rithm with other state-of-art algorithms by experiments. Finally,

Section VI concludes the paper.

For easy to read, some frequently used symbols in the rest of the

paper are listed in Table 1.

Table 1: Frequently Used Notations

Symbol Description

𝑆 the long series to be searched.

𝑄 the query series.

𝑆𝑚
𝑖

the𝑚-length subsequence of 𝑆 that starts from

the 𝑖th position.

`𝑋 , 𝜎𝑋 the mean and standard deviation of series 𝑋 .

𝑈 , 𝐿 envelopes defined by 𝐿𝐵𝑘𝑒𝑜𝑔ℎ [14].

𝐴𝑁𝑆 (𝑆,𝑄, 𝜖) the result of subsequence matching problem

under input 𝑆 , 𝑄 and 𝜖 .

2 PROBLEM DEFINITION AND COMPLEXITY
2.1 Preliminaries and Problem Definition
The focus of this paper is to solve the subsequence matching problem
for the most common distance measurements in the industry and

finance applications. Let 𝑚 be the length of query series 𝑄 and

𝑋 be an𝑚-length subsequence of 𝑆 . This paper supports for the

following four distance measurements defined on 𝑋 and 𝑄 . The

first is the Euclidean Distance, which is defined as

𝐸𝐷 (𝑋,𝑄) =

⌜⎷
𝑚∑︂
𝑖=1

(𝑥𝑖 − 𝑞𝑖 )2 .

The second is the Dynamic Time Warping (𝐷𝑇𝑊 ). DTW allows

two series to align with each other before measuring distance point

by point, which is recursively defined as

𝐷𝑇𝑊 (𝑋,𝑄) =
√︂
(𝑥1 − 𝑞1)2 +𝑀𝐼𝑁,

where𝑀𝐼𝑁 =𝑚𝑖𝑛{𝐷𝑇𝑊 (𝑋𝑚−1
2

, 𝑄𝑚−1
2
), 𝐷𝑇𝑊 (𝑋𝑚−1

2
, 𝑄), 𝐷𝑇𝑊 (𝑋,

𝑄𝑚−1
2
)}, and the distance between arbitrary sequence and an empty

series is defined as∞.
In practice, this alignment is restricted by bands to prevent the

pathological warping path. In the rest of the paper, we assume

Sakoe-Chiba band [22] is used. The choice of band has no effect on

the proposed method.

Given 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2] × [𝛼1, 𝛼2], 𝑋 and 𝑄 , let �̂� and �̂� be the z-

normalized series of 𝑋 and 𝑄 . The 𝑅𝑐𝑜𝑛𝑠 -constrained z-normalized

Euclidean Distance(𝐶𝑁𝐸𝐷) between 𝑋 and 𝑄 is defined as

𝐶𝑁𝐸𝐷 (𝑋,𝑄) =
{︄
𝐸𝐷 (�̂� , �̂�), 𝑖 𝑓 (`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑐𝑜𝑛𝑠
∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Given 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2]×[𝛼1, 𝛼2],𝑋 and𝑄 , the 𝑅𝑐𝑜𝑛𝑠 -constrained

and z-normalized DTW distance between 𝑋 and 𝑄 is defined as

𝐶𝑁𝐷𝑇𝑊 (𝑋,𝑄) =
{︄
𝐷𝑇𝑊 (�̂� , �̂�), 𝑖 𝑓 (`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑐𝑜𝑛𝑠
∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Without loss of generality, we can reasonably assume that �̂�=𝑄

in CNED or CNDTW queries, otherwise we can simply replace

𝑄 with �̂� . The subsequence matching problem is defined by the

following Definition 1.

Definition 1. [Subsequence Matching Problem] Given a series
𝑆 , a query series 𝑄 , a distance measurement 𝐷 , and 𝜖 > 0, the subse-
quence matching problem is to find the set𝐴𝑁𝑆 (𝑆,𝑄, 𝜖) = {𝑋 |∃𝑖, 𝑋 =

𝑆
|𝑄 |
𝑖

, 𝐷 (𝑋,𝑄) ≤ 𝜖}.

2.2 Inherent Complexity of Subsequence
Matching Problem

Although subsequence matching problem has been studied for years,

there has been no analysis on its inherent complexity till now. Our

result is formalized as Theorem 1 and the detailed proof is in the

Appendix of the paper.

Theorem 1. Let 𝑛 = |𝑆 |. If Strong Exponential Time Hypothesis
is true, then the inherent time complexity of subsequences matching
problem is 𝜔 (𝑛1−𝛿 ) under any 𝐿𝑝 metric for 𝑝 > 0 even if 𝑆 has been
preprocessed in time 𝑂 (𝑛𝑐 ) for any constant 𝑐 > 1 and 0 < 𝛿 < 1.

Corollary 1. The inherent time complexity of subsequencesmatch-
ing problem under 𝐷𝑇𝑊 with Sakoe-Chiba band, is also 𝜔 (𝑛1−𝛿 ).

Proof. 𝐿2 norm is a special case of 𝐷𝑇𝑊 with 𝑟 = 0 (Sakoe-

Chiba band). Therefore, subsequences matching problem under𝐷𝑇𝑊

is not computable in 𝑂 (𝑛1−𝛿 ) time due to Theorem 1. □

Theorem 1 indicates that even if we leverage index to accel-

erate the query processing, any practicable algorithm for subse-
quence matching problem under any 𝐿𝑝 measurement, still requires

𝜔 ( |𝑆 |1−𝛿 ) time theoretically. Considering the brute-force algorithm

costs𝑂 ( |𝑄 | |𝑆 |) time and |𝑄 | << |𝑆 |, the gap between brute-force al-
gorithm and the theoretical lower bound of the complexity is rather

small. This explains why all the existing researches on this issue as

well as this paper cannot improve the complexity of algorithms.

Our result means that it is unlikely to find any practicable algo-

rithm with time complexity significantly less than Θ(𝑛). Therefore,
the filter-verify framework is perhaps the best solution we can

expect for subsequence matching problem. Although we prove that

indexes cannot be helpful to improve the time complexity of the

algorithm, carefully arranged filtering strategy and index, which

are the focus of the following sections, are still able to significantly

accelerate the query in practice.

3 MATHEMATICAL FOUNDATION
Summarization methods summarize a series 𝑋 as ˜︁𝑋 , such that the

lower bound of 𝐷 (𝑋,𝑄) can be computed by some function 𝐷𝑙𝑏 (˜︁𝑋,
𝑄) for any 𝑄 such that if 𝐷𝑙𝑏 (˜︁𝑋,𝑄) > 𝜖 then 𝐷 (𝑋,𝑄) > 𝜖 and

𝑋 ∉ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖). Therefore, 𝑋 can be pruned without accessing

the series 𝑋 itself.
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This section presents the mathematical foundation of the pro-

posed 𝐸𝑃𝐴𝐴 method. Firstly, subsection 3.1 presents how to com-

pute ˜︁𝑋 in 𝐸𝑃𝐴𝐴 summarization method. Then, subsections 3.2-3.3

present the lower bound functions of 𝐸𝑃𝐴𝐴 method, 𝐷𝑙𝑏 (˜︁𝑋,𝑄), for
𝐸𝐷 ,𝐷𝑇𝑊 ,𝐶𝑁𝐸𝐷 and𝐶𝑁𝐷𝑇𝑊 respectively. Finally, subsection 3.4

discusses how to leverage 𝐸𝑃𝐴𝐴 to quickly filter out non-candidate

subsequences without directly calculating 𝐷𝑙𝑏 (˜︁𝑋,𝑄).
3.1 Summarizing Series with EPAA
The existing summarization methods use a linear combination of

elements in 𝑋 to represent 𝑋 for supporting queries on both 𝐸𝐷

and 𝐷𝑇𝑊 . Unfortunately, they cannot be used to estimate 𝑅𝑋 in

subsequence matching problem such that the normalized queries

cannot be efficiently processed.

To solve this problem, we propose a new summarization method,

called Extended Piecewise Aggregate Approximation (𝐸𝑃𝐴𝐴), which

extends Piecewise Aggregate Approximation (𝑃𝐴𝐴) [13] by adding

the standard deviation of each segments.

For simplicity, in the rest of the paper, we say a series 𝑋 is com-
pletely decomposed into 𝑡 continuous disjoint segments if 𝑋 is divided

to segments {𝑋𝑤𝑖
𝑝𝑖
} for 𝑖 ∈ {1, 2, ..., 𝑡}, where 𝑝1 = 1, 𝑤𝑖 , 𝑡 ∈ N+,

𝑝𝑖 +𝑤𝑖 = 𝑝𝑖+1 and
∑︁𝑡
𝑖=1𝑤𝑖 = |𝑋 |. Suppose a series 𝑋 is completely

decomposed into 𝑡 continuous disjoint segments {𝑋𝑤𝑖
𝑝𝑖
}, 𝐸𝑃𝐴𝐴method

calculates ˜︁𝑋 as˜︁𝑋 = (`
𝑋

𝑤
1

𝑝
1

, 𝜎
𝑋

𝑤
1

𝑝
1

, `
𝑋

𝑤
2

𝑝
2

, 𝜎
𝑋

𝑤
2

𝑝
2

, ..., `𝑋𝑤𝑡
𝑝𝑡
, 𝜎𝑋𝑤𝑡

𝑝𝑡
),

where `
𝑋

𝑤𝑖
𝑝𝑖

and 𝜎
𝑋

𝑤𝑖
𝑝𝑖

are the mean and standard deviation of the

𝑖𝑡ℎ segment for 𝑖 ∈ {1, ..., 𝑡}. ˜︁𝑋 will be used to calculate lower

bounds for 𝐸𝐷 , 𝐷𝑇𝑊 , 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 .

In fact, 𝐸𝑃𝐴𝐴 provides an alternative summarization method

for any problem involving series data summarization, and is not

restricted to subsequence matching problem.

3.2 The Lower Bounds of DTW and CNDTW
This subsection gives the details of𝐷𝑙𝑏 (˜︁𝑋,𝑄) for DTWandCNDTW,

which are denoted by 𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑄) and𝐶𝑁𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑐𝑜𝑛𝑠 ) re-
spectively.

3.2.1 Lower Bound of DTW. First, when the number of segments

in 𝑋 being one, i.e. ˜︁𝑋 = (`𝑋 , 𝜎𝑋 ), the lower bound of 𝐷𝑇𝑊 (𝑋,𝑄)
is determined by the following Lemma 1.

Lemma 1. Suppose 𝑟 is the parameter of Sakoe-Chiba band [22].
Let 𝐿 = (𝑙1, 𝑙2, ..., 𝑙𝑚) and𝑈 = (𝑢1, 𝑢2, ..., 𝑢𝑚), where𝑢𝑖 =𝑚𝑎𝑥{𝑞𝑖−𝑟 ,
𝑞𝑖−𝑟+1, ..., 𝑞𝑖+𝑟 } and 𝑙𝑖 = 𝑚𝑖𝑛{𝑞𝑖−𝑟 , 𝑞𝑖−𝑟+1, ..., 𝑞𝑖+𝑟 }. Given two 𝑚-
length series 𝑋 and 𝑄 , if 𝐸𝐷𝑙𝑏 (˜︁𝑋, 𝐿)2 + 𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑈 )2 ≥ 𝐸𝐷 (𝐿,𝑈 )2,
then there is a lower bound of 𝐷𝑇𝑊 (𝑋,𝑄) that is

𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑈 , 𝐿) = 1

2

[−𝐸𝐷 (𝐿,𝑈 )+√︂
2𝐸𝐷𝑙𝑏 (˜︁𝑋, 𝐿)2 + 2𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑈 )2 − 𝐸𝐷 (𝐿,𝑈 )2] . (1)

Proof. Awell-known lower bound of𝐷𝑇𝑊 (𝑋,𝑄) is𝐿𝐵𝐾𝑒𝑜𝑔ℎ[14],
which is,

𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄) =

⌜⃓⃓⃓⃓⃓⃓⎷ 𝑚∑︂
𝑖=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢𝑖 − 𝑥𝑖 )2, 𝑥𝑖 ≥ 𝑢𝑖
(𝑙𝑖 − 𝑥𝑖 )2, 𝑥𝑖 ≤ 𝑙𝑖
0, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 .

Let

𝑎𝑖 =

{︃|𝑥𝑖 − 𝑙𝑖 |, 𝑥𝑖 ≤ 𝑙𝑖
|𝑢𝑖 − 𝑥𝑖 |, 𝑜𝑡ℎ𝑒𝑟𝑠,

and 𝑏𝑖 = |𝑢𝑖 − 𝑙𝑖 |, 𝑖 ∈ {1, 2....𝑚}, then

𝐸𝐷 (𝑋, 𝐿)2 + 𝐸𝐷 (𝑋,𝑈 )2 =
𝑚∑︂
𝑖=1

(𝑙𝑖 − 𝑥𝑖 )2 + (𝑢𝑖 − 𝑥𝑖 )2

=
∑︂

𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖
(2𝑎2𝑖 + 2𝑎𝑖𝑏𝑖 + 𝑏

2

𝑖 ) +
∑︂

𝑙𝑖≤𝑥𝑖≤𝑢𝑖
(2𝑎2𝑖 − 2𝑎𝑖𝑏𝑖 + 𝑏

2

𝑖 )

=
∑︂

𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖
(2𝑎2𝑖 + 2𝑎𝑖𝑏𝑖 ) +

∑︂
𝑙𝑖≤𝑥𝑖≤𝑢𝑖

2𝑎𝑖 (𝑎𝑖 − 𝑏𝑖 ) +
𝑚∑︂
𝑖=1

(𝑏2𝑖 ) .

Since 𝑎𝑖 ≤ 𝑏𝑖 if 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 ,

𝐸𝐷 (𝑋, 𝐿)2 + 𝐸𝐷 (𝑋,𝑈 )2 ≤
∑︂

𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖
(2𝑎2𝑖 + 2𝑎𝑖𝑏𝑖 ) +

𝑚∑︂
𝑖=1

(𝑏2𝑖 ) .

(2)

By Cauchy- Schwarz inequality, we have

∑︂
𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖

𝑎𝑖𝑏𝑖 ≤
√︄ ∑︂
𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖

(𝑎2
𝑖
) ∗

∑︂
𝑥𝑖≤𝑙𝑖 𝑜𝑟 𝑢𝑖≤𝑥𝑖

(𝑏2
𝑖
)

≤ 𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄)

⌜⎷
𝑚∑︂
𝑖=1

(𝑏2
𝑖
) .

(3)

Combining formula (2) and formula (3), we have

2𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄)2 + 2𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄)

⌜⎷
𝑚∑︂
𝑖=1

(𝑏2
𝑖
)

+
𝑚∑︂
𝑖=1

(𝑏2𝑖 ) − 𝐸𝐷 (𝑋, 𝐿)
2 − 𝐸𝐷 (𝑋,𝑈 )2 ≥ 0.

(4)

Eq (4) is a quadratic inequality about 𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄). Its discrimi-

nant Δ = 8𝐸𝐷 (𝑋, 𝐿)2+8𝐸𝐷 (𝑋,𝑈 )2−4∑︁𝑚𝑖=1 (𝑏2𝑖 ). Since∑︁𝑚𝑖=1 (𝑏2𝑖 ) =
𝐸𝐷 (𝐿,𝑈 )2, Δ ≥ 0 is inducted by applying Cosine Theorem on

𝐸𝐷 (𝑋, 𝐿),𝐸𝐷 (𝑋,𝑈 ) and𝐸𝐷 (𝐿,𝑈 ). Considering the fact𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,
𝑄) ≥ 0, we have

𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄) ≥
1

2

[−

⌜⎷
𝑚∑︂
𝑖=1

(𝑏2
𝑖
)+⌜⎷

2𝐸𝐷 (𝑋, 𝐿)2 + 2𝐸𝐷 (𝑋,𝑈 )2 −
𝑚∑︂
𝑖=1

(𝑏2
𝑖
)] .

(5)

Since 𝐿𝐵𝐾𝑒𝑜𝑔ℎ (𝑋,𝑄) ≤ 𝐷𝑇𝑊 (𝑋,𝑄), the right side of Eq.5 is no
greater than 𝐷𝑇𝑊 (𝑋,𝑄). Therefore, the lemma is true by substi-

tuting 𝐸𝐷 (𝑋, 𝐿) and 𝐸𝐷 (𝑋,𝑈 ) with their lower bound 𝐸𝐷𝑙𝑏 (˜︁𝑋, 𝐿)
and 𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑈 ) respectively. □

1456



Now, we extend the conclusion of Lemma 1, to the general case

that the number of segments in 𝑋 is 𝑡 (𝑡 ≥ 1), where ˜︁𝑋 = (`
𝑋

𝑤
1

𝑝
1

,

𝜎
𝑋

𝑤
1

𝑝
1

, `
𝑋

𝑤
2

𝑝
2

, 𝜎
𝑋

𝑤
2

𝑝
2

, ..., `𝑋𝑤𝑡
𝑝𝑡
, 𝜎𝑋𝑤𝑡

𝑝𝑡
).

Theorem 2 (distance lower bound of dtw). Supposing two m-
length series 𝑋 and 𝑄 are divided into 𝑡 continuous disjoint segments
{𝑋𝑤𝑖
𝑝𝑖
} and {𝑄𝑤𝑖

𝑝𝑖
}, a distance lower bound of 𝐷𝑇𝑊 (𝑋,𝑄) is

𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑄) =
⌜⃓⎷ 𝑡∑︂
𝑖=1

𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
, 𝐿
𝑤𝑖
𝑝𝑖
)2 . (6)

where ˜︁𝑋𝑤𝑖
𝑝𝑖

= (`
𝑋

𝑤𝑖
𝑝𝑖

, 𝜎
𝑋

𝑤𝑖
𝑝𝑖

) is the mean and standard deviation of the

𝑖th segment in 𝑋 .

Proof. From the definition of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ , we have

𝐷𝑇𝑊 (𝑋,𝑄)2 ≥
𝑚∑︂
𝑖=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢𝑖 − 𝑥𝑖 )2, 𝑥𝑖 ≥ 𝑢𝑖
(𝑙𝑖 − 𝑥𝑖 )2, 𝑥𝑖 ≤ 𝑙𝑖
0, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

=

𝑡∑︂
𝑗=1

𝑝 𝑗+1−1∑︂
𝑘=𝑝 𝑗

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢𝑘 − 𝑥𝑘 )2, 𝑥𝑘 ≥ 𝑢𝑘
(𝑙𝑘 − 𝑥𝑘 )2, 𝑥𝑘 ≤ 𝑙𝑘
0, 𝑙𝑘 ≤ 𝑥𝑘 ≤ 𝑢𝑘

≥
𝑡∑︂
𝑖=1

𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
, 𝐿
𝑤𝑖
𝑝𝑖
)2

□

3.2.2 Lower Bound of CNDTW. If the number of segments in 𝑋 is

one, we have Lemma 2.

Lemma 2. Given 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2] × [𝛼1, 𝛼2], two 𝑚-length se-
ries 𝑋 and 𝑄 , if 𝑎 + 𝑏 − 𝐸𝐷 (𝐿,𝑈 )2 ≥ 0, there is a lower bound of
𝐶𝑁𝐷𝑇𝑊 (𝑋,𝑄) which is

𝐶𝑁𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑈 , 𝐿, 𝑅𝑐𝑜𝑛𝑠 ) = 1

2

[−𝐸𝐷 (𝐿,𝑈 ) +
√︁
2𝑎 + 2𝑏 − 𝐸𝐷 (𝐿,𝑈 )2],

(7)

where

𝑎 =𝑚 × min

`
�̂�
∈[ `̂𝑚𝑖𝑛,`̂𝑚𝑎𝑥 ]

{2`2
�̂�
− 2(`𝐿 + `𝑈 )`�̂� + `

2

𝐿 + `
2

𝑈 }

𝑏 =𝑚 × min

𝜎
�̂�
∈[�̂�𝑚𝑖𝑛,�̂�𝑚𝑎𝑥 ]

{2𝜎2
�̂�
− 2(𝜎𝐿 + 𝜎𝑈 )𝜎�̂� + 𝜎

2

𝐿 + 𝜎
2

𝑈 }

`̂𝑚𝑖𝑛 =𝑚𝑖𝑛{ `𝑚𝑖𝑛 − 𝛽2
𝛼1

,
`𝑚𝑖𝑛 − 𝛽2

𝛼2
}, �̂�𝑚𝑖𝑛 =

𝜎𝑚𝑖𝑛

𝛼2

`̂𝑚𝑎𝑥 =𝑚𝑎𝑥{ `𝑚𝑎𝑥 − 𝛽1
𝛼1

,
`𝑚𝑎𝑥 − 𝛽1

𝛼2
}, �̂�𝑚𝑎𝑥 =

𝜎𝑚𝑎𝑥

𝛼1
.

Proof. (sketch) Denoting the summarization of constrained z-

normalized series �̂� by
˜︁
�̂� , CNDTW means applying DTW on z-

normalized series �̂� instead of raw series 𝑋 . Therefore, 𝐷𝑇𝑊𝑙𝑏 (˜︁�̂� ,
𝑄) ≤ 𝐶𝑁𝐷𝑇𝑊 (𝑋,𝑄). Given ˜︁𝑋∈ [`𝑚𝑖𝑛, `𝑚𝑎𝑥 ] × [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ] and
𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2]×[𝛼1, 𝛼2], it can be proved that ˜︁�̂� ∈ [`̂𝑚𝑖𝑛, `̂𝑚𝑎𝑥 ]×
[�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 ]. Since 𝐷𝑇𝑊𝑙𝑏 (˜︁�̂� ,𝑄) is a continuous function of

˜︁
�̂� if

2𝐸𝐷 (˜︁�̂� , 𝐿)2 + 2𝐸𝐷 (˜︁�̂� ,𝑈 )2 −𝐸𝐷 (𝐿,𝑈 )2 ≥ 0, its minimum value can

be obtained as Eq.7. □

Extending the conclusion of Lemma 2, we have the lower bound

of 𝐶𝑁𝐷𝑇𝑊 in general case of there bing 𝑡 segments in 𝑋 .

Theorem 3 (distance lower bound of cndtw). Supposing
two m-length series 𝑋 and 𝑄 are divided into 𝑡 continuous disjoint
segments {𝑋𝑤𝑖

𝑝𝑖
} and {𝑄𝑤𝑖

𝑝𝑖
}, there is a lower bound of𝐶𝑁𝐷𝑇𝑊 (𝑋,𝑄)

which is

𝐶𝑁𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑐𝑜𝑛𝑠 ) =
⌜⃓⎷ 𝑡∑︂
𝑖=1

𝐶𝑁𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
, 𝐿
𝑤𝑖
𝑝𝑖
, 𝑅𝑐𝑜𝑛𝑠 )2 .

(8)

Proof. (sketch) Because𝐶𝑁𝐷𝑇𝑊 can be seen as applying𝐷𝑇𝑊

to the z-normalized subsequences, the proof can be done by ap-

plying the similar approach in the proof of Theorem 2 on the 𝑧-

normalized subsequences. □

3.3 The Lower Bounds of ED and CNED
This subsection presents 𝐷𝑙𝑏 (˜︁𝑋,𝑄) for ED and CNED, which are

denoted as 𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄) and 𝐶𝑁𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑐𝑜𝑛𝑠 ).
3.3.1 Lower Bound of ED. Let 𝑋 and 𝑄 be two 𝑚-length series.

When the number of segment is one, a lower bound of 𝐸𝐷 (𝑋,𝑄) is
as

𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄) = √︂
𝑚 × [(`𝑋 − `𝑄 )2 + (𝜎𝑋 − 𝜎𝑄 )2], (9)

which has been proven in [10] and [28].

Theorem 4 (distance lower bound of ED). Suppose two m-
length series 𝑋 and 𝑄 are divided into 𝑡 continuous disjoint segments
{𝑋𝑤𝑖
𝑝𝑖
} and {𝑄𝑤𝑖

𝑝𝑖
}, there is a lower bound of 𝐸𝐷 (𝑋,𝑄), which is

𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄) =
⌜⃓⎷ 𝑡∑︂
𝑖=1

𝐸𝐷𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
, 𝑄

𝑤𝑖
𝑝𝑖
)2 . (10)

3.3.2 Lower Bound of CNED. In case that there is only one segment

in the series, we have Lemma 3.

Lemma 3. Given 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2] × [𝛼1, 𝛼2], two𝑚-length series
𝑋 and 𝑄 , there is a lower bound of 𝐶𝑁𝐸𝐷 (𝑋,𝑄), which is

𝐶𝑁𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑐𝑜𝑛𝑠 ) = √︁
𝑐2 + 𝑑2 . (11)

where `̂𝑚𝑖𝑛, �̂�𝑚𝑖𝑛, `̂𝑚𝑎𝑥 , �̂�𝑚𝑎𝑥 are the same as Lemma 2, and

𝑐 =

{︄
0, `𝑄 ∈ [`̂𝑚𝑖𝑛, `̂𝑚𝑎𝑥 ]
𝑚 ×𝑚𝑖𝑛{(`̂𝑚𝑖𝑛 − `𝑄 )2, (`̂𝑚𝑎𝑥 − `𝑄 )2}, 𝑜𝑡ℎ𝑒𝑟𝑠

𝑑 =

{︄
0, 𝜎𝑄 ∈ [�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 ]
𝑚 ×𝑚𝑖𝑛{(�̂�𝑚𝑖𝑛 − 𝜎𝑄 )2, (�̂�𝑚𝑎𝑥 − 𝜎𝑄 )2}, 𝑜𝑡ℎ𝑒𝑟𝑠

Proof. (sketch) The proof is similar to that of Theorem 3, and

can be completed by estimating the range of
˜︁
�̂� and finding the

minimum value of 𝐸𝐷𝑙𝑏 (˜︁�̂� ,𝑄). □

Extending Lemma 3, we can derive the lower bound of 𝐶𝑁𝐸𝐷

when the number of segments is 𝑡 .
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Theorem 5 (distance lower bound of CNED). Supposing that
two m-length series 𝑋 and 𝑄 are divided into 𝑡 continuous disjoint
segments {𝑋𝑤𝑖

𝑝𝑖
} and {𝑄𝑤𝑖

𝑝𝑖
}, we have,

𝐶𝑁𝐸𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑐𝑜𝑛𝑠 ) =
⌜⃓⎷ 𝑡∑︂
𝑖=1

𝐶𝑁𝐸𝐷𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
, 𝑄

𝑤𝑖
𝑝𝑖
, 𝑅𝑐𝑜𝑛𝑠 )2 . (12)

Proof. Because𝐶𝑁𝐸𝐷 can be seen as a special case of𝐶𝑁𝐷𝑇𝑊 ,

i.e. 𝑟 = 0, the theorem is true according to Theorem 3. □

3.4 Fast Filter Based on 𝐸𝑃𝐴𝐴method
Since calculating 𝐷𝑙𝑏 (˜︁𝑋,𝑄) for every subsequence in 𝑆 could be

expensive, this subsection discusses how to quickly select the can-

didates with 𝐸𝑃𝐴𝐴 method. Our strategy is to find the necessary

conditions of 𝐷𝑙𝑏 (˜︁𝑋,𝑄) ≤ 𝜖 , which are referred as filter conditions
in the rest of paper. Specifically, given 𝑄 and 𝜖 , we want to find

{𝐹1, 𝐹2, ..., 𝐹𝑡 } such that ˜︁𝑋𝑤𝑖
𝑝𝑖

= (`
𝑋

𝑤𝑖
𝑝𝑖

, 𝜎
𝑋

𝑤𝑖
𝑝𝑖

) ∈ 𝐹𝑖 , for any 1 ≤ 𝑖 ≤ 𝑡
and 𝑋 ∈ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖). After that, we are able to filter out the non-

candidates swiftly by checking any segment of it. If there exists

1 ≤ 𝑖 ≤ 𝑡 that ˜︁𝑋𝑤𝑖
𝑝𝑖

∉ 𝐹𝑖 ,𝑋 can be filtered out safely without directly

calculating 𝐷𝑙𝑏 (˜︁𝑋,𝑄).
The filter conditions of 𝐸𝐷 , 𝐷𝑇𝑊 , 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 are pre-

sented in Corollary 2, 3, 4 and 5 respectively. They can be derived

by manipulating formula (4), (7), (9) and (11). The details of the

proofs are omitted for simplicity.

Corollary 2 (filter condition for ed). For any series 𝑋 and
𝑄 that satisfy 𝐸𝐷 (𝑋,𝑄) < 𝜖 , the following inequality must be true
for 1 ≤ 𝑖 ≤ 𝑡 .

𝜖2

𝑤𝑖
≥ (`

𝑋
𝑤𝑖
𝑝𝑖

− `
𝑄

𝑤𝑖
𝑝𝑖

)2 + (𝜎
𝑋

𝑤𝑖
𝑝𝑖

− 𝜎
𝑄

𝑤𝑖
𝑝𝑖

)2 (13)

Figure 2: Illustration of 𝐹𝑖 for Euclidean Distance.

Regarding (`
𝑋

𝑤𝑖
𝑝𝑖

, 𝜎
𝑋

𝑤𝑖
𝑝𝑖

) as the coordinate of a two dimensional

point as illustrated in Figure 2, the filter condition 𝐹𝑖 correspond-

ing to Euclidean Distance is a disk area centered at (`
𝑄

𝑤𝑖
𝑝𝑖

, 𝜎
𝑄

𝑤𝑖
𝑝𝑖

)
with radius of

𝜖√
𝑤𝑖
. Series 𝑋 satisfies the filter condition since

(`
𝑋

𝑤
1

𝑝
1

, 𝜎
𝑋

𝑤
1

𝑝
1

) ∈ 𝐹1 and (`𝑋𝑤
2

𝑝
2

, 𝜎
𝑋

𝑤
2

𝑝
2

) ∈ 𝐹2. Series 𝑌 is discarded by

𝐹2 because (`𝑌𝑤
2

𝑝
2

, 𝜎
𝑌
𝑤
2

𝑝
2

) ∉ 𝐹2.

Corollary 3 (filter condition for dtw). For any series 𝑋
and 𝑄 that have the same length and 𝐷𝑇𝑊 (𝑋,𝑄) ≤ 𝜖 , the following

inequality must be satisfied for 1 ≤ 𝑖 ≤ 𝑡 .

[2𝜖 + 𝐸𝐷 (𝐿𝑤𝑖
𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
)]2 + 𝐸𝐷 (𝐿𝑤𝑖

𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
)2

≥2[𝐸𝐷𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
, 𝐿
𝑤𝑖
𝑝𝑖
)2 + 𝐸𝐷𝑙𝑏 (˜︁𝑋𝑤𝑖

𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
)2] .

Corollary 4 (filter condition for cned). If two series 𝑋 and
𝑄 satisfy𝐶𝑁𝐸𝐷 (𝑋,𝑄) ≤ 𝜖 and constraint 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2]× [𝛼1, 𝛼2],
the following inequalities must be satisfied for 1 ≤ 𝑖 ≤ 𝑡 .

`
𝑋

𝑤𝑖
𝑝𝑖

∈ [𝛽1 +𝑚𝑖𝑛{𝛼1 (`𝑄𝑤𝑖
𝑝𝑖

− 𝜖
√
𝑤𝑖
), 𝛼2 (`𝑄𝑤𝑖

𝑝𝑖

− 𝜖
√
𝑤𝑖
)}

, 𝛽2 +𝑚𝑎𝑥{𝛼1 (`𝑄𝑤𝑖
𝑝𝑖

+ 𝜖
√
𝑤𝑖
), 𝛼2 (`𝑄𝑤𝑖

𝑝𝑖

+ 𝜖
√
𝑤𝑖
)}],

where `
𝐿
𝑤𝑖
𝑝𝑖

, 𝜎
𝐿
𝑤𝑖
𝑝𝑖

, `
𝑈

𝑤𝑖
𝑝𝑖

and 𝜎
𝑈

𝑤𝑖
𝑝𝑖

are mean and average of series 𝐿𝑤𝑖
𝑝𝑖

and𝑈𝑤𝑖
𝑝𝑖

respectively.

𝜎
𝑋

𝑤𝑖
𝑝𝑖

∈ [𝛼1 (𝜎𝑄𝑤𝑖
𝑝𝑖

− 𝜖
√
𝑤𝑖
),𝑚𝑎𝑥 (𝛼2 (𝜎𝑄𝑤𝑖

𝑝𝑖

+ 𝜖
√
𝑤𝑖
), 𝛼2

√︄
|𝑄 |
𝑤𝑖
)]

Corollary 5 (filter condition for cndtw). If two series 𝑋
and 𝑄 satisfy𝐶𝑁𝐷𝑇𝑊 (𝑋,𝑄) ≤ 𝜖 and constraint 𝑅𝑐𝑜𝑛𝑠 = [𝛽1, 𝛽2] ×
[𝛼1, 𝛼2], the following inequalities must be satisfied for 1 ≤ 𝑖 ≤ 𝑡 .

`
𝑋

𝑤𝑖
𝑝𝑖

ˆ
∈ [

`
𝐿
𝑤𝑖
𝑝𝑖

+ `
𝑈

𝑤𝑖
𝑝𝑖

2

− Δ1,

`
𝐿
𝑤𝑖
𝑝𝑖

+ `
𝑈

𝑤𝑖
𝑝𝑖

2

+ Δ1]

𝜎
𝑋

𝑤𝑖
𝑝𝑖

ˆ
∈ [

𝜎
𝐿
𝑤𝑖
𝑝𝑖

+ 𝜎
𝑈

𝑤𝑖
𝑝𝑖

2

− Δ2,𝑚𝑖𝑛{
𝜎
𝐿
𝑤𝑖
𝑝𝑖

+ 𝜎
𝑈

𝑤𝑖
𝑝𝑖

2

+ Δ2, 𝛼2

√︄
|𝑄 |
𝑤𝑖
}]

where Δ1 =
1

2

√︂
[2𝜖+𝐸𝐷 (𝐿,𝑈 ) ]2+𝐸𝐷 (𝐿,𝑈 )2

𝑤𝑖
− (`𝑈 − `𝐿)2,

Δ2 =
1

2

√︂
[2𝜖+𝐸𝐷 (𝐿,𝑈 ) ]2+𝐸𝐷 (𝐿,𝑈 )2

𝑤𝑖
− (𝜎𝑈 − 𝜎𝐿)2 . `

𝑋
𝑤𝑖
𝑝𝑖

ˆ
and 𝜎

𝑋
𝑤𝑖
𝑝𝑖

ˆ

are the mean and the standard deviation of the 𝑖th segments of the
normalized series.

4 SUBSEQUENCE MATCHING ALGORITHM
This section proposes an index according to 𝐸𝑃𝐴𝐴 summarization

method. Then, based on the index, a three-phase algorithm to sub-
sequence matching problem for 𝐸𝐷 , 𝐷𝑇𝑊 , 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 is

designed.

4.1 Indexing Series Data
As illustrated in Figure 4(c), the proposed index is a grid structure

composed of cells on a two-dimensional plane, where the coor-

dinates are mean and standard deviation of segments in series 𝑆

respectively. Therefore, each cell in the grid corresponds to a unique

combination of an interval of mean and an interval of standard de-

viation. We use 𝑅(𝑐) to denote the range of mean and standard

deviation associated with cell 𝑐 , where 𝑅(𝑐) = [𝛽 ′
1
, 𝛽
′
2
] × [𝛼 ′

1
, 𝛼
′
2
]

and {𝛼 ′
1
, 𝛼
′
2
, 𝛽
′
1
, 𝛽
′
2
} ⊂ R.

Generally speaking, the index of series 𝑆 is obtained by mapping

𝑤-length segments in 𝑆 into cells as illustrated in Figure 4(a). Given

a predefined segment length𝑤 , The mean value and standard de-

viation of each 𝑤-length subsequence in 𝑆 , which are {`𝑆𝑤
𝑖
} and
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{𝜎𝑆𝑤
𝑖
} for 1 ≤ 𝑖 ≤ |𝑆 | −𝑤 + 1, are calculated. Then, each segment

𝑆𝑤
𝑖

is assigned to the cell 𝑐 , such that (`𝑆𝑤
𝑖
, 𝜎𝑆𝑤

𝑖
) ∈ 𝑅(𝑐).

For each cell 𝑐 , the index records the following information: 1) A

set 𝑆𝐸𝐺𝑐 = {𝑖 | (`𝑆𝑤
𝑖
, 𝜎𝑆𝑤

𝑖
) ∈ 𝑅(𝑐), 1 ≤ 𝑖 ≤ |𝑆 |−𝑤+1}, which denotes

the segments mapped to 𝑐 by their start positions, and 2) A range

𝑅𝑠𝑢𝑟 (𝑐) ∈ [𝛽 ′
1
, 𝛽
′
2
] × [𝛼 ′

1
, 𝛼
′
2
] such that ∀𝑖 ∈ 𝑆𝐸𝐺𝑐 , (`𝑆 𝑗

𝑖+𝑤
, 𝜎
𝑆
𝑗

𝑖+𝑤
) ∈

𝑅𝑠𝑢𝑟 (𝑐) for any 𝑗 ∈ {1, 2, ...𝑤 − 1}.
The grid in figure 4(c) is obtained by dividing the rows and

columns of the two dimensional plane according to quantiles of

{`𝑆𝑤
𝑖
} and {𝜎𝑆𝑤

𝑖
} respectively. To locate the cells on disk, our index

includes metadata that contains auxiliary information of cells, such

as the range of signatures, its offset on disk, the number of segments

contained, etc. The information of the cells are stored on disk in

the order of Hilbert curve.

Besides, 𝑆𝐸𝐺𝑐 is compressed to save 𝐼/𝑂 overhead. Consider two

𝑤-length segments 𝑆𝑤
𝑖

= (𝑠𝑖 , 𝑠𝑖+1, ..., 𝑠𝑖+𝑤−1), and 𝑆𝑤𝑖+1 = (𝑠𝑖+1, 𝑠𝑖+2,
..., 𝑠𝑖+𝑤). Their difference is at most one element. Thus 𝑆𝑤

𝑖
and 𝑆𝑤

𝑖+1
are likely to have similar mean and standard deviation and to be

mapped into the same cell 𝑐 consequently. Therefore, we are able

to find 𝑖 and 𝑖 + 1 in 𝑆𝐸𝐺𝑐 . Further more, many adjacent elements

such as 𝑖, 𝑖 + 1, 𝑖 + 2, ..., 𝑖 + 𝑘 are likely to be found for the same

reason. Without loss of generality, we assume that the elements

of 𝑆𝐸𝐺𝑐 are sorted by ascending order. If 𝑘 ≥ 2, 𝑖 − 1 ∉ 𝑆𝐸𝐺𝑐 and

𝑖 +𝑘 +1 ∉ 𝑆𝐸𝐺𝑐 , we compress 𝑖, 𝑖 +1, 𝑖 +2, ..., 𝑖 +𝑘 as three sequential

elements #, 𝑖, 𝑖 + 𝑘 , where # is a special identifier indicating that

the following two elements represent a compressed sequence of

adjacent elements.

4.2 The Proposed Algorithm
Now we present the algorithm for solving subsequence match-
ing problem based on cascading filter strategy, which consists of

three phases. The details of the proposed algorithm for subsequence
matching problem is shown in Algorithm 1.

Figure 3: The candidate subsequence, 𝑆 |𝑄 |
𝑗

, is 𝑝𝑖 − 1 ahead of
the corresponding candidate segment 𝑆𝑤

𝑙
, if 𝑙 ∈ 𝑐 and 𝑐 ∈ 𝐶𝑖 .

Phase I. Index Probing (Lines 1-8). The query series 𝑄 is de-

composed into 𝑡 disjoint 𝑤-length segments 𝑄𝑤𝑝1 , 𝑄
𝑤
𝑝2
, ..., 𝑄𝑤𝑝𝑡 in

Lines 1-2. Let 𝐹𝑖 be the region that corresponds to filter condition

derived from 𝑄𝑤𝑝𝑖 and 𝜖 . 𝐶𝑖 is the set of the cells that satisfy the

filter condition 𝐹𝑖 . The candidate segments are fetched by loading

𝐶𝑖 into memory for every 𝑖 ∈ {1, 2, ...𝑡} in Lines 3-5.

If 𝑙 ∈ 𝑐 and 𝑐 ∈ 𝐶𝑖 , then segment 𝑆𝑤
𝑙

satisfies the filter condition

derived from 𝑄𝑤𝑝𝑖 and 𝜖 . As illustrated in Figure 3, the candidate

subsequence corresponding to element 𝑙 is 𝑆
|𝑄 |
𝑙−𝑝𝑖+1. Finally, the start

Algorithm 1: SubsequenceMatching(𝑆,𝑄, 𝜖)

Input: Data series 𝑆 ∈ R𝑛 , query series𝑄 ∈ R𝑚 , distance

threshold 𝜖 > 0

Output: 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖 )
1 𝐶𝑆 ← ∅, 𝐴𝑁𝑆 ← ∅, 𝑡 ← ⌊|𝑄 |/𝑤 ⌋,𝐶𝑆𝑖 ← ∅ for 1 ≤ 𝑖 ≤ 𝑡 ;
2 {𝑄𝑤

𝑝1
,𝑄𝑤

𝑝2
, ...,𝑄𝑤

𝑝𝑡
} ← Select 𝑡 disjoint segments from𝑄 ;

3 for 1 ≤ 𝑖 ≤ 𝑡 do
4 𝐹𝑖 ← calculates filter condition by𝑄𝑤

𝑝𝑖
and 𝜖 ;

5 𝐶𝑖 ← {𝑐 |𝑅 (𝑐 ) ∩ 𝐹𝑖 ≠ ∅ } ; // the cells to fetch

6 for 𝑐 ∈ 𝐶𝑖 do
7 for 𝑙 ∈ 𝑆𝐸𝐺𝑐 do
8 𝐶𝑆𝑖 ←𝐶𝑆𝑖 ∪ {< 𝑙 − 𝑝𝑖 + 1, 𝑐 .𝐼𝐷 >} ;
9 for 𝑙 ∈ {𝑙 | ∀ 𝑖 ∈ {1, 2..., 𝑡 }, ∃𝑐𝑖 that < 𝑙, 𝑐𝑖 >∈ 𝐶𝑆𝑖 } do
10 for 1 ≤ 𝑖 ≤ 𝑡 do
11 𝑙𝑏𝑖 ← min

∀˜︁𝑌 ∈𝑅 (𝑐𝑖 ) 𝐷𝑙𝑏 (˜︁𝑌,𝑄𝑤
𝑝𝑖
) ; // shared by segments in 𝑐𝑖

12 if
√︂∑︁𝑡

𝑖=1 𝑙𝑏
2

𝑖
≤ 𝜖 then // checking 𝐷𝑙𝑏 (˜︁𝑋,𝑄 )

13 if Distance measurement is 𝐸𝐷 or 𝐷𝑇𝑊 then
14 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑙 } ;
15 if Distance measurement is𝐶𝑁𝐸𝐷 or𝐶𝑁𝐷𝑇𝑊 then
16 𝑅𝑋 ← 𝐸𝑆𝑇 𝐼𝑀𝐴𝑇𝐸_𝑅𝑋 (𝑐1, 𝑐2, ..., 𝑐𝑡 ) // Algorithm 2 ;

17 if 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 ≠ ∅ then
18 for 1 ≤ 𝑖 ≤ 𝑡 do
19 𝑙𝑏𝑖 ← min

∀˜︁𝑌 ∈𝑅 (𝑐𝑖 ) 𝐷𝑙𝑏 (˜︁𝑌,𝑄𝑤
𝑝𝑖
, 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 ) ;

20 if
√︂∑︁𝑡

𝑖=1 𝑙𝑏
2

𝑖
≤ 𝜖 then // 𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 )

21 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑙 } ;
22 for 𝑙 ∈ 𝐶𝑆 do
23 if 𝐷 (𝑆 |𝑄 |

𝑙
,𝑄 ) ≤ 𝜖 then // verify candidates

24 𝐴𝑁𝑆 ← 𝐴𝑁𝑆 ∪ {𝑆 |𝑄 |
𝑙
}

25 return 𝐴𝑁𝑆

positions of the candidate subsequences 𝑆
|𝑄 |
𝑙−𝑝𝑖+1 and the ID of the

cell 𝑐 that contains segment 𝑆𝑤
𝑙

is added to 𝐶𝑆𝑖 in Lines 6-8.

Figure 4: An instance of the proposed index and querying
processing. (a) Mapping the segments in 𝑆𝑤

𝑖
to cells. (b) Di-

viding 𝑄 into segments. (c) Fetching 𝐶𝑖 from the index under
Euclidean Distance.

Figure 4 illustrates an example of phase I. Assuming that there

exist two segments of 𝑄 illustrated as Figure 4(b) and the filler

conditions are 𝐹1 and 𝐹2 respectively. According to Corollary 2, the

cells that satisfy the filter condition are marked as 𝐶1 and 𝐶2 on

the grid structure of index as shown in Figure 4(c). Then 𝐶𝑆1 and

𝐶𝑆2 are generated at the end of Phase I.
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Phase II. Candidate Refining (Lines 9-21). In this phase, we

prune the candidate subsequences {𝑙} by merging𝐶𝑆𝑖 and checking

whether 𝑙 appears in every 𝐶𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑡 . Then the candidate

subsequences are further pruned by comparing 𝐷𝑙𝑏 (˜︁𝑋,𝑄) with
𝜖 . In Lines 10-12, 𝐷𝑙𝑏 (˜︁𝑋,𝑄) is computed according to 𝑐1, 𝑐2, ..., 𝑐𝑡 ,

which are the cells containing 𝑋𝑤𝑝1 , 𝑋
𝑤
𝑝2
, ..., 𝑋𝑤𝑝𝑡 respectively. The

distance contributed by the 𝑖th segment of candidate subsequence

𝑋 is computed as 𝑙𝑏𝑖 = min

∀˜︁𝑌 ∈𝑅 (𝑐𝑖 ) 𝐷𝑙𝑏 (˜︁𝑌,𝑄𝑤𝑝𝑖 ). Therefore, 𝑙𝑏𝑖 can be

shared by all segments in cell 𝑐𝑖 . Then, 𝐷𝑙𝑏 (˜︁𝑋,𝑄) is computed as√︂∑︁𝑡
𝑖=1 𝑙𝑏

2

𝑖
according to Theorem 2, 3, 4 and 5.

Algorithm 2: 𝐸𝑆𝑇 𝐼𝑀𝐴𝑇𝐸_𝑅𝑋 (𝑐1, 𝑐2, ..., 𝑐𝑡 )
Input: The cells to which the segments of 𝑋 belong,

𝑐1, 𝑐2, ..., 𝑐𝑡 .

Output: 𝑅𝑋 = [`𝑚𝑖𝑛
𝑋

, `𝑚𝑎𝑥
𝑋
] × [𝜎𝑚𝑖𝑛

𝑋
, 𝜎𝑚𝑎𝑥
𝑋
], such that

(`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑋 .
1 for 1 ≤ 𝑖 ≤ 𝑡 do
2 `𝑚𝑖𝑛

𝑖
← 𝑅(𝑐𝑖 ).`_𝑚𝑖𝑛, `𝑚𝑎𝑥𝑖

← 𝑅(𝑐𝑖 ) .`_𝑚𝑎𝑥 ;
3 𝜎𝑚𝑖𝑛

𝑖
← 𝑅(𝑐𝑖 ) .𝜎_𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥𝑖

← 𝑅(𝑐𝑖 ) .𝜎_𝑚𝑖𝑛;
4 if |𝑄 | mod 𝑤 ≠ 0 then
5 `𝑚𝑖𝑛

𝑡+1 ← 𝑅𝑠𝑢𝑟 (𝑡) .`_𝑚𝑖𝑛, `𝑚𝑎𝑥
𝑡+1 ← 𝑅𝑠𝑢𝑟 (𝑡).`_𝑚𝑎𝑥 ;

6 𝜎𝑚𝑖𝑛
𝑡+1 ← 𝑅𝑠𝑢𝑟 (𝑡).𝜎_𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥

𝑡+1 ← 𝑅𝑠𝑢𝑟 (𝑡) .𝜎_𝑚𝑖𝑛;
7 𝑡 ← 𝑡 + 1 ;
8 𝑠𝑢𝑚 ← 0 ;

9 for 1 ≤ 𝑖 ≤ ⌊ 𝑡
2
⌋ do

10 if `𝑚𝑖𝑛
𝑖

> `𝑚𝑎𝑥
𝑡−𝑖 then

11 𝑜
′ ← 𝑤𝑖

𝑤𝑖+𝑤𝑡−𝑖
∗ `𝑚𝑖𝑛

𝑖
+ 𝑤𝑡−𝑖
𝑤𝑖+𝑤𝑡−𝑖

∗ `𝑚𝑎𝑥
𝑡−𝑖 ;

12 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑤𝑖

𝑚 (𝑜
′ − `𝑚𝑖𝑛

𝑖
)2 + 𝑤𝑡−𝑖

𝑚 (𝑜
′ − `𝑚𝑎𝑥

𝑡−𝑖 )
2
;

13 𝜎𝑚𝑖𝑛
𝑋
←

√︂
𝑠𝑢𝑚 +∑︁𝑡𝑖=1 𝑤𝑖

𝑚 ∗ 𝜎𝑚𝑖𝑛𝑖

2

14 𝑜 ← ∑︁𝑡
𝑖=1

𝑤𝑖

𝑚 ∗ `
𝑚𝑖𝑛
𝑖
+∑︁𝑡𝑖=1 𝑤𝑖

𝑚 ∗ `
𝑚𝑎𝑥
𝑖

;

15 𝜎𝑚𝑎𝑥
𝑋
← ∑︁𝑡

𝑖=1
𝑤𝑖

𝑚 ∗𝑚𝑎𝑥{|𝑜 − `
𝑚𝑖𝑛
𝑖
|, |𝑜 − `𝑚𝑎𝑥

𝑖
|}2 ;

16 𝜎𝑚𝑎𝑥
𝑋
←

√︂
𝜎𝑚𝑎𝑥
𝑋
+∑︁𝑡𝑖=1 𝑤𝑖

𝑚 ∗ 𝜎𝑚𝑎𝑥𝑖
2
;

17 `𝑚𝑎𝑥
𝑋
← ∑︁𝑡

𝑖=1
𝑤𝑖

𝑚 ∗ `
𝑚𝑎𝑥
𝑖

, `𝑚𝑖𝑛
𝑋
← ∑︁𝑡

𝑖=1
𝑤𝑖

𝑚 ∗ `
𝑚𝑖𝑛
𝑖

;

18 return 𝑅𝑋 = [`𝑚𝑖𝑛
𝑋

, `𝑚𝑎𝑥
𝑋
] × [𝜎𝑚𝑖𝑛

𝑋
, 𝜎𝑚𝑎𝑥
𝑋
]

Phase II involves an extra pruning procedure for 𝐶𝑁𝐸𝐷 and

𝐶𝑁𝐷𝑇𝑊 measurements in Lines 15-21. Note that 𝐶𝑆𝑖 contains

the IDs of cells to which the 𝑖th segment of 𝑋 belongs. For each

candidate subsequence 𝑋 , a range 𝑅𝑋 is computed by Algorithm

2 such that (`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑋 . Then, a lower bound of 𝐷 (𝑋,𝑄) is
computed using 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 rather than 𝑅𝑐𝑜𝑛𝑠 as the constraint

of normalization in Lines 16-19. In order to distinguish from the

lower bound computed with the original constraint 𝑅𝑐𝑜𝑛𝑠 , we use

𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 ) to denote the lower bound function using

𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 as the constraint.
Here we explain intuitively why we substitute 𝑅𝑐𝑜𝑛𝑠 with 𝑅𝑋 ∩

𝑅𝑐𝑜𝑛𝑠 . Firstly, if𝑋 ∈ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖), then (`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑋 ∩𝑅𝑐𝑜𝑛𝑠 , that
is, replacing 𝑅𝑐𝑜𝑛𝑠 with 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 still leads to a correct lower

bound. Secondly, it is helpful to the efficiency, because 𝐷𝑙𝑏 (˜︁𝑋,𝑄,
𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 ) ≥ 𝐷𝑙𝑏 (˜︁𝑋,𝑄). Recall the concrete form of 𝐷𝑙𝑏 (˜︁𝑋,𝑄) in
Theorem 3 and Theorem 5, we can see that a tighter 𝑅𝑐𝑜𝑛𝑠 always

indicates a tighter lower bound 𝐷𝑙𝑏 (˜︁𝑋,𝑄). 𝑅𝑐𝑜𝑛𝑠 can be seen as

a part of input and could be big. Fortunately, the size of 𝑅𝑋 is

determined only by the index, and it is much smaller than that of

𝑅𝑐𝑜𝑛𝑠 . Therefore, we substitute 𝑅𝑐𝑜𝑛𝑠 with 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 to improve

the performance of the algorithm.

Phase III. Verification (Lines 22-24). The result is obtained by

comparing 𝐷 (𝑋,𝑄) with 𝜖 for each surviving candidate 𝑋 .

4.3 Analysis of Algorithms
4.3.1 Correctness Analysis. First, we prove (`𝑋 , 𝜎𝑋 ) ∈ 𝑅𝑋 by the

correctness of Algorithm 2. The proof of Lemma 4 is omitted
2
.

Lemma 4 (correctness of algorithm 2). If 𝑋 is completely
decomposed into 𝑡+1 continuous disjoint segments {𝑋𝑤𝑖

𝑝𝑖
}, and the first

𝑡 segments belongs to cell 𝑐1, 𝑐2, ..., 𝑐𝑡 respectively, then (`𝑋 , 𝜎𝑋 ) ∈
𝑅𝑋 , which is the output of 𝐸𝑆𝑇 𝐼𝑀𝐴𝑇𝐸_𝑅𝑋 (𝑐1 , 𝑐2, ..., 𝑐𝑡 ).

Theorem 6 (correctness of subseqence matching algo-

rithm). Algorithm 1 outputs 𝐴𝑁𝑆 = 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖).

Proof. ∀𝑋 ∈ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖), 𝑋 will neither be discarded by fil-

tering condition in phase I, nor it will be pruned by 𝐷𝑙𝑏 (˜︁𝑋,𝑄) or
𝐷𝑙𝑏 (˜︁𝑋,𝑄, 𝑅𝑋 ∩ 𝑅𝑐𝑜𝑛𝑠 ) in phase II. Then we have 𝑋 ∈ 𝐴𝑁𝑆 . Be-
sides, 𝐷 (𝑋,𝑄) ≤ 𝜖 for any 𝑋 ∈ 𝐴𝑁𝑆 . Thus 𝑋 ∈ 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖) and
𝐴𝑁𝑆 = 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖). □

4.3.2 Time Complexity. Constructing index for input 𝑆 requires

𝑂 (𝑤 |𝑆 |) time. Subsequence matching queries require 𝑂 ( |𝑆 | |𝑄 |)
time for 𝐸𝐷 or 𝐶𝑁𝐸𝐷 and 𝑂 ( |𝑆 | |𝑄 |2) time for 𝐷𝑇𝑊 or 𝐶𝑁𝐷𝑇𝑊 .

4.4 Optimize the Segmentation of 𝑄
Since 𝐸𝑃𝐴𝐴 method proposed in Section 3 does not require the

lengths of segments to be equal, we can extend the proposed algo-

rithm to exploit multiple indexes.

Assuming there are three indexes built on different segment

lengths, whose 𝑤 are 40, 80 and 160. Then 𝑄 can be divided into

segments whose length are 40, 80 or 160.

The segmentation of 𝑄 effects the size of candidate set and

thereby effects the efficiency of our algorithm. Therefore, we im-

prove the efficiency of our algorithm by generating multiple high-

quality segmentation plans with heuristic method. Then the cost

of query is evaluated heuristically by

𝐶𝑂𝑆𝑇 (𝑝𝑙𝑎𝑛) =
𝑡∑︂
𝑖=1

|𝐶𝑆𝑖 | + 𝛾 × |𝑆 | (
𝑡∏︂
𝑖=1

|𝐶𝑆𝑖 |
|𝑆 | − |𝑄 | )

1

0.5+0.5|𝑆 | , (14)

where |𝐶𝑆𝑖 | =
∑︁
𝑐∈𝐶𝑖
|𝑆𝐸𝐺𝑐 | and 𝛾 is a constant obtained from

experimental results, which is the ratio between the cost of verifying

a candidate and the cost of fetching it from the index. Then, the

plan with minimum cost is selected.

5 EXPERIMENTS
5.1 Experiment Setup
Algorithms. We employ two state-of-art algorithms for subse-
quence matching problem, UCR-suit and KV-match, to compare

with the proposed algorithm. UCR-suit is an index-free algorithm

designed for z-normalized queries, and it needs to scan the whole

2
The proof can be found in the extended version of this paper at https://gitee.com/su_

wen_chang/subsequence_matching.
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data sequence. UCR-suit significantly speeds up the query process-

ing by carefully designed lower bound functions to avoid calculating

the distance. KV-Match is an index-based algorithm that supports

𝐸𝐷 , 𝐷𝑇𝑊 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 with 𝑃𝐴𝐴 summarization method.

All these algorithms are implemented in C or C++ and are compiled

with g++ 5.4.0 with -O2 level optimization.

Datasets. Our experiments involve both real and synthetic data.

The real data used in the following experiments is obtained by

concatenating all the series in UCR dataset
3
. The synthetic data is a

10
9
-length series and is generated by standard wiener process with

restart for every 10
7
elements, which is usually used to simulate

the price fluctuations in financial scenarios.

Hardware Environment. The experiments are conducted on a

server powered by ubuntu 18.04 with Intel i7 CPUs @2.90GHz,

128GB memory, and 2TB HDD storage.

5.2 Tightness of 𝐸𝑃𝐴𝐴 Summarization Method
This subsection compares the proposed 𝐸𝑃𝐴𝐴 method with 𝑃𝐴𝐴

method in terms of the quality of lower bound functions. The quality

of lower bound is measured as the ratio between the estimated lower

bound and the precise distance, which is known as the tightness

of lower bound (TLB) [13, 27]. A tighter lower bound is helpful to

improve the efficiency of algorithm by reducing the candidates to

be verified.

Figure 5 compares the tightness of 𝐸𝑃𝐴𝐴 and 𝑃𝐴𝐴 on different

distance measurements and query lengths. For each distance mea-

surement, 1000 subsequences are randomly selected from the series

𝑆 for each length 𝑙 , where 𝑆 is the concatenated 𝑈𝐶𝑅 series men-

tioned above. These subsequences are used in the experiments as

queries. We set 𝑙 ∈ {32, 64, 128, 256, 512} for 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 ,

and set 𝑙 ∈ {32, 64, 128, 256, 512, 1024} for 𝐸𝐷 and 𝐷𝑇𝑊 . The tight-

ness of queries with length 𝑙 is reported as

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑_𝑇𝐿𝐵 =
1

1000 ∗ (|𝑆 | − 𝑙 + 1)

1000∑︂
𝑖=1

|𝑆 |−𝑙+1∑︂
𝑗=1

𝐷𝑙𝑏 (𝑆𝑙𝑗 , 𝑄𝑖 )

𝐷 (𝑆𝑙
𝑗
, 𝑄𝑖 )

,

in Figure 5.

Note that for each segment, 𝐸𝑃𝐴𝐴 records both mean and stan-

dard deviation while 𝑃𝐴𝐴 only records the mean. Therefore, the

space overhead of 𝐸𝑃𝐴𝐴 is actually twice as much as that of 𝑃𝐴𝐴.

To be fair, we use 𝑃𝐴𝐴2 to denote the distance lower bound that

is computed using twice as many segments as 𝐸𝑃𝐴𝐴. Thus, 𝑃𝐴𝐴2

have the same space overhead compared with 𝐸𝑃𝐴𝐴.

Figure 5(a)∼(f) shows the effect of query length over the tightness
of 𝐸𝑃𝐴𝐴 and 𝑃𝐴𝐴. It is clear that the lower bound of 𝐸𝑃𝐴𝐴 is

always tighter than that of 𝑃𝐴𝐴 on average. There is no significant

difference between the tightness of 𝐸𝑃𝐴𝐴 and the tightness of

𝑃𝐴𝐴2 on 𝐸𝐷 and 𝐷𝑇𝑊 measurements. Besides, the lower bound

of 𝐸𝑃𝐴𝐴 is tighter than that of 𝑃𝐴𝐴2 under 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊

measurements. The reason is that 𝐸𝑃𝐴𝐴 contains the standard

deviation of each segment and is able to estimate 𝑅𝑋 . Therefore,

𝐸𝑃𝐴𝐴 method is a competitive choice for data summarization in

subsequence matching problem.

Since it is harder to preserve sufficient information for a longer

query with the fixed size summarization, the tightness of all the

lower bounds decreases while query length increases.

3
https://www.cs.ucr.edu/~eamonn/time_series_data, accessed on March 1, 2022.
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Figure 5: Tightness of 𝐸𝑃𝐴𝐴 and 𝑃𝐴𝐴methods.

5.3 Subsequence Matching under ED and DTW
This subsection compares the proposed algorithm with KV-Match

in terms of query processing time under 𝐸𝐷 and 𝐷𝑇𝑊 . The experi-

ments are performed on synthetic data series. Given 𝑆 and 𝑄 , the

selectivity of query is defined as
|𝐴𝑁𝑆 (𝑆,𝑄,𝜖 ) |
|𝑆 |− |𝑄 | . Smaller selectivity

means smaller value of 𝜖 .

Figure 6 shows the average query time under 𝐸𝐷 and 𝐷𝑇𝑊 . For

each selectivity, we randomly select 100 subsequences as the queries

from the synthetic data series for each query length 𝑙 ∈ {128, 256,
512, 1024, 2048} respectively. The average query times for different

selectivities are reported in Figure 6(a) and Figure 6(b). The results

show that our algorithm is faster than KV-match under 𝐸𝐷 by

about 2 to 12 times and is up to 7 times faster under 𝐷𝑇𝑊 when the

selectivity of the query is low. However, the proposed algorithm is

just slightly better than KV-Match for 𝐷𝑇𝑊 queries with higher

selectivities.

The reason of our algorithm being faster can be attributed to

the proposed cascading filter strategy. We calculate the proposed

𝐷𝑙𝑏 (˜︁𝑋,𝑄) in line 11 of Algorithm 1 while KV-Match does not. Be-

sides, the relative improvement on 𝐷𝑇𝑊 is smaller than 𝐸𝐷 since

𝐷𝑇𝑊𝑙𝑏 (˜︁𝑋𝑤𝑖
𝑝𝑖
,𝑈

𝑤𝑖
𝑝𝑖
, 𝐿
𝑤𝑖
𝑝𝑖
) is more likely to be zero than𝐸𝐷𝑙𝑏 (˜︁𝑋𝑤𝑖

𝑝𝑖
, 𝑄

𝑤𝑖
𝑝𝑖
).

Thus, further calculating 𝐷𝑙𝑏 (˜︁𝑋,𝑄) for 𝐷𝑇𝑊 is not as helpful as

that of 𝐸𝐷 in terms of candidate pruning.

5.4 Subsequence Matching under CNED and
CNDTW

Now we compare the efficiency of algorithms under 𝐶𝑁𝐸𝐷 and

𝐶𝑁𝐷𝑇𝑊 measurements. In this subsection, UCR-suit, KV-Match

and the proposed algorithm are evaluated on the synthetic data.

We set query length 𝑙 ∈ {128, 256, 512, 1024, 2048}, set 𝛼 ∈ {1.1,
1.5, 2.0}, 𝛽 ′ ∈ {0.05, 0.1, 0.2} and 𝛽 = 𝛽

′× the Interquartile Range 4

of {`𝑆𝑤
𝑖
}. Then, 𝑅𝑐𝑜𝑛𝑠 is set to [`𝑄 − 𝛽, `𝑄 + 𝛽] × [

𝜎𝑄
𝛼 , 𝜎𝑄 × 𝛼]. 25

queries are randomly selected from 𝑆 for each combination of 𝑙 , 𝛼

and 𝛽′. Therefore, we have 1125 queries for each selectivity.

4
Interquartile Range is defined as the difference between the first and the last quartile.
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Figure 6: Average query time under 𝐸𝐷 and 𝐷𝑇𝑊 .

As shown in Figure 7, our algorithm is faster than KV-Match

by 3 to 10 times under 𝐶𝑁𝐷𝑇𝑊 and by 3 to 6 times faster under

𝐶𝑁𝐸𝐷 . The reason can be explained by the superiority of 𝐸𝑃𝐴𝐴

method over 𝑃𝐴𝐴 on 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 , which has been evalu-

ated experimentally in subsection 5.2.
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Figure 7: Average query time under 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 .

5.5 Influence of 𝛼 and 𝛽
This subsection evaluates the influence of 𝛼 and 𝛽 , which are the

parameters of 𝑅𝑐𝑜𝑛𝑠 in Figure 8. It can be seen that the query time

goes up with the increase of 𝛼 and 𝛽 . The reason is that with bigger

𝛼 and 𝛽 , 𝑅𝑐𝑜𝑛𝑠 become more loose, and it is harder to calculate

the lower bound for both 𝑃𝐴𝐴 and 𝐸𝑃𝐴𝐴 method. The proposed

algorithm is always better in each combination of 𝛼 and 𝛽 due to the

use of 𝐸𝑃𝐴𝐴 method, which is helpful to reduce the effect of large

𝑅𝑐𝑜𝑛𝑠 and produces tighter lower bound for 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 .

This is consistent with the result of subsection 5.2.

(a) 𝛼 = 1.1 (b) 𝛼 = 1.5 (c) 𝛼 = 2.0

Figure 8: Average query time under different 𝛼 and 𝛽 .

5.6 Influence of𝑤 and |𝑄 |
The effect of the segments length of index𝑤 , and the length of query

series𝑄 on the performance of the proposed algorithm is illustrated

as Figure 9. "plan" stands for the optimized segmentation method

discussed in subsection 4.4. Overall, the performance seems to be

better with larger value of𝑤 . The reason is that |𝑄 | should be bigger
than any 𝑤 involved in this experiment, which unintentionally

does favor to longer segments. Besides, the proposed segmentation

method have the best performance since it leverages segments of

varies lengths.
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Figure 9: Average query time vs𝑤 and |𝑄 |

5.7 Influence of the Index
As is stated before, the proposed algorithm uses a gird index to

find the sells that overlap with the query region. This subsection

compares our index with the other two competitors. The first one

is the grid index that uses equal-width histogram on {`𝑆𝑤
𝑖
} and

{𝜎𝑆𝑤
𝑖
} to divide the cells, which is denoted as Even. The second one

is a quad tree denoted by Quad. Our index is denoted as Quantile.
Besides, Optimal reports the minimum number of segments to

fetch. The performance of the index is measured by the number of

segments fetched into the memory, since the number of candidate

segments directly affects the performance of the algorithm.

Table 2 reports the number of the segments fetched into the mem-

ory in different index by the average value and standard deviation.

There is no significant difference between the average number of

the segments fetched into the memory by Quantile and that ofQuad.
However, Quantile reports smaller standard deviation by about 10%

compared with Quad, which indicates the degree of performance

fluctuation of the proposed grid index is smaller. The reason is that

Quantile has balanced the number of segments among the rows and

columns of the grid while Quad only guarantees that the number

in each cell does not exceed a certain limit. Besides, Quad uses 30%

more cells and requires extra overhead to maintain the tree struc-

ture. Therefore, it has no superiority over the proposed method.

Finally, it is not surprising that Even is the worst index, since it is

totally unaware of the distribution of the segments.

In a nutshell, the design of our index is reasonable.
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Table 2: Number of Segments Fetched by Different Indexes

Method

Selectitiy

10
−9

10
−8

10
−7

10
−6

10
−5

Quantile avg(10
3
) 122.4 240.8 629.0 867.0 1078.8

(32768 cells) std(10
3
) 61.4 134.7 349.5 497.6 623.0

Even avg(10
3
) 147.8 270.1 672.7 926.5 1110.7

(32768 cells) std(10
3
) 135.5 228.7 444.4 602.0 724.7

Quad avg(10
3
) 119.2 233.2 628.4 877.2 1065.5

(44744 cells) std(10
3
) 77.9 154.5 392.2 525.5 693.0

Optimal avg(10
3
) 32.0 122.1 493.0 748.8 944.9

6 CONCLUSION
In this work, it is proved that the inherent time complexity of the

subsequence matching problem is 𝜔 (𝑛1−𝑂 (1) ) even if with the help

of any practicable preprocessing. A new summarization method

𝐸𝑃𝐴𝐴 for series data is proposed, which is able to support the dis-

tance lower bound for 𝐸𝐷 , 𝐷𝑇𝑊 , 𝐶𝑁𝐸𝐷 and 𝐶𝑁𝐷𝑇𝑊 . Based on

𝐸𝑃𝐴𝐴, an algorithm for solving the subsequence matching prob-

lem is designed. The experimental results show that the proposed

algorithm is significantly faster then the state-of-art algorithms.
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APPENDIX
This appendix analyzes the time inherent complexity of the subse-

quence matching problem, the conclusion is as stated in Theorem

1.

Definition 2. [Nearest Subsequence Problem] Given a query
series 𝑄 , a long series 𝑆 and distance measurement 𝐷 , the nearest
subsequence problem is to find a subsequence 𝑋 ∗ in 𝑆 such that
𝐷 (𝑋 ∗, 𝑄) = min

1≤𝑖≤ |𝑆 |− |𝑄 |+1
{𝐷 (𝑋 |𝑄 |

𝑖
, 𝑄)}.

Definition 3. [Approximate Nearest Neighbor problem] Let 𝐸 ⊂
R𝑑 . Given a set of 𝑑-dimensional vectors, 𝑃 = {𝑝𝑖 |𝑝𝑖 ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑛},
a query vector 𝑞 in 𝐸 and 𝜖 > 0, the approximate nearest neighbor
problem is to find a vector 𝑝 ∈ 𝑃 such that 𝐷 (𝑝, 𝑞) ≤ (1 + 𝜖)𝐷 (𝑝∗, 𝑞),
where 𝑝∗ ∈ 𝑃 and 𝐷 (𝑝∗, 𝑞) = min

𝑝∈𝑃
{𝐷 (𝑝, 𝑞)}.

In the rest of the appendix, we use 𝑁𝑆 (𝑆,𝑄) to denote the nearest
subsequence problem with input (𝑆,𝑄) and use 𝜖-𝑁𝑁 (𝑃, 𝑞, 𝜖) to
denote the Approximate Nearest Neighbor problem with input 𝑃 , 𝑞

and 𝜖 . Besides, 𝑆 [𝑖] refers to the 𝑖th element of series 𝑆 .

Lemma 5. [21] Assuming Strong Exponential Time Hypothesis
(SETH) is true, there exists a constant 𝜖 = 𝜖 (𝛿, 𝑐) such that 𝜖-𝑁𝑁 (𝑃, 𝑞,
𝜖) is not computable under 𝐿𝑝 for any 𝑝 > 0 in 𝑂 (𝑛 (1−𝛿 ) ) time for

any constants 𝛿 > 0 and 𝑐 > 0 even if 𝑂 (𝑛𝑐 ) time preprocessing is
allowed, where 𝑛 = |𝑃 |.

Lemma 6. Given a data series 𝑆 and a query series 𝑄 , the nearest
subsequence problem is not computable in time 𝑂 ( |𝑆 |1−𝛿 ) under 𝐿𝑝
distance for any 𝑝 > 0 even if 𝑆 has been preprocessed in time𝑂 ( |𝑆 |𝑐 )
for any constant 𝑐 > 1 and 0 < 𝛿 < 1 if SETH is true.

Proof. Weprove the lemma by contradiction. Assume that there

exists algorithm A that can solve the 𝑁𝑆 (𝑆,𝑄) in time 𝑂 ( |𝑆 |1−𝛿 )
with or without𝑂 ( |𝑆 |𝑐 ) preprocessing. We can design an algorithm

A′ from A to solve 𝜖-𝑁𝑁 in time 𝑂 ( |𝑆 |1−𝛿 ′ ), which contradicts

to Lemma 5. Since a vector and a series with limited length are

identical in nature, we will take them as the same in the following

proof.

Firstly, we show how to solve 𝜖-𝑁𝑁 (𝑃, 𝑞, 𝜖) according to algo-

rithm for𝑁𝑆 (𝑆,𝑄). Assuming there exists an algorithmA(Θ(𝑆), 𝑄)
for solving 𝑁𝑆 (𝑆,𝑄), which outputs 𝑋 ∗ in 𝑂 ( |𝑆 |1−𝛿 ) time after a

𝑂 ( |𝑆 |𝑐 ) time preprocessing procedure Θ that transforms 𝑆 to Θ(𝑆),
where 𝑐 and 𝛿 are constants, 𝑐 > 1 and 0 < 𝛿 < 1. Based on the

above assumptions, we can design a preprocessing procedure Θ
′

for 𝑃 of 𝜖-NN, and an algorithm for 𝜖-𝑁𝑁 problem A′ (Θ′ (𝑃), 𝑞)
as follows.

The Θ
′
is designed from Θ in the following two steps.

Step 1. Transforms 𝑃 to a series 𝑆 . Let 𝑆𝑝𝑜𝑠 = (𝑎, 𝑏1, 𝑎, 𝑏2, 𝑎, 𝑏3
, ..., 𝑎, 𝑏3𝑑+4), where 𝑎 > max{𝑡 |𝑡 ∈ 𝑝𝑖 , 𝑝𝑖 ∈ 𝑃} and 𝑏 < min{𝑡 |𝑡 ∈
𝑝𝑖 , 𝑝𝑖 ∈ 𝑃}, 𝑏𝑙 consists of repeated 𝑏 and |𝑏𝑙 | = 𝑙 , and 𝑑 is the same

as in Definition 3. We require that 𝑎 is big enough and 𝑏 is small

enough such that 𝑏 < 𝑡 < 𝑎 for any 𝑡 ∈ {𝑡 |𝑡 ∈ 𝑞, 𝑞 ∈ 𝐸}. 𝑆 is

constructed as (𝑝1 ◦ 𝑆𝑝𝑜𝑠 ◦ 𝑝2 ◦ 𝑆𝑝𝑜𝑠 ◦ ... ◦ 𝑝𝑛 ◦ 𝑆𝑝𝑜𝑠 ), where 𝑋 ◦ 𝑌
denotes the concatenation operation of series𝑋 and𝑌 . For example,

if 𝑋 = (1, 2, 3) and 𝑌 = (4, 5, 6), then 𝑋 ◦ 𝑌 = (1, 2, 3, 4, 5, 6).
Step 2. Let Θ

′ (𝑃) = Θ(𝑆).
The algorithmA′ (Θ′ (𝑃), 𝑞) for solving 𝜖-NN(𝑃, 𝑞) works in the

following steps.

Step 1. Let 𝑄 = (𝑞 ◦ 𝑆𝑝𝑜𝑠 ).
Step 2. Compute 𝑋 ∗=A(Θ′ (𝑃), 𝑄), and outputs 𝑋 ∗𝑑

1
.

The output of algorithm A′ is the solution to 𝜖-𝑁𝑁 (𝑃, 𝑞, 𝜖),
which will be proved in Lemma 7.

Now we show that the existence of Θ
′
and A′ is contradict

to Lemma 5. According to the definition of Θ
′
and A′ , Θ′ (𝑃) cost

𝑂 ( |𝑆 |𝑐 ) time andA′ (Θ′ (𝑃), 𝑞) cost𝑂 ( |𝑄 |+|𝑆 |1−𝛿 ) time. For any𝑑 =

𝑂 (𝑙𝑜𝑔𝑛), we have |𝑆 | = 𝑂 (𝑛 ∗𝑙𝑜𝑔2 (𝑛)) and |𝑄 | = 𝑂 (𝑙𝑜𝑔2 (𝑛)). When

𝑛 is big enough, there exists 𝛿
′
< 𝛿 such that (𝑛 ∗ 𝑙𝑜𝑔2 (𝑛))1−𝛿 <

(𝑛)1−𝛿
′
.

Consequently, there exists a constant 𝛿
′
> 0 such that 𝜖-𝑁𝑁 (𝑃,

𝑞, 𝜖) is computable in 𝑂 (𝑛1−𝛿 ′ ) time for any 𝜖 > 0, which con-

tradicts to Lemma 5 if SETH is true. Thus, algorithm A does not

exist. □

Although the proof of Lemma 6 assumes |𝑄 | = 𝑂 (𝑙𝑜𝑔2𝑛), please
note that the conclusion is also true for 𝐸𝐷 when |𝑄 | = 2

𝑂 (𝑙𝑜𝑔∗𝑛)
.

This result can be obtained by replacing 𝜖-NN with Exact Max-IP
Problem over Integers, whose hardness is given by [4].
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Lemma 7. Algorithm A(Θ′ (𝑃), 𝑞) gives the correct solution to 𝜖-
𝑁𝑁 (𝑃, 𝑞, 𝜖) if there exists an algorithm A(Θ(𝑆), 𝑄) as stated in the
proof of Lemma 6.

Proof. We only need to prove that 𝑋 ∗𝑑
1
∈ 𝑃 and 𝐿𝑝 (𝑋 ∗𝑑1 , 𝑞) ≤

𝐿𝑝 (𝑝, 𝑞) for any 𝑝 ∈ 𝑃 .
𝑋 ∗𝑑

1
∈ 𝑃 is proved as follows.

First, we prove 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1, that is, 𝐿𝑝 (𝑋,𝑄) < 𝑝
√
𝑑 (𝑎 − 𝑏) if

𝑋𝑑
1
∈ 𝑃 for any |𝑄 |-length subsequence 𝑋 . Since 𝑋𝑑

1
∈ 𝑃 , 𝑋 |𝑄 |−𝑑

𝑑+1 =

𝑆𝑝𝑜𝑠 = 𝑄
|𝑄 |−𝑑
𝑑+1 . Therefore,

𝐿𝑝 (𝑋,𝑄) = (
𝑑∑︂
𝑖=1

|𝑥𝑖 − 𝑞𝑖 |𝑝 +
|𝑄 |∑︂
𝑖=𝑑+1

|𝑥𝑖 − 𝑞𝑖 |𝑝 )
1

𝑝 = 𝐿𝑝 (𝑋𝑑1 , 𝑞).

From |𝑥𝑖 −𝑞𝑖 | < 𝑎−𝑏, 𝐿𝑝 (𝑋𝑑
1
, 𝑞) < 𝑝

√
𝑑 (𝑎−𝑏), we have 𝐿𝑝 (𝑋,𝑄) <

𝑝
√
𝑑 (𝑎 − 𝑏).
Then, we prove 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2, that is, 𝐿𝑝 (𝑋,𝑄) ≥ 𝑝

√
𝑑 (𝑎 − 𝑏) if

𝑋𝑑
1
∉ 𝑃 for any |𝑄 |-length subsequence 𝑋 . Let 𝑆𝑝𝑜𝑠

𝑤
𝑖

and 𝑆𝑝𝑜𝑠
𝑤
𝑗
be

two different subsequences of 𝑆𝑝𝑜𝑠 ,𝐾 = {𝑘 |𝑆𝑝𝑜𝑠𝑤𝑖 [𝑘] = 𝑆𝑝𝑜𝑠
𝑤
𝑗
[𝑘] =

𝑎} = {𝑘1, 𝑘2, ...𝑘 |𝐾 | }, and 𝐾 ′ = {𝑘′ |𝑆𝑝𝑜𝑠𝑤𝑖 [𝑘
′] ≠ 𝑆𝑝𝑜𝑠𝑤𝑗 [𝑘

′]}. With-

out loss of generality, we assume 𝑖 < 𝑗 and 𝑘1 < 𝑘2 < ... < 𝑘 |𝐾 | . By
the definition of 𝐿𝑝 , we have

𝐿𝑝 (𝑆𝑝𝑜𝑠𝑤𝑖 , 𝑆𝑝𝑜𝑠
𝑤
𝑗
) = (

∑︂
𝑘 ′
𝑙
∈𝐾 ′
|𝑆𝑝𝑜𝑠𝑤𝑖 [𝑘

′
𝑙
] − 𝑆𝑝𝑜𝑠𝑤𝑗 [𝑘

′
𝑙
] |𝑝 )

1

𝑝

=
𝑝
√︁
|𝐾 ′ | (𝑎 − 𝑏).

(15)

∀𝑘𝑙 , 𝑘𝑙+1 ∈ 𝐾 , there must exist 𝑘′
𝑙
∈ 𝐾 ′ such that 𝑘𝑙 < 𝑘

′
𝑙
< 𝑘𝑙+1.

Otherwise 𝑆𝑝𝑜𝑠
𝑘𝑙+1−𝑘𝑙
𝑖+𝑘𝑙

= 𝑆𝑝𝑜𝑠
𝑘𝑙+1−𝑘𝑙
𝑗+𝑘𝑙

= (𝑎, 𝑏𝑘𝑙+1−𝑘𝑙−1, 𝑎), which
implies 𝑖 = 𝑗 because the number of "𝑏"s between two different pairs

of "𝑎"s is different in 𝑆𝑝𝑜𝑠 . Consequently, |𝐾 ′ | ≥ |𝐾 |−1. Let𝐶𝑛𝑡𝐴(𝑆)
denote the number of "𝑎"s in series 𝑆 . Since every "𝑎" in series 𝑆𝑝𝑜𝑠

𝑤
𝑖

contributes one element to either𝐾 or𝐾 ′, |𝐾 ′ |+|𝐾 | ≥ 𝐶𝑛𝑡𝐴(𝑆𝑝𝑜𝑠𝑤𝑖 ).
Therefore,

𝐿𝑝 (𝑆𝑝𝑜𝑠𝑤𝑖 , 𝑆𝑝𝑜𝑠
𝑤
𝑗
) ≥ (⌊

𝐶𝑛𝑡𝐴(𝑆𝑝𝑜𝑠𝑤𝑖 ) − 1
2

⌋)
1

𝑝

∗ (𝑎 − 𝑏) (16)

Figure 10: Two cases for 𝑋𝑑
1
∉ 𝑃 . The elements from 𝑆𝑝𝑜𝑠 are

painted in red. a)∀𝑟 ∈ {1, 2...𝑑}, 𝑋 [𝑟 ] = 𝑎 or 𝑋 [𝑟 ] = 𝑏. b)∃𝑟 ∈
{1, 2...𝑑} that 𝑋 [𝑟 ] ≠ 𝑎 and 𝑋 [𝑟 ] ≠ 𝑏.

If 𝑋𝑑
1

∉ 𝑃 , there exists two cases as illustrated in Figure 10.

In the first case shown as Figure 10 (a), 𝑋 [𝑟 ] ≠ 𝑎 and 𝑋 [𝑟 ] ≠ 𝑏

for any 𝑟 ∈ {1, 2...𝑑}. Therefore, there exist 𝑦1,𝑤1, 𝑖 and 𝑗 such

that 𝑋
𝑤1

𝑦1 = 𝑆𝑝𝑜𝑠
𝑤1

𝑖
and 𝑄

𝑤1

𝑦1 = 𝑆𝑝𝑜𝑠
𝑤1

𝑗
. Besides, there also exist

𝑦2,𝑤2, 𝑖
′
and 𝑗 ′ such that 𝑦2 > 𝑦1 + 𝑤 , 𝑋𝑤2

𝑦2 = 𝑆𝑝𝑜𝑠
𝑤2

𝑖′ and 𝑄
𝑤2

𝑦2 =

𝑆𝑝𝑜𝑠
𝑤2

𝑗 ′ . Thus, 𝑤1 + 𝑤2 ≥ |𝑄 | − 2𝑑 =
(3𝑑+4) (3𝑑+3)−2𝑑

2
. Therefore,

𝐶𝑛𝑡𝐴(𝑄𝑤1

𝑦1 ) +𝐶𝑛𝑡𝐴(𝑄
𝑤2

𝑦2 ) ≥ 2𝑑 + 4. According to inequality (16), we
have

𝐿𝑝 (𝑋,𝑄) ≥ [𝐿𝑝 (𝑋𝑤1

𝑦1 , 𝑄
𝑤1

𝑦1 )
𝑝 + 𝐿𝑝 (𝑋𝑤2

𝑦2 , 𝑄
𝑤2

𝑦2 )
𝑝 ]

1

𝑝

≥ [
𝐶𝑛𝑡𝐴(𝑄𝑤1

𝑦1 ) +𝐶𝑛𝑡𝐴(𝑄
𝑤2

𝑦2 )
2

− 2]
1

𝑝

∗ (𝑎 − 𝑏)

≥ 𝑝
√
𝑑 (𝑎 − 𝑏) .

(17)

In case 2 as illustrated as Figure 10(b), ∃𝑟 ∈ {1, 2...𝑑} such that

𝑋 [𝑟 ] ≠ 𝑎 and𝑋 [𝑟 ] ≠ 𝑏. Thus, there exist𝑦3 and𝑤3 such that𝑋
𝑤3

𝑦3 =

𝑆𝑝𝑜𝑠
𝑤3

𝑖
and𝐶𝑛𝑡𝐴(𝑄𝑤3

𝑦3 ) ≥ 2𝑑 + 4. Therefore, 𝐿𝑝 (𝑋,𝑄) ≥ 𝑝
√
𝑑 (𝑎 −𝑏)

if 𝑋𝑑
1
∉ 𝑃 .

Since 𝑋 ∗ is the solution to 𝑁𝑆 (𝑆,𝑄), we have 𝐿𝑝 (𝑋 ∗, 𝑄) <
𝑝
√
𝑑 (𝑎 − 𝑏) according to proposition 1. According to proposition 2,

𝐿𝑝 (𝑋,𝑄) > 𝐿𝑝 (𝑋 ∗, 𝑄) for any 𝑋𝑑
1
∉ 𝑃 . Therefore 𝑋 ∗ [1 : 𝑑] ∈ 𝑃 .

Now, we prove that ∀𝑝 ∈ 𝑃 , 𝐿𝑝 (𝑋 ∗𝑑1 , 𝑞) ≤ 𝐿𝑝 (𝑝, 𝑞) by contra-

diction. Assuming ∃𝑝 ′ ∈ 𝑃 such that 𝐿𝑝 (𝑋 ∗𝑑1 , 𝑞) > 𝐿𝑝 (𝑝
′
, 𝑞), 𝑆

must contains a |𝑄 |-length subsequence 𝑋 = (𝑝 ′ ◦ 𝑆𝑝𝑜𝑠 ) such
that 𝐿𝑝 (𝑋,𝑄) = 𝐿𝑝 (𝑝

′
, 𝑞). Therefore, 𝐿𝑝 (𝑋,𝑄) = 𝐿𝑝 (𝑝

′
, 𝑞) <

𝐿𝑝 (𝑋 ∗, 𝑄), which contradicts with the fact that 𝑋 ∗ is the solution

to 𝑁𝑆 (𝑆,𝑄). Therefore, 𝐿𝑝 (𝑋 ∗𝑑1 , 𝑞) ≤ 𝐿𝑝 (𝑝, 𝑞) for any 𝑝 ∈ 𝑃 .
Till now, we have proved 𝑋 ∗𝑑

1
∈ 𝑃 and 𝐿𝑝 (𝑋 ∗𝑑1 , 𝑞) ≤ 𝐿𝑝 (𝑝, 𝑞) for

any 𝑝 ∈ 𝑃 , which means that 𝑋 ∗𝑑
1
is the solution of 𝜖-𝑁𝑁 (𝑃, 𝑞, 𝜖).

□

Finally, the inherent hardness of subsequence matching problem,

which is Theorem 1 in Section II, is proved as follows.

proof of theorem 1. Since the solution of𝑁𝑆 (𝑆,𝑄) is in𝐴𝑁𝑆 (𝑆
,𝑄, 𝜖) if 𝜖 ≥ 𝐿𝑝 (𝑋 ∗, 𝑄), 𝑁𝑆 (𝑆,𝑄) can be solved by one scan of

𝐴𝑁𝑆 (𝑆,𝑄, 𝜖1). Denote the time to compute 𝑁𝑆 (𝑆,𝑄) as𝑇1, the time

to compute 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖) as 𝑇2, and the time to scan 𝐴𝑁𝑆 (𝑆,𝑄, 𝜖)
as 𝑇3. Therefore, 𝑇1 ≤ 𝑇2 + 𝑇3. Since 𝑇2 ≤ 𝑇3, 1

2
𝑇1 ≤ 𝑇2. Accord-

ing to Lemma 6, 𝑇2 = 𝜔 (𝑛1−𝛿 ) for any constant 𝛿 > 0. Therefore,

Theorem 1 is true. □

Therefore, we have to accept approximate results if we want to

find the algorithms with better time complexity, perhaps with the

similar method in [3].
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