
Towards Event Prediction in Temporal Graphs
Wenfei Fan1,2,3, Ruochun Jin1, Ping Lu3, Chao Tian4, Ruiqi Xu5

1University of Edinburgh 2Shenzhen Institute of Computing Sciences 3Beihang University
4Chinese Academy of Sciences 5National University of Singapore

{wenfei@inf.,ruochun.jin@}ed.ac.uk,luping@buaa.edu.cn,tianchao@iscas.ac.cn,ruiqi.xu@nus.edu.sg

ABSTRACT
This paper proposes a class of temporal association rules, denoted
by TACOs, for event prediction. As opposed to previous graph
rules, TACOs monitor updates to graphs, and can be used to
capture temporal interests in recommendation and catch frauds
in response to behavior changes, among other things. TACOs
are defined on temporal graphs in terms of change patterns
and (temporal) conditions, and may carry machine learning
(ML) predicates for temporal event prediction. We settle the
complexity of reasoning about TACOs, including their satisfiability,
implication and prediction problems. We develop a system, referred
to as TASTE. TASTE discovers TACOs by iteratively training a
rule creator based on generative ML models in a creator-critic
framework. Moreover, it predicts events by applying the discovered
TACOs. Using real-life and synthetic datasets, we experimentally
verify that TASTE is on average 31.4 times faster than conventional
data mining methods in TACO discovery, and it improves the
accuracy of state-of-the-art event prediction models by 23.4%.

PVLDB Reference Format:
Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. Towards Event
Prediction in Temporal Graphs. PVLDB, 15(9): 1861-1874, 2022.
doi:10.14778/3538598.3538608

1 INTRODUCTION
Event prediction is to predict a real-world occurrence that relates to
a particular topic and will take place at a specific time [109]. Events
range from large-scale (e.g., disease outbreaks), to medium-scale
(e.g., system failures), to small-scale (e.g., fraud detection). Event
prediction is important in a variety of domains such as disease
control and business intelligence. To illustrate, consider online
recommendation, a special case of event prediction (“sale events”),
to recommend items to users. Recommendation models are mainly
categorized into collaborative filtering (CF) by learning from user-
item interactions, content-based (CB) by assessing the similarity
of content features of users and items, and hybrid by integrating
the two [107]. In the real world, however, e-commerce companies
often monitor changes to transaction graphs, and employ rules to
catch users’ temporal interests and detect fraudulent behaviors.

Example 1: Below are two rules from an e-commerce platform.
(1) If a movie is nominated for a film award and if a user watches
the movie within two weeks after its nomination, then recommend

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 9 ISSN 2150-8097.
doi:10.14778/3538598.3538608

the movie to the friends of the user between the nomination date
and the date of the award ceremony. Here the nomination indicates
a “change” that triggers the recommendation in a time interval.
Such cases are beyond conventional CF and CB models.
(2) If a user searched “barbecue” at least m times in June, then
recommend meat to the user in the next two months.

Temporal changes are also used to predict other events.
(3) If at leastm cases of an infectious disease z are reported in an area
within the past 2 weeks, then offer vaccines for z to the people there.
(4) If deviceM is used to access k accounts only once within a short
period of one hour, and if each of these accounts has been regularly
accessed by other devices at leastm times in the past month, then
deviceM is likely committing account-takeover attacks. 2

Challenges. No matter how important, event prediction is chal-
lenging. While rules have been studied for graphs, e.g., graph func-
tional dependencies (GFDs) [12], graph association rules (GARs)
[21] and Horn rules [25], they are defined on static graphs and
cannot express temporal changes. There are several open questions.
How can we specify patterns of changes to graphs and temporal
interests of users in logic rules? Can we improve the accuracy of
event-prediction ML models with temporal conditions, and inter-
pret their predictions? How expensive is it to reason about rules
with temporal conditions and embedded ML models? How can we
efficiently discover such rules from real-life graphs? Is it possible to
scale with large graphs when we apply the rules to predict events?

Contributions & organization. This paper tackles these issues.
(1) Temporal rules (Section 2). We propose a class of temporal asso-
ciation rules, referred to as TACOs (TemporAl event prediCtiOn
rules), to enrich event-prediction ML models with temporal condi-
tions. TACOs are defined on temporal graphs in terms of change
patterns, temporal conditions and ML prediction models (as pred-
icates). In contrast to previous graph rules, TACOs are applied to
updates to temporal graphs, which are typically much smaller than
the entire graphs, to monitor changes and predict events.

(2) Complexity (Section 3). We study classical problems for TACOs,
including (a) satisfiability to check whether a set of TACOs has no
conflicts, (b) implication to decide whether a set of TACOs entails
another TACO, and (c) prediction to forecast whether an event will
occur. We show that they are Σp2 -complete, Πp

2 -complete and NP-
complete, respectively. That is, despite the increased expressivity,
TACOs do not make our lives much harder compared with [21, 22].

(3) TASTE system (Section 4). Despite the intractability, we develop
a system called TASTE (TemporAl SysTEm). TASTE (a) discovers
high-quality TACOs with generative ML models, and (b) applies
the discovered TACOs for temporal event prediction in parallel.

1861

https://doi.org/10.14778/3538598.3538608
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3538598.3538608

(4) Rule discovery (Section 5). From the perspective of probability
distribution learning, we develop a creator-critic framework to
discover TACOs in TASTE, as a major contribution. The rule
creator adopts GAN and LSTM language models to generate
TACOs with candidate patterns and temporal conditions, while
the critic evaluates such TACOs rules on temporal graphs, collects
high-quality rules, and provides feedback to the creator for
improving its quality in the next round. Different from the
traditional discriminator in GAN, the “critic” is a predefined
scoring algorithm that requires no training. This method avoids
the exhaustive levelwise search in an exponentially large space [20]
and is able to find high-quality TACOs with large graph patterns.

(5) Parallel prediction (Section 6). We develop a parallel algorithm
for temporal event prediction with TACOs. In contrast to existing
graph partitioning methods such as edge-cut or vertex-cut [3, 77],
we propose to partition a temporal graph based on temporal locality
such that event prediction can be made communication-free. We
show that the parallel event prediction algorithm guarantees to
run faster when given more processors, i.e., parallel scalability.

(6) Experimental study (Section 7). Using real-life and synthetic
datasets, we verify the accuracy, efficiency and scalability of TASTE.
We find the following. On average, (1) TASTE is 23.8% and 23.0%
more accurate than prior methods for temporal event prediction
and dynamic recommendation, respectively. (2) The creator-critic
discovery method of TASTE is more than 31 times faster than the
levelwise algorithms. It finds TACOs with patterns of 20 edges in
1639s, in contrast to days by the conventional methods. (3) 84.76%
of rules mined by levelwise methods can be found by TASTE using
a small amount of training data and training rounds. (4) The event
prediction algorithm in TASTE is parallelly scalable, e.g., its runtime
is reduced by 3.2 times when using 32 processors instead of 4.

Novelty. The paper proposes an approach towards event prediction
by enriching ML models with temporal logic conditions in logic
rules, and a practical method to disc over rules with large graph
patterns. The novelty of the work consists of (1) TACOs, a class of
rules for event prediction on dynamic graphs; (2) the complexity
bounds of the satisfiability, implication and prediction problems
for TACOs; (3) a creator-critic framework, the first that is able to
discover high-quality graph rules with large patterns; (4) a strategy
for partitioning temporal graphs based on temporal locality; (5) an
algorithm for temporal event prediction that guarantees the parallel
scalability; and (6) TASTE, a system based on new approaches to
discovering TACOs and predicting events with TACOs.

Related work. We categorize the related work as follows.
Temporal event prediction. A variety of ML models have been ex-
plored for temporal event prediction, including (1) regression [24,
48, 64, 67]; (2) point processes [73, 99]; (3) survival analysis [16, 94];
and (4) embedding via, e.g., tensor decomposition [18, 105], recur-
rent neural network (RNN) [36, 56, 92, 93], graph neural network
(GNN) [11, 50, 58, 71, 81], autoencoder [29, 30, 78] and diachronic
encoder [15, 26, 28, 101]. In particular, as a special type of event
prediction, (temporal) recommendation has attracted a great deal
of interest. For example, dynamic recommender systems (DRS)
have been developed to improve the recommendation quality. They

can incorporate temporal factors of user preferences [75] using
time-dependent neighborhood models [23, 60, 89], matrix factor-
ization [42, 55, 59, 76] and tensor models [33, 96, 97].

Temporal association rules have been developed to specify
time-dependent correlations of transaction data in relational ta-
bles [95, 102]. In addition, association rules have also been studied
on graphs [5, 21, 65]. GARs [21] are defined on static graphs to
specify regularities among entities. GTARs (Graph Temporal Asso-
ciation Rules) [65] specify connections between events by means
of two event patterns that share a common focus node and a single
constant time interval. Similarly, GERs (Graph Evolution Rules) [5]
are defined with two connected sub-patterns that are decomposed
from a singe pattern, to represent local changes, e.g., relabeling [83].

This work differs from the prior work in the following.
(1) As an effort to unify rule-based and ML-based methods for event
prediction, we propose TACOs by embedding event-prediction ML
models as predicates. This allows us to not only leverage existing
ML models, but also refine the ML models with logic conditions.
(2) Unlike existing ML-based prediction strategies (e.g., DRS) that
adopt unexplainable blackbox models, our method with TACOs of-
fers a logic interpretation of the ML predictions for temporal events.
(3) TACOs are more expressive than GARs, GTARs and GERs. As
will be seen in Section 2, these rules can all be expressed as TACOs.
TACOs may embed prediction ML methods beyond GTARs and
GERs, and support various temporal conditions on different events,
while GTARs and GERs can only express constant time intervals.
(4) We establish the complexity of classical problems for temporal
graph rules. While these problems were studied for GARs on static
graphs, no prior work has considered these for GTARs or GERs.

Rule learners. Prior graph rule discovery methods can be classified
as follows: (1) levelwise data mining approaches that iteratively
enumerate all possible candidate rules, and prune non-interesting
rules with criteria such as support/confidence [5, 20, 65], head cov-
erage and PCA confidence [25]; and (2) rule learners that typically
enumerate paths as candidate rules and learn a weight for each can-
didate to quantify its quality. The weight learning methods include
Markov logic networks [40, 79], path ranking [44], relational depen-
dency networks [66, 68], neural logic programming [80, 82, 103],
and reinforcement learning [14, 52, 62, 74, 87, 100].

Different from existing rule learners, (a) we study rule discov-
ery in temporal graphs, while the prior learners focus on static
graphs. (b) We propose to discover TACOs with general topologi-
cal structures, beyond merely paths. (c) We discover TACOs that
may carry ML predicates. (d) We propose a deep-generative-model-
based approach to learning graph rules with large graph patterns.
In contrast, conventional mining methods for graph rules [20] can
hardly find rules with patterns of 7 edges or more.

Pattern generators. Graph generative models have been extensively
studied to build graph patterns. Such models usually ensure that
the generated patterns sustain certain properties, e.g., the power-
law node degree distribution [1], community structures [84, 98],
distribution over random walks [7, 110], distribution of node and
edge sequences [51, 54, 104], graphlets distribution [35, 106] and
time-invariant conditions and time-variant conditions [108].

1862

barbecureuser

fo
r

fo
r

device

accountaccount

device device device device device device

vaccine

search

diseasearea

live_in

liv
e
_
in

person
person

personuser

movie award

nomination

user

w
a
tc

h
 [0

,2
]

friend

meat

w

live_in

[0, 0]

frie
n
d

watch watch

n
o
m

in
a
tio

n
user

recom
m

end

movie

award

user movie
access [0,1]

access [-31*24,0]

contract [0,2]
[0, 0]

[0, 0] [0, 0]

0
0

1 1

t1

Figure 1: ∆-patterns and temporal graph

Pattern generation is a step in our creator-critic framework. How-
ever, our TACO discovery method departs from pattern generators
since it incorporates (a) language models to attach node and edge
labels to generated change patterns, and (b) strategies to create
dependencies with temporal conditions and ML predicates. None
of these has been studied before in pattern generation.

2 TEMPORAL EVENT PREDICTION RULES
We introduce TACOs in this section. We start with basic notations
(Section 2.1) and then define temporal prediction rules (Section 2.2).

2.1 Preliminaries
Assume three countably infinite sets of symbols, denoted by Γ, ϒ and
Ω, for labels, constants and timestamps, respectively. Here Ω is lin-
early ordered w.r.t. a discrete order ≤. We denote a time window by
τ , which is [t1, t2] for timestamps t1 and t2 (t1 ≤ t2) selected from Ω.

Temporal graphs. A temporal graph is specified asG=(V , E, L,T , FA),
where (a) V is a finite set of nodes; (b) E⊆V×Γ×Ω×V is the set
of edges, where e=(v, l, t,v ′) denotes an edge from v to v ′ that is
labeled with l∈Γ and carries timestamp t=T (e)∈Ω; (c) each nodev ∈
V has label L(v) from Γ; and (d) nodev carries a tuple FA(v)=(A1 =
a1, . . . ,An = an) of attributes of a finite arity, where Ai denotes a
property and ai ∈ ϒ, written as v .Ai=ai , and Ai,Aj if i,j.

We refer to G as a graph when it is clear from the context.
Intuitively, G is a directed labeled graph in which each edge has

a timestamp recording when it is added to G or when it is last up-
dated. Note that from a nodev1 tov2, theremay exist multiple edges,
possibly with the same label but different timestamps. To simplify
the presentation, we specify node timestamps by attaching times-
tamped self-loop edges to nodes to mark the times of node updates.

∆-patterns. A ∆-pattern is ∆Q[x̄] = (VQ , EQ , LQ , TQ , µ), where (1)
VQ (resp. EQ) is a set of pattern nodes (resp. edges); (2) LQ assigns
a label in Γ to each pattern node u ∈ VQ (resp. edge e ∈ EQ); (3)TQ
assigns a time window τ to each pattern edge; in particular, one
designated edge ex is given τ = [0, 0] that fixes the current time; (4)
x̄ is a list of distinct variables; and (5) µ is a bijective mapping from x̄
toVQ , i.e., it assigns a distinct variable to each node inVQ . For x ∈ x̄ ,
we use µ(x) and x interchangeably when it is clear from the context.

Example 2: Figure 1 depicts ∆-patterns ∆Q1–∆Q4 for the cases of
Example 1: (1) ∆Q1 specifies the change that a movie is nominated
for an award, together with potential users, in which the designated
edge ex is labeled nomination; (2) ∆Q2 depicts that a user posesm
queries about barbecue in June, where edge ex indicates the last
query; (3) ∆Q3 shows the change ofm cases of disease z found in an
areaw , along with a vaccine y for z; here ex indicates the first case
reported; and (4) ∆Q4 is an abnormal pattern of account accesses,
where ex is the first access edge from device x to account y1. 2

Temporal pattern matching. A match of ∆-pattern ∆Q[x̄] in graph
G is a homomorphism h from ∆Q[x̄] to G such that (a) for each
pattern node u ∈ VQ , LQ (u) = L(h(u)); and (b) for each pattern
edge e=(u, l, τ ,u ′) in ∆Q[x̄], e ′=(h(u), l, t,h(u ′)) is an edge inG and
t −t∗ ∈ τ . Here t∗ denotes the current time, i.e., the timestamp of the
edge inG to which the designated edge ex of ∆Q[x̄] is mapped viah.

We denote by ∆Q(G) the set of all matches of ∆Q[x̄] in graph G .
Intuitively, ∆Q[x̄] is a change pattern. It monitors updates to

graph G. The matches of ∆Q[x̄] in G can be computed in ∆GQ ,
which includes nodes and edges (updates) with timestamps in the
range [tmin, tmax] relative to the current time t∗, and is referred to
as updates toG relative to ∆Q . Here tmin and tmax denote the earliest
and latest timestamps in ∆Q[x̄], respectively. The updates are typi-
cally much smaller thanG . Consequently, it is oftenmore efficient to
compute matches of a ∆-pattern than that of a conventional pattern.

2.2 Definition and Semantics of Rules
TACOs are defined in terms of ∆-patterns and predicates.

Predicates. Predicates p of a ∆-pattern ∆Q[x̄] have the form:
x .A | l(x,y) | M(x,y, l, t) | x .A⊕y.B | x .A⊕c | e1.t ⊕ e2.t | e .t ⊕ c,

where x,y ∈ x̄ , e1, e2 and e are pattern edges of ∆Q[x̄], x .A denotes
an attribute A of x , c is a constant, l(x,y) is an edge from x to y
labeled l , e .t is the timestamp of edge e , and ⊕ is one of =,,, <, ≤
, >, ≥. We write e .t ∈ [t1, t2] if e .t ≥ t1 and e .t ≤ t2. We refer to
e1.t ⊕ e2.t and e .t ⊕ c as temporal predicates.

In particular,M is an ML classifier for event prediction on tem-
poral graphs; it returns true if it predicts that the event indicated by
edge l(x,y) will take place at time t∗ + t . It can be a dynamic recom-
mendationmodel, e.g., SASRec [37], or a temporal graph completion
model, e.g., RE-GCN [50]. We refer toM as an ML predicate.

ML models. We require the modelM to work in a “transductive set-
ting” [10], where it infers information between nodes with observed
labels. Once the training ofM and TACO discovery complete, the
embeddings of the observed labels are fixed and no new embed-
dings that may violate the discovered TACOs will be introduced.
This enables interpretingM via logic predicates in TACOs.

Rules. A temporal event prediction rule (TACO) φ is defined as
∆Q[x̄](X → (p0, τ)),

where ∆Q[x̄] is a ∆-pattern, X is a conjunction of predicates of
∆Q[x̄], p0 is a predicate of ∆Q[x̄], and τ is a time window. When
p0 = l(x,y), the edge represented by p0 is predicted and is not nec-
essarily already in ∆Q[x̄]. We refer to ∆Q[x̄],X , p0 andX → (p0, τ)
as the pattern, precondition, event and dependency of φ, respectively.

Intuitively, the TACO says that if the precondition X holds on
the entities matched by the change pattern ∆Q[x̄], then the event
specified by p0 will take place within the time window τ .

1863

Example 3: The rules of Example 1 can be expressed as TACOs.
(1) φ1 = ∆Q1[x̄](X1 → (recommend(y, x), [0, t1])), where X1 = ∅
and t1 is a timestamp in weeks. The TACO says that if user x1
watches movie y in 2 weeks after the nomination of y for award z
and if x is a friend of x1, then recommendy to x by the date t∗+t1 of
the award ceremony. Note that the condition that user x1 watches
the movie in 2 weeks is specified by functionTQ in ∆Q1 (see Fig. 1).

(2) φ2 = ∆Q2[x̄](X2 → (recommend(y, x), [0, 60])), where X2 is
(
∧
i ∈[1,m−1] ei .t < ei+1.t) ∧ (

∧
i ∈[1,m] ei .t ∈ [tjune, t

′
june]). Here

ei .t < ei+1.t ensures that searches ei and ei+1 are distinct and
tjune (resp. t ′june) indicates the date of June 1 (resp. June 30). It says
that if x searches barbecue at leastm times in June (specified in X2),
then recommend meat to x in the next two months (60 days).
(3) φ3 = ∆Q3[x̄](X3 → (offer(y, x), [2, 6])). Precondition X3 is∧
i , j ∈[1,m],i,j (xi .id , x j .id), to enforce that the cases xi and x j

are distinct. Observe that in the ∆-pattern ∆Q3, the time window
[0, 2] indicates that person xi contracts disease z in 2 weeks after the
current time t∗, i.e., the earliest case confirmed. It says that if at least
m cases of disease z are confirmed in areaw within 2 weeks and if
person x lives inw , then offer vacciney for disease z to x in a month.
(4) φ4 = ∆Q4[x̄](X4 → (x .status = fraud, [0, 0])), where X4 is∧
i ∈[1,k]((

∧
j ,l ∈[1,m], j,l z

j
i .id=z

l
i .id ∧ e

j
i .t,e

l
i .t) ∧M(x,yi , attack,

ei .t)). HereM is anMLmodel suspecting that x attacked accountyi
at time ei .t . The time windows in ∆Q4 are in hours. The TACO says
that if device x accesses y1, . . . ,yk within one hour,M suspects
them as attack behaviors, and if each yi has been accessed by other
devicesm times in the past month, then x is likely a fraud. 2

Remark. (1) GARs [21], GTARs [65] and GERs [5] are special
cases of TACOs. (a) GARs are TACOs when all time windows are
[−∞,∞] and preconditions X carry no temporal predicates. We
adopt a single predicate p0 for the event in each TACO to simplify
the discussion; this does not lose expressive power compared to
GARs [20]. (b) A GTAR can be expressed as multiple TACOs, where
each TACO (i) has a pattern that extends the antecedent pattern
P1 of the GTAR with the nodes in its consequent pattern P2, and
(ii) encodes a single edge from P2 as the event p0 with τ = [tα , tα],
where tα is the constant time interval specified in the GTAR. (c)
Similarly, a GER can be encoded as a set of TACOs, one for each
update indicated by its patterns with the maximum timestamp [5].
(2) As demonstrated by φ4 of Example 3, one can plug a well-trained
ML prediction modelM in precondition X , and enrichM with
temporal and logic conditions. A TACO of the form ∆Q[x̄](X →
(M(x,y, l, t), τ)) interprets ML predictions with logic predicates.
(3) One can associate TACOs with a probability for the predicted
events. However, this would incur higher complexity (#P-hard) as
indicated by probabilistic logic programming [41].
(4) TACOs can readily handle interval-timestamped graphs G [4].
The only difference is that when pattern edge e of a TACO matches
edge e ′ in G, we require that the time range of e overlaps with at
least one time interval of e ′, instead of covering a single timestamp.

Semantics. Denote by h(x̄) a match of ∆Q[x̄] in a graph G, and p
a predicate of ∆Q[x̄]. We say that match h(x̄) satisfies a predicate p,
denoted by h(x̄) |= p, if the following condition is satisfied: (a) if p is

Table 1: Notations
Notations Definitions
G , ∆Q [x̄] graph and ∆-pattern, respectively
∆GQ updates to G relative to pattern ∆Q
φ TACO ∆Q [x̄](X → (p0, τ))

supp(φ ,G) the support of TACO φ in graph G
conf(φ ,G) the confidence of TACO φ in graph G
α , β , γ , δ thresholds (node, support, confidence, time window)

x .A, then node h(x) carries attribute A; (b) if p is l(x,y), then there
is an edge from h(x) to h(y) labeled l ; (c) if p isM(x,y, l, t), then
the ML classifierM predicts an association between h(x) and h(y)
with label l at time t∗ + t ; (d) if p is x .A ⊕y.B, then attributes A and
B exist at h(x) and h(y), respectively, and h(x).A ⊕ h(y).B; similarly
for x .A ⊕ c; and (e) if p is e1.t ⊕ e2.t , then the timestamps of edges
matching e1 and e2 have the ⊕ relationship; similarly for e .t ⊕ c .

For a conjunctionX of predicates, we write h(x̄) |= X if h(x̄) |= p
for all p inX . We write h(x̄) |= φ for TACO φ = ∆Q[x̄](X → (p0, τ))
if h(x̄)|=X implies h(x̄) |= p0 and p0 occurs within time window τ .

We say that graph G satisfies TACO φ = ∆Q[x̄](X → (p0, τ)),
denoted by G |= φ, if for all matches h(x̄) of ∆Q[x̄] in G, h(x̄) |= φ.
We say that G satisfies a set Σ of TACOs, denoted by G |= Σ, if for
all TACOs φ ∈ Σ, G |= φ, i.e., G satisfies every TACO in Σ.

Example 4: Consider the temporal graphG illustrated in Figure 1,
where each edge is annotated a timestamp. Then G satisfies the
TACOφ1 of Example 3. Observe that there only exists a singe match
h(x̄) of ∆Q1 inG: x 7→u2, x1 7→u1, x2 7→a and y 7→m1. As u2 is linked
fromm1 via a recommend edge with timestamp t1 in G, we know
that h(x̄) |= (recommend(y, x), [0, t1]), and G |= φ1 follows. 2

The notations of the paper are summarized in Table 1.

3 REASONING ABOUT TEMPORAL RULES
In this section we study fundamental problems for TACOs, includ-
ing the satisfiability, implication and prediction problems. We show
that although TACOs are more expressive than GARs [21], these
problems for TACOs are not much harder than for GARs.

Satisfiability. The satisfiability problem is as follows.
◦ Input: A set Σ of TACOs.
◦ Question: Does there exist a graph G such that G |= Σ and for
each TACO ∆Q[x̄](X → (p0, τ)) ∈ Σ, ∆Q has a match in G?

Intuitively, this is to make sure that the discovered TACOs have no
conflicts and can be applied to a graph at the same time.

The problem is coNP-complete for GARs [21] and Σ
p
2 -complete

for graph denial constraints (GDCs) [22]. We show the following.

Theorem 1:The satisfiability problem is Σp2 -complete for TACOs. 2

Here Σ
p
2 denotes the class of decision problems that can be

checked in NP using an NP oracle, i.e., Σp2 = NPNP. Similarly, the
class Πp

2 = coNPNP is defined (see [70] for more details).
We assume w.l.o.g. the following about ML predicates in TACOs;

(a) ML prediction (i.e., testing with pre-trainedM) takes polynomial
time (PTIME), and (b) there exists a “small” range of values such
that for any node pairs (x,y), their attribute values can be encoded
by values in the small range and yield the same truth value forM.
These are the case for ML models used by TACOs in practice.

1864

Proof sketch: We first show a small model property: if a set Σ of
TACOs is satisfiable, then there exists a temporal graph GΣ such
that |GΣ | ≤ 4|Σ|3 and GΣ |= Σ. Based on this, we develop an Σ

p
2

algorithm to check whether a given set Σ of TACOs is satisfiable.
The lower bound follows from the Σp2 -completeness of the satis-

fiability problem for GDCs [22], since it is easy to verify that GDCs
are also a special case of TACOs. 2

Implication. A set Σ of TACOs implies a TACO φ, denoted by
Σ |= φ, if for all graphs G, if G |= Σ then G |= φ.

The implication problem is stated as follows.
◦ Input: A set Σ of TACOs and a TACO φ.
◦ Question: Does Σ |= φ?
The implication analysis helps us remove redundant rules.

The implication problem is NP-complete for GARs [21] and Π
p
2 -

complete for GDCs [22]. For TACOs it is no harder than for GDCs.

Theorem 2: The implication problem is Πp
2 -complete for TACOs. 2

Proof sketch: We prove a small model property for the problem:
if Σ ̸ |=φ, then there exists a temporal graph Gφ such that |Gφ | ≤

8|φ |(|φ |+|Σ|)2, Gφ |=Σ but Gφ ̸ |=φ. Based on this, we design an Σ
p
2

algorithm to check whether Σ ̸ |=φ. The lower bound directly follows
from the Πp

2 -complete implication problem for GDCs [22]. 2

Prediction. We also study the prediction problem.
◦ Input: A temporal graph G, a set Σ of TACOs, a time window τ ,
a label l , and two nodes u and v in G.
◦ Question: Does there exist edge labeled l from u to v in τ by Σ?
This is to study the complexity of temporal prediction with TACOs.

A similar problem (deduction problem) was shown NP-complete
for GARs [21]. It is no harder to predict events with TACOs.

Theorem 3: The prediction problem is NP-complete for TACOs. 2

Proof sketch: For the upper bound, we define a notion of
proof trees and show that (⋄) the prediction (p0, τ) can be
deduced in G if and only if there exists a proof tree T with
|T |≤7|G |2(|G | + |Σ|)2(|G |+|τ |)3 that witnesses the prediction.
Based on (⋄), we design an NP algorithm for the problem: guess
a tree T such that |T |≤7|G |2(|G | + |Σ|)2(|G |+|τ |)3 and check
whether it is a proof tree of the prediction (p0, τ) in PTIME.

We show the lower bound by reduction from the graph homo-
morphism problem, which is NP-complete (cf. [27]). The latter is
to decide, given two undirected graphs G1 and G2, whether there
exists a homomorphism h fromG1 toG2. We use TACO φ to encode
G1, temporal graph G to encode G2, and (p0, τ) to represent h. 2

Remark. The complexity bounds remain unchanged for interval-
timestamped graphs [4]. For the prediction problem, we only need
to check whether a time interval overlaps with another, which takes
PTIME. For the other two problems, the small model properties
remain intact and so does the complexity. Moreover, the results
also hold when timestamps are chosen from densely ordered set.

4 TEMPORAL SYSTEM
In this section we introduce TASTE (TemporAl SysTEm), a system
for discovering TACOs and predicting events with TACOs. We first
state the corresponding discovery and prediction problems (Sec-
tion 4.1). We then present the architecture of TASTE (Section 4.2).

Input

Output

TASTE

GraphML models requirement TACOs Time window

Rule discovery module Event prediction module

predicted eventsDiscovered TACOs

call

return

Figure 2: Architecture, inputs and outputs of TASTE

4.1 TACO Discovery and Event Prediction
We first define quality measures for TACOs.

Quality metrics. We use support and confidence to quantify the
quality of TACOs, for frequency and reliability, respectively.

Support. The support of TACO φ=∆Q[x̄](X→(p0, τ)) in graph G is
supp(φ,G) = |∆Q(ex ,φ,G)|,

where ∆Q(ex ,φ,G) denotes the set of edges h(ex) in those matches
h(x̄) ∈ ∆Q(G) such that h(x̄) |= X , h(x̄) |= p0, and p0 occurs in τ .

Intuitively, the support counts the number of distinct “satisfiable”
matches in regards to the designated edge ex . One can verify that
this measure is anti-monotonic w.r.t. a partial order ⪯ over TACOs,
i.e., supp(φ,G) ≥ supp(φ ′,G) for any G if φ ⪯ φ ′.

Confidence. We define the confidence of a TACO φ = ∆Q[x̄](X →

(p0, τ)) in graph G, denoted by conf(φ,G), as follows:

conf(φ,G) =
supp(φ,G)
|∆Q(ex ,X ,G)|

.

Here ∆Q(ex ,X ,G) is the set of edges h(ex) in allmatches h∈∆Q(G)
that satisfy X . The ratio quantifies the likelihood that event p0
happens in τ with matches satisfying prediction X , i.e., reliability.

TACO discovery. The discovery problem for TACOs is as follows.
◦ Input: A temporal graphG , a positive integer α , a support thresh-
old β > 0, a confidence threshold γ ∈ [0, 1], and a bound δ > 0
on the lengths of time windows.
◦ Output: A set Σ of TACOs such that for each φ ∈ Σ, supp(φ,G) ≥
β , conf(φ,G) ≥ γ , t2 − t1 ≤ δ for each time window [t1, t2] in φ,
and there are at most α nodes in the pattern of φ.
We call the tuple (α, β,γ , δ) a discovery requirement d . The prob-

lem aims to discover the set of all TACOs that conform to d , and
have the expected number of pattern nodes bounded by α .

Temporal event prediction. The problem is stated as follows.
◦ Input: A graph G, a set Σ of TACOs and a time window τ0.
◦ Output: A set R of edges for G predicted by Σ such that the
occurrence of the event encoded by each edge in R is within τ0.
To simplify the discussion, we consider events p0 represented

by edges l(x,y), as commonly found in practice.

4.2 Overview of TASTE
The architecture of TASTE is depicted in Figure 2. TASTE supports
two modules for TACO discovery and event prediction, as follows.

(1) Rule discovery. The discovery module is responsible for mining
a set Σd of TACOs that conform to the given requirement d from
temporal graph G, referred to as high-quality rules. Apart from d ,
it takes pre-trained ML modelsM (Section 2) as additional input
and embeds them in TACOs when discovering Σd .

1865

Rule criticRule Creator

High-quality TOCOs set

trainlocalized graph

validation graph

select

train

generate rule set

Figure 3: Dataflow of the iterative TACO discovery.

(2) Event prediction. The prediction module employs the discovered
TACOs in Σd to predict all events (or a particular event) by running
a parallel algorithm. It should be mentioned that this module can
also accept TACOs provided by domain experts if available.

We will present algorithms underlying the discovery and predic-
tion modules in Sections 5 and 6, respectively.

5 GENERATION-BASED TACO DISCOVERY
In this section we propose a Creator-Critic Discovery approach, de-
noted by CCD, to discovering high-quality TACOs Σd . We develop
such an algorithm for the rule discovery module of TASTE.

Below we first introduce the generation-based approach and
justify the method from the perspective of probability distribution
learning.We then presentCCD and its functions andmodels. Finally
we formally prove the performance guarantees of CCD.

Generation-based discovery. One might be tempted to extend
the existing levelwise search-based methods, e.g., [5, 20], to enu-
merate candidate TACOs and identify the required ones. However,
these approaches need to search in a lattice and take exponential
time, despite pruning strategies to reduce the cost [5, 20, 65].

In view of this, we propose CCD, which discovers high-quality
TACOs by employing generative adversarial networks (GAN), and
using interactive learning with weak supervision between a rule
creator and a rule critic. This GAN-based framework is inspired
by the latest progress in drug discovery and compound design [6,
88], where a GAN is trained to generate promising candidates
without enumerating all possible combinations in the large search
space. Such generative approach significantly accelerates the drug
discovery process and produces more promising compounds.

As shown in Figure 3, in each iteration, the creator of CCD first
employs ML models to generate a set Σ of candidate TACOs. Then
the critic selects high-quality rules from Σ and adds them to Σd .
Taking rules in Σd as feedback from the critic, the creator trains
itself again to improve the probability of generating high-quality
TACOs in the next iteration. CCD returns Σd when the number of
iterations reaches a user-specified bound I .

From the perspective of probability theory, each TACO φ can
be viewed as an event and the union of all TACOs constitutes a
discrete countably infinite sample space A. Given requirement d ,
the discovery aims to find a probability distribution P described by
a probability mass function P : A → R (real numbers), where{

P(φ) > 0, if φ is a high-quality TACO w.r.t. d,

P(φ) = 0, if φ is not a high-quality TACO w.r.t. d .
(1)

In order to find the distribution, conventional levelwise methods
build a searching lattice to enumerate each rule φ in A and
check whether it meets the requirement d . In contrast, CCD
interactively trains deep generative models [63, 110] in the creator
to approximate the target distribution P, avoiding costly search
in the exponentially large sample space.

Algorithm 1: Creator-Critic Discovery (CCD)
Input: A temporal graph G , discovery requirement d=(α , β , γ , δ),

ML modelsM, sample size N , and iteration number I .
Output: A set Σd of TACOs mined from G such that every rule in Σd

conforms to the requirement d .
1 ε ← 0; Σd ← ∅; GM ← MLExp(G ,M);
2 Gs

M
← LocalizedSample(GM , α , N);

3 TrainCreator(Gs
M
, α , δ); /* Pretrain the rule creator */

4 Σ← GenerateRule(α , δ , Σd);
5 Σd ← SelectRule(Σ, β , γ ,G);

/* Generate TACOs via interactive training */
6 while ε < I do
7 Gs

M
← LocalizedSample(GM ,α , N);

8 TrainCreator(Gs
M
∪ Σd , α , δ);

9 Σ← GenerateRule(α , δ , Σd);
10 Σ′ ← SelectRule(Σ, β , γ ,G);
11 Σd ← Σd ∪ Σ′; ε ← ε + 1;

12 return Σd ;

This approach is feasible since deep generative models, e.g.,GAN,
are able to approximate various distributions [13]. Moreover, em-
pirical research verifies that it is practical to train such models
to approximate a target distribution P within a limited number
of iterations [31], where the training loss of the model converges.
CCD also optimizes rule discovery in a data-driven manner, since
generative models in the rule creator are able to generate rules that
are topologically and semantically similar to rules from the training
data [31, 47, 110]. Meanwhile, the creator can retrain its generative
models using high-quality rules selected by the critic as feedback
to improve the quality of approximation.

Algorithm. Implementing the creator-critic method, CCD discov-
ers high-quality TACOs in three phases, as shown in Algorithm 1.
(1) It first calls function MLExp to prepare graph data GM from
G, for facilitating the discovery of TACOs with ML predicatesM.
(2) Then the rule creator is pretrained using TrainCreator with
the localized graph Gs

M
sampled by LocalizedSample (lines 2-3),

such that it starts to generate rules that are likely to reach the
thresholds of support and confidence in the input requirement d .
The creator generates a set Σ of candidate TACOs byGenerateRule;
the critic next evaluates Σ on temporal graph G and saves high-
quality TACOs in a set Σd via function SelectRule (lines 4-5).
(3) In the third phase, algorithm CCD iteratively discovers high-
quality TACOs and adds more such rules to Σd via an interactive
training process of I iterations (lines 6-11). Each iteration is similar
to the second phase, except that both Gs

M
and Σd are used to train

and improve the creator (line 8). Here the TACOs in Σd are feedback
from the critic. Finally Σd is returned (line 12).

Parameters. In addition to the discovery requirement d of four
thresholds and ML modelsM, CCD takes another two input pa-
rameters: sample size N and iteration number I . Here N strikes a
balance between the probability of generating high-quality rules
and the workload of each iteration; and I determines the size of
Σd and the cost of model training, where larger I usually helps
generate more high-quality TACOs and train the model better.

We next present the functions and models adopted in CCD.

1866

Assistance functions. We start with two functions MLExp and
LocalizedSample, which are invoked by CCD to prepare graph
data for model training. Initially,MLExp expands graph G to GM
by faithfully adding edges predicted by the input ML modelsM.
This allows the creator to incorporateM as ML predicates and
accelerates TACO discovery since there is no need to repeatedly
applyM during the discovery process.

Besides, LocalizedSample collects a set Gs
M

of N ∆-patterns by
sampling localized graph structures from GM , as training data for
the creator in each iteration (lines 2 and 7).When deducing a pattern
∆Qi , LocalizedSample applies temporal random walk [69] with a
randomly selected source node v to sample temporal paths, where
the timestamps of all edges on a temporal path fall into a given
time window. It finds top α − 1 frequently sampled nodes around v .
Then ∆Qi is formed by these nodes and the edges connecting them.
Guided by the ∆-patterns inGs

M
during pretraining (line 3), the rule

creator can learn to generate patterns that are more likely to find
matches in the graph. This is because each ∆Qi must have matches
as it is obtained by random walk inGM , and the generative models
learn to generate “new” patterns that are semantically and struc-
turally similar to ∆Qi . Without pretraining, randomly initialized
generative models in the creator may create meaningless TACOs.

In fact, a larger sample size N allows more sampling trails with
higher probability of generating good patterns and more efficient
ML training with batch optimizations [63, 110]. If N is small, CCD
needs to run more iterations to find adequate number of TACOs.

Rule creator. When generating a TACO φ, the creator first gener-
ates its ∆-pattern, and then the dependency (lines 4 and 9).

∆-pattern generation. The creator generates patterns in two steps:
structure generation and semantic label generation, by employing
temporal graph GAN and LSTM networks, respectively.
(1) In the first step, the creator takes each ∆-pattern ∆Qi from
Gs
M

and Σd as input; it adopts TagGen [110], an end-to-end deep
generative framework for temporal graphs, to deduce candidate
∆-patterns ∆Qд

i . Due to the GAN module in TagGen [110], each
generated ∆Q

д
i and input ∆Qi have the same number of nodes (at

most α), and bear similar topology and time constraints. No labels
were generated in this step as TagGen does not support labels.
(2) The creator next employs an LSTM language model ML to
generate labels for each ∆Qд

i . We adopt LSTM networks since it can
model the rich semantics of labels on paths in knowledge graphs [47,
52, 53]. More specifically, it first trainsML on a corpusC driven by
the perplexity [63], where each word is a pair ⟨L(e), L(v)⟩ of edge
label and node label, named “label pair”, and v is the destination
node of e . The corpus C is composed of label pair sequences for
temporal paths, which are derived by applying temporal random
walk on each∆Qд

i . After the training, for every two nodesu andv in
∆Q

д
i with the shortest temporal path ρ fromu tov ,ML generates a

label pair sequence with a random seed, and attaches this sequence
of labels to ρ. Only shortest paths are considered since they hold
stronger associations [2, 39]. Finally the creator builds a ∆-pattern
∆Q ′i from ∆Q

д
i by keeping the most frequent labels attached.

Note that the creator retrains itself using the latest Σd to
increase the probability of generating high-quality ∆-patterns

[
0
,2

]

user

movie award

nomination

user

w
a
tc

h
 [

0
,2

]

friend

user

movie award

nomination

user

w
a
tc

h
 [

0
,2

]

friend

(a) (b) (c)

∅→(recommend(y,x),[0,t1])
[0,0] [0,0]

[0,0]

Figure 4: TACO generation process.
(line 8). The rationale behind this is that (1) in training data, the
∆-pattern ∆Qi of a high-quality TACO in Σd has multiple matches;
and (2) the GAN and LSTM networks enable the creator to generate
new ∆-pattern ∆Q ′i that are similar to ∆Qi in terms of topological
structure, temporal constraints and label semantics [47, 52, 110].
Therefore, the generated ∆Q ′i is likely to find sufficient matches
as well. The samples Gs

M
returned by LocalizedSample are also

used in retraining, to introduce disturbance to the creator, which
prevents the ML generative models from converging at a local
minimum where cliche patterns are repeatedly generated.

Dependency generation. Given a generated ∆-pattern ∆Q , the cre-
ator adapts the levelwise expansion process of [20] to construct a
set of valid dependencies X → (p0, τ). More specifically, for each
possible event (p0, τ), it starts with X = ∅ and iteratively extends
the precondition X for ∆Q . But unlike [20] that directly verifies
the validity of each candidate TACO φ = ∆Q[x̄](X → (p0, τ)) after
its generation, the creator first checks whether φ is redundant, i.e.,
whether φ is implied by the set Σd of TACOs discovered in the pre-
vious iterations. If φ is not redundant, i.e., Σd ̸ |= φ, it proceeds with
the validation of φ by the critic. We find that checking implication
in advance helps reduce the discovery cost, since implication is con-
ducted on Σd , which is much smaller than the graphG . In addition,
we perform satisfiability checking of the TACOs in Σ and newly
discovered candidate rules at this stage, to avoid further validation
of inconsistent TACOs inG . This process terminates when no more
predicates can be added. The termination is guaranteed since pred-
icates in X are defined on (a) nodes in ∆Q and (b) attributes and
values (including timestamps) in updates ∆GQ ; hence the number
of all possible predicates is bounded by the sizes of ∆Q and ∆GQ .

Rule critic. For each generated candidate TACO φ in Σ that passes
the implication and satisfiability checking, the rule critic computes
supp(φ,G) and conf(φ,G), and selects high-quality TACOs whose
support and confidence are above the thresholds (SelectRule in
lines 5 and 10). These rules are added to Σd and are provided to
the rule creator for improving generative models in the next iter-
ation. Computing supp(φ,G) and conf(φ,G) is efficient since the
procedures can be parallelized with optimizations that are unique
to temporal pattern matching (see Section 6) and we use existing
efficient subgraph matching method, i.e., DAF [32] and its proposed
CS structures to reduce redundant computation.

Example 5: Continuing with Example 4, Figure 4 shows the gen-
eration of TACO φ1 from temporal graph G. First, the creator calls
TagGen to create a candidate ∆-pattern (Fig. 4(a)) with time con-
straints. Then, as shown in Fig. 4(b), the LSTM modelML is em-
ployed to add labels to nodes and edges with semantic meanings.
The creator completes the generation by constructing dependen-
cies with variables (Fig. 4(c)). Validated by the rule critic in G, this
generated candidate rule is preserved in Σd , since its support and

1867

confidence are both 1. Note that if the edge labeled with nomination
is dropped from φ1, the confidence would reduce to 0.5. 2

Performance guarantees. We next show that when the iteration
number I is sufficiently large, CCD can return all TACOs that sat-
isfy the requirement d with a high probability. Recall that when
accumulating the training data in each round for the generative
model, CCD conducts temporal random walk to sample subgraphs
by function LocalizedSample. Based on this, we have the following.

Theorem 4: Given graph G, requirement d and constant ϵ ∈ (0, 1),

after |G |
α

N β

(
1− ln βϵ

|G |α +
√

ln βϵ
|G |α (ln

βϵ
|G |α −2)

)
iterations, CCD can

discover all TACOs satisfying d with probability at least 1−ϵ . 2

Proof sketch: Since the levelwise expansion process of [20] is
adapted to build dependencies, it suffices to show thatCCD can sam-
ple all ∆-patterns that satisfyd with probability 1−ϵ , after sufficient
iterations as given above. Using Chernoff–Hoeffding bound [17]
and bonferroni inequality [9], we prove this by analyzing the ex-
pected number of ∆-patterns mined across the iterations. 2

Cost analysis. To see the cost of CCD, observe the following.
Function LocalizedSample takesO(|G |) time for applying temporal
random walk [69]. The cost for model training in TrainCreator
is linear to the number of training samples, i.e., O(N + |Σd |).
GenerateRule (creator) takes time polynomial in the size |G | to gen-
erate ∆-patterns and dependencies. However, SelectRule (i.e., critic)
takes O(|G |α) time to compute the support and confidence of each
candidate TACO because of the graph homomorphism in temporal
matching; nonetheless, we make use of parallelism (see Section 6)
and the auxiliary structure in [32] to speed up the computation.

Remark. (1) While the theoretical iteration number I may be large,
in practice, when sample size N is set 250 by default, the generative
models converge within 25 iterations (i.e., I=25), where extra iter-
ations add few novel TACOs to Σd (see Section 7). Therefore, we
set I using a practical small value. This helps us reduce the overall
cost and justifies the usage of deep generative models.
(2) The users may opt to inspect the generated TACOs in each round,
select rules of their interest, and add to Σd . This incorporates user
interests into discovery. They may also terminate the iterative pro-
cess manually when they are satisfied with the TACOs in Σd so far.

6 PARALLEL EVENT PREDICTION
In this section we develop a parallel algorithm to support the event
prediction module of TASTE. The algorithm is also used to com-
pute support and confidence for the rule critic of algorithm CCD
(Section 5). We propose a partitioning strategy for temporal graphs,
and show that the algorithm guarantees the parallel scalability.

We start with a sequential prediction approach with TACOs.

Sequential algorithm. Given a temporal graph G, a set Σ of
TACOs and a time window τ0, a sequential prediction algorithm,
denoted as SeqEP, finds all edges (events) R predicted by Σ in G
as follows. For each TACO φ = ∆Q[x̄](X → (p0, τ)) in Σ with
τ = [t1, t2], SeqEP (1) finds all matches of ∆Q in ∆GQ via graph ho-
momorphism; and (2) for each such match h(x̄), it checks whether
h(x̄) |= X and the time window [t∗ + t1, t∗ + t2] deduced is a subin-

terval of τ0; here t∗ is the current time (Section 2.1); if so, SeqEP
adds to R the edge that links the nodes matching the variables in p0.

Note that SeqEP is applied to subgraphs ∆GQ of G for ∆Q in
Σ, which is typically much smaller than the entire graph G. In the
sequel we refer to the union of such ∆GQ ’s simply asG . Even so, the
exponential cost of graph homomorphism [27] in temporal pattern
matching (step (1)) motivates us to parallelize SeqEP.

Parallel scalability. To measure the effectiveness of paralleliza-
tion, we adapt the criterion introduced by [43] to graph compu-
tation. Consider a problem P posed on a graph G. We denote by
Ts (|IP |, |G |) the worst-case complexity of a sequential algorithm
F for handling an instance IP of problem P over G. For a parallel
algorithm Fp , we denote by Tp (|IP |, |G |,k) the time taken by it for
processing problem instance IP on G using k processors. We say
that algorithm Fp is parallelly scalable relative to F if

Tp (|IP |, |G |,k) = O
(Ts (|IP |, |G |)

k

)
for any instance IP . That is, the parallel algorithm Fp achieves a
“linear” reduction in sequential running time of a yardstick algo-
rithm F , allowing us to process large graphs by adding resources.

Parallelizing event prediction. A typical strategy for paralleliz-
ing sequential graph computation is to first partition a graph into k
small fragments, and then conduct the computation over fragments
at k processors in parallel with necessary message passing, e.g., the
deduction algorithm with GARs [21]. Following this paradigm, we
could partition a temporal graph via an existing graph partitioning
method, e.g., edge-cut or vertex-cut [3, 77]. However, this easily
incurs a large amount of communication in the subsequent par-
allel prediction. This is because most of the previous partitioning
methods aim to minimize the number of cut edges or vertices but
overlook the timestamps, which are crucial to temporal pattern
matching; the edges in a match of a ∆-pattern are often partitioned
into different fragments and demand communication.

To rectify this problem, we partition a temporal graph G based
on temporal locality, a unique property of temporal pattern match-
ing with TACOs. That is, the timestamps of edges in each match
h(x̄) of ∆-pattern ∆Q are within the range of localized timespan
[t∗ + tmin, t

∗ + tmax], where tmin (resp. tmax) is the minimum (resp.
maximum) timestamp in ∆Q as stated in Section 2.1.

Temporal partitioning. We propose a temporal partitioning strategy
with which parallel event prediction can be made communication-
free. Intuitively, it divides a time interval into k subintervals and
guarantees that every specific range of timestamps for finding
match h(x̄) is entirely covered by one subinterval. Guided by the
resulting subintervals, the temporal graph G is partitioned into
k fragments F1, . . . , Fk , such that each Fi consists of the edges
whose timestamps are within one subinterval. By the temporal
locality, temporal pattern matching and hence event prediction can
be conducted in parallel over such Fi ’s with no communication.

The cost of parallel event prediction is determined by the max-
imum size maxi ∈[1,k] |Fi | of fragments. Thus we want to find a
good division of the time interval to minimize maxi ∈[1,k] |Fi |. To
do this, we develop function BTPart, shown as part of Algorithm 2.
It takes as input a candidate time interval [t0, tk) that is deduced
from the TACOs Σ and time window τ0 for matching designated

1868

Algorithm 2: Parallel Event Prediction (ParEP)
Input: The number k of processors, a k-way randomly partitioned

temporal graph G , a set Σ of TACOs, a time window τ0.
Output: A set R of edges predicted by Σ with events occur within τ0.
1 [t0, tk) ← RefTime(Σ, τ0); (tmin, tmax) ← ExtractTS(Σ);
2 collect the size |Gt | of t -graph Gt for t ∈ [t0, tk);
3 {t1, . . ., tk−1 }←BTPart([t0, tk), { |Gt | | t ∈[t0, tk)}, k , tmin, tmax);
4 Fi ← G[ti−1+tmin ,ti+tmax) for each i ∈ [1, k];
5 RBalance({Fi | i ∈ [1, k]});
6 run SeqEP(Fi , Σ, τ0) at each fragment Fi to get Ri for i ∈ [1, k];
7 return

⋃
i∈[1,k] Ri ;

Function BTPart([t0, tk), { |Gt | | t ∈ [t0, tk)}, k , tmin, tmax):
1 foreach t ∈ [t0, tk) do
2 S [t][1] ← |G[t0+tmin ,t+tmax) |;

3 foreach i ∈ [2, k] do
4 foreach t ′ ∈ [t0, tk) do
5 S [t ′][i]←mint∈[t0 ,t ′)max(S [t][i − 1], |G[t+tmin ,t ′+tmax) |);

6 foreach i ∈ [2, k] in descending order do
7 ti−1← arg mint∈[t0 ,ti)max(S [t][i − 1], |G[t+tmin ,ti+tmax) |);

8 return {t1, . . . , tk−1 };

edges in event prediction (see below), a set {|Gt | | t ∈ [t0, tk)} of
sizes of t-graphs, the number k of fragments (processors), and the
maximum (resp. minimum) timestamp tmax (resp. tmin) in Σ. Here
Gt refers to a t-graph that is composed of all edges in G bearing
timestamp t . BTPart computes a set {t1, . . . , tk−1} of k − 1 parti-
tion points for the interval [t0, tk) such that fragment Fi becomes
G[ti−1+tmin,ti+tmax) for i ∈ [1,k], which includes the edges ofG with
timestamps in the range [ti−1 + tmin, ti + tmax). Here tmin and tmax
are to ensure the entire coverage as mentioned above.

Procedure BTPart adopts dynamic programming. It maintains a
2D array S , where S[t][i] records the minimum size of the largest
fragments that are obtained by partitioning G[t0+tmin,t+tmax) into i
subintervals. Hence S[tk][k] is our objective value. BTPart first han-
dles the base case i=1 (lines 1-2), where S[t][1]=|G[t0+tmin,t+tmax) |

since there is only one fragment w.r.t. the single subinterval. Here
the size is derived from that of the input t-graphs. For cases where
i>1, S[t ′][i] is determined by checking the values regarding all
possible ranges [t0, t) for t<t ′ and their i −1 subintervals (lines 3-5).
After S[tk][k] is computed, the corresponding k−1 partition points
can be identified and are returned as the result (lines 6-8).

By induction on the iterations, one can verify that the returned
partition points yield minimum maxi ∈[1,k] |Fi | (i.e., S[tk][k]).

Parallel algorithm. Capitalizing on the temporal partitioning, we de-
velop a parallel prediction algorithm, denoted by ParEP. As shown
in Algorithm 2, initially ParEP uses function RefTime to deduce
a time interval [t0, tk) for those edges in G that can potentially
match designated edges in TACOs Σ (line 1). Since we only predict
edges in time window τ0, a timestamp t is in [t0, tk) if and only if
the gap between t and τ0 is smaller than that of τ for some (p0, τ)
in Σ. It also extracts maximum and minimum timestamps from Σ
via ExtractTS (line 1). Then ParEP performs temporal partitioning
to get k fragments F1 to Fk and each Fi is assigned to a distinct
processor (lines 2-4). It designates one processor as the coordinator
to collect the sizes of t-graphs and apply function BTPart.

1

1

111

1

1

1

1

3

3

2

a

g

b

c

e f

d

(a) G

1

1

111

1

1

1

1

2

a

g

b

c

e f

d

3

3

2

c

e f

d

F1 F2

(b) A temporal partition

1

1

111

1

2

a b

c

f

d

3

3

2

c

e f

d

F1 F2

1

1

1

g

(c) A rebalanced partition

Figure 5: Temporal partitioning and rebalancing

To further balance the workload of parallel prediction, ParEP
next redistributes the data in large fragments Fi having |Fi | > |G |/k
by function RBalance (line 5). More specifically, for each large Fi ,
it evenly partitions those edges of Fi that can match the designated
edges in Σ; while the set of candidate matches in Fi for other pattern
edges in Σ are replicated at all processors. Here candidate matches
are identified via label comparison. Then SeqEP is invoked at all
processors in parallel with no communication to get the predicted
edges, and their union is finally returned (lines 6-7).

Example 6: Consider partitioning the temporal graph G shown
in Figure 5(a) into 2 fragments, where only the timestamp of each
edge is marked while labels are omitted to simplify the discussion.
Suppose that (tmin, tmax) = (0, 1) for a given set Σ of TACOs and
the candidate time interval [t0, tk) deduced from Σ, and the input
time window τ0 is [1, 4). We can see the following.
(1) The temporal partition generated by BTPart is shown in Fig-
ure 5(b). Here the candidate interval is divided into [1, 2) and [2, 4);
thus fragments F1 and F2 have edges whose timestamps are within
[1, 2+1) and [2, 4+1), respectively. Note that the edge (d, f) with
timestamp 2 is replicated at both fragments. This ensures that all
patterns in Σ can be matched on F1 or F2 locally.
(2) While Figure 5(b) is an optimal temporal partition, it is skewed,
i.e., the edges with timestamp 1 in F1 make a large part of G. By
moving edges (f , e), (e,д) and (f ,д) to fragment F2 via function
ReBalance, the partition becomes balanced (Figure 5(c)). 2

The parallel scalability of ParEP is assured as follows, where the
sequential SeqEP takes O(|Σ| |G | |Σ |) time in the worst case and the
cost of ParEP is bounded by O(|Σ| |G |

|Σ|

k).

Theorem 5: ParEP is parallelly scalable relative to SeqEP. 2

Remark. (1) ParEP can be readily adapted to predict whether a
particular event p0 will happen and when it will take place, by
allowing users to set the range τ0 and applying relevant TACOs in Σ.
(2) We use ParEP to compute the support and confidence of TACOs,
(i.e., the rule critic in CCD). To do these, the input time window τ0
is defined as the smallest range that covers all the timestamps in G .

7 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we experimentally evaluated
(1) the efficiency and (2) the quality of the creator-critic rule dis-
covery method, (3) the accuracy of TASTE for event prediction and
dynamic recommendation, and (4) the (parallel) scalability of ParEP.

Experimental setting. We start with the experimental setting.
Datasets. We used six real-life temporal graph benchmark datasets,
shown in Table 2 and classified into three different classes: (1) event-

1869

Table 2: Datasets

Dataset |V | |E | Relation type Timestamp interval
ICEWS18 23K 469K 256 1 day
GDELT 8K 2.2M 240 15 minutes
YAGO 11K 201K 10 1 year
WIKI 13K 670K 24 1 year

MovieLens 80K 10M 10 1 day
Amazon 12.2M 30.3M 5 1 day

based temporal knowledge graphs: ICEWS18 [36] from the Inte-
grated Crisis Early Warning System [8], and GDELT [36] from the
Global Database of Events, Language, and Tone [46]; (2) knowledge
graphs with temporally associated facts: YAGO [57] andWIKI [45],
e.g., YAGO records the time when a football player plays for a
club; and (3) dynamic recommendation datasets: MovieLens [34]
of movie ratings and Amazon [61] of product ratings, where orig-
inal timestamps were reorganized such that the time granularity
between two adjacent timestamps is one day.

As designed in [36, 50], each dataset has been divided into train-
ing, validation and test sets, with proportion of 80%, 10% and 10%,
respectively, by timestamps. The training and validation sets were
used for model training and rule discovery, while the test set was
for accuracy test. Each dataset includes ground truth of event (tem-
poral edge) prediction results [36, 50], and the testing set actually
poses the set of “queries” w.r.t. predicting temporal events.

We also designed a graph generator to create larger synthetic
datasets, for evaluating the scalability. The synthetic graphs had
up to 10M nodes and 1B edges in the range of 10000 timestamps,
with labels, attributes and values drawn from 200 symbols.

Algorithms. The creator and critic in the rule discovery module
were implemented in Pytorch and C++, respectively, while the
temporal event prediction module was implemented in C++. We
compared TASTE with five baseline methods for event prediction:
(1) AGER, which applies GERs [5] that capture local changes in
temporal graphs for event prediction; (2) SACN [86], a convolution-
based embedding approach for knowledge graph completion; (3)
REGCN [50], a knowledge graph reasoning method based on Graph
Convolution Network; (4) Caser [91], a sequential recommenda-
tion algorithm based on convolutional neural networks; and (5)
SASRec [37], a transformer-based sequential recommender sys-
tem. We adopted open-source codes of SACN [85], REGCN [49],
Caser [90] and SASRec [38] with default configurations, and imple-
mented AGER in C++. We have also implemented two levelwise
search-based rule mining methods to discover GERs and TACOs in
C++, denoted as GERMine and TACOMine, as discovery baselines.

The baselines SACN, REGCN, Caser and SASRec were paral-
lelized with multi-threads by PyTorch. For AGER, GERMine and
TACOMine, we applied the same parallelization method of ParEP
(Section 6) to compute the corresponding matches, which dominate
their costs. The thread number in parallelization is equal to the
number k of cores used by TASTE, for a fair comparison.

ML models. REGCN and SASRecwere adopted as the ML predicates
in TACOs for temporal graph completion and dynamic recommen-
dation, respectively. For models in the creator of CCD, we used
the code of TagGen provided by the authors with default config-

Table 3: Quality of the creator-critic discovery on ICEWS18
H

HHHI
N 50 100 150 200 250 300

15 20.00% 23.81% 28.57% 39.05% 48.57% 65.71%
20 23.81% 25.71% 40.95% 55.24% 66.67% 73.33%
25 30.47% 41.90% 44.76% 71.43% 84.76% 96.19%
30 39.05% 44.28% 48.94% 76.15% 87.23% 97.14%

urations [111], and implemented the LSTM model as [63] with its
default training configuration and two 650-wide layers.

We conducted experiments on a cluster of up to 72 Intel Xeon 3.1
GHz processing cores on two machines connected by 10Gbps links,
with 256GBmemory. By default we set α=5, β=100,γ=0.8 and δ=20
for discovery requirement; the number of iterations I=25 and sam-
ple size N=250 for discovery moduleCCD; and the number of cores
k = 32 for predictionmethod ParEP, unless stated otherwise. All the
experiments were repeated 5 times. The average is reported here.

Experimental results. We next report our findings. In every ex-
periment, the results on at least one graph from each of the three
classes are shown. We defer the other results to the full version.

Exp-1: Efficiency. We first compared the efficiency of CCD,
GERMine and TACOMine for rule discovery. Since it is very costly
for levelwise methods to discover rules with large patterns, in order
to compare efficiency within bearable running time, we set a target
of discovering 100 high-quality rules as benchmark. That is, each
discovery process terminated when 100 rules had been discovered.

(1) Varying α . We varied α from 3 to 11 to study the impact of
pattern node number on discovery methods using ICEWS18, WIKI
andMovieLens. As shown in Figures 6(a) to 6(c),CCD is on average
9.1 and 14.3 times faster than GERMine and TACOMine when
α ≤ 5, respectively. The computation time of levelwise search-based
methods grows exponentially as α gets larger, and both GERMine
and TACOMine cannot terminate in 1.2 days when α > 5, while
the cost increase of CCD is mild. This is because larger number of
pattern nodes incurs exponentially larger search space for levelwise
mining, but little extra cost for ML generative models. In particular,
CCD finds TACOs with patterns of more than 20 edges in 1639s.

(2) Varying β . We varied β from 50 to 150, to study the impact of
support threshold over ICEWS18, YAGO and Amazon. As reported
in Figures 6(d) to 6(f), the runtime ofCCD does not change much, as
it always takes multiple iterations for the creator to generate high-
quality rules regardless of the value of β . In contrast, GERMine and
TACOMine take less time with larger β in most cases, since higher
bound on support prunes more candidates and reduces search space.

(3) Varying γ . Varying confidence γ from 0.7 to 0.9, we report the
results on GDELT,WIKI and Amazon in Figures 6(g) to 6(i), respec-
tively. It is shown that the all discovery algorithms take longer time
with the increase of γ . However, the generation-based CCD is less
sensitive to γ . This is because the levelwise methods have to ex-
pand their search space at an exponential scale to get the requested
number of high-quality rules with higher confidence.

(4) Varying δ . We varied δ from 10 to 30. Here δ counts the number
of discrete timestamps in the required time window. As shown in
Figures 6(j) to 6(l) on ICEWS18, YAGO andMovieLens, respectively,

1870

CCD ParEP GERMine TACOMine SACN REGCN Caser SASRec

10
2

10
3

10
4

10
5

3 5 7 9 11

T
im

e
 (

se
c
o

n
d

s)

(a) ICEWS18: Varying α

10
3

10
4

10
5

3 5 7 9 11
T

im
e
 (

se
c
o

n
d

s)

(b) WIKI: Varying α

10
3

10
4

10
5

10
6

3 5 7 9 11

T
im

e
 (

se
c
o

n
d

s)

(c) MovieLens: Varying α

10
3

10
4

10
5

50 75 100 125 150

T
im

e
 (

se
c
o

n
d

s)

(d) ICEWS18: Varying β

10
2

10
3

10
4

50 75 100 125 150

T
im

e
 (

se
c
o

n
d

s)

(e) YAGO: Varying β

10
4

10
5

10
6

50 75 100 125 150

T
im

e
 (

se
c
o

n
d

s)

(f) Amazon: Varying β

10
2

10
3

10
4

10
5

0.7 0.75 0.8 0.85 0.9

T
im

e
 (

se
c
o

n
d

s)

(g) GDELT: Varying γ

10
3

10
4

10
5

0.7 0.75 0.8 0.85 0.9

T
im

e
 (

se
c
o

n
d

s)

(h) WIKI: Varying γ

10
3

10
4

10
5

10
6

0.7 0.75 0.8 0.85 0.9

T
im

e
 (

se
c
o

n
d

s)

(i) Amazon: Varying γ

10
3

10
4

10
5

10 15 20 25 30

T
im

e
 (

se
c
o

n
d

s)

(j) ICEWS18: Varying δ

10
2

10
3

10
4

10 15 20 25 30

T
im

e
 (

se
c
o

n
d

s)

(k) YAGO: Varying δ

10
3

10
4

10
5

10 15 20 25 30

T
im

e
 (

se
c
o

n
d

s)

(l) MovieLens: Varying δ

10
2

10
3

10
4

10
5

4 8 12 32 64

T
im

e
 (

se
c
o

n
d

s)

(m) GDELT: Varying k

10
2

10
3

10
4

10
5

4 8 12 32 64

T
im

e
 (

se
c
o

n
d

s)

(n) WIKI: Varying k

10
3

10
4

10
5

4 8 12 32 64

T
im

e
 (

se
c
o

n
d

s)

(o) MovieLens: Varying k

10
2

10
3

10
4

9 12 15 18 21

T
im

e
 (

se
c
o

n
d

s)

(p) GDELT: Varying |∆Q |

10
2

10
3

10
4

9 12 15 18 21

T
im

e
 (

se
c
o

n
d

s)

(q) YAGO: Varying |∆Q |

10
3

10
4

10
5

9 12 15 18 21

T
im

e
 (

se
c
o

n
d

s)

(r) Amazon: Varying |∆Q |

10
2

10
3

10
4

10
5

0.2 0.4 0.6 0.8 1.0

T
im

e
 (

se
c
o

n
d

s)

(s) Synthetic: Varying |G | (predict.)

10
2

10
3

10
4

10
5

0.2 0.4 0.6 0.8 1.0

T
im

e
 (

se
c
o

n
d

s)

(t) Synthetic: Varying |G | (recomm.)

Figure 6: Performance evaluation

the runtime for all three increases as δ grows, since a longer time
window bound gives more generation workload for TagGen in the
creator and expands the search space forGERMine and TACOMine.

(5) Impact of N and I . We also tested the impact of the sample size
N and iteration number I on the efficiency of CCD. It exhibits a
moderately runtime increase with the increase ofN or I (not shown).

This is as expected, since a larger N (resp. I) causes more work for
the generator (resp. more rounds of the entire computation).

Exp-2: Quality of discovery. Recall that TACOs obtained by the
generation-based CCD are a subset of those returned by levelwise
search algorithms. Thus we checked how many rules in the com-

1871

Table 4: Event prediction/recommendation accuracy

Dataset AGER SACN REGCN Caser SASRec TASTE
ICEWS18 59.32% 63.28% 68.58% - - 75.24%
GDELT 54.60% 62.32% 66.31% - - 73.41%
YAGO 61.32% 64.03% 74.73% - - 84.14%
WIKI 58.56% 63.58% 71.32% - - 82.53%

MovieLens 65.80% - - 75.83% 80.45% 87.30%
Amazon 59.30% - - 63.50% 73.10% 73.10%

plete set found by levelwise method TACOMine can be discovered
by CCD in all the datasets, i.e., the coverage of complete TACOs. As
reported in Table 3, the coverage becomes higher with larger size N
of samples or more training iterations I . This is because enlarging
either N or I could increase the possibility of approximating the
target distribution and hence generating high-quality rules, as dis-
cussed in Section 5. We can also see that small N and I suffice to get
a large portion of high-quality TACOs, e.g., the coverage reaches
84.76% when N = 250 and I = 25, while the time of TACOMine is
reduced by 18.5 times simultaneously (see Exp-1).

In addition to the adopted GAN model, we tested the perfor-
mance of using classic graph generation models, i.e., Erdös-Rényi
(ER) [72] and Barabási-Albert (BA) [1] models, inCCD. We find that
when N = 300 and I = 30, the coverage vlaues of the TACOs found
with ER and BA are merely 33.07% and 50.89%, respectively, much
lower than that by GAN. This is because these classical models can-
not iteratively learn from the graph data and generate high-quality
patterns in an adaptive manner.

We also manually checked the discovered TACOs. Besides the
typical ones that include logic and temporal predicates only, some
TACOs can also help enrich or interpret ML predictions.

Exp-3: Accuracy. As shown in Table 4, we evaluated the accu-
racy of TASTE with the TACOs and baselines on two tasks: tempo-
ral event prediction and dynamic recommendation [37, 50]. Note
that there was no result for SACN and REGCN (resp. Caser and
SASRec) on dynamic recommendation (resp. temporal event pre-
diction) datasets since they are not designed for the task. TASTE
(ParEP) applied the discovered TACOs with confidence above 0.9,
in which graph patterns have at most 9 nodes. We find that very few
TACOs with more than 9 pattern nodes have high confidence and
support, similar to the findings of frequent pattern mining [19]. We
adopted Hit Rate@10, the fraction of times that the ground-truth
item is among the top 10 items [37, 50], to evaluate the accuracy.

For event prediction on ICEWS18, GDELT, YAGO and WIKI,
TASTE on average outperforms AGER, SACN and REGCN by 34.9%,
24.5% and 12.2%, respectively. As for the dynamic recommendation
onMovieLens and Amazon, TASTE is 35.8%, 22.5% and 10.6% more
accurate than AGER, Caser and SASRec, respectively. These show
that by combining rules and ML models, TASTE beats the state-
of-the-art deep-learning-based REGCN and SASRec in accuracy
on both tasks, while none of REGCN and SASRec works on both.

Exp-4: Scalability. We finally evaluated (1) the parallel scalability
of the prediction module ParEP in TASTE system by varying the
number k of processors, (2) the impact of pattern size on its effi-
ciency, and (3) the scalability of ParEP over larger synthetic graphs.
Since GERs are a special case of TACOs, ParEP is also applicable to
GERs and the runtime of AGER is not shown.

(1) Parallel scalability. Varying k from 4 to 64, Figures 6(m)-6(o)
report the results on GDELT and WIKI for event prediction, and
on MovieLens for recommendation in the same setting as Exp-3,
respectively. As shown there, (a) ParEP is parallelly scalable. When
k increases from 4 to 32, it is on average 3.2 times faster on the
three graphs. This verifies the effectiveness of ParEP under data-
partitioned parallelism. (b) In addition to its higher accuracy, ParEP
performs better in efficiency than SACN and REGCN (resp. Caser
and SASRec), e.g.,whenk = 64, it is on average 24.2, 45.4, 6.2 and 5.7
times faster than SACN, REGCN, Caser and SASRec, respectively.

(2) Impact of pattern size. Varying the size |∆Q | of ∆-patterns in
TACOs, which is measured as the sum of the pattern node and edge
numbers in each ∆Q , we report the performance of different meth-
ods in Figures 6(p) to 6(r). The results show that ParEP becomes
slower with the increase of |∆Q |, as expected. Nonetheless, it is still
efficient when handling relatively large ∆-patterns. For instance,
it needs 1645 seconds on GDELT when |∆Q | = 15, which is better
than 16380 seconds by SACN (see Figure 6(m)).
(3) Scalability. Fixing k = 32, we varied the size |G |=|V |+|E | of syn-
thetic graphs G using a scale factor from 0.2 to 1.0, and evaluated
all approaches, where ParEP applied 100 TACOs. As shown in Fig-
ures 6(s) and 6(t) for prediction and recommendation, respectively,
ParEP outperforms the baselines in all cases. On average it takes
1403s when |G |=810M , while the others cannot finish in 1 day.

Summary. We find the following. (1) On average the generativeML
method of CCD outperforms the levelwise algorithms in efficiency
by more than 31 times. It is able to discover TACOs with patterns
of 20 edges in 1639s from temporal graphs, while the levelwise
methods could not finish in 1.2 days. (2) CCD is able to find as high
as 84.76% of the complete rules derived by levelwise method, using
250 samples and 25 training attempts. (3) By combining rules and
ML models, on average the discovered TACOs improve the existing
approaches by 23.8% and 23.0% in accuracy, for event prediction and
dynamic recommendation, respectively. (4) Our algorithm ParEP is
parallelly scalable and scales well with the datasets, it takes less than
1403s on graphs with 810M nodes and edges using 32 processors.

8 CONCLUSION
We have proposed a new approach towards event prediction, from
foundation (rules and complexity) to a system (supported by scal-
able algorithms), with novelty summarized in Section 1. We have
experimentally verified that TASTE is promising in event prediction.

One topic for future work is to evaluate TASTE for predicting
events of other types, e.g., finance crisis. Another topic is to make
TASTE “real-time” by incrementally discovering rules and predict-
ing events in response to updates to temporal graphs.

ACKNOWLEDGMENTS
This work was supported by ERC 652976, Royal SocietyWolfson
Research Merit Award WRM/R1/180014, and NSFC 61902274. Xu is
supported by the National Research Foundation, Singapore under
its Strategic Capability Research Centres Funding Initiative. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore

1872

REFERENCES
[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Reviews of modern physics 74, 1 (2002), 47.
[2] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Ismailcem Budak

Arpinar, and Amit P. Sheth. 2003. Context-Aware Semantic Association Ranking.
In SWDB.

[3] Konstantin Andreev and Harald Räcke. 2006. Balanced Graph Partitioning.
Theory Comput. Syst. 39, 6 (2006), 929–939.

[4] Marcelo Arenas, Pedro Bahamondes, and Julia Stoyanovich. 2021. Temporal
Regular Path Queries: Syntax, Semantics, and Complexity. CoRR abs/2107.01241
(2021).

[5] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis.
2009. Mining Graph Evolution Rules. In ECML/PKDD.

[6] Yuemin Bian and Xiang-Qun Xie. 2021. Generative chemistry: Drug discovery
with deep learning generative models. Journal of Molecular Modeling (2021).

[7] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günne-
mann. 2018. NetGAN: Generating Graphs via Random Walks. In ICML.

[8] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James
Starz, and Michael Ward. 2015. ICEWS coded event data. Harvard Dataverse 12
(2015).

[9] George Casella and Roger Berger. 2001. Statistical Inference. Duxbury Resource
Center.

[10] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
Murphy. 2020. Machine learning on graphs: A model and comprehensive
taxonomy. CoRR abs/2005.03675 (2020).

[11] Jinyin Chen, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. 2018. GC-LSTM:
Graph Convolution Embedded LSTM for Dynamic Link Prediction. CoRR
abs/1812.04206 (2018).

[12] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in
RDFS. In AMW.

[13] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa
Sengupta, and Anil A. Bharath. 2018. Generative Adversarial Networks: An
Overview. IEEE Signal Process. Mag. 35, 1 (2018), 53–65.

[14] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. 2018. Go for a
Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases
using Reinforcement Learning. In ICLR.

[15] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar. 2018.
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In
EMNLP.

[16] Walter H. Dempsey, Alexander Moreno, Christy K. Scott, Michael L. Dennis,
David H. Gustafson, Susan A. Murphy, and James M. Rehg. 2017. iSurvive: An
Interpretable, Event-time Prediction Model for mHealth. In ICML.

[17] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge University Press.

[18] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. 2011. Temporal Link
Prediction Using Matrix and Tensor Factorizations. ACM Trans. Knowl. Discov.
Data 5, 2 (2011), 10:1–10:27.

[19] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
2014. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph.
PVLDB 7, 7 (2014), 517–528.

[20] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph
Functional Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1–15:42.

[21] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou.
2020. Capturing Associations in Graphs. PVLDB 13, 11 (2020), 1863–1876.

[22] Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database
Syst. 44, 2 (2019), 5:1–5:40.

[23] Sébastien Frémal and Fabian Lecron. 2017. Weighting strategies for a recom-
mender system using item clustering based on genres. Expert Syst. Appl. 77
(2017), 105–113.

[24] Kaiqun Fu, Taoran Ji, Liang Zhao, and Chang-Tien Lu. 2019. TITAN: A Spatiotem-
poral Feature Learning Framework for Traffic Incident Duration Prediction. In
SIGSPATIAL/GIS.

[25] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
2013. AMIE: Association rule mining under incomplete evidence in ontological
knowledge bases. In WWW.

[26] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. 2018. Learn-
ing Sequence Encoders for Temporal Knowledge Graph Completion. In EMNLP.

[27] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman.

[28] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2020.
Diachronic Embedding for Temporal Knowledge Graph Completion. In AAAI.

[29] PalashGoyal, Sujit Rokka Chhetri, andArquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowl. Based Syst. 187 (2020).

[30] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep
Embedding Method for Dynamic Graphs. CoRR abs/1805.11273 (2018).

[31] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. 2020. A

Review on Generative Adversarial Networks: Algorithms, Theory, and Applica-
tions. CoRR abs/2001.06937 (2020).

[32] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin
Han. 2019. Efficient Subgraph Matching: Harmonizing Dynamic Programming,
Adaptive Matching Order, and Failing Set Together. In SIGMOD.

[33] Negar Hariri, Bamshad Mobasher, and Robin D. Burke. 2012. Context-aware
music recommendation based on latenttopic sequential patterns. In RecSys.

[34] F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2016), 19:1–19:19.

[35] Yuriy Hulovatyy, Huili Chen, and Tijana Milenkovic. 2015. Exploring the
structure and function of temporal networks with dynamic graphlets. Bioinform.
31, 12 (2015), 171–180.

[36] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent Event
Network: Autoregressive Structure Inference over Temporal Knowledge Graphs.
In EMNLP.

[37] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-Attentive Sequential
Recommendation. In ICDM.

[38] Wang-Cheng Kang and Julian J. McAuley. 2019. SASRec implementation.
https://github.com/kang205/SASRec.

[39] Yoed N Kenett, Effi Levi, David Anaki, and Miriam Faust. 2017. The semantic
distance task: Quantifying semantic distance with semantic network path length.
Journal of Experimental Psychology: Learning, Memory, and Cognition (2017).

[40] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik. 2011.
Learning Markov Logic Networks via Functional Gradient Boosting. In ICDM.

[41] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vítor Santos Costa, and Ricardo
Rocha. 2011. On the implementation of the probabilistic logic programming
language ProbLog. Theory Pract. Log. Program. 11, 2-3 (2011), 235–262.

[42] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In KDD.
[43] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of

Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.
[44] Ni Lao, Tom M. Mitchell, and William W. Cohen. 2011. Random Walk Inference

and Learning in A Large Scale Knowledge Base. In EMNLP.
[45] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving Validity Time in

Knowledge Graph. In WWW.
[46] Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: Global data on events, location,

and tone, 1979–2012. In ISA annual convention.
[47] Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May,

Nathanael Chambers, and Clare R. Voss. 2020. Connecting the Dots: Event
Graph Schema Induction with Path Language Modeling. In EMNLP.

[48] Yang Li, Nan Du, and Samy Bengio. 2018. Time-Dependent Representation for
Neural Event Sequence Prediction. In ICLR.

[49] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei
Shen, Yuanzhuo Wang, and Xueqi Cheng. 2021. REGCN implementation.
https://github.com/Lee-zix/RE-GCN.

[50] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen,
YuanzhuoWang, andXueqi Cheng. 2021. Temporal KnowledgeGraph Reasoning
Based on Evolutional Representation Learning. In SIGIR.

[51] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S. Zemel. 2019. Efficient Graph Gener-
ation with Graph Recurrent Attention Networks. In NeurIPS.

[52] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-Hop Knowledge
Graph Reasoning with Reward Shaping. In EMNLP.

[53] Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song
Liu. 2015. Modeling Relation Paths for Representation Learning of Knowledge
Bases. In EMNLP.

[54] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. 2018.
Constrained Graph Variational Autoencoders for Molecule Design. In NeurIPS.

[55] Yung-Yin Lo, Wanjiun Liao, Cheng-Shang Chang, and Ying-Chin Lee. 2018.
Temporal Matrix Factorization for Tracking Concept Drift in Individual User
Preferences. IEEE Trans. Comput. Soc. Syst. 5, 1 (2018), 156–168.

[56] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming
Graph Neural Networks. In SIGIR.

[57] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3:
A Knowledge Base from Multilingual Wikipedias. In CIDR.

[58] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognit. 97 (2020).

[59] Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alípio Mário Jorge, and
João Gama. 2015. Forgetting methods for incremental matrix factorization in
recommender systems. In SAC.

[60] Julian J. McAuley and Jure Leskovec. 2013. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews. In WWW.

[61] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR.

[62] ChristianMeilicke, MelisachewWudage Chekol, Manuel Fink, and Heiner Stuck-
enschmidt. 2020. Reinforced Anytime Bottom Up Rule Learning for Knowledge
Graph Completion. CoRR abs/2004.04412 (2020).

[63] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing
and Optimizing LSTM Language Models. In ICLR.

1873

[64] Bryan David Minor and Diane J. Cook. 2017. Forecasting occurrences of activi-
ties. Pervasive Mob. Comput. 38 (2017), 77–91.

[65] Mohammad Hossein Namaki, Yinghui Wu, Qi Song, Peng Lin, and Tingjian Ge.
2017. Discovering Graph Temporal Association Rules. In CIKM.

[66] Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude
Shavlik. 2010. Boosting relational dependency networks. In ILP.

[67] Lukás Neumann, Andrew Zisserman, and Andrea Vedaldi. 2019. Future Event
Prediction: If and When. In CVPR Workshops.

[68] Jennifer Neville and David D. Jensen. 2007. Relational Dependency Networks.
J. Mach. Learn. Res. 8 (2007), 653–692.

[69] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In WWW.

[70] Christos H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.
[71] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI.

[72] Erdős Paul and Rényi Alfréd. 1959. On random graphs I. Publicationes Mathe-
maticae (Debrecen) 6 (1959), 290–297.

[73] Zhi Qiao, Shiwan Zhao, Cao Xiao, Xiang Li, Yong Qin, and Fei Wang. 2018.
Pairwise-Ranking based Collaborative Recurrent Neural Networks for Clinical
Event Prediction. In IJCAI.

[74] Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and
Jian Tang. 2021. RNNLogic: Learning Logic Rules for Reasoning on Knowledge
Graphs. In ICLR.

[75] Idris Rabiu, Naomie Salim, Aminu Da’u, and AkramOsman. 2020. Recommender
System Based on Temporal Models: A Systematic Review. Applied Sciences 10,
7 (2020), 2204.

[76] Dimitrios Rafailidis and Alexandros Nanopoulos. 2016. Modeling Users Pref-
erence Dynamics and Side Information in Recommender Systems. IEEE Trans.
Syst. Man Cybern. Syst. 46, 6 (2016), 782–792.

[77] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, and Seif Haridi.
2014. Distributed Vertex-Cut Partitioning. In DAIS.

[78] Mahmudur Rahman and Mohammad Al Hasan. 2016. Link Prediction in Dy-
namic Networks Using Graphlet. In ECML/PKDD.

[79] Matthew Richardson and Pedro M. Domingos. 2006. Markov logic networks.
Mach. Learn. 62, 1-2 (2006), 107–136.

[80] Tim Rocktäschel and Sebastian Riedel. 2017. End-to-end Differentiable Proving.
In NIPS.

[81] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. CoRR abs/2006.10637 (2020).

[82] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy ZheWang.
2019. DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs.
In NeurIPS.

[83] Erik Scharwächter, Emmanuel Müller, Jonathan Donges, Marwan Hassani, and
Thomas Seidl. 2016. Detecting change processes in dynamic networks by
frequent graph evolution rule mining. In ICDM.

[84] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. 2011. Community structure and
scale-free collections of Erdös-Rényi graphs. CoRR abs/1112.3644 (2011).

[85] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. ConvTransE implementation. https://github.com/JD-AI-Research-Silicon-
Valley/SACN.

[86] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge
Base Completion. In AAAI.

[87] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. 2018.
M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. In
NeurIPS.

[88] Tiago Sousa, João Correia, Vítor Pereira, and Miguel Rocha. 2021. Generative
deep learning for targeted compound design. Journal of Chemical Information
and Modeling 61, 11 (2021), 5343–5361.

[89] BaoShan Sun and Lingyu Dong. 2017. Dynamic Model Adaptive to User Interest
Drift Based on Cluster and Nearest Neighbors. IEEE Access 5 (2017), 1682–1691.

[90] Jiaxi Tang and Ke Wang. 2018. Caser implementation.
https://github.com/graytowne/caser_pytorch.

[91] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In WSDM.

[92] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve:
Deep Temporal Reasoning for Dynamic Knowledge Graphs. In ICML.

[93] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. DyRep: Learning Representations over Dynamic Graphs. In ICLR.

[94] Amin Vahedian, Xun Zhou, Ling Tong, W. Nick Street, and Yanhua Li. 2019.
Predicting Urban Dispersal Events: A Two-Stage Framework through Deep
Survival Analysis on Mobility Data. In AAAI.

[95] Ricardo Vilalta and Sheng Ma. 2002. Predicting Rare Events In Temporal Do-
mains. In ICDM.

[96] João Vinagre and Alípio Mário Jorge. 2012. Forgetting mechanisms for scalable
collaborative filtering. J. Braz. Comput. Soc. 18, 4 (2012), 271–282.

[97] KeqiangWang, Yuanyuan Jin, HaofenWang, Hongwei Peng, and XiaolingWang.
2018. Personalized Time-Aware Tag Recommendation. In AAAI.

[98] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393, 6684 (1998), 440–442.

[99] Jeremy C. Weiss and David Page. 2013. Forest-Based Point Process for Event
Prediction from Electronic Health Records. In ECML/PKDD.

[100] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A
Reinforcement Learning Method for Knowledge Graph Reasoning. In EMNLP.

[101] Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Jens Lehmann, and
Hamed Shariat Yazdi. 2019. Temporal Knowledge Graph Embedding Model
based on Additive Time Series Decomposition. CoRR abs/1911.07893 (2019).

[102] Qiang Yang, Hui Wang, and Wei Zhang. 2002. Web-log Mining for Quantitative
Temporal-Event Prediction. IEEE Intell. Informatics Bull. 1, 1 (2002), 10–18.

[103] Yuan Yang and Le Song. 2020. Learn to Explain Efficiently via Neural Logic
Inductive Learning. In ICLR.

[104] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In
ICML.

[105] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Haifeng Chen, and Wei Wang.
2017. Link Prediction with Spatial and Temporal Consistency in Dynamic
Networks. In IJCAI.

[106] Giselle Zeno, Timothy La Fond, and Jennifer Neville. 2021. DYMOND: DYnamic
MOtif-NoDes Network Generative Model. In WWW.

[107] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52,
1 (2019), 5:1–5:38.

[108] Wenbin Zhang, Liming Zhang, Dieter Pfoser, and Liang Zhao. 2021. Disentangled
Dynamic Graph Deep Generation. In SDM.

[109] Liang Zhao. 2021. Event Prediction in the Big Data Era: A Systematic Survey.
ACM Comput. Surv. 54, 5 (2021), 94:1–94:37.

[110] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A Data-Driven
Graph Generative Model for Temporal Interaction Networks. In KDD.

[111] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. TagGen imple-
mentation. https://github.com/davidchouzdw/TagGen.

1874

