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ABSTRACT
Similarity search finds similar objects for a given query object based

on a certain similarity metric. Similarity search in metric spaces has

attracted increasing attention, as the metric space can accommodate

any type of data and support flexible distance metrics. However, a

metric space only models a single data type with a specific simi-

larity metric. In contrast, a multi-metric space combines multiple

metric spaces to simultaneously model a variety of data types and

a collection of associated similarity metrics. Thus, a multi-metric

space is capable of performing similarity search over any combi-

nation of metric spaces. Many studies focus on indexing a single

metric space, while only a few aims at indexing multi-metric space

to accelerate similarity search. In this paper, we propose DESIRE,

an efficient dynamic cluster-based forest index for similarity search

in multi-metric spaces. DESIRE first selects high-quality centers to

cluster objects into compact regions, and then employs B
+
-trees

to effectively index distances between centers and corresponding

objects. To support dynamic scenarios, efficient update strategies

are developed. Further, we provide filtering techniques to accelerate

similarity queries in multi-metric spaces. Extensive experiments

on four real datasets demonstrate the superior efficiency and scala-

bility of our proposed DESIRE compared with the state-of-the-art

multi-metric space indexes.
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1 INTRODUCTION
Given a query object, similarity search finds its similar objects

based on a certain similarity metric. As metric space is able to ac-

commodate any type of data (e.g., locations, strings, and images)

and support flexible similarity metrics (e.g., 𝐿𝑝 -norm distance, edit

distance, and cosine similarity), similarity search in metric spaces

is becoming increasingly important in a wide spectrum of real-life

applications such as multi-media retrieval, decision making, data
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Figure 1: Food Products

analysis, and personalized recommendation [1, 25, 26, 34, 39, 40].

However, existing studies mostly focus on a single metric space,

resulting in the limitation that they can only support the similarity

search over a single type of data with a specific similarity met-

ric. Recently, many database vendors start developing multi-model

database systems (e.g., OrientDB
1
, ArangoDB

2
, Azure Costmos

DB
3
, and GeminiDB

4
), which aims to support a range of models in

a single system. Such systems easily become very complex due to

various data types and flexible distance metrics. In contrast, multi-

metric spaces combine multiple metric spaces to simultaneously

model different features of objects that are presented by data of

various types and support a collection of associated similarity met-

rics. It is able to perform similarity search in any combination of

metric spaces. Thus, multi-metric index offers a method to reduce

this complexity, which benefits the development of vector database.

In real-life applications, it is easy to gather a variety of informa-

tion to capture different properties of objects, especially in the era of

big data. For example, as shown in Fig. 1, customers consider many

factors such as appearance, nutrition, category, and customer re-

viewwhen buying food. In this case, appearance, nutrition, category,

and customer review of each food item are represented by images,

vectors, strings, and texts respectively, and hence food items can be

modeled as objects in four different metric spaces. Given a customer

who wants to find the meat with positive review and high protein

content, if we perform similarity search in a single metric space

that contains category information, the result quality may be low.

This is because products belonging to the meat category could have

significantly different nutrition/reviews, bringing a large amount

1
OrientDB. https://orientdb.org (2010)

2
ArangoDB. https://www.arangodb.com (2014)

3
Microsoft. https://azure.microsoft.com/services/cosmos-db/ (2017)

4
Huawei. https://www.huaweicloud.com/intl/product/geminidb.html (2019)

2121

https://doi.org/10.14778/3547305.3547317
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547317


of unwanted candidates that require further verification from the

customer (e.g., the chicken that has median protein content is an ir-

relevant result). In contrast, multi-metric space can simultaneously

model multiple data types by combining metric spaces, and thus,

it can support high quality similarity search. In the example, we

can provide customers with more accurate recommendations by

considering multiple criteria simultaneously (including category,

nutrition, and customer reviews). That is to say we only recommend

beef, which is the most appropriate option. Therefore, multi-metric

space can support flexible similarity search for any combination of

metric spaces to obtain high quality result.

Many existing studies [2–4, 9–15, 18, 23, 24, 27–29, 31–33, 35, 41]

focus on indexing single metric space, while a few [5–8, 16, 17, 19,

22, 30, 36, 37] target at multi-metric spaces. With the increasing

demand to manage and explore data objects across different met-

ric spaces, recently researchers have investigated the problem of

indexing multi-metric space and supporting similarity search in

any combination of metric spaces. They can be generally classified

into two categories, namely, combined methods [6, 7, 16, 17, 19] and
separate methods [5, 8, 19, 22, 30, 36, 37]. Combined methods use a

single index structure to manage all the metric spaces by treating

different metric spaces equally, and they measure the similarity

between objects via a linear combination of individual distance

metrics to support similarity search. Separate methods construct

an index structure for each individual metric space, and support

the similarity search by combining the candidate results from each

metric space. Combined methods cannot efficiently support flex-

ible combinations of metric spaces, but separate methods incur

high construction and search costs. Hence, we aim to design an

efficient multi-metric space index following separate methods to

support flexible combinations of metric spaces, while having low

construction and query costs. Three challenges exist below.

Challenge I: How to effectively index multi-metric space? Objects
in different metric spaces are usually with different types. Com-

bined methods transformmultiple metric spaces into a single metric

space, which fails to preserve the individuality of each metric space.

Although separate methods can capture the properties of each met-

ric space, they incur high construction cost to build each separate

index and high query cost to search in each separate index. To

this end, we propose a cluster-based forest index for multi-metric

spaces. We select high quality centers for each metric space and

then cluster objects based on the selected centers into compact

regions, which can well capture the characteristics of each metric

space. Next, we use B
+
-trees to effectively manage each cluster by

indexing the distances between objects and their corresponding

cluster center, which forms a cluster-based forest. Note that, only

distance values are stored in each B
+
-tree, but the detailed object

information is stored together and only once in a random access

file (RAF), which effectively reduces the storage cost.

Challenge II: How to efficiently perform similarity search in multi-
metric spaces? Similarity search in multi-metric spaces needs to

combine the metrics when computing the similarity. Existing stud-

ies design distance bounds w.r.t. the weights of each metric to

accelerate the similarity search. However, it is difficult for users

to determine the weights in real-life applications. Take Fig. 1 as

an example. It is difficult to set the weight for each metric (i.e., ap-

pearance, nutrition, category, and customer review) to digitize the

preference. In addition, users have various preferences. For instance,

nutritionists have high preference on the nutrition and the category,

but restaurants have high preference on the appearance and the

customer review. Thus, we first search among cluster centers in

queried metric spaces to prune unnecessary metrics and shrink the

search regions of corresponding spaces. Then, we develop filtering

techniques to accelerate the search for candidate objects in B
+
-trees.

Finally, we integrate and validate candidate objects from different

metric spaces to obtain the actual result.

Challenge III: How to efficiently support dynamic scenarios? In

real-life applications, new objects may come while existing objects

may change. As depicted in Fig. 1, new customer reviews are sub-

mitted, and the appearance of food may change over time. The

updates bring great challenge to multi-metric space indexing. To

address this, we design efficient index update strategies to sup-

port dynamic scenarios. Specifically, we dynamically choose cluster

centers according to the distribution change among objects, and

then efficiently update the corresponding B
+
-trees, which supports

efficient updates on objects and metric spaces.

In this paper, we present a dynamic cluster-based forest index

for multi-metric spaces, called DESIRE, which can well capture

the characteristics of individual metric space, and support efficient

updates and flexible similarity search with low construction cost.

To sum up, our key contributions are as follows:

• Effective indexing framework for multi-metric spaces. We

develop a dynamic cluster-based forest indexing framework

DESIRE for multi-metric spaces to simultaneously capture

the characteristics of each individual space and support

efficient index construction and flexible similarity search.

• Dynamic cluster-based forest. DESIRE first selects high qual-

ity centers to cluster objects into compact regions for each

metric space. It then builds a B
+
-tree for each cluster, and

all those B
+
-trees form a cluster-based forest. Moreover, we

present efficient update techniques with theoretical analy-

sis to support dynamic scenarios.

• Efficient similarity search. We design filtering techniques to

accelerate similarity search in multi-metric spaces, includ-

ing multi-metric range and multi-metric k nearest neigh-

bour queries for any combination of metric spaces.

• Extensive experiments. We conduct extensive experimental

evaluation on three real datasets and one synthetic dataset.

The results demonstrate that DESIRE achieves flexible and

efficient updates, supports efficient multi-metric similarity

search, and scales well with the data size.

The rest of this paper is organized as follows. We review the

related work in Section 2, and present the problem statement in

Section 3. We introduce the dynamic cluster-based forest index for

multi-metric spaces in Section 4, and detail the similarity search

with filtering techniques in Section 5. Comprehensive experiments

and our findings are reported in Section 6. Finally, Section 7 con-

cludes the paper, and offers directions for future work.

2 RELATEDWORK
In this section, we review the previous work on indexing single

metric space and indexing multi-metric space.
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Table 1: Symbols and description
Notation Description
𝑞, 𝑜 A query, an object in a metric space

𝑞, 𝑜 A query, an object in a multi-metric space

𝑜𝑖 The data part of 𝑜 in the 𝑖-th metric space

𝐶𝑖
, 𝑐𝑖 A cluster, a cluster center in the 𝑖-th metric space

𝑂̄ An object set in a multi-metric space

𝑛 The number of objects in a multi-metric space

𝑚 The number of metric spaces

𝑑𝑖 ( ·, ·) A distance metric in a single metric space

W, 𝑑W ( ·, ·) A weight vector, a multi-metric distance

D A set of distance metrics 𝑑𝑖 (1 ≤ 𝑖 ≤𝑚)
MMRQ(𝑞,W, 𝑟 ) A multi-metric range query w.r.t. a query object 𝑞,

a weight vectorW, and a radius 𝑟

MMkNNQ(𝑞,W, 𝑘) A multi-metric 𝑘NN query w.r.t. a query object 𝑞, a

weight vectorW, and an integer 𝑘

2.1 Indexing Single Metric Space
Indexing single metric space for similarity search has been widely

studied, and existing index structures can be generally classified

into three categories [12], i.e., compact partitioning methods, pivot-
based methods, and hybrid methods that combine the previous two

techniques [15].

Compact partitioning methods (including GHT [32], SAT [9, 28],

M-tree [18], LC [10, 11], etc.) partition the space into compact

sub-regions, and propose filtering techniques to prune unqualified

sub-region(s) during the search. Pivot-based methods (including

LAESA [27], VPT [32, 35], MVPT [2, 3], OmniR-tree [24], SPB-

tree [13, 14], etc.) store pre-computed distances from every object

in the database to a set of pivots, and then, they utilize these dis-

tances and the triangle inequality to prune unqualified objects dur-

ing search. Hybrid methods combine compact partitioning with the

use of pivots. GNAT [4] and pivoting metric tree [31] combine the

partitioning technique and cut-regions defined by pivots to acceler-

ate similarity search. M-index [29] generalizes the iDistance [23]

technique for general metric spaces, and uses the B
+
-tree to store

pre-computed distances. Note that, iDistance is designed for vector

spaces, and cannot support dynamic updates of objects.

Although the aforementioned techniques achieve high similarity

search efficiency in a single metric space, they are not able to sup-

port similarity queries in dynamically combined multiple metric

spaces, i.e., similarity search in multi-metric spaces.

2.2 Indexing Multi-Metric Space
As various data types co-exist and can be gathered to improve the

quality of similarity search, a single metric space can no longer

be applied to simultaneously process multiple data types. In view

of this, recently many studies have targeted at multi-metric space

indexing to accelerate the similarity search on various data types,

which can be classified into combined methods and separate methods.
Combined methods treat different metric spaces equally, and

linearly combine distance metrics from different metric spaces into

a single metric. QIC-M-tree [17] applies the user defined distance

that can be regarded as a combination of multiple metrics to build

the index. M
2
-tree [16] and M

3
-tree [7] modify the structure of

M-tree by using integrated distance metric to choose routing ob-

jects, and storing a vector of partial distances to estimate weighted

distances in node entries. A general methodology is presented to

Table 2: A multi-metric space dataset (Apartment Set)
Price Room Location Date Review

𝑎 340 (2,1) (40.71,-74.01) 16-04-01 Wonderful

𝑏 925 (1,2) (40.61,-75.47) 19-02-24 Dark

𝑐 2180 (3,4) (40.72,-74.00) 19-05-12 Terrible

𝑑 520 (1,1) (40.70,-73.99) 18-12-25 Great

adapt existing single metric space index (e.g., GNAT and LC) to

multi-metric space index [6]. Nonetheless, combined methods fail

to preserve the individuality of each metric space. RR
∗
-tree [19]

captures the characteristic of each metric space via reference-object

embedding, and utilizes R-tree to index the embedded objects. How-

ever, it suffers from the curse of dimensionality, especially for a

larger number of metric spaces. In addition, combined methods

incur a high cost of rebuilding the whole index whenever a new

metric is combined into the current multi-metric space.

Separate methods index objects in each individual metric space

separately. As pivots are verified having strong pruning power [12,

15, 41], C-forest [8] and pivot-based index [5] select high quality

pivots to index objects in each metric space. However, they are

mainly designed for static multi-metric spaces, i.e., the subset of

metric spaces that are combined during the similarity search is

supposed to be known in advance. Similarly, Spectra [38] utilizes

the pivots to embed and index each metric space, and metric spaces

with low correlations are indexed together. Nevertheless, these

methods are main-memory indexes, which are difficult to be effi-

ciently implemented in secondary-indexes to support large-scale

datasets. Also, they are not suitable for dynamic scenarios, as the

indexes need to be rebuilt whenever pivots are changed. Many stud-

ies [22, 30, 36, 37] build single metric index for each metric space,

and investigate preference top-𝑘 queries. For example, PM-tree [19]

designs parallel M-trees to index multiple metric spaces, and uses

the threshold to boost the range queries. Nonetheless, they suffer

from high construction cost to build index for each metric space

and high query overhead to search in each separated index.

3 PROBLEM FORMULATION
We proceed to introduce the multi-metric space and the definitions

of similarity search. Table 1 summarizes frequently used notations.

A metric space is represented by a tuple (𝑀,𝑑), where 𝑀 is

the domain of objects, and 𝑑 is a distance metric to measure the

similarity between any pair of objects 𝑞 and 𝑜 in this space. The

distance metric 𝑑 satisfies: (i) symmetry: 𝑑 (𝑞, 𝑜) = 𝑑 (𝑜, 𝑞); (ii) non-
negative: 𝑑 (𝑞, 𝑜) ≥ 0; (iii) identity: 𝑑 (𝑞, 𝑜) = 0 iff 𝑞 = 𝑜 ; and (iv)

triangle inequality:𝑑 (𝑞, 𝑜) ≤ 𝑑 (𝑞, 𝑜 ′)+𝑑 (𝑜, 𝑜 ′). Note that, in a single
metric space, 𝑀 only contains data objects belonging to a single

type. A multi-metric space is represented by a tuple (M,D) that
combines𝑚 metric spaces, whereM is a collection of domains𝑀𝑖

(1 ≤ 𝑖 ≤ 𝑚) andD is a set of distancemetrics𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑚) for each
metric space𝑀𝑖 . Hence, the multi-metric space can simultaneously

model multiple data types with various distance metrics. Here, an

object in a multi-metric space is denoted as 𝑜 = {𝑜𝑖 |1 ≤ 𝑖 ≤ 𝑚},
where 𝑜𝑖 is an object in metric space domain𝑀𝑖 .

Table 2 gives an example of multi-metric space object set to

describe the apartment information, i.e., 𝑂={𝑎, 𝑏, 𝑐, 𝑑}. Each apart-

ment includes the information of i) rental price, ii) the number

of bathrooms and bedrooms, iii) location, iv) publish date, and

v) a brief review. Take apartment 𝑎 as an example. The monthly
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rental is $340; it has two bathrooms and one bedroom; it locates

at New York with geomagnetic coordinates 74.01◦W and 40.71◦N;
it is published on 1 April 2016; and one customer left a comment

“Wonderful”. Hence, the multi-metric space in Table 2 combines five

single metric spaces (𝑀𝑖 , 𝑑𝑖 ) (1 ≤ 𝑖 ≤ 5), where𝑀1 is a domain of

one-dimensional values to describe the rental prices,𝑀2 is a domain

of two-dimensional vectors to describe the room information,𝑀3

is a domain of two-dimensional vectors to state the location, 𝑀4

is a domain of date, and𝑀5 is a domain of strings to describe the

reviews. In addition, metric spaces use different distance metrics.

For instance, 𝐿1-norm, 𝐿2-norm, and edit distances can be used as

a distance metric for𝑀1,𝑀3, and𝑀5, respectively.

Formally, we define the multi-metric distance to measure the

similarity between objects as follows.

Definition 1. (Multi-Metric Distance) Given a weight vector
W = (𝜔1, · · · , 𝜔𝑚), 𝜔𝑖 ∈ R ∧ 𝜔𝑖 ∈ [0, 1] to describe the importance
of each metric space, the multi-metric distance 𝑑W (·, ·) between two
objects 𝑞 and 𝑜 is defined as 𝑑W (𝑞, 𝑜)=∑𝑑𝑖 ∈D 𝜔𝑖 · 𝑑𝑖 (𝑞𝑖 , 𝑜𝑖 ).

Here, 𝜔𝑖 indicates the importance of metric 𝑑𝑖 that participates

into the similarity measurement. In Table 2, a weight vectorW =

(0.5, 0, 0.5, 0, 0) means that we only consider price and location

information equally when computing the similarity. In real-life

applications, users may have various preferences during similarity

search. For example, some users choose apartments according to the

location and review information; while others only consider price

information. Thus, the similarity computation in a multi-metric

space, i.e., Definition 1, is flexible to support any combination of

metrics. Following the previous study [19], the distances 𝑑𝑖 (𝑞𝑖 , 𝑜𝑖 )
in each metric space (𝑀𝑖 , 𝑑𝑖 ) are divided by two times the median

of all occurring distances for normalization. For simplicity, we use

𝑑𝑖 (𝑞, 𝑜) to denote 𝑑𝑖 (𝑞𝑖 , 𝑜𝑖 ) in the rest of the paper.

The multi-metric distance metric𝑑W (·, ·) also satisfies symmetry,

non-negative, identity, and triangle inequality properties. Detailed

proofs are omitted due to the space limitation. Based on the multi-

metric distance, we define two types of similarity search in multi-

metric spaces, i.e., multi-metric range query and multi-metric k
nearest neighbour (𝑘NN) query.

Definition 2. (Multi-Metric Range Query) Given an object
set 𝑂 , a query object 𝑞, a weight vectorW, and a search radius 𝑟 in a
multi-metric space, a multi-metric range query (MMRQ) finds objects
in 𝑂 with their distances to 𝑞 no larger than 𝑟 , i.e., MMRQ(𝑞,W, 𝑟 )
=
{
𝑜 | 𝑜 ∈ 𝑂 ∧ 𝑑W (𝑞, 𝑜) ≤ 𝑟

}
.

Definition 3. (Multi-Metric 𝑘NN Query) Given an object set
𝑂 , a query object 𝑞, a weight vectorW, and an integer 𝑘 in a multi-
metric space, a multi-metric 𝑘NN query (MMkNNQ) finds 𝑘 objects
in 𝑂 that are most similar to 𝑞, i.e., MMkNNQ(𝑞,W, 𝑘) = {𝑆 | 𝑆 ⊆
𝑂 ∧ |𝑆 | = 𝑘 ∧ ∀𝑠 ∈ 𝑆,∀𝑜 ∈ (𝑂 − 𝑆), 𝑑W (𝑞, 𝑠) ≤ 𝑑W (𝑞, 𝑜)}.

SupposeW = (0.5, 0, 0.5, 0, 0) in Table 2, the multi-metric range

query MMRQ(𝑎,W, 0.3) retrieves apartments in 𝑂 that are within

the multi-metric distance 0.3 to 𝑎, s.t. MMRQ(𝑎,W, 0.3) = {𝑑}. The
multi-metric 𝑘NN query MMkNNQ(𝑎,W, 2) finds two apartments

that are most similar to 𝑎, yielding MMkNNQ(𝑎,W, 2) = {𝑐, 𝑑}.

4 THE FRAMEWORK DESIRE
In this section, we present an overview of the dynamic cluster-

based forest indexing framework DESIRE for multi-metric spaces,

and then introduce its corresponding structure. Next, we detail the

construction and update strategies to support dynamic scenarios.

Finally, we analyze the complexities of DESIRE, including the space

consumption, the time complexity, and the I/O cost.

Our construction framework of DESIRE contains three steps. (i)

We cluster the multi-metric objects in each metric space. Specifi-

cally, we select high quality centers in each metric space in order

to preserve the properties of individual metric space, and then, we

group objects into clusters based on the selected centers in every

metric space. (ii) For each cluster, we employ a B
+
-tree to efficiently

index the distances from objects belonging to this cluster to the

cluster center, which forms the B
+
-forest. Here, B

+
-trees store the

one-dimensional distances and the partial data information instead

of the entire multi-metric objects, which reduces the storage cost

significantly. Besides, we also leverage the pre-computed distances

to prune the objects during the search, which avoids the unneces-

sary distance computations and improves the search performance.

(iii) DESIRE dynamically updates the cluster centers, and adjusts the

corresponding B
+
-forest structure to support dynamic scenarios.

4.1 Indexing Structure
DESIRE consists of three components, i.e., lists of clusters, the B

+
-

forest, and the random access file (RAF), as depicted in Fig. 2. To

be more specific, for a given object set 𝑂 = {𝑜1, 𝑜2, ..., 𝑜10}, Fig. 2(a)
shows the clustering result in each metric space, Fig. 2(b) reports

the lists of clusters, and Fig. 2(c) plots the B
+
-forest and the RAF.

Lists of clusters. Fig. 2(b) illustrates an example of cluster lists

according to clustering shown in Fig. 2(a). For each metric space,

we have a list to store the clusters obtained in this metric space.

For instance, in the first list corresponding to metric space (𝑀1, 𝑑1),
we have four entries to describe the obtained four clusters 𝐶1

1
,

𝐶1

2
, 𝐶1

3
, and 𝐶1

4
. Similarly, in the𝑚-th list, we have four entries to

describe the clusters 𝐶𝑚
1
, 𝐶𝑚

2
, 𝐶𝑚

3
, and 𝐶𝑚

4
. Specifically, each entry

for describing 𝐶𝑖
𝑗
stores i) the cluster center (denoted as 𝐶𝑖

𝑗
.𝑐), and

ii) the pointer (denoted as 𝐶𝑖
𝑗
.𝑝𝑡𝑟 ) to the B

+
-tree that indexes the

underlying objects. Note that, for a center 𝑐 in the 𝑖-th list, we only

store the center information 𝑐 in a specific metric space (𝑀𝑖 , 𝑑𝑖 )
instead of its information in all𝑚 spaces. One B

+
-tree is used for a

cluster to index objects in this cluster, as detailed below.

B+-forest Indexing. We use the secondary memory B
+
-tree to

support efficient construction, update, and search. Each B
+
-tree

indexes the distances between objects and the cluster center. Fig. 2(c)

shows the B
+
-forest to index clusters in Fig. 2(b), where two detailed

B
+
-trees are built for 𝐶1

4
and 𝐶𝑚

2
, respectively. Each entry 𝐸 in a

non-leaf node (e.g., 𝑁𝑚
0
) records the key value (denoted as 𝐸.𝑘𝑒𝑦),

the minimum and the maximum keys (denoted as 𝐸.𝑚𝑖𝑛 and 𝐸.𝑚𝑎𝑥 ).

As an example, 𝐸4 .𝑘𝑒𝑦 in node 𝑁𝑚
0

is 𝑑𝑚 (𝑜𝑚
2
) (the short form of

𝑑𝑖 (𝑐
𝑖
,𝑜𝑖
𝑗
)), 𝐸4 .𝑚𝑖𝑛 is𝑑𝑚 (𝑜𝑚

2
), and 𝐸4 .𝑚𝑎𝑥 is𝑑𝑚 (𝑜𝑚

5
). Each entry 𝐸 in

a leaf node (e.g., 𝑁 1

0
, 𝑁𝑚

1
, and 𝑁𝑚

2
) records the key value (denoted

as 𝐸.𝑘𝑒𝑦), the object (denoted as 𝐸.𝑜) and the pointer (denoted as

𝐸.𝑝𝑡𝑟 ) to the RAF file. Instead of storing the entire object 𝑜 in each

metric space, 𝐸.𝑜 only records the partial data 𝑜𝑖 in (𝑀𝑖 , 𝑑𝑖 ). Since a
B
+
-tree is built for each cluster, all the B

+
-trees form the B

+
-forest.

RAF File. All the B+-trees share the same RAF file, which stores all

the multi-metric objects. In a B
+
-tree leaf entry, it stores the partial

data (i.e., the object in a particular metric space), and also stores
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Figure 2: Structure of the DESIRE

the pointer to the entire multi-metric object in RAF. For example,

in Fig. 2(c), the first leaf entry of node 𝑁𝑚
1

stores the partial data

(i.e., 𝑜𝑚
2
) and the pointer to the address of 𝑜2 in RAF.

4.2 Construction and Update
In a dynamic scenario, new objects may come, and existing objects

may expire. Accordingly, we design proper object insertion/deletion

operations such that DESIRE can support efficient multi-metric

queries even in a dynamic setup. Clustering objects. For each
metric space (𝑀𝑖 , 𝑑𝑖 ), we adopt the generalized hyperplane par-

titioning technique to cluster objects, i.e., we assign the newly

coming object 𝑜 to a cluster 𝐶𝑖
𝑗
whose center 𝑐𝑖

𝑗
is nearest to 𝑜𝑖 ,

which is defined below.

Definition 4. (Generalized Hyperplane Partitioning) Given
a list 𝐿𝐶𝑖 of clusters, a set 𝑂𝑖 of objects, and a distance metric 𝑑𝑖 , let
𝑐𝑖 be the center of the cluster 𝐶𝑖 ∈ 𝐿𝐶𝑖 . The cluster 𝐶𝑖 grouped by
𝑐𝑖 using generalized hyperplane partitioning technique is defined as
{𝑜𝑖 |𝑜𝑖 ∈ 𝑂𝑖 ∧ ∀𝑐𝑖 ′ ≠ 𝑐𝑖 , 𝑑𝑖 (𝑜𝑖 , 𝑐𝑖 ) ≤ 𝑑𝑖 (𝑜𝑖 , 𝑐𝑖 ′)}.

The reason why we adopt the generalized hyperplane partition-

ing is as follows. The distance computation (e.g., edit distance, 𝐿𝑝 -

norm for high dimensional vectors) is usually costly inmetric spaces.

To avoid unnecessary distance computations, DESIRE estimates the

distance bounds via triangle inequality. Given a query object 𝑞, let

𝑐𝑖
𝑗
be the center of the cluster where 𝑜 is located in (𝑀𝑖 , 𝑑𝑖 ). We

have |𝑑𝑖 (𝑞, 𝑐𝑖𝑗 ) − 𝑑 (𝑐
𝑖
𝑗
, 𝑜) | ≤ 𝑑𝑖 (𝑜, 𝑞) ≤ 𝑑𝑖 (𝑞, 𝑐𝑖𝑗 ) + 𝑑𝑖 (𝑐

𝑖
𝑗
, 𝑜), where

𝑑𝑖 (𝑐𝑖𝑗 , 𝑜) is pre-computed and stored in DESIRE. Hence, we need to

compute only 𝑑𝑖 (𝑞, 𝑐𝑖𝑗 ) to estimate the upper and lower bounds of

𝑑𝑖 (𝑜, 𝑞) for any object 𝑜 in the cluster. According to the estimation,

the smaller the 𝑑 (𝑐𝑖
𝑗
, 𝑜) is, the tighter the bounds will be. Motivated

by this, we assign 𝑜 to a cluster whose center 𝑐𝑖
𝑗
is the closest to it.

Note that, if an object shares an equal shortest distance to multiple

centers, it will be assigned to the cluster of the center with the

smallest index number 𝑖 based on Definition 4.

Center selection.Given a cluster𝐶𝑖
𝑗
in a metric space (𝑀𝑖 , 𝑑𝑖 ) with

the center 𝑐𝑖
𝑗
and the maximum distance𝑚𝑎𝑥𝑖

𝑗
between the center

and the objects in the cluster, for any object pairs (𝑜𝑖𝑥 , 𝑜
𝑖
𝑦 ) in this

cluster, max(|𝑑𝑖 (𝑜𝑖𝑥 , 𝑐𝑖𝑗 ) −𝑚𝑎𝑥𝑖
𝑗
|, |𝑑𝑖 (𝑜𝑖𝑦, 𝑐𝑖𝑗 ) −𝑚𝑎𝑥𝑖

𝑗
|) ≤ 𝑑𝑖 (𝑜𝑖𝑥 , 𝑜𝑖𝑦) ≤

min(𝑑 (𝑜𝑖𝑥 , 𝑐𝑖𝑗 ) +𝑚𝑎𝑥𝑖
𝑗
, 𝑑 (𝑜𝑖𝑦, 𝑐𝑖𝑗 ) +𝑚𝑎𝑥𝑖

𝑗
). Therefore, the smaller the

𝑚𝑎𝑥𝑖
𝑗
, the tighter the bounds of 𝑑𝑖 (𝑜𝑖𝑥 , 𝑜𝑖𝑦) will be. In order to obtain

well-distributed centers, mainstream solutions look for objects in

each cluster that can minimize𝑚𝑎𝑥𝑖
𝑗
values and set those objects as

new centers. Consequently, they incur extremely high computation

cost as they have to calculate pairwise distances for all the objects

in each cluster. To this end, we apply a simple yet effective way [21]

to choose objects having maximum distances to existing centers as

new centers to form new clusters (to note, the first inserted object

is the first center).

To note, the number of centers (which is equivalent to the number

of clusters) is critical. If we have only a few centers, the maximum

distance𝑚𝑎𝑥𝑖
𝑗
of the cluster will be large, resulting in poor distance

estimation. If we have a large number of centers, the computation

cost of inserting a new object 𝑜 will be high, as we need to compute

the distances between 𝑜 and all the centers to find the nearest one.

Thus, we use a tuning parameter 𝜆 (0 ≤ 𝜆 ≤ 1) to control the

number of centers, which will be analyzed in Section 4.3, and its

impact will be evaluated in Section 6.1. Specifically, let 𝑛𝑢𝑚𝑖
𝑐 be

the number of centers in a metric space, 𝑛𝑢𝑚𝑜 be the number of

indexed multi-metric objects, the clustering requires a update when

𝑛𝑢𝑚𝑖
𝑐 ≠ ⌈(𝑛𝑢𝑚𝑜 )𝜆⌉. For simplicity, we assume that all the metric

spaces share a common 𝜆 value, although it is not necessary as each

metric space can have its own 𝜆 setting.

Cluster deletion.When we need to reduce the number of clusters,

we find a cluster pair having the minimum distance among all the

cluster pairs, and delete the smaller cluster in the pair. Specifically,

assume clusters 𝐶𝑖
𝑗
and 𝐶𝑖

𝑙
form the cluster pair with the smallest

distance, and𝐶𝑖
𝑗
with the center 𝑐𝑖

𝑗
and the distance𝑚𝑎𝑥𝑖

𝑗
is the one
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Algorithm 1: Object Insertion Algorithm

Input: a new multi-metric object 𝑜 , a DESIRE index, and a

parameter 𝜆
1: insert 𝑜 into RAF, 𝑙𝑜𝑐 ←the address of 𝑜 in RAF

2: 𝑛𝑢𝑚𝑜 ← 𝑛𝑢𝑚𝑜 + 1 // update the number of multi-metric objects

3: foreach metric space (𝑀𝑖 , 𝑑𝑖 ) do
4: 𝐿𝐶𝑖 ← the list of clusters in (𝑀𝑖 , 𝑑𝑖 )
5: 𝐶𝑚𝑖𝑛 ← argmin

𝐶𝑖
𝑗
∈𝐿𝐶𝑖 𝑑𝑖 (𝑜𝑖 ,𝐶𝑖

𝑗
.𝑐)

6: 𝐸 ←new B
+
-tree leaf entry (𝑑𝑖 (𝐶𝑚𝑖𝑛 .𝑐, 𝑜

𝑖 ) , 𝑜𝑖 , 𝑙𝑜𝑐)
7: insert 𝐸 into the B

+
-tree of𝐶𝑚𝑖𝑛

8: if 𝑛𝑢𝑚𝑖
𝑐 < ⌈(𝑛𝑢𝑚𝑜 )𝜆 ⌉ then Add_center(𝐿𝐶𝑖

, 𝑑𝑖 )

9: Function Add_center(𝐿𝐶𝑖 , 𝑑𝑖)
10: 𝐶𝑐𝑎𝑛𝑑 ← ∅, 𝑑𝑖𝑠𝑚𝑎𝑥 ← 0

11: 𝑛𝑢𝑚𝑖
𝑐 ← 𝑛𝑢𝑚𝑖

𝑐 + 1 // update the number of centers

12: foreach cluster𝐶𝑖
𝑗
∈ 𝐿𝐶𝑖 do

13: 𝑁 ←the root node of the B
+
-tree for𝐶𝑖

𝑗

14: 𝑚𝑎𝑥𝑖
𝑗
←the maximum distance in last entry of 𝑁

15: if𝑚𝑎𝑥𝑖
𝑗
> 𝑑𝑖𝑠𝑚𝑎𝑥 then𝐶𝑐𝑎𝑛𝑑 ← {𝐶𝑖

𝑗
}, 𝑑𝑖𝑠𝑚𝑎𝑥 ←𝑚𝑎𝑥𝑖

𝑗

16: else if𝑚𝑎𝑥𝑖
𝑗
= 𝑑𝑖𝑠𝑚𝑎𝑥 then𝐶𝑐𝑎𝑛𝑑 ← 𝐶𝑐𝑎𝑛𝑑 ∪ {𝐶𝑖

𝑗
}

17: 𝐶𝑚𝑎𝑥 ← argmax𝐶∈𝐶𝑐𝑎𝑛𝑑
|𝐶 | // cluster with largest size

18: 𝐸 ←get_last_entry(𝐶𝑚𝑎𝑥 ) // last leaf entry in B
+
-tree of𝐶𝑚𝑎𝑥

19: remove 𝐸 from𝐶𝑚𝑎𝑥

20: 𝐶𝑛𝑒𝑤 ← (𝐸.𝑜 , 0, the pointer to an empty B
+
-tree)

21: foreach cluster𝐶𝑖
𝑗
∈ 𝐿𝐶𝑖 do

22: 𝐸 ←get_last_entry(𝐶𝑖
𝑗
)

23: while 𝑑𝑖 (𝐸.𝑜,𝐶𝑛𝑒𝑤 .𝑐) < 𝑑𝑖 (𝐸.𝑜,𝐶𝑖
𝑗
.𝑐) do

24: move 𝐸 from𝐶𝑖
𝑗
to𝐶𝑛𝑒𝑤 , 𝐸 ←get_last_entry(𝐶𝑖

𝑗
)

25: 𝐿𝐶𝑖 ← 𝐿𝐶𝑖 ∪𝐶𝑛𝑒𝑤

to be deleted from the metric space (𝑀𝑖 , 𝑑𝑖 ). This deletion strategy

is motivated by our consideration of the changes to the maximum

distances of other clusters in this metric space. For any object 𝑜𝑖
𝑗

originally located inside𝐶𝑖
𝑗
, it needs to be moved to the new closest

cluster (e.g., 𝐶𝑖
𝑘
), i.e., 𝑑𝑖 (𝑜𝑖𝑗 , 𝑐

𝑖
𝑘
) ≤ 𝑑𝑖 (𝑜𝑖𝑗 , 𝑐

𝑖
𝑙
). In addition, according

to the triangle inequality and the definition of𝑚𝑎𝑥𝑖
𝑗
, we can derive

that 𝑑𝑖 (𝑜𝑖𝑗 , 𝑐
𝑖
𝑙
) ≤ 𝑑𝑖 (𝑜𝑖𝑗 , 𝑐

𝑖
𝑗
) + 𝑑𝑖 (𝑐𝑖𝑗 , 𝑐

𝑖
𝑙
) ≤ 𝑚𝑎𝑥𝑖

𝑗
+ 𝑑𝑖 (𝑐𝑖𝑗 , 𝑐

𝑖
𝑙
). After

object 𝑜𝑖
𝑗
is inserted into cluster𝐶𝑖

𝑘
, the maximum distance𝑚𝑎𝑥𝑖

𝑘
of

𝐶𝑖
𝑘
needs to be updated to𝑚𝑎𝑥 (𝑑𝑖 (𝑐𝑖𝑗 , 𝑐

𝑖
𝑙
)+𝑚𝑎𝑥𝑖

𝑗
,𝑚𝑎𝑥𝑖

𝑘
) in the worst

case. As𝑚𝑎𝑥𝑖
𝑗
and𝑚𝑎𝑥𝑖

𝑘
are fixed, in order to minimize 𝑑𝑖 (𝑐𝑖𝑗 , 𝑐

𝑖
𝑙
)

and tighten the radii of cluster centers, we find a cluster pair having

the minimum distance between the centers, and then delete the

cluster with smaller size for higher efficiency (as fewer objects will

be updated).

Object Insertion operation.We develop the object insertion op-

eration, with the pseudo-code shown in Algorithm 1. Due to space

limitation, traditional operations for B
+
-trees and clusters are omit-

ted. First, the algorithm inserts the new multi-metric object in the

RAF file to get the address 𝑙𝑜𝑐 (line 1), and updates the number

𝑛𝑢𝑚𝑜 of multi-metric objects (line 2). Then, in each metric space

(𝑀𝑖 , 𝑑𝑖 ), it finds the closest cluster 𝐶𝑚𝑖𝑛 for 𝑜𝑖 (lines 3–5), creates

corresponding leaf entry 𝐸 (line 6), and inserts 𝐸 into the B
+
-tree of

𝐶𝑚𝑖𝑛 (line 7). Next, the algorithm calls function Add_center to in-

clude a new cluster to 𝐿𝐶𝑖
if the number of centers 𝑛𝑢𝑚𝑖

𝑐 is smaller

than ⌈(𝑛𝑢𝑚𝑜 )𝜆⌉(line 8). The function first finds all the candidate

Algorithm 2: Object Deletion Algorithm

Input: an object 𝑜 , a DESIRE index, and a parameter 𝜆
1: 𝑛𝑢𝑚𝑜 ← 𝑛𝑢𝑚𝑜 − 1 // update the number of multi-metric objects

2: foreach metric space (𝑀𝑖 , 𝑑𝑖 ) do
3: 𝐿𝐶𝑖 ← the list of clusters in (𝑀𝑖 , 𝑑𝑖 )

4: 𝐸 ← the B
+
-tree entry of 𝑜𝑖 indexed in 𝐿𝐶𝑖

5: remove 𝐸 from 𝐿𝐶𝑖

6: if 𝑛𝑢𝑚𝑖
𝑐 > ⌈(𝑛𝑢𝑚𝑜 )𝜆 ⌉ then Delete_center(𝐿𝐶𝑖

, 𝑑𝑖 )

7: Function Delete_center(𝐿𝐶𝑖 , 𝑑𝑖)
8: (𝐶𝑖

𝑚1
,𝐶𝑖

𝑚2
) ← argmin

𝐶𝑖
𝑥 ,𝐶

𝑖
𝑦∈𝐿𝐶𝑖 ,|𝐶𝑖

𝑥 |≤|𝐶𝑖
𝑦 |
𝑑𝑖 (𝐶

𝑖
𝑥 .𝑐 ,𝐶

𝑖
𝑦 .𝑐)

9: 𝐿𝐶𝑖 ← 𝐿𝐶𝑖 − {𝐶𝑖
𝑚1
}, 𝑛𝑢𝑚𝑖

𝑐 ← 𝑛𝑢𝑚𝑖
𝑐 − 1

10: foreach leaf entry 𝐸 ∈ 𝐶𝑖
𝑚1

do
11: 𝐶𝑚𝑖𝑛 ← argmin

𝐶𝑖
𝑗
∈𝐿𝐶𝑖 𝑑 (𝐶𝑖

𝑗
.𝑐, 𝐸.𝑜)

12: move 𝐸 from𝐶𝑖
𝑚1

to𝐶𝑚𝑖𝑛

clusters𝐶𝑐𝑎𝑛𝑑 having the maximum distance (lines 10–16). Then, it

finds the cluster 𝐶𝑚𝑎𝑥 in 𝐶𝑐𝑎𝑛𝑑 with the largest size, and uses the

farthest object to the center in 𝐶𝑚𝑎𝑥 as the new center to create

the new cluster 𝐶𝑛𝑒𝑤 (lines 17–20). Here, 𝑔𝑒𝑡_𝑙𝑎𝑠𝑡_𝑒𝑛𝑡𝑟𝑦 (·) is to
get the last entry in the B

+
-tree of 𝐶𝑚𝑎𝑥 that contains the farthest

object. In addition, for all the other clusters in 𝐿𝐶𝑖
, the objects will

be re-assigned if they are nearer to the new cluster (lines 21–24).

Finally, 𝐿𝐶𝑖
is updated to include a new cluster 𝐶𝑛𝑒𝑤 (line 25).

Object Deletion operation. Algorithm 2 lists the pseudo-code of

object deletion operation. For a multi-metric object 𝑜 to be deleted,

the algorithm first updates the number 𝑛𝑢𝑚𝑜 of objects (line 1).

Then, for each metric space (𝑀𝑖 , 𝑑𝑖 ), it finds the leaf entry 𝐸 of

𝑜𝑖 , and removes 𝐸 from the list 𝐿𝐶𝑖
of clusters (lines 3–5). Finally,

it invokes Delete_center function to remove a cluster from 𝐿𝐶𝑖

if the number 𝑛𝑢𝑚𝑖
𝑐 of centers is larger than ⌈(𝑛𝑢𝑚𝑜 )𝜆⌉ (line 6).

𝐷𝑒𝑙𝑒𝑡𝑒_𝑐𝑒𝑛𝑡𝑒𝑟 first finds a cluster pair (𝐶𝑖
𝑚1

,𝐶𝑖
𝑚2
) having the min-

imum distance among all the center pairs (lines 8). It then removes

the cluster 𝐶𝑖
𝑚1

with the smaller size, updates the number 𝑛𝑢𝑚𝑖
𝑐 of

centers, and reallocates the objects in 𝐶𝑖
𝑚1

(lines 9–12).

Metric Space Insertion/Deletion. As a separate method, DESIRE

also supports efficient metric space updating. Specifically, when a

metric space is removed, DESIRE only needs to delete the clusters

and B
+
-forests in that space, and updates the RAF file. Similarly, if a

new space is added, DESIRE inserts the objects of the new space to

the index, without making any changes to the existing part. These

operations can be easily implemented in a way similar to object

insertion/deletion, and thus, are omitted here.

4.3 Complexity Analysis
Space Consumption. DESIRE consists of three components, i.e.,

the lists of clusters, the B
+
-forest, and the RAF file. Let 𝑛 be the size

of the object set (i.e., |𝑂 |), and𝑚 be the number of metric spaces.

The storage cost of the lists of clusters is 𝑂 (𝑚𝑛𝜆), as the number

of centers is controlled by 𝑛𝜆 . For each metric space (𝑀𝑖 , 𝑑𝑖 ), let 𝑛 𝑗
denote the number of the objects in cluster𝐶𝑖

𝑗
. Then, the estimated

space cost for the B
+
-forest is:

F (𝑛1, 𝑛2, · · · ) =
∑︁𝑛𝜆

𝑗=1
𝑂 (𝑛 𝑗 ) = 𝑂 (𝑛) (1)

According to Eq. (1) and the fact that each metric space is managed

by 𝑛𝜆 B
+
-trees, the space cost of each B

+
-tree is 𝑂 (𝑛1−𝜆). The size
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Figure 3: Illustration of Pruning Non-leaf Entries

of RAF file equals to the object set size 𝑂 (𝑛𝑠), where 𝑠 represents
the average size of an object in a multi-metric space. In summary,

as 𝑠 ≫ 1, the total space cost of DESIRE is 𝑂 (𝑛𝑠 +𝑚𝑛𝜆).
Time Complexity of Object Insertion.We need to insert the new

object into𝑚 metric spaces, which requires two steps: i) finding the

cluster to be inserted with the cost 𝑂 (𝑛𝜆 · 𝑑𝑐𝑚𝑝); and ii) inserting

the object in B
+
-tree of the cluster with the cost 𝑂 (log𝑛1−𝜆). Here,

𝑑𝑐𝑚𝑝 denotes the cost of a distance computation, and each B
+
-tree

contains 𝑛1−𝜆 objects on average. Next, we analyze the cost of

Add_center function, which adds a center for each of𝑚 spaces and

includes three steps: i) finding the farthest object in each cluster

with the cost𝑂 (𝑛𝜆 log𝑛1−𝜆); ii) finding the best center and creating
a new cluster with the cost 𝑂 (𝑛𝜆); and iii) redistributing objects

in old clusters to the new cluster with the cost 𝑂 (𝑛1−𝜆 log𝑛1−𝜆 +
𝑛1−𝜆 · 𝑑𝑐𝑚𝑝), as 𝑂 (𝑛1−𝜆) objects on average are moved to the new

cluster. Thus, as 0 ≤ 𝜆 ≤ 1, the total cost of an insertion operation

is 𝑂 (𝑚(𝑛𝜆 + 𝑛1−𝜆) · (𝑑𝑐𝑚𝑝 + log𝑛1−𝜆)).
Time Complexity of Object Deletion. Similar to the object

insertion, the cost of deleting an object in each metric space is

𝑂 (log𝑛1−𝜆 +𝑛𝜆 ·𝑑𝑐𝑚𝑝). Next, the cost for deleting a center includes
𝑂 (𝑛2𝜆) distance computations to find the cluster to be deleted,

𝑂 (𝑛𝜆) distance computations to find the nearest cluster of each

object in the deleted cluster, and 𝑂 (log𝑛1−𝜆) cost to add each ob-

ject in the deleted cluster to the B
+
-tree of its new cluster (as each

B
+
-tree contains 𝑛1−𝜆 objects on average). Hence, the total cost of

a deletion operation is 𝑂 (𝑚𝑛2𝜆 · 𝑑𝑐𝑚𝑝 +𝑚𝑛𝜆 log𝑛1−𝜆).
I/O Cost of Object Insertion/Deletion. The I/O cost includes

three parts: i) the I/O cost for lists of clusters is 𝑂 ( |𝐿𝐶 |𝑝 ), where
|𝐿𝐶 |𝑝 denotes the number of pages to store the lists of clusters, as

we visit and update the lists of clusters only once in order; ii) the

I/O cost of B
+
-forest is 𝑂 (𝑚(𝑛𝜆 + 𝑛1−𝜆) log𝑛1−𝜆) for insertion and

𝑂 (𝑚𝑛𝜆 log𝑛1−𝜆) for deletion according to the above time complex-

ity analysis; and iii) the I/O cost of RAF file is O(1).

5 SIMILARITY SEARCH
In this section, we propose efficient similarity search algorithms in

multi-metric spaces using DESIRE to support multi-metric range

query and multi-metric 𝑘NN query, respectively.

5.1 Multi-Metric Range Query
As defined in Definition 2, a multi-metric range query aims to find

multi-metric objects 𝑜 whose multi-metric distances 𝑑W (𝑞, 𝑜) to
a query object 𝑞 are within 𝑟 . As DESIRE is a separate method

(i.e., each metric space is indexed separately), we have to search the

result in each metric space. To accelerate the search in single spaces,

we borrow the idea from the pigeonhole principle, and propose the

following filtering lemma.

Lemma 5.1. Given a range query object 𝑞, a query weight vector
W, the set D of distance metrics, and a radius 𝑟 , object 𝑜 is a result of
MMRQ(𝑞,W, 𝑟 ) only if ∃𝑑𝑖 ∈ D, 𝜔𝑖 > 0 ∧ 𝑑𝑖 (𝑞, 𝑜) ≤ 𝑟∑

𝑑𝑖 ∈D𝜔𝑖
.

Algorithm 3: RangeQuery Algorithm

Input: a query object 𝑞, the list of clusters 𝐿𝐶𝑖
, a distance metric

𝑑𝑖 , and a search radius
𝑟∑
𝜔𝑖

Output: the result set 𝐴𝑛𝑠 of entries
1 𝐴𝑛𝑠 ← ∅ // the result set

2 foreach𝐶 ∈ 𝐿𝐶𝑖 do
3 𝑁 ←the B

+
-tree root of𝐶

4 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪𝑇𝑟𝑒𝑒𝑅𝑎𝑛𝑔𝑒𝑄 (𝑁,𝑞,𝑑𝑖 ,
𝑟∑
𝜔𝑖

, 𝑑 (𝐶.𝑐,𝑞))
5 return 𝐴𝑛𝑠

6 Function TreeRangeQ(𝑁 , 𝑞, 𝑑𝑖 , 𝑟∑
𝜔𝑖

, 𝑑𝑖𝑠𝐶)

7 𝐴𝑛𝑠 ← ∅
8 foreach Entry 𝐸 of 𝑁 do
9 if 𝑁 is leaf node then
10 if 𝐸.𝑘𝑒𝑦 ≤ 𝑟∑

𝜔𝑖
+ 𝑑𝑖𝑠𝐶 ∧ 𝐸.𝑘𝑒𝑦 ≥ 𝑑𝑖𝑠𝐶 − 𝑟∑

𝜔𝑖
then

11 𝑑𝑖𝑠 ← 𝑑 (𝐸.𝑜,𝑞)
12 if 𝑑𝑖𝑠 ≤ 𝑟∑

𝜔𝑖
then 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {(𝐸.𝑝𝑡𝑟,𝑑𝑖𝑠) }

13 else
14 if 𝐸.𝑚𝑖𝑛 ≤ 𝑟∑

𝜔𝑖
+ 𝑑𝑖𝑠𝐶 ∧ 𝐸.𝑚𝑎𝑥 ≥ 𝑑𝑖𝑠𝐶 − 𝑟∑

𝜔𝑖
then

15 𝑁 ′ ←the B
+
-tree node pointed by 𝐸

16 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪𝑇𝑟𝑒𝑒𝑅𝑎𝑛𝑔𝑒𝑄 (𝑁 ′, 𝑞,𝑑𝑖 , 𝑟∑
𝜔𝑖

, 𝑑𝑖𝑠𝐶 )

17 return 𝐴𝑛𝑠

Proof. Assume to the contrary that there is a result object 𝑜 in

MMRQ(𝑞,W, 𝑟 ) such that∀𝜔𝑖 ∈ W,𝑑𝑖 (𝑞, 𝑜) > 𝑟∑
𝑑𝑖 ∈D𝜔𝑖

∧𝑑W (𝑞, 𝑜) ≤
𝑟 . According to the definition of MMRQ, 𝑑W (𝑞, 𝑜) = ∑

𝑑𝑖 ∈D 𝜔𝑖 ·
𝑑𝑖 (𝑞, 𝑜) >

∑
𝑑𝑖 ∈D 𝜔𝑖 · 𝑟∑

𝑑𝑖 ∈D𝜔𝑖
. Hence, we derive that 𝑑W (𝑞, 𝑜) > 𝑟 ,

which contradicts with our assumption. The proof completes. □

Based on Lemma 5.1, we conduct the range query with search

radius of
𝑟∑
𝜔𝑖

in each single metric space with 𝜔𝑖 > 0. If

∑
𝜔𝑖

remains unchanged, the search performance of DESIRE when an-

swering MMRQ is very stable even when the weighted value of

each metric space changes. During the search in each metric space,

we can further use the triangle-inequality discussed in Section 4.2

to avoid unnecessary distance computations. As non-leaf entries

in B
+
-trees contain a set of objects in the sub-trees, we propose

Lemma 5.2 to prune non-leaf entries.

Lemma 5.2. Given a non-leaf entry 𝐸, the query object 𝑞 in the
metric space (𝑀𝑖 , 𝑑𝑖 ), and a search radius 𝑟∑

𝜔𝑖
, let 𝑐 denote the cluster

center of this B+-tree. If 𝐸.𝑚𝑖𝑛 > 𝑟∑
𝜔𝑖
+𝑑𝑖 (𝑞, 𝑐) or 𝐸.𝑚𝑎𝑥 < 𝑑𝑖 (𝑞, 𝑐)−

𝑟∑
𝜔𝑖

, 𝐸 can be safely pruned for MMRQ in this single metric space.

Proof. As 𝐸.𝑚𝑖𝑛 and 𝐸.𝑚𝑎𝑥 are the minimum and maximum

key values (i.e., distances to the cluster center 𝑐) of all the objects

in 𝐸, ∀𝑜 ∈ 𝐸, 𝐸.𝑚𝑖𝑛 ≤ 𝑑𝑖 (𝑜, 𝑐) ≤ 𝐸.𝑚𝑎𝑥 . If 𝐸.𝑚𝑎𝑥 < 𝑑𝑖 (𝑞, 𝑐) − 𝑟∑
𝜔𝑖

,

we have 𝑑𝑖 (𝑜, 𝑐) < 𝑑𝑖 (𝑞, 𝑐) − 𝑟∑
𝜔𝑖

, and then, 𝑑𝑖 (𝑜, 𝑞) ≥ 𝑑𝑖 (𝑞, 𝑐) −
𝑑𝑖 (𝑜, 𝑐) > 𝑟∑

𝜔𝑖
due to the triangle inequality, indicating that all the

objects in 𝐸 can be discarded. Similarly, if 𝐸.𝑚𝑖𝑛 > 𝑟∑
𝜔𝑖
+ 𝑑𝑖 (𝑞, 𝑐),

we have 𝑑𝑖 (𝑜, 𝑞) ≥ 𝑑𝑖 (𝑞, 𝑐) − 𝑑𝑖 (𝑜, 𝑐) > 𝑟∑
𝜔𝑖

, leading to the same

conclusion that 𝐸 can be pruned. The proof completes. □

Consider the example shown in Fig. 3. Given a cluster center

𝑐𝑖
𝑗
, an entry 𝐸 in the cluster, a query object 𝑞1, and a radius 𝑟1, 𝐸

cannot be pruned for MMRQ in the single space by Lemma 5.2 due

to 𝐸.𝑚𝑖𝑛 < 𝑟1 + 𝑑𝑖 (𝑞1, 𝑐𝑖𝑗 ) and 𝐸.𝑚𝑎𝑥 > 𝑑𝑖 (𝑞, 𝑐𝑖𝑗 ) − 𝑟1, i.e., 𝐸 might

contain objects (e.g., 𝑜) that are query answers. However, given
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Algorithm 4: MMRQ Algorithm

Input: a query object 𝑞, a query weight vectorW, and a search

radius 𝑟
Output: the result set 𝐴𝑛𝑠 of objects

1 𝐴𝑛𝑠 ← ∅ // the result set

2 foreach 𝜔𝑖 ∈ W, 𝜔𝑖 = 1 do
3 𝐿𝐶𝑖 ← the list of clusters in (𝑀𝑖 , 𝑑𝑖 )

4 𝑅𝑒𝑠𝑖 ← 𝑅𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑞, 𝐿𝐶𝑖 , 𝑑𝑖 ,
𝑟∑
𝜔𝑖
)

5 foreach (𝐸.𝑝𝑡𝑟 , 𝑑𝑖𝑠) ∈ 𝑅𝑒𝑠𝑖 do
6 𝑜 ←the object pointed by 𝐸.𝑝𝑡𝑟

7 if 𝑜 ∉ 𝐴𝑛𝑠 then
8 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {𝑜 }
9 𝑜.𝑑𝑖𝑠 [ 𝑗 ] ← ∞, 1 ≤ 𝑗 ≤ |D |

10 𝑜.𝑑𝑖𝑠 [𝑖 ] ← 𝑑𝑖𝑠

11 foreach 𝑜 ∈ 𝐴𝑛𝑠 do
12 𝑑𝑖𝑠_𝑡𝑚𝑝 ← 0

13 foreach 𝑑𝑖 ∈ D, 𝜔𝑖 = 1 do
14 if 𝑜.𝑑𝑖𝑠 [𝑖 ] ≠ ∞ then 𝑑𝑖𝑠_𝑡𝑚𝑝 ← 𝑑𝑖𝑠_𝑡𝑚𝑝 + 𝑜.𝑑𝑖𝑠 [𝑖 ]
15 else 𝑑𝑖𝑠_𝑡𝑚𝑝 ← 𝑑𝑖𝑠_𝑡𝑚𝑝 + 𝑑𝑖 (𝑞,𝑜)
16 if 𝑑𝑖𝑠_𝑡𝑚𝑝 > 𝑟 then remove 𝑜 from 𝐴𝑛𝑠

17 return 𝐴𝑛𝑠

another query object 𝑞2 with the search radius 𝑟2, 𝐸 can be pruned

safely as 𝐸.𝑚𝑎𝑥 < 𝑑𝑖 (𝑞2, 𝑐𝑖𝑗 ) − 𝑟2.
Algorithm 3 depicts the pseudo-code of range query in a single

metric space built on top of DESIRE. The algorithm takes as inputs

a query object 𝑞, the list of clusters 𝐿𝐶𝑖
, a distance metric 𝑑𝑖 , a

search radius
𝑟∑
𝜔𝑖

, and outputs the result set 𝐴𝑛𝑠 . It recursively

calls TreeRangeQ function to search the result in the B
+
-tree of

each cluster (lines 2–4). Specifically, TreeRangeQ function takes as

inputs a B
+
-tree node 𝑁 , 𝑞, 𝑑𝑖 ,

𝑟∑
𝜔𝑖

, and the distance 𝑑𝑖𝑠𝐶 between

𝑞 and the cluster center. For each entry 𝐸 in the node 𝑁 , if 𝑁 is a leaf

node, the function first prunes 𝐸 via the triangle inequality (line 10).

If 𝐸 cannot be pruned safely, it computes the distance 𝑑𝑖𝑠 between

𝐸.𝑜 and the query object 𝑞 (line 11), and inserts (𝐸.𝑝𝑡𝑟, 𝑑𝑖𝑠) into
the answer set 𝐴𝑛𝑠 if 𝑑𝑖𝑠 ≤ 𝑟∑

𝜔𝑖
(line 12). Here 𝐸.𝑝𝑡𝑟 points to the

entire multi-metric object in RAF for final verification. Otherwise,

i.e., 𝑁 is a non-leaf node, the function searches its sub-trees pointed

by each entry 𝐸 if 𝐸 cannot be pruned by Lemma 5.2 (lines 14–16).

After searching in each single metric space to find the candidates,

we apply the multi-metric range query algorithm to obtain the

results, with the pseudo-code shown in Algorithm 4. The algorithm

first initializes the result set 𝐴𝑛𝑠 (line 1). For each queried metric

space𝑀𝑖 with 𝜔𝑖 > 0, it performs a range query (i.e., Algorithm 3)

to obtain the candidate result set 𝑅𝑒𝑠𝑖 (lines 2–4). For each candidate

object 𝑜 ∈ 𝑅𝑒𝑠𝑖 , it gets the multi-metric object pointed by the RAF

pointer (lines 5–6). If the object 𝑜 has not been added to 𝐴𝑛𝑠 , the

algorithm adds 𝑜 to 𝐴𝑛𝑠 , and initializes a vector to infinity that

stores the distance 𝑑𝑖𝑠 [ 𝑗] between 𝑜 and 𝑞 under each metric 𝑑 𝑗
(lines 7–9). Next, 𝑜.𝑑𝑖𝑠 [𝑖] is updated to 𝑑𝑖𝑠 as it is already computed

in Algorithm 3 (line 10). After the algorithm finishes the range

queries w.r.t. all the queried metric spaces, it has a candidate set

𝐴𝑛𝑠 and then evaluates every candidate 𝑜 ∈ 𝐴𝑛𝑠 (lines 11–16).

For each candidate 𝑜 , the algorithm computes the exact distance

𝑑W (𝑞, 𝑜) stored in 𝑑𝑖𝑠_𝑡𝑚𝑝 (lines 14–15). If 𝑑𝑖𝑠_𝑡𝑚𝑝 > 𝑟 , it removes

𝑜 from 𝐴𝑛𝑠 (line 16). After all the candidate objects are evaluated,

it returns the final result set 𝐴𝑛𝑠 to complete the search (line 17).

Algorithm 5: kNNQ Algorithm

Input: a query object 𝑞, a distance metric 𝑑𝑖 , and an integer 𝑘
Output: the result set 𝐴𝑛𝑠 of entries

1 𝐴𝑛𝑠 ← ∅ // the answer set in ascending order of distance to 𝑞

2 𝑄𝑢𝑒𝑢𝑒 ← ∅ // the priority queue to store candidate nodes

3 𝑑𝑖𝑠𝑘 ←∞ // the distance of the 𝑘-th NN object to 𝑞

4 foreach𝐶𝑖
𝑗
∈ 𝐿𝐶𝑖 do

5 𝑁 ←the B
+
-tree root of𝐶𝑖

𝑗
// get the node 𝑁

6 𝑑𝑖𝑠𝐶 ← 𝑑𝑖 (𝐶𝑖
𝑗
.𝑐, 𝑞) // the distance from the cluster center to 𝑞

7 push (𝑁,𝑑𝑖𝑠𝐶 , 0) into𝑄𝑢𝑒 // the last item 0 is the lower bound

distance of 𝑑𝑖 (𝑞, 𝐸) derived in Lemma 5.3)

8 while𝑄𝑢𝑒𝑢𝑒 ≠ ∅ do
9 (𝑁,𝑑𝑖𝑠𝐶 , 𝑑𝑖𝑠) ← 𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()

10 if 𝑑𝑖𝑠 > 𝑑𝑖𝑠𝑘 then Continue // Lemma 5.3

11 foreach Entry 𝐸 of 𝑁 do
12 if 𝑁 is leaf node then
13 if |𝐸.𝑘𝑒𝑦 − 𝑑𝑖𝑠𝐶 | ≤ 𝑑𝑖𝑠𝑘 then
14 𝑑𝑖𝑠 ← 𝑑 (𝐸.𝑜,𝑞)
15 if 𝑑𝑖𝑠 ≤ 𝑑𝑖𝑠𝑘 then
16 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {(𝐸.𝑝𝑡𝑟,𝑑𝑖𝑠) }
17 while |𝐴𝑛𝑠 | > 𝑘 do
18 remove the last entry in 𝐴𝑛𝑠

19 𝑑𝑖𝑠𝑘 ←the maximum distance in 𝐴𝑛𝑠

20 else
21 𝑑𝑖𝑠 ←𝑚𝑎𝑥 (𝐸.𝑚𝑖𝑛 − 𝑑𝑖𝑠𝐶 , 𝑑𝑖𝑠𝐶 − 𝐸.𝑚𝑎𝑥)
22 𝑁 ′ ←the B

+
-tree node pointed by 𝐸

23 push (𝑁 ′, 𝑑𝑖𝑠𝐶 , 𝑑𝑖𝑠) into𝑄𝑢𝑒𝑢𝑒

24 return 𝐴𝑛𝑠

5.2 Multi-Metric k Nearest Neighbour Query
Similar to the multi-metric range query, a naive solution to multi-

metric k nearest neighbour (MM𝑘NN) query is to search 𝑘NN in

each queried metric space and then combine the results. However, it

is incorrect as the result objects might not be 𝑘 nearest neighbours

to the query object in a single metric space. Taking objects listed in

Table 2 as an example. Given a query object 𝑐 and a distance weight

vectorW = (0, 0, 1, 1, 0), the result to MM𝑘NN query (𝑘 = 1) is {𝑑}.
Nevertheless, 𝑎 is the nearest to 𝑐 in𝑀3, while 𝑏 is the closest to 𝑐

in𝑀4. In this example, the naive solution does not work.

Although the results returned by the naive solution could be

incorrect, they provide an upper bound for answering MM𝑘NN

query. Specifically, we calculate the maximum distance maxdis
between the query object and the 𝑘NNs returned by the naive

solution in a single space. We can further conduct a multi-metric

range query with the radiusmaxdis to find the final MMkNN query

result. If we search more single metric spaces, a tighter distance

bound is obtained with more expensive query cost. In this paper, we

only conduct the MM𝑘NN query in a random single metric space

to improve the efficiency of MMkNN query.

When answering kNN in a single metric space, we follow the

best-first tree traversal strategy [20], which employs a priority

queue to iteratively visit the sub-trees and verify the corresponding

objects in ascending order of their distances to the query object until

all the kNNs are found. In addition, in order to avoid unnecessary

distance computations, a pruning rule is developed as follows.

Lemma 5.3. Given a query object 𝑞, a distance metric 𝑑𝑖 , a cluster
𝐶𝑖
𝑗
, an entry 𝐸 in the B+-tree of𝐶𝑖

𝑗
, and the distance𝑑𝑖𝑠𝑘 between𝑞 and

2128



current 𝑘-th NN in space𝑀𝑖 , if𝑚𝑎𝑥 (𝐸.𝑚𝑖𝑛 − 𝑑𝑖 (𝑞,𝐶𝑖
𝑗
.𝑐), 𝑑𝑖 (𝑞,𝐶𝑖

𝑗
.𝑐)

−𝐸.𝑚𝑎𝑥) > 𝑑𝑖𝑠𝑘 , then 𝐸 can be pruned safely.
Proof. For any object 𝑜 in 𝐸,𝑑𝑖 (𝑜, 𝑞) ≥ |𝑑𝑖 (𝑞,𝐶𝑖

𝑗
.𝑐)−𝑑𝑖 (𝑜,𝐶𝑖

𝑗
.𝑐) |

due to the triangle inequality. As mentioned in Section 4.1, 𝐸.𝑚𝑖𝑛 ≤
𝑑𝑖 (𝑜,𝐶𝑖

𝑗
.𝑐) ≤ 𝐸.𝑚𝑎𝑥 . Then, we derive 𝑑𝑖 (𝑜, 𝑞) ≥ 𝐸.𝑚𝑖𝑛 −𝑑𝑖 (𝑞,𝐶𝑖

𝑗
.𝑐)

and 𝑑𝑖 (𝑜, 𝑞) ≥ 𝑑𝑖 (𝑞,𝐶𝑖
𝑗
.𝑐) − 𝐸.𝑚𝑎𝑥 . Hence, for any object 𝑜 in 𝐸,

𝑑𝑖 (𝑜, 𝑞) ≥ 𝑚𝑎𝑥 (𝐸.𝑚𝑖𝑛 − 𝑑𝑖 (𝑞,𝐶𝑖
𝑗
.𝑐), 𝑑𝑖 (𝑞,𝐶𝑖

𝑗
.𝑐) − 𝐸.𝑚𝑎𝑥). If 𝑑𝑖𝑠𝑘 <

𝑚𝑎𝑥 (𝐸.𝑚𝑖𝑛 − 𝑑𝑖 (𝑞,𝐶𝑖
𝑗
.𝑐), 𝑑𝑖 (𝑞,𝐶𝑖

𝑗
.𝑐) − 𝐸.𝑚𝑎𝑥), then 𝑑𝑖𝑠𝑘 < 𝑑𝑖 (𝑜, 𝑞)

for any object 𝑜 , and thus, 𝐸 can be safely pruned. □

Based on Lemma 5.3, we present the k nearest neighbour query

algorithm in a single metric space, with the pseudo-code listed in

Algorithm 5. It takes as inputs a query object 𝑞, a distance metric

𝑑𝑖 , and an integer 𝑘 , and outputs the result set 𝐴𝑛𝑠 . Initially, the

algorithm initializes an answer set 𝐴𝑛𝑠 and a priority queue 𝑄𝑢𝑒𝑢𝑒

to empty sets, and sets the distance𝑑𝑖𝑠𝑘 between𝑞 and the current𝑘-

the NN object to infinity (lines 1–3). Then, all the B
+
-tree root nodes

of different clusters in the queried metric space are inserted into the

priority queue (lines 4–7). Here, we set the lower bound distance

of 𝑑𝑖 (𝑞, 𝐸) to 0 (derived in Lemma 5.3), as 𝐸.𝑚𝑖𝑛 and 𝐸.𝑚𝑎𝑥 are not

available for the root node. Next, a while-loop is performed until

the priority queue is empty (lines 8–23). In each iteration, the top

entry (𝑁,𝑑𝑖𝑠𝐶 , 𝑑𝑖𝑠) is popped from the priority queue. If 𝑑𝑖𝑠 > 𝑑𝑖𝑠𝑘 ,

𝑁 can be pruned directly using Lemma 5.3 (lines 9–10). Otherwise,

we continue the evaluation. When 𝑁 is a leaf node, for each leaf

entry 𝐸 of node 𝑁 , the algorithm first computes the lower bound

|𝐸.𝑘𝑒𝑦 − 𝑑𝑖𝑠𝐶 | of 𝑑𝑖 (𝐸.𝑜, 𝑞). If |𝐸.𝑘𝑒𝑦 − 𝑑𝑖𝑠𝐶 | ≤ 𝑑𝑖𝑠𝑘 , it proceeds to

compute the exact distance 𝑑𝑖𝑠 = 𝑑𝑖 (𝐸.𝑜, 𝑞), and inserts (𝐸.𝑝𝑡𝑟, 𝑑𝑖𝑠)
into 𝐴𝑛𝑠 if 𝑑𝑖𝑠 ≤ 𝑑𝑖𝑠𝑘 (lines 12–16). In addition, 𝐴𝑛𝑠 is updated

if it contains more than 𝑘 entries, and 𝑑𝑖𝑠𝑘 is updated according

to the last entry of 𝐴𝑛𝑠 (lines 17–19). When 𝑁 is a non-leaf node,

the algorithm computes the lower bound of 𝑑𝑖 (𝑞, 𝐸) according to
Lemma 5.3 (line 21), and pushes the root node 𝑁 ′ pointed by 𝐸 into

𝑄𝑢𝑒𝑢𝑒 (lines 22–23). Finally, the result set 𝐴𝑛𝑠 is returned (line 24).

After performing Algorithm 5 in a random single metric space,

we have retrieved 𝑘 objects stored in 𝐴𝑛𝑠 . We then calculate their

multi-metric distances to𝑞 to find themaximumvalue, i.e.,𝑚𝑎𝑥𝑑𝑖𝑠 =

max𝑜∈𝐴𝑛𝑠 𝑑W (𝑞, 𝑜). Next, a𝑀𝑀𝑅𝑄 (𝑞,W,𝑚𝑎𝑥𝑑𝑖𝑠) is conducted to

find all the mutli-metric objects having their distances to 𝑞 within

𝑚𝑎𝑥𝑑𝑖𝑠 , and then return the 𝑘 result objects with the smallest dis-

tances to 𝑞. As at least 𝑘 objects are retrieved by the range query,

the correctness of this algorithm is guaranteed.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of our proposed index DESIRE, including the construc-

tion and update performance, the similarity search performance,

and the scalability performance.

6.1 Experimental Settings
Datasets.We employ three real-life datasets in our experiments:

(i) Rental5 that consists of the price, the number of bedrooms and

bathrooms, the location, the publish date, and a brief review for

apartments in New York; (ii) Air6 that contains data of prominent

5
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries

6
https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india

Table 3: Statistics of the datasets used
Dataset Card. (𝑛) 𝑚 Distance Metrics

Rental 113,176 5

L1-norm: price & location & date

L2-norm: numbers of rooms

Word cosine distance: review

Air 1,150,000 13 𝐿1-norm: all data

Food 38,757 9

L1-norm: additives & nutrition & picture

Edit distance: category

Word cosine distance: description label

Synthetic 200,000 50

L1-norm: integer & picture

L2-norm: location

Edit distance: words

Table 4: Evaluation parameters in our experiments
Parameter Value
Integer k 1, 2, 4, 8, 16, 32

search radius 𝑟 (MMRQ selectivity) 1%, 2%, 4%, 8%, 16%, 32%
Tuning parameter 𝜆 0.1, 0.2, 0.3, 0.4

Page Size (KB) 8, 16, 32, 64
Number 𝑛𝑢𝑚𝑚 of queried metrics 1, 2, 3, 4

Cardinality (%) 20, 40, 60, 80, 100
Weight Ratio 0.1, 0.5, 1, 5, 10

air pollutant (including PM2.5, NO, NO2, CO, SO2, O3, Benzene,

Toluene, and Xylene) at hourly level of various stations across mul-

tiple cities in India; and (iii) Food7 that provides information of food

products, including the number of additives, the nutrition facts

(i.e., the salt, the energy, the fat, the proteins, and the sugars), the

main category, a set of description labels, and the appearance. In

addition, we generate a dataset Synthetic, which consists of geo-

graphical locations in Los Angeles
8
, words taken from the Moby

project
9
, images from Flickr

10
, and several randomly generated one

dimensional features.

In our experiments, we use the following metric distance func-

tions: (i) 𝐿1-norm distance used for date, price, the number of bed-

rooms and bathrooms, prominent air pollutant, the number of ad-

ditives, the nutrition facts, and the food product pictures and Flickr

images (each picture is transformed to a vector of standard MPEG-7

image features); (ii) 𝐿2-norm distance used for geographic loca-

tions; (iii) edit distance used for main category of food products

and words from Moby; and (iv) word cosine distance
11

used for

apartment reviews and food description labels, while each value

is represented by 100 embedding features. Following the previous

study [19], each distance is normalized by dividing two times the

median of all occurring distances, in order to make the impact of

each metric comparable. Table 3 lists the dataset statistics, where

cardinality and the number of metric spaces are denoted as Card.

and𝑚, respectively. Here, a metric space contains a data type and

associated distance metric.

Parameters and PerformanceMetrics.We investigate the perfor-

mance of our indexes and similarity search algorithms by varying

parameters k, r, the page size, the tuning parameter 𝜆, the page

size, the number 𝑛𝑢𝑚𝑚 of the queried metric spaces, the cardinality

(i.e., the percentage w.r.t. the entire dataset), and the weight ratio

for the queried metrics, where k is used for MMkNNQ, r is used
for MMRQ, and 𝜆 is used to control the number of cluster centers.

Here, we use the selectivity of multi-metric range queries to set

7
https://world.openfoodfacts.org/data

8
https://www.dbs.ifi.lmu.de/cms/

9
http://icon.shef.ac.uk/Moby/

10
http://cophir.isti.cnr.it/

11
https://code.google.com/archive/p/word2vec
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Table 5: Construction costs and storage sizes
Rental Air Food Synthetic

Time compdists PA Stor. Time compdists PA Stor. Time compdists PA Stor. Time compdists PA Stor.

(s) (x10
6
) (x10

6
) (MB) (s) (x10

7
) (x10

7
) (MB) (s) (x10

6
) (x10

6
) (MB) (s) (x10

7
) (x10

6
) (MB)

M
3
-tree 17.02 25.51 1.85 328.8 134.0 97.48 1.51 1205 29.47 33.71 2.59 1095.3 89.3 52.68 5.30 1562

RR
∗
-tree 27.47 1.13 1.10 15.8 273.1 2.99 1.61 416 13.08 0.70 0.36 9.4 74.6 2.00 3.85 292.9

PM-tree 43.91 60.38 4.37 298.5 1114 267.55 8.96 1082 33.40 34.70 2.81 372 824 139.68 62.25 1991

DESIRE 33.58 4.84 2.60 104.1 1089 20.32 8.11 713 20.35 2.41 1.57 87.4 665 9.66 46.78 685.3
Table 6: Average update costs of deleting one object and inserting one object

Rental Air Food Synthetic

Time compdists PA Time compdists PA Time compdists PA Time compdists PA

(x10
−3
s) (x10

4
) (x10

3
) (x10

−3
s) (x10

4
) (x10

3
) (x10

−2
s) (x10

3
) (x10

3
) (x10

−3
s) (x10

4
) (×103)

M
3
-tree 92.20 93.20 7.63 208.85 68.28 15.26 15.23 125.89 12.22 850.81 382.00 42.00

RR
∗
-tree 1.71 0.03 0.12 16.83 0.01 1.29 0.14 0.01 0.10 6.19 0.03 0.61

PM-tree 43.80 31.65 3.91 130.92 57.40 3.13 10.91 32.88 9.84 415.04 8.81 36.37

DESIRE 10.99 30.03 0.46 146.05 57.61 4.32 1.99 16.59 0.31 33.91 1.10 1.17
Table 7: Average update costs of deleting a metric space and inserting a metric space
Rental Air Food Synthetic

Time compdists PA Time compdists PA Time compdists PA Time compdists PA

(s) (x10
6
) (x10

5
) (s) (x10

8
) (x10

4
) (s) (x10

6
) (x10

5
) (s) (x10

7
) (×105)

M
3
-tree 52.56 48.00 35.95 320.7 10.70 16.05 54.72 58.45 47.66 242.92 53.72 54.17

RR
∗
-tree 50.63 1.70 21.81 529.7 0.44 31.87 19.80 1.05 7.20 123.94 2.98 77.57

PM-tree 8.30 12.75 8.92 84.0 2.08 6.91 4.16 3.97 3.22 19.06 2.81 12.54

DESIRE 6.44 0.97 5.26 78.6 0.16 6.25 2.14 0.27 1.77 11.63 0.19 9.39

the search radius 𝑟 that controls the search region. In particular,

the value of 𝑟 denotes the percentage of objects in the dataset that

are result objects of a MMRQ. Table 4 lists the key parameters and

their detailed values, where the defaults are shown in bold. Note

that, the page sizes for compared methods are 4KB. However, in

order to store the entire multi-metric object in the leaf node of

M
3
-tree [7], we set the default page size for all methods to 8KB.

The main performance metrics include the number of page accesses

(PA), the number of distance computations in single metric spaces

(compdists), and the running time. Each measurement we report is

the average of 100 random queries.

Baselines. We compare our DESIRE against three state-of-the-

art multi-metric indexes that belong to two different categories

respectively, i.e., two combined methods (i.e., M
3
-tree [7] and RR

∗
-

tree [19]) and a separate method PM-tree [19], where one reference

point is used for each metric space in RR
∗
-tree. We implemented

the multi-metric indexes in C++. All experiments were conducted

on an Intel Core i7-7700 3.6GHz PC with 32GB memory. All source

code of the implemented algorithms is publicy available
12
.

6.2 Construction and Update Performance
We first evaluate the construction and update performance of our

DESIRE and its state-of-the-art competitors. Here, we use the run-

ning time, compdists, PA, and the storage size (denoted as Stor. for

short) as the performance metrics.

Table 5 lists the construction costs of all the indexes correspond-

ing to four datasets. It is observed that RR
∗
-tree performs the best,

as it stores the entire multi-metric objects together by indexing

their distances to the reference points, and then indexes the vector

of distances by a single index. However, this nature of RR
∗
-tree

does not allow it to support flexible combinations of metric spaces.

Moreover, it also brings the curse of dimensionality to RR
∗
-tree

index. Since distances between each object and reference points are

indexed together, the dimensionality of RR
∗
-tree is equivalent to

12
https://github.com/ZJU-DAILY/DESIRE
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Figure 4: MMRQ Performance vs. Search Radius 𝑟
the total number of reference points. In the two separated methods,

our proposed DESIRE outperforms PM-tree in all the evaluated as-

pects, as we employ an effective hyperplane partitioning technique

to cluster the objects.

Tables 6 and 7 report the update costs of all the indexes. The

results show that RR
∗
-tree performs the best for updating objects

while DESIRE performs the best for updating metric spaces. When

inserting/deleting a single object, as RR
∗
-tree stores distance vectors

instead of real multi-metric objects in the index, it only needs to

update the distance vectors and verify the found objects, resulting

in low number of distance computations. However, when a metric

space needs to be inserted/deleted, combined methods including

RR
∗
-tree have to rebuild all the index, incurring high costs. In
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Figure 5: MMkNNQ Performance vs. 𝑘

contrast, separate methods only need to update the corresponding

space. In the two separate methods, our proposed index DESIRE

performs better in most cases. The only exception is on Air dataset
whose objects share the same data type in all spaces. Hence, we

would like to claim that DESIRE can well support dynamic scenarios

where objects and metric spaces could be changed.

6.3 Similarity Search Performance
We proceed to evaluate the multi-metric similarity search perfor-

mance of the indexes under three parameters, including (i) the

search radius 𝑟 for MMRQ, (ii) the desired number 𝑘 for MM𝑘NNQ,

and (iii) the tuning parameter 𝜆. In order to demonstrate the ef-

fectiveness of our proposed indexing structure, we employ our

proposed filtering techniques on PM-tree (denoted as PM-tree
∗
),

and compare its results with DESIRE.

Effect of 𝑟 . Fig. 4 plots the performance of multi-metric range

queries (MMRQ) under different selectivity values. In terms of com-
pdists, RR∗-tree always performs the best, as it uses reference points

to achieve more precise distance estimations to avoid unnecessary

distance calculations. Nonetheless, as the dimensionality of datasets

in our experiments grows from 5 to 50, the distance vector dimen-

sionality of eachmulti-metric object in RR
∗
-tree also increases, even

though each metric space uses only one reference point. Thus, due

to the curse of dimensionality, RR
∗
-tree needs to traverse nearly

the entire index to find answers, leading to higher CPU and I/O

costs than DESIRE. However, as RR
∗
-tree only stores the vector of

reference points in the index while the detailed objects are stored in

RAF files, RR
∗
-tree has small index structure, and exceeds M

3
-tree,

PM-tree, and PM-tree
∗
. In addition, PM-tree

∗
incurs lower number

of distance computations than our proposed DESIRE on 𝑅𝑒𝑛𝑡𝑎𝑙 and

𝐴𝑖𝑟 , while DESIRE has comparable or better performance on 𝐹𝑜𝑜𝑑

and 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 . This is because, PM-tree
∗
stores the real data in each

node entry to achieve more precise distance estimations. However,

as DESIRE only stores partial information of objects and employs

running time compdists 
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Figure 6: MMRQ Performance vs. 𝜆

efficient B
+
-tree to manage referenced distances, DESIRE is able to

obtain both relatively low number of distance computations and

low I/O costs. Thus, DESIRE has the lowest CPU and I/O costs on

all the datasets when performing MMRQ.

Effect of 𝑘 . Fig. 5 shows the performance of multi-metric k nearest

neighbour queries (MM𝑘NNQ). Since separate methods (including

PM-tree and DESIRE) need additional MMRQ to find the accurate

MM𝑘NNQ results, RR
∗
-tree performs the best on 𝑅𝑒𝑛𝑡𝑎𝑙 that only

has 5 metric spaces , while DESIRE has the least CPU and I/O costs

on all other datasets that are more complex than 𝑅𝑒𝑛𝑡𝑎𝑙 . As CPU

cost is the overall performance metric, the above results confirm

the efficiency and effectiveness of DESIRE in most cases except

when MM𝑘NNQ is performed on low dimensionality datasets.

Effect of 𝜆. Fig. 6 illustrates the MMRQ performance under various

𝜆 values. The experimental results of MM𝑘NNQ confirms a similar

trend. In the rest of experiments, we only present the MMRQ results

due to space limitation and similar performance. As observed, the

performance could improve or drop with the growth of 𝜆. This is

because, a larger number of centers offer stronger pruning power,

but need higher CPU cost. In our experiments, we fix 𝜆 to 0.2.

Although it cannot achieve the best performance in all the cases,

we believe 0.2 is a proper value.

Effect of Page Size. Fig. 7 plots the performance of MMRQ under

Air and Food. Note that, M3
-tree cannot run under the page size of

4KB, and thus, we report the results by varying page size from 8KB

to 64KB. The results show that as the page size grows, the I/O cost

drops, but both the CPU and distance computation costs first drop

and then grow. The reasons are that, as the page size grows, i) on

the one hand, more objects are stored in each node, such that fewer

nodes are visited and more objects in each node can be filtered,

leading to lower I/O cost and fewer distance computations; and ii) on

the other hand, fewer nodes can be used to filter objects, decreasing

the pruning power which results in more distance computations.

As a result, the running time first drops and then increases with

the growth of page size. Besides, we also observe that the best page

size for separate methods is around 16KB. This is because separate

methods only store single metric objects. As page size grows from

8KB to 64KB, the structure of separate methods degenerates from

𝑚-way trees to arrays, resulting in worse search efficiency.

Effect of Weight Ratio. In order to evaluate the influence of the

weight of each single metric space, we vary the weight ratio of

searched spaces from 0.1 to 10, and the results are shown in Fig. 8.
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Figure 7: MMRQ Performance vs. Page Size
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Figure 8: MMRQ Performance vs. Weight Ratio

As observed, DESIRE achieves the best performance compared to

other indexes in terms of CPU and I/O costs on all the datasets.

Meanwhile, although RR
∗
-tree leverages the reference points to

reduce unnecessary distance computations and has the least number

of distance computations on 𝑅𝑒𝑛𝑡𝑎𝑙 , its performance fluctuates with

the change of the weight ratio. Differently, DESIRE keeps relatively

stable, which demonstrates the effectiveness of DESIRE.

6.4 Scalability Analysis
In this subsection, we study the scalability of DESIRE by varying

the number of combined metrics and cardinality.

As multi-metric similarity search supports the combination of

any number𝑛𝑢𝑚𝑚 of metrics, we vary the number𝑛𝑢𝑚𝑚 of metrics,

and report the MMRQ results on Rental and Synthetic in Fig. 9. Once
𝑛𝑢𝑚𝑚 is fixed, we randomly generate a weight vectorWwith𝑛𝑢𝑚𝑚

bits setting to one, and apply the weight vector to all the queries.

We have made a few observations. First, our DESIRE performs the

best in terms of CPU and I/O costs. This shows that DESIRE is

flexible and efficient to support the combination of small number of

metrics. However, PM-tree achieves smaller compdists than DESIRE

on Rental. This is because PM-tree organizes the clusters in the

tree structure, which can prune the entire sub-trees to reduce the

compdists. Second, the query costs of separate methods (i.e., PM-

tree, PM-tree
∗
and DESIRE ) increase with the growth of 𝑛𝑢𝑚𝑚 ,

as more indexes for queried spaces are combined. Differently, the

combined indexes (i.e., M
3
-tree and RR

∗
-tree) transform all the

metrics to a single metric to index objects, and thus, they estimate

more accurate distances between objects when more metrics are

queried, resulting in less PA and running time.

In order to explore the scalability, we change the cardinality

of the datasets from 20% to 100%. Fig. 10 depicts the performance
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Figure 9: MMRQ Performance vs. 𝑛𝑢𝑚𝑚
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Figure 10: MMRQ Performance vs. Cardinality of Dataset

of MMRQ results w.r.t. cardinality of Air and Food. As observed,
the running time, the number of distance computations, and the

number of page accesses increase linearly as the size of the dataset

grows, because the search space grows as cardinality ascends. The

results mean that the DESIRE framework offers good scalability.

7 CONCLUSIONS
In this paper, we propose DESIRE, an efficient dynamic cluster-

based forest index to support similarity search in multi-metric

spaces, which is a combination of multiple metric spaces. DESIRE

chooses high quality centers to cluster objects into compact regions;

employs the B
+
-tree to effectively indexing distances between cen-

ters and multi-metric objects; and leverages efficient and flexible

update strategies to support dynamic scenarios. In addition, we

develop efficient similarity search algorithms based on filtering

techniques. Extensive experiments show that, compared with state-

of-the-art multi-metric indexes, our DESIRE supports more efficient

and stable similarity search on flexible combinations of metrics,

and achieves more efficient updates in terms of both object level

and metric space level. The experiments demonstrate the superior

efficiency and scalability of DESIRE. Thus, DESIRE has great po-

tential in real applications such as multi-model databases. In the

future, we plan to extend DESIRE for distributed environments and

new hardware platforms. Also, it is of interest to find appropriate

number of centers for different metric spaces, in order to further

improve the performance of DESIRE.
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