
NFL: Robust Learned Index via Distribution Transformation
Shangyu Wu

City University of Hong Kong

Hong Kong

shangyuwu2-c@my.cityu.edu.hk

Yufei Cui*

City University of Hong Kong

Hong Kong

yufeicui3-c@my.cityu.edu.hk

Jinghuan Yu

City University of Hong Kong

Hong Kong

jinghuayu2-c@my.cityu.edu.hk

Xuan Sun

City University of Hong Kong

Hong Kong

xuansun-c@my.cityu.edu.hk

Tei-Wei Kuo

National Taiwan University

Taiwan

ktw@csie.ntu.edu.tw

Chun Jason Xue

City University of Hong Kong

Hong Kong

jasonxue@cityu.edu.hk

ABSTRACT
Recent works on learned index open a new direction for the index-

ing field. The key insight of the learned index is to approximate

the mapping between keys and positions with piece-wise linear

functions. Such methods require partitioning key space for a better

approximation. Although lots of heuristics are proposed to improve

the approximation quality, the bottleneck is that the segmentation

overheads could hinder the overall performance.

This paper tackles the approximation problem by applying a dis-
tribution transformation to the keys before constructing the learned

index. A two-stage Normalizing-Flow-based Learned index frame-

work (NFL) is proposed, which first transforms the original com-

plex key distribution into a near-uniform distribution, then builds a

learned index leveraging the transformed keys. For effective distri-

bution transformation, we propose a Numerical Normalizing Flow

(Numerical NF). Based on the characteristics of the transformed

keys, we propose a robust After-Flow Learned Index (AFLI). To val-

idate the performance, comprehensive evaluations are conducted

on both synthetic and real-world workloads, which shows that the

proposed NFL produces the highest throughput and the lowest tail

latency compared to the state-of-the-art learned indexes.

PVLDB Reference Format:
Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun

Jason Xue. NFL: Robust Learned Index via Distribution Transformation.

PVLDB, 15(10): 2188 - 2200, 2022.

doi:10.14778/3547305.3547322

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/luffy06/NFL.

1 INTRODUCTION
Learned Index [26], as an advance replacement of conventional

indexes, has attracted a lot of attention in recent years. It lever-

ages machine learning models to learn the mapping between keys

and corresponding positions, greatly accelerating the data retrieval

*Yufei Cui is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:10.14778/3547305.3547322

process. Existing learned indexes [7, 16, 17, 46] further address

the updatable issue in the original learned index, and achieve sig-

nificant improvements on various workloads. The key insight of

these learned indexes is to regard linear models as a piece-wise

linear function to approximate the cumulative distribution function

(CDF). To obtain a good approximation, existing learned indexes

propose various segmentation methods, e.g., the convex-hull-based

segmentation [16]. However, such heuristic segmentation not only

introduces extra time and space overhead, but also requires lots of

efforts to design for both the algorithm and supportive operations.

This paper solve the approximation problem from a different angle.

In this work, we propose a new methodology which transforms

the original keys to a near-uniform key space before constructing

the learned index, so that the learned index can make a much better

approximation on the CDF. This distribution transformation tackles

the approximation problem from the root, and significantly improve

the performance for all aspects of learned indexes. Normalizing

flows (NFs) [9, 38], as a family of generativemodels, could be applied

to perform distribution transformation.
To reach the goal of distribution transformation, we propose

a two-stage Normalizing-Flow-Learned index framework (NFL),

consisting of a Numerical Normalizing Flow (Numerical NF) for

distribution transformation and a robust After-Flow Learned Index

(AFLI) for CDF approximation. Instead of directly segmenting the

CDF curve, the proposed NFL first leverages the Numerical NF to

transform the original keys into the near-uniform distributed keys,

so that the CDF curve becomes roughly linear. Then, based on the

transformed keys, the proposed AFLI could make a decent approx-

imation on the transformed CDF. In addition, we also propose a

new type of conflict degree metric to evaluate the transformation

quality of Numerical NF.

Existing normalizing flows are not applicable for the case of

learned indexes, as they are designed for high dimensional data

with rich semantic or spatial features, e.g., computer vision [1, 45].

However, the learned indexes deal with numerical data with less

complexity for learning. Furthermore, existing normalizing flows

are based on complicated network structures stacking multiple

invertible layers. Such NFs have quite high complexity thus leading

to a large computational overhead. In the proposed Numerical NF,

for the efficacy of NFs, we propose a feature space expansion scheme

for enriching the learnable features. Moreover, a set of optimizations

for efficiency is proposed, including a switching mechanism based

on conflict degree.

2188

https://doi.org/10.14778/3547305.3547322
https://github.com/luffy06/NFL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547322

𝓜𝓜

𝓜𝓜 𝓜𝓜

𝓜𝓜 𝓜𝓜 𝓜𝓜

St
ag

e
1

St
ag

e
2

St
ag

e
3

Key

Position

Pos.

Key

CDF
Estimated CDF

Data Points

Segmentation

Figure 1: The structure and the insight of the recursive
model index.

After the transformation of Numerical NF, considering the char-

acteristics of the transformed keys, the proposed AFLI only needs

a simple and efficient structure to handle local conflicts, providing

a robust performance in both throughput and tail latency. In AFLI,

we replaces the complex and expensive adjustments in existing

learned indexes with simple Modelling operations, which turns a

dense array into a model-based node.

Finally, we conduct a series of experiments on both synthetic

and real-world workloads. The proposed NFL and learned index

are compared with the state-of-the-art learned indexes in terms

of throughput, tail latency, index size, and bulk loading time. Ex-

perimental results show that the proposed NFL beats all existing

learned index in almost all kinds of workloads with the highest

throughput and the lowest tail latency. Specifically, the proposed

NFL can achieve 2.83x improvements on average in throughput and

37% reductions on average in tail latency.

The main contributions of this paper are:

• To the best of our knowledge, this is the first work that

explores the distribution transformation to address the ap-

proximation challenge of the learned index.

• We propose a two-stage normalizing-flow-based learned

index (NFL) framework, which transforms keys into another

key space, where the learned index could be easier to fit a

more linear CDF curve.

• To improve the transformation quality of NF in the NFL, we

propose a numerical normalizing flow, which could enrich

the poor feature in the indexing problem. We also make an

efficient implementation of NF.

• After the distribution transformation of NF, based on the

characteristics of the transformed keys, we propose an After-

Flow Learned Index (AFLI), which can efficiently support

almost all indexing operations, providing a robust perfor-

mance in both throughput and tail latency.

• We conduct a set of experiments with both synthetic and real-

world workloads to show the effectiveness and the efficiency

of the proposed NFL framework.

The rest of this paper is organized as follows. Section 2 introduces

the background and motivations. Section 3 presents the proposed

normalizing-flow-learned index framework. Specifically, Section

3.2 introduces the numerical normalizing flow in the NFL for distri-

bution transformation. Section 3.3 presents the after-flow learned

index in detail that makes a better approximation on the trans-

formed distribution. Section 4 presents the experimental results

Pos.

Key

Convex
Hull

(a) A convex-hull-based
segmentation in PGM-Index.

Pos.

Key
(b) A prediction-based
segmentation in LIPP.

Pos.

Key(c) An enumeration-based segmentation in Alex.

Fitted Linear Model

Fanout-1 Fanout-2

Fanout-4 Fanout-8
Minimal Cost

Figure 2: Different segmentation on the CDF.

with discussion. Section 5 presents the literature review. Finally, in

Section 6, we conclude this paper and discuss the future work.

2 BACKGROUND AND MOTIVATIONS
2.1 Preliminary
Recent works on Learned Index (LI) [26] observed that the mapping

between keys and the corresponding positions can be formulated

as a Cumulative Distribution Function (CDF) model,

pos = 𝐹 (key) ∗ 𝑁 (1)

where pos is the predicted position, 𝐹 (·) is the approximated CDF

that estimates the likelihood 𝑝 (𝑥 ≤ key) of a key 𝑥 smaller than or

equal to the given key, and 𝑁 is the total number of keys. Based on

the formulation, learned index can leverage ML models to approxi-

mate the CDF to predict the position, replacing multiple comparison

operations in BTree with computations.

Since using a singlemodel (e.g., a fully connected neural network)

to approximate the CDF suffers the "last mile" issue, i.e., much

more space and time are required to reduce the error further from

thousands to hundreds, therefore, Kraska et al. [26] propose the

Recursive Model Index (RMI), which is a hierarchy of linear models.

As shown in the left of Figure 1, the higher-level model takes the

key as input and picks the model at the next level, and so on. Later,

the leaf model predicts the estimated position of the input key.

Due to prediction errors, the RMI will finally use local search (e.g.,

binary search) to correct the estimated position.

From the description of the search process, we can find that the

approximation is actually constructing a better piece-wise linear

function, reducing amount of local search. As shown in the right

of Figure 1, the root model in stage 1 first tries to approximate the

curve of the CDF. But, since using two linear models, jointly acting

as a piece-wise linear function, can make a better approximation

of the curve, the root model segments the curve of the CDF into

two sub-curves. The first sub-curve is then approximated by the

first child model in the stage 2. Similarly, the first sub-curve is

also segmented into two sub-curves, and so do other sub-curves.

2189

Pos.

Key
Prob.

Key

Pos.

Key
Prob.

Key

Pos.

Key
Prob.

Key

𝓜𝓜

CDF

Estimated CDF

Data Points

Segmentation

The Learned Index
𝓜𝓜𝓜𝓜

𝓜𝓜

𝓜𝓜 Current Node

PDF
Distribution
Transformation

Distribution
Transformation

𝓜𝓜

𝓜𝓜 𝓜𝓜

𝓜𝓜

𝓜𝓜

𝓜𝓜𝓜𝓜

𝓜𝓜

𝓜𝓜Pos.

Key
Prob.

Key

Figure 3: Applying a transformation on the CDF.

Compared to higher-level models, next-level models make a better

approximation with less prediction errors as more segments are

used to approximate the curve, so that the time cost of local search

can be reduced. However, a deeper hierarchy/tree prolongs the

traversal time, as it increases the number of stages thus the number

of predictions of the ML model.

Inspired by the RMI, the follow-up learned indexes [7, 16, 46] not

only address the updatable issues in the RMI, but also improve the

approximation quality of linear models, making the index deliver a

comparable performance on various indexing operations. As shown

in the Figure 2(a), PGM-Index [16] propose a convex-hull-based

segmentation to partition the key space. Specifically, the key points

on the curve can be aggregated by a convex hull. If the convex hull

cannot be enclosed in a rectangle of height no more than 2𝜖 , the set

of keys in the convex hull are allocated to a segment. Then a new

convex hull is created for the subsequent segmentation. Although

the segmentation in PGM-Index can ensure that the prediction

error is less than 𝜖 , the approximation quality is limited as the

segmentation doesn’t refer to the global information of the CDF.

Moreover, how to choose the hyper-parameter 𝜖 is also a key point.

Different from PGM-Index, ALEX [7] and LIPP [46] first fit a

linear model to learn the outline of the CDF, then segment the curve

of the CDF based on predictions. Compared to prediction errors,

LIPP is more concerned with conflict degrees, i.e., the number of

keys predicted to the same position. As shown in the Figure 2(b),

LIPP allocates all conflicted keys to the same segment. Figure 2(c)

shows the main idea of segmentation in ALEX. ALEX exhaustively

searches for the best number of segments. Specifically, before build-

ing the index, it tries different number of segments, namely fanout,

calculates the cost of each kind of fanout, and chooses the best

fanout with the minimal cost. Both segmentation in ALEX and LIPP

significantly improve the approximation quality so that deliver a

high performance.

All these variants of learned index pay their attention on how

to partition the key space by designing better heuristics, to obtain

better piece-wise linear approximations for the CDF. However, such

segmentation requires a long period of time to process and large

pre-allocated space to maintain. Furthermore, each learned index

requires designing a set of supportive operations and optimizing

their hyper-parameters by tuning.

2.2 Motivation
In this work, we explore in direction which is different from previ-

ous works. Instead of directly approximating the original CDF with

a piece-wise linear function, the proposed method aims at trans-

forming the original keys to another key space, where the learned

index could work on a less complex key distribution. The proposed

method is adaptive to different workloads, thus it alleviates the

heavy dependence of expertise for designing heuristics and tuning

hyper-parameters.

Conceptually, previous works segment the curve of the CDF

into several sub-curves, in order to make every linear model fit the

sub-curve better, so that the learned index can make a good approxi-

mation with a piece-wise linear function on the whole curve (Figure

3). The insight of such methods is to find a roughly linear sub-curve

by repeatedly segmenting the curve, whose corresponding proba-

bility density function (PDF) is a local near-uniform distribution.

To reach this goal, the learned index has to construct a deeper hier-

archy, resulting in more traversal time and number of predictions.

However, if there is an ideal key space where keys already satisfy a

global near-uniform distribution, whose corresponding CDF curve

is roughly linear, a single linear model is sufficient to fit such curve.

Therefore, this motivates us to transform the original key space

to a near-uniform key space by distribution transformation, before
constructing the learned index.

In practice, there is no unified heuristic that works for trans-

forming heterogeneous key space in real-world workloads. Based

on the Change of Variables Theorem, normalizing flow [38] can

learn the transformation between a base distribution and any given

data distribution. Previous NFs are only designed for high dimen-

sional data with rich semantic or spatial features, e.g., computer

vision [1, 45]. For learned indexes, the keys are numerical data and

with less useful features. We propose the first numerical NF that

transforms the keys into a global near-uniform distribution. We

illustrate the efficacy of the proposed numerical NF on real-world

workloads and a representative learned index. Table 1 shows the

2190

Table 1: Statistics of ALEX [7] on longlat (LLT) and face-
book (FB) workloads. Throughput are presented in million
ops/sec.

Without NF With NF

LLT

Max Tree Height 4 3

Average Tree Height 2.30 2.01

Prediction Errors 925,487,063 118,833,075

Predictions 124,831,692 101,108,381

Throughput 8.21 11.57

FB

Max Tree Height 11 3

Average Tree Height 5.91 2.02

Prediction Errors 928,113,206 453,003,864

Predictions 492,112,591 100,462,387

Throughput 4.13 9.16

statistics of ALEX on two workloads with a highly non-linear CDF

curve. After applying the proposed NF to transform the keys, the

tree height of ALEX can be reduced from 11 to 3 levels on the face-

book workload. On longlat workload, although the reduction of tree

levels is 4 − 3 = 1, the prediction errors are greatly reduced as NF

generates more uniform distributed keys which reduces the number

of out-of-boundary keys within each node. Besides, the numbers of

predictions are also reduced. Therefore, ALEX can achieves great

improvements on the throughput. The above results and analysis

jointly demonstrate the importance of distribution transformation.

2.3 Normalizing Flows
Normalizing Flows [38] are a family of generative models, which

transform a latent distribution 𝑝 (𝑧) to a new distribution 𝑝𝐺 (𝑥) by
a series of parameterized generators, where 𝑧 and 𝑥 are correspond-

ing random variables (r.v.). In our case, 𝑧 and 𝑥 corresponds to the

ideal (transformed) and original keys. We define {𝑧𝑖 }𝑀𝑖 and {𝑥𝑖 }𝑀𝑖
as the samples of the two r.v., where𝑀 is the size of the sample sets.

We want the generated distribution 𝑝𝐺 (𝑥) to approximate the given

data distribution 𝑝𝑑𝑎𝑡𝑎 (𝑥). For training the NF, the objective is to
maximize the likelihood of the generated distribution 𝑝𝐺 (𝑥) or op-
timize the Kullback-Leibler (KL) divergence between the generated

distribution 𝑝𝐺 (𝑥) and the data distribution 𝑝𝑑𝑎𝑡𝑎 (𝑥),

𝐺∗ = argmax𝐺E𝑥∼𝑝𝑑𝑎𝑡𝑎 log𝑝𝐺 (𝑥) (2)

𝐺∗ = argmin𝐺KL(𝑝𝐺 ∥𝑝𝑑𝑎𝑡𝑎) (3)

where𝐺 = 𝐺\ = 𝐺\ (·) is the parameterized generator, which takes

a sample of 𝑧 and push-forward it to a sample of 𝑥 , 𝑥𝑖 = 𝐺\ (𝑧𝑖). \
represents the parameters. 𝐺∗

is the optimal generator.

The key advantage of NFs over other generative models (e.g.,

variational autoencoder [23]) is that, the generator𝐺 is an invertible

function. Once we have a well-trained 𝐺 , 𝐺−1
could be obtained

easily by taking the inverse. Then,𝐺−1
could be used to encode the

original key 𝑥𝑖 to the ideal key 𝑧𝑖 , which conforms with our idea of

distribution transformation.

Specifically, since 𝐺\ is invertible, using the Change of Variables
Theorem, we can derive,

𝑝𝐺 (𝑥) =
���� 𝜕𝐺\ (𝑧)

𝜕𝑧

����−1 𝑝 (𝑧) (4)

where

��� 𝜕𝐺\ (𝑧)
𝜕𝑧

��� is the determinant of𝐺\ ’s Jacobian matrix. Another

important point is that the determinant of the Jacobian matrix must

be enough cheap to compute, otherwise the NF might introduce

non-negligible overhead.

Previous NFs [10, 21] present various inveritble generators with

efficient computations of the determinants. Considering a high-

dimensional random variable, Kingma et al. [22], Papamakarios

et al. [36] combine autoregressive models and NFs to learn the

hidden states from previous dimensions and improve the transfor-

mation. To make invertible functions more expressive, Cao et al.

[3], Huang et al. [20] propose to learn a more complex bijection

using a monotonic neural network and achieve the state-of-the-art

performance on various datasets.

2.4 Challenges
Motivated by distribution transformation, this work targets at

providing a novel two-stage framework, called Normalizing-Flow-

Learned Index (NFL), that first transforms the key distribution by

normalizing flow, then build an after-flow learned index that effec-

tively leverages the transformed key distribution. However, this

process is not straightforward and we list the following challenges:

Efficacy of normalizing flow: Naively using NF is limited in

a few ways: 1) the NF perform poorly due to limited features from

the numerical data of keys; 2) the uniform distribution is hard to

function directly as an training objective. We design a Numerical

Normalizing Flow (Numerical NF) with a enriched feature space

(see Section 3.2.1) and an easy-to-operate training objective.

Efficiency of normalizing flow: The transformation must be

an efficient online step. Such requirement also limits the complexity

of normalizing flows. Directly reducing the number of parameters

in normalizing flows might degrade the transformation quality so

that learned indexes require deeper hierarchy and more models to

approximate the CDF.We design a set of optimizations for efficiency,

without losing the efficacy of the NF. 3.2.2).

Lack of proper indexes for transformed keys: With the

transformation of Numerical NF that fundamentally makes linear

models approximate better, the design of learned indexes should

be reconsidered in a new perspective. Therefore, based on the char-

acteristics of the transformed data distribution, the locality of the

transformed data distribution should be considered in the design of

the learned index. We propose a After-Flow Learned Index (AFLI)

for fully leveraging the transformed keys. (see Section pay3.3).

3 NFL: THE NORMALIZING-FLOW-LEARNED
INDEX FRAMEWORK

3.1 Framework
Figure 4 shows the structure and the workflow of the Normalizing-

Flow-Learned Index framework (NFL). The framework consists of

two parts, a normalizing flow for distribution transformation and a

learned index for CDF approximation. The input keys are first fed

2191

Original Payloads
Original Keys

𝓜𝓜 𝓜𝓜

Normalizing
Flows

Learned
Indexes

𝓜𝓜

𝓜𝓜

𝓜𝓜
𝓜𝓜

Keys Payloads

Transformed Keys
Satisfied Distribution

Figure 4: The structure and the workflow of the NFL.

into the normalizing flow which transforms them to a near-uniform

distribution. Then all transformed keys are used for building linear

models in the learned index. Since batching requests (e.g, batching

queries, batching insertions) is a common case in modern database

[18, 19, 32, 33, 37], our NFL also processes requests in batches.

The theoretical derivation is as follows. Given an input key 𝑥

satisfying a certain distribution 𝑝 (𝑥), the normalizing flow first

transform it to a target distribution 𝑝 (𝑧), i.e., 𝑧 = 𝐺\ (𝑥). Note that
we don’t need to know the actual form of the distribution 𝑝 (𝑥) as
the normalizing flow only needs to maximize the likelihood of the

transformed data on the target distribution. Then, the learned index

takes the transformed key 𝑧 as the input, and predicts its position,

i.e., 𝑝𝑜𝑠 = 𝐹 (𝑧) ∗ 𝑁 .

The NFL offers a new perspective to fundamentally improve the

learned indexes.

• The NFL is a unified framework universally applicable to any

workload, due to the transformation capability and adapt-

ability of flow-based generative models. It amortizes the

requirement of domain expertise of designing piece-wise

approximation heuristics by splitting it into two simpler

stages.

• The NFL is measurable and flexible. One implementation of

NFL can be measured by the transformation quality of the

normalizing flow. A consistently high-quality transformation

makes an easier implementation of learned index.

Under this framework, we propose the generic prototypes of nor-

malizing flow (Numerical NF) and learned indexes (AFLI). Before

going to the details of specific designs, we present a quantitative

evaluation metric for the transformation quality.

3.1.1 Conflict Degree. Since the log probability of the transformed

distribution in the NF cannot accurately evaluate how nearly uni-

form the distribution should be for the learned index to deliver a

high performance, we need a new metric that connects the trans-

formation quality with the performance of the learned index. Con-

sidering that placing data in the predicted positions can eliminate

prediction errors, we are motivated to introduce the conflict degree

and a new metric called tail conflict degree to jointly quantify how

nearly uniform the distribution is and how well the learned index

would perform.

First, we introduce the conflict degree on each position.

Definition 3.1. For a set of data X = {𝑥1, . . . , 𝑥𝑛} and a fitted
linear modelM, the conflict degree of position 𝑗 is:

𝐷
𝑗

M = |{𝑥𝑖 ∈ X|M(𝑥𝑖) == 𝑗}| (5)

where 𝑗 ranges from MIN({M(𝑥𝑖)}) to MAX({M(𝑥𝑖)}).

With the definition of the conflict degree, we further define the

tail conflict degree to evaluate the transformation quality. The tail

conflict degree indicates the upper bound of the conflicts for most

positions.

Definition 3.2. For𝑚 positions whose conflict degree is greater
than 0, we represent their conflict degree with {𝐷 𝑗

M }. Then, for a
given tail percent 𝛾 , we let 𝑡 = INT(𝑚 × 𝛾), where INT represents the
flooring operation. The Tail Conflict Degree based on a tail percent
𝛾 is 𝑡-th larger conflict degrees among {𝐷 𝑗

M }, represented by 𝐷𝛾

M .

In this paper, we set the tail percent to 0.99. For example, given

1000 positions { 𝑗1, . . . , 𝑗1000}with conflict degrees {𝐷 𝑗1
M , . . . , 𝐷

𝑗1000
M },

based on the tail percent 𝛾 = 0.99, 𝑡 = INT(1000 × 0.99) = 990. The

tail conflict degree is 990-th larger conflict degree. The tail conflict

degree is a soft measurement. It could be useful in: 1) determine

the execution of flow (see Section 3.2.2); 2) determine the capacity

threshold of a node (see Section 3.3.1).

3.2 Numerical Normalizing Flow
The proposed Numerical NF aims to transform the key distribu-

tion into a near-uniform distribution. Since training normalizing

flow with a uniform distribution as the objective might encounter

the "Nan-loss" issue or the "INF-loss" issue, we replace it with a

near-uniform distribution, i.e., a normal distribution with a large

variance. After that, we then focus on feature engineering for effi-

cacy (See Section 3.2.1), model slimming and process optimization

for efficiency (See Section 3.2.2).

3.2.1 Feature Space Expansion. Existing NFs are used in computer

vision or natural language process to process high-dimensional

images or texts. Compared with those sparse high dimensional

data within a small numerical range, transforming the “super wide”

1-D distribution (millions of non-smooth 1-D digits within a large

range) might be harder. The transformation of any distribution to

a uniform distribution is with increased entropy. Therefore, one
major target of feature enrichment is to increase the entropy, thus

making the transformation task for NF easier while maintaining

high efficiency.

Algorithm 3.1 shows the whole process of Key Distribution Trans-
formation. First, all input keys are normalizedwith a scaledmin-max

normalization to avoid keys without integral or floating part (Line

2). After the normalization, the algorithm start to expand feature

space by repeatedly obtaining the integral part and the final float-

ing part of the normalized keys (Line 3-17). This step makes each

distribution over each dimensions more random (with higher en-
tropy). After the feature expansion, the high-dimensional keys are

2192

Algorithm 3.1 Key Distribution Transformation.

Input: A set of sorted keys X = {𝑥1, . . . , 𝑥𝑛 } for bulk loading, the target

dimension 𝑑 , the scale factor \ , the normalizing flow 𝐹 .

Output: A set of transformed keys Z = {𝑧1, . . . , 𝑧𝑛 }.
1: X𝑑 = ∅;
2: ` = min(X), 𝜎 =

max(X)−min(X)
\

;

3: for 𝑥𝑖 ∈ X do
4: 𝑥norm =

𝑥𝑖−`
𝜎

; /* Encoder, expand features for NF */

5: 𝑥vec

𝑖
= [];

6: 𝑥int = INT(𝑥𝑖) ;
7: 𝑥

float
= 𝑥𝑖 − INT(𝑥𝑖) ;

8: Add 𝑥int into 𝑥
vec

𝑖
;

9: for 𝑘 from 1 to 𝑑 − 2 do
10: Add 𝑥int into 𝑥

vec

𝑖
;

11: 𝑥
float

= 𝑥
float

∗ \
12: 𝑥int = INT(𝑥

float
) ;

13: 𝑥
float

= 𝑥
float

− 𝑥int;

14: end for
15: Add 𝑥

float
into 𝑥vec

𝑖
;

16: Append 𝑥vec

𝑖
into X𝑑

;

17: end for
18: 𝑍𝑑 = 𝐹 (𝑋𝑑) ; /* Transformation by the NF */

19: for 𝑧vec
𝑖

∈ Z𝑑 do
20: Let 𝑧𝑖 be the sum of 𝑧vec

𝑖
; /* Decoder, merge features for index */

21: Add 𝑧𝑖 into Z;

22: end for
23: return Z for the index;

fed into the NF (Line 18). Finally, the decoding layer merges the

high-dimensional features into 1D keys (Line 19-22) and passes

them to the learned index (Line 23). The time complexity of the

feature expansion is𝑂 (𝑛×𝑑). Such brute-force key space expansion
provides a 1-to-1 mapping from 1-D keys to d-dimensional keys,

while maintaining a linear complexity.

3.2.2 Efficient Processing of Normalizing Flows. Different from lin-

ear models, normalizing flows do not have an analytical solution

and it takes time to train (about 38 seconds). However, since nor-

malizing flows have much better generalization, they don’t need

to re-train during every bulk loading phase or adjustments in the

learned indexes. Therefore, the training stage can be processed

offline with neural network accelerators (e.g., GPU or FPGA) when

the index bulk loads for the first time or when the distribution sig-

nificantly shifts. Meanwhile, the training of normalizing flows can

be easily finished in the background without affecting the learned

indexes.

However, the inference of normalizing flows must be finished

online. The transformed keys cannot be stored, as it would cause an-

other indexing problem. By comprehensive tests, there are a few key

factors related to the inference efficiency: 1) the input dimensions

2) the number of layers 3) the hidden dimensions 4) the implemen-

tation platform. For the first three factors, we slightly search for the

parameters without increasing the conflict degrees and with a low

search cost. As Table 2 shows, the search space is small limited by

the unacceptable transformation overheads of larger NFs. For the

acceleration platform, we implement the key computations in C++

with Intel Math Kernel Library [29]. The computations in inference

Table 2: Average transformation latency of each key with
different NFs. "H" and "L" correspond to the hidden dimen-
sion and the number of layers, respectively. The figure in
brackets (e.g., "(12)") represents the amount of parameters
of NF. All latency is measured in nanosecond (ns).

Batch Size 2H2L (8) 2H4L (16) 4H3L (32) 4H4L (48)

1 169.53 384.84 320.15 463.81

8 40.60 83.05 77.52 113.31

32 15.28 34.75 33.80 49.40

128 9.52 24.00 24.91 36.93

256 8.38 21.66 23.52 35.07

1024 7.40 19.81 22.21 33.13

2048 7.29 19.63 22.00 32.73

can be simplified as several matrix computations and nonlinear

function computations.

Moreover, since keys in some datasets are already near-uniform

distributed, it is unnecessary to spend extra time and memory to

transform them. Therefore, the NFL uses a switching mechanism,

referring to the tail conflict degree, to determine whether to use

the Numerical NF for distribution transformation. Specifically, the

NFL first tries to transform the input keys, and computes the tail

conflict degree based on the input keys and the transformed keys,

respectively. If the latter tail conflict is larger, the NFL determines

not to use the Numerical NF.

3.3 AFLI: After-Flow Learned Index
Although different datasets have different original conflict degrees,

after the transformation of normalizing flows, the conflict degrees

can be kept around a low value (e.g., around 4 for the tail conflict

degree). Further reduction on conflict degrees requires more efforts

on the specific design of normalizing flows, which does not con-

form with our original goal. Meanwhile, existing learning indexes

set some empirical hyper-parameters (e.g., the maximum amount

of keys assigned to a node) in order to guarantee an acceptable

performance on data sets with a high conflict degree at the cost

of the performance degradation on data sets with a low conflict

degree. Therefore, those points motivate us to propose a robust

after-flow learned index, called AFLI , that takes the characteristics

of transformed data sets into considerations.

The main idea of AFLI is to buffer local conflicts. For small

conflicts at some positions, the conflicted keys are stored in a bucket.

The linear model directly built to handle the conflicted keys lacks

generalization capability [46], as there are not enough keys to

provide information. However, too many keys stored in the buckets

would degrade the query performance of AFLI. Therefore, AFLI

needs to make a trade-off between the maximum number of keys

stored in the bucket and the generalization capability of the linear

model.

3.3.1 Structure of AFLI. The overall structure of AFLI is shown
in Figure 5. There are three types of nodes, the model node, the

bucket, and the dense node.

2193

𝓜𝓜

𝓜𝓜

Empty Slot

Bucket Pointer Node Pointer
Duplicated
Node Pointer

Key

.........Data Slot

Dense Node

Model Node

Bucket

Node Type

Entry Type

Figure 5: Structure of AFLI.

Model Node: The model node consists of an array of entries

and a linear model. There are four types of entries,

• Empty Slot. The entry is an unused slot, waiting to be filled

by a pair of key-payload or a pointer.

• Data Slot. The entry contains a pair of key-payload.

• Bucket Pointer. The entry is a bucket pointer that stores the

address of a bucket.

• Node Pointer. The entry is a node pointer that stores the

address of a model node or a dense node. Especially, there

might be some node pointers that contain the same address,

which is called the duplicated node pointer. Since some keys

are mapped to different but adjacent positions, for better

generalization capability of the linear model, we assign them

to the same model child node, so that corresponding pointers

all point to the same address.

To make linear models produce fewer conflicts, we also scale the

positions used to train linear models according to the scaling rela-

tionship between keys.

Bucket: The bucket only consists of a short data array. The

maximum size of the data array is determined by the tail conflict

degree 𝐷
𝛾

M , but will be kept within a preset threshold range. We

provide two kinds of buckets, the linear bucket (default) and the

ordered bucket.

Dense Node: The dense node also only consists of a data array.

Different from the bucket, the dense node is generally a bit larger

than the bucket, but much smaller than the model node. The data

array is an ordered and gapped array, the maximum number of

gaps is set to 𝐷
𝛾

M . Although in the Figure 5, the gap is represented

by the empty space, we actually fill the slot with the data that is

the closest to the front of the gap. With such fillings, we do not

need an additional bitmap to indicate whether a position is empty

or not, but directly compare adjacent positions to check whether

store the same data.

Analysis:Most of nodes in the index will be model nodes. Data

stored in the model nodes are directly placed in the predicted posi-

tions, which guarantees that the predictions are all precise in the

model nodes. If the key space as a whole satisfies the near-uniform

distribution, but with many localities which means that keys in

small sub key space are too close to be distinguished by a linear

model, the index will create many buckets to handle local conflicts.

When the index fails to build a model node as all keys in the node

are too close (i.e., the slope of the fitted linear model is 0), the index

does not further partition the key space but allocates a dense node

to store them. The insight of designing buckets or dense nodes is

to buffer keys without increasing the height of the index, until they

have enough difference to distinguish (dense nodes) or they can

provide enough information to build a linear model with better

generalization capability (buckets).

3.3.2 Operations of AFLI. In this section, we describe how our

index performs lookups, insertions, and the algorithm to rebuild a

bucket or a dense node into a model node.

Queries: To look up a key, the index recursively traverses the

tree until the result is found. Firstly, the index feeds the queried

key into the root node, which can only be a model node or a dense

node, as the bucket is always extended from the model node. (1)

If the node is a model node, the queried key will be first fed into

the linear model. Based on the prediction of the linear model, we

check the type of entry in the position based on two bitmaps. If it is

an empty slot, the index doesn’t contain the key. If it is a data slot,

we compare the stored key with the queried key. If it is a bucket

pointer, we search for the key further in the bucket. If it is a node

pointer, we do the same procedure in the child node. (2) If the node

is a dense node, we use the binary search to find the result.

It is important to note that the predicted positions in model

nodes are all precise positions, which means that there is no extra

local search in model nodes, so that the query performance can be

significantly improved. For queries in buckets, the linear search

is enough to provide comparable efficiency. When looking up in

dense nodes, we directly use the binary search for efficiency.

Insertions: For inserting a pair of key and payload, starting

from the root node, the index performs a recursive procedure based

on the node type,

• If the key-payload pair is inputted into a model node, the

linear model first predicts a position based on the input

key. Considering the type of the entry in the predicted posi-

tion, (1) If the entry is an empty slot, we directly store the

key-payload pair in the position and modify corresponding

bitmaps. (2) If the entry is a data slot, which means there is

already a key-payload pair, so we create a bucket to store

these two conflicted key-payload pairs, set the entry to the

bucket pointer, and modify corresponding bitmaps. (3) If the

entry is a bucket pointer or a node pointer, we insert the

key-payload pair into the bucket or the child node.

• For inserting the key-payload pair into a bucket, the key-

payload pair will be directly appended to the tail of the stored

data. If the bucket is in the ordered mode, the insertion will

be performed as the insertion sorts.

• To insert the key-payload pair into a dense node, the index

first performs a binary search on the array. If the entry in the

position is an empty slot, we directly insert the key-payload

pair. If the entry is a data slot, we shift the data to the closest

empty slot, then insert the key-payload pair.

When the bucket or the dense node has no empty slots, we try to

convert it to a model node by a Modeling operation (more details

in the next section).

2194

𝓜𝓜

Key

.........
𝓜𝓜

.........

𝓜𝓜

..................

(a) Model a bucket.

𝓜𝓜

Key

.........
𝓜𝓜

𝓜𝓜

..................

(b) Model a dense node.

.........

Figure 6: Modelling a bucket or a dense node.

Modelling the Bucket or the Dense Node: As shown in the

Figure 6, although there are two types of nodes that need to be

modelled as a model node, the modelling process are the same

except for sorting the bucket first, as the inputs can be formulated

as an array of key-payload pairs. Therefore, given an array of key-

payload pairs, we use Algorithm 3.2 to implement the modelling

operation.

In Algorithm 3.2, we first try to build a linear model using the

Linear Regression (Line 1). Then, we determine the node type based

on the prediction results. If the slope of the linear model is 0 or

all keys are mapped to the same position, we build a dense node

for them without further partition on the key space (Line 2-4).

The reason is that those keys are too close so that the rounding

operation rounds them to the same integer. If we successfully build

a linear model, we build a model node for all keys. We compute the

conflict degrees𝔇 of each predicted position (Line 6), and use it to

determine whether store the key in the data slot, or build a bucket,

or build a batch of keys in child nodes. For more precise placement,

the size of the entry array is the minimum value between the 𝛼

times the number of keys and the predicted size (Line 7). Then, we

iterate each predicted position, determining the entry type of each

position. If the conflict degree of a position is 1, we directly store the

key in the data slot (Line 10-13). If the conflict degree is larger than

1 but smaller than the maximum size of the bucket 𝐷
𝛾

M𝐿
, we store

the conflicted keys within the position into a bucket (Line 14-17).

Otherwise, for the casewhere the number of conflicted keys is larger

than 𝐷
𝛾

M𝐿
, we collect the subsequent consecutive positions whose

conflict degree is also larger than 𝐷
𝛾

M𝐿
, and allocate a new node

to handle them (Line 18-21). After building the node, we duplicate

the node pointer and assign the address to other collected positions

(Line 22). The modelling operation will be recursively performed.

More Operations:
• BulkLoad. The bulkload operation first computes the tail

conflict degree𝐷
𝛾

M𝐿
, then follows the same procedure as the

modelling operation in Algorithm 3.2. The returned result is

the root node.

• Update. An update for the payload can be finished by a

lookup and an in-place update.

Algorithm 3.2 Modelling({⟨𝑥1, 𝑣1⟩, . . . , ⟨𝑥𝑛, 𝑣𝑛⟩}, 𝔫)
Input: An array of sorted key-payload pairs { ⟨𝑥1, 𝑣1 ⟩, . . . , ⟨𝑥𝑛, 𝑣𝑛 ⟩ }, the

node pointer 𝔫 that points to the node storing all key-payload pairs,

the space amplification factor 𝛼 .

Output: The node pointer 𝔫 of the model node.

1: Build a linear model M𝔫 using the input keys and scaled positions.

2: if M𝔫 .𝑎 == 0 or all keys are mapped to the same position then
3: 𝔫.𝑠𝑖𝑧𝑒 = 𝑛 +𝐷

𝛾

M𝐿
;

4: Allocate an array of size 𝔫.𝑠𝑖𝑧𝑒 to 𝔫.E, and insert all key-payload

pairs, evenly gapped by a total of 𝐷
𝛾

M𝐿
gaps;

5: else
6: Compute the conflict degrees 𝐷 of each predicted position;

7: 𝔫.𝑠𝑖𝑧𝑒 = MIN(⌊𝑛 · 𝛼 ⌋, pos𝑙𝑎𝑠𝑡 − pos𝑓 𝑖𝑟𝑠𝑡 + 1) ;
8: Allocate an array of size 𝔫.𝑠𝑖𝑧𝑒 to 𝔫.E;
9: 𝑖 = 0;

10: for pos ∈ all predicted positions do
11: if 𝐷 [pos] == 1 then
12: 𝔫.E [pos] = ⟨𝑥𝑖 , 𝑣𝑖 ⟩;
13: 𝑖 = 𝑖 + 1;

14: else if 𝐷 [pos] < 𝐷
𝛾

M𝐿
then

15: Build a bucket 𝔟 of maximum size 𝐷
𝛾

M𝐿
, storing key-payload

pairs { ⟨𝑥𝑖 , 𝑣𝑖 ⟩, . . . , ⟨𝑥𝑖+𝐷 [pos] , 𝑣𝑖+𝐷 [pos] ⟩ };
16: 𝔫.E [pos] = 𝔟;

17: 𝑖 = 𝑖 +𝐷 [pos];
18: else if 𝐷 [pos] >= 𝐷

𝛾

M𝐿
then

19: Iterate the subsequent positions pos𝑠𝑒𝑞 , where 𝐷 [pos𝑠𝑒𝑞] >
𝐷
𝛾

M𝐿
, and sum all conflict degrees𝔇𝑠𝑒𝑞 ;

20: Allocate a new node to 𝔫.E [pos];
21: Modelling({ ⟨𝑥𝑖 , 𝑣𝑖 ⟩, . . . , ⟨𝑥𝑖+𝔇𝑠𝑒𝑞

, 𝑣𝑖+𝔇𝑠𝑒𝑞
⟩ }, 𝔫.E [pos]) ;

22: For all positions from pos + 1 to pos𝑠𝑒𝑞 , set the pointer value

of each position to 𝔫.E [pos];
23: 𝑖 = 𝑖 +𝔇𝑠𝑒𝑞 ;

24: end if
25: end for
26: end if
27: return 𝔫

• Delete. The deletion can be implemented by a lookup on

the deleted key and a modification on the corresponding

node. The modification on the model node is to unset the

corresponding bit in the bitmap. The modification on the

bucket or the dense node is to overwrite the deleted key with

the following keys.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Datasets and Workloads. We choose seven representative

datasets used in [7, 24, 46] to evaluate the effectiveness of the pro-

posed NFL and AFLI. For simplicity, all datasets consist of about

200 million unique keys. The key type is ’double’, and the pay-

load type is ’int64’. The detailed information is as follows, (1) The

longitudes (LTD) dataset consists of the longitudes of locations

around the world from Open Street Maps [35]. (2) The longlat (LLT)
dataset consists of compound keys that combine longitudes and

latitudes from Open Street Maps by applying the transformation

𝑘 = 180 · FLOOR(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) + 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 to every pair of longitude

and latitude. (3) The lognormal (LGN) dataset is a synthetic dataset

2195

LTD LLT LGN YCSB
0

3

6

 NFL AFLI LIPP ALEX PGM-Index B-Tree

T
h

ro
ug

h
pu

t (
m

ill
io

n
 o

p
s/

se
c)

LTD LLT LGN YCSB
0

10

20

30

40

50

(a) Read-Only

LTD LLT LGN YCSB
0

5

10

15

20

(b) Read-Heavy

LTD LLT LGN YCSB
0

3

6

9

(c) Write-Heavy

LTD LLT LGN YCSB
0

3

6

9

(d) Write-Only

AMZN FACE WIKI
0

10

20

30

40

50

(e) Read-Only

AMZN FACE WIKI
0

5

10

15

20

(f) Read-Heavy

AMZN FACE WIKI
0

3

6

9

(g) Write-Heavy

AMZN FACE WIKI
0

3

6

9

(h) Write-Only

Figure 7: Throughput of NFL and Baselines.

whose keys are sampled from a lognormal distribution with ` = 0

and 𝜎 = 2, multiplied by 10
9
and rounded down to the nearest inte-

ger. (4) The YCSB dataset is generated from the YCSB benchmark

[5], whose keys representing user IDs. (5) The amazon (AMZN)

dataset consists of book sale popularity data on the Amazon [39].

(6) The facebook (FB) dataset is an upsampled version of a Facebook

user ID dataset [40]. (7) The wikipedia (WIKI) dataset is Wikipedia

article edit timestamps [11].

We construct four types of workloads based on each kind of

dataset. All workloads include two phases, the loading phase and

the running phase. For the loading phase, we use the bulk loading

operation to load 50% key-payload pairs of a dataset. For the running

phase, we generate requests based on different operation ratios.

(1) The read-only workloads only consist of query operations. (2)

The read-heavy workloads consist of 80% query operations and

20% insertion operations. (3) The write-heavy workloads consist

of 20% query operations and 80% insertion operations. (4) The

write-only workloads only consist of insertion operations. For all

workloads, the requested key is sampled from the given dataset

based on a Zipfian distribution, and all insertions are known-key-

space insertions. We run each workload for 3 times, and collect the

averaged Throughput, Tail Latency, Index Size.

4.1.2 Baselines. We compare our NFL and AFLI with existing

state-of-the-art indexes, (1) LIPP [46], an updatable learned index

with precise positions, which directly places data on the predicted

positions. (2) ALEX [7], an in-memory, updatable learned index,

which uses gaps to handle new insertions. (3) PGM-Index [16], a

fully-dynamic compressed learnded index with provable worst-

case bounds. (4) B-Tree [30], an efficient B-Tree implemented by

Google. These source codes are publicly available, and we evaluate

themwith their default hyper-parameters except for the PGM-Index

which is fine-tuned with the authors’ guidelines.

4.1.3 Environment and Parameters. We implement our proposed

NFL and AFLI in C++, and perform the inference of NF by Intel Math

Kernel Library [29]. We perform our evaluation via single-thread,

and compile all source codes with GCC 9.3.0 in O3 optimization

mode. All experiments are conducted on an Ubuntu 20.04 Linux

machine with a 2.9 GHz Intel Core i7-10700 (8 cores) CPU and 64GB

memory.

For NF, we train a modified B-NAF in PyTorch. The B-NAF is

set to two layers, two input dimensions, two hidden dimensions,

and a normal distribution with the variance of 10
16

as the latent

distribution. The training step is performed on the NVIDIA GeForce

RTX 3080 with 10 GB GPU memory and 64 GB main memory. We

only sample 10% bulk-loaded keys for three times to train the NF.

We set the batch size to 256. For the proposed learned index, we

limit the maximum size of buckets to no more than 6.

4.2 Throughput
Figure 7 shows the average throughput of NFL and other baselines

on different workloads. To show the effectiveness of NF, we also

evaluate our proposed AFLI. Since transforming the workloads with

small conflict degrees (i.e., YCSB, AMZN, WIKI) increases the tail

conflict degree, our NFL determines not to use NF.

Read-OnlyWorkloads. The performance on read-only workloads

reflects the approximation quality during the loading phase. Fig-

ure 7 (a) and (e) shows that our proposed NFL can achieve 2.19x,

2.35x, 3.52x, and 7.08x improvements on the throughput on average

compared to LIPP, ALEX, PGM-Index, and B-Tree, respectively. Es-

pecially, for workloads with large conflict degrees (i.e., LLT and FB),

our proposed NFL can achieve up to 2.29x, 3.55x higher throughput

than LIPP, and ALEX, respectively. Such improvements benefit from

both the Numerical NF and the proposed AFLI. The NF transforms

the keys into another key space, where keys are more near-uniform

2196

LTD LLT LGN YCSB
0

20

40

 NFL-Index NFL-Trans AFLI LIPP ALEX PGM-Index B-Tree

T
h

ro
ug

h
pu

t (
m

ill
io

n
 o

p
s/

se
c)

LTD LLT LGN YCSB
0

50

100

150

200

250

300

350

(a) Read-Only

LTD LLT LGN YCSB
0

100

200

300

400

500

600

700

800

(b) Read-Heavy

LTD LLT LGN YCSB
0

200

400

600

800

1000

1200

(c) Write-Heavy

LTD LLT LGN YCSB
0

200

400

600

800

1000

1200

(d) Write-Only

AMZN FACE WIKI
0

50

100

150

200

250

300

350

(e) Read-Only

AMZN FACE WIKI
0

100

200

300

400

500

600

700

800

(f) Read-Heavy

AMZN FACE WIKI
0

200

400

600

800

1000

1200

(g) Write-Heavy

AMZN FACE WIKI
0

200

400

600

800

1000

1200

(h) Write-Only

Figure 8: Tail Latency (P99) of NFL and Baselines.

distributed, forming amore linear CDF curve. Therefore, the learned

index can use less linear models to make a better approximation,

and the hierarchical structure is much lower, leading to a significant

improvement on throughput.

Compared to the experimental results of the proposed AFLI on

workloads with large conflict degrees, the NF can achieve 2.19x

improvement on the throughput. However, on workloads with

a little reduction on the tail conflict degree (e.g., LTD, LGN), NF

degrades the throughput. This is due to the non-negligible overhead

introduced the online inference of NF.On YCSB, AMZN, and WIKI,

the NFL disables the NF due to that the distribution transformation

does not reduce the tail conflict degree, so the NFL achieves almost

the same performance as the proposed AFLI.

Read-WriteWorkloads.The performance on the read-writework-

loads (i.e., read-heavy andwrite-heavyworkloads) shows the adjust-

ment efficiency of the learned index during the loading phase. Figure

7 (b) and (f) shows that NFL can still achieve the same improve-

ments on the throughput by 66.29%, 89.02%, 445.34%, and 383.47%

on average compared to LIPP, ALEX, PGM-Index, and B-Tree, re-

spectively. Although the improvements on write-heavy workloads

degrade, NFL can still improve the throughput by 27.76%, 38.69%,

68.21% and 164.86% on average compared to LIPP, ALEX, PGM-

Index, and B-Tree. The reason for the drop on the improvements

is that most of the buckets are almost full, and the performance of

the linear search on the buckets decreases. However, compared to

other learned indexes which perform lots of complex and expensive

adjustments (reflected in Figure 8), such modelling operations in

NFL that uses tiny buckets to buffer keys and later builds linear

models for the buckets is quite cheap.

Different with the high throughput on the read-only workloads

of LTD and LGN, the proposed AFLI’s performance on the read-

write workloads of LTD and LGN is comparable to NFL. The reason

lies in that the former performance of proposed AFLI is like the

case of overfitting in Machine Learning, which means that almost

all linear models are well fitted and there are fewer empty slots

prepared for new insertions, thus new insertions are more likely

inserted into the buckets, then causing lots of modelling operations.

However, since the NF have much better generalization capability

than linear models, the data array of each node will be larger than

before and have more empty slots for new insertions, NFL can

produce less conflict degrees and construct a lower hierarchical

structure, thus maintaining a comparable performance.

Write-Only Workloads. Figure 7 (d) and (h) show that except for

51.69% degradation compared to PGM-Index, our proposed NFL

improves the throughput by 21.74%, 28.83%, and 131.19% compared

to LIPP, ALEX, and B-Tree, respectively. The high insertion perfor-

mance of PGM-Index benefits from the LSM-Tree structure, where

a small buffer of size 128 is used to receive new insertions. However,

PGM-Index needs to perform the compaction operation periodically

which is a quite expensive operation. The long tail latency in Figure

8 (d) and (h) also proves this point. Since the tail conflict degree

barely changes after the running phase (see Table 3 below), the tiny

buffer in NFL is enough to absorb locally conflicted keys without

introducing more internal adjustments, thus NFL can still maintain

high throughput after insertions. Moreover, with the transforma-

tion of NF, all keys in the key space become more uniform, thus

more keys can be buffered in the buckets and the performance of

NFL can be further improved.

4.3 Tail Latency
To further display the impact of internal adjustments, we also eval-

uate our proposed NFL and other baselines on the 99% (P99) latency.

In each run, we collect the latency of each batch of operations, sort

the latencies in the ascending order, and report the 99-th percentile

batch latency divided by the batch size in Figure 8. We also collect

2197

LTD LLT LGN YCSB
0

20

40

 NFL-Index NFL-Trans AFLI LIPP ALEX PGM-Index B-Tree
T

h
ro

ug
h

pu
t (

m
ill

io
n

 o
p

s/
se

c)

LTD LLT FACE WIKI
0

400

800

2400
4 us 9 us

3 us
9 us

17 us

2 us

13 us
9 us

(a) Read-Heavy

LTD LLT FACE WIKI
0

400

800

3200

3600
7 us 796 us

50 us
861 us

280us

2 us

389 us
948 us

(b) Read-Heavy

Figure 9: P99.99 latency and max latency of NFL and Base-
lines.

the 99.99% (P99.99) latency and the maximum (max) latency on

some representative workloads.

Read-Only Workloads. The tail latency on the read-only work-

loads indicates the worst case of querying the learned index, corre-

sponding to the approximation quality of the most conflicted sub

key space. Figure 8 (a) and (e) shows that NFL can reduce the P99

latency by 53.32%, 34.29%, 64.01%, and 81.18% compared to LIPP,

ALEX, PGM-Index, and B-Tree, respectively. Meanwhile, on the

workloads with large conflict degrees (e.g., LLT, FB), NFL can still

keep the P99 latency under 70 ns, while others produce over 100ns

P99 latency due to expensive internal adjustments. The main reason

for short P99 latency is that the normalizing flow can alleviate the

worst case, reducing the conflict differences between positions and

avoiding a large amount of conflicts in certain positions. The long

P99 latency of proposed AFLI on the workloads LLT and FB also

prove that without the transformation of NF, the learned index can

be an unbalanced tree due to locally large conflicts, thus querying

on those deep leaf nodes in the tree will introduce long latency.

Read-Write Workloads. For read-write workloads (Figure 8 (b),
(c), (f), and (g)), NFL can reduce the P99 latency by 20.06%, 41.33%,

62.73%, and 63.87% compared to LIPP, ALEX, PGM-Index, and B-

Tree, respectively. The long tail latency on such read-write work-

loads is mainly caused by two aspects, complex internal adjustments

and querying on deep leaf nodes. The latter is the same as the case

on read-only workloads. As the amount of insertions increases,

the cost and frequency of internal adjustments for our proposed

learned indexes, LIPP, and ALEX also increases, thus resulting in

long P99 latency. The reduction on P99 latency for PGM-Index

from read-heavy workloads to write-heavy workloads is due to the

poor query performance and the high insertion performance of the

LSM-Tree structure used in PGM-Index.

Write-Only Workloads. Figure 8 (d) and (h) show that NFL can

reduce the P99 latency by 1.52%, 29.73%, 29.98%, and 49.89% on

write-only workloads compared to LIPP, ALEX, PGM-Index, and B-

Tree, respectively. ALEX performs expensive internal adjustments

(e.g., merging or splitting nodes). Meanwhile, the cost of the shift-

ing operations in ALEX will increase as the number of keys in a

ALEX’s node increases. LIPP produces comparable P99 latency to

our proposed NFL, since both indexes adopt the precise placement

without shifting. The difference between LIPP and NFL is that LIPP

directly builds a new node for conflicted keys while NFL uses a

bucket to buffer the conflicted keys first. This building operations is

Table 3: Tail conflict degrees of workloads. The suffix "(L)"
and "(R)" represent the results after the loading phase and
running phase, respectively. Rows in orange are results after
the transformation of NF.

LTD LLT LGN YCSB AMZN FB WIKI

Tail (L) 8 146 14 3 4 386 2

Tail (R) 7 147 13 3 4 454 1

Tail (L) 4 4 4 4 4 4 4

Tail (R) 4 5 4 4 4 4 4

a little expensive compared to appending to a data array, thus NFL

can produce a bit lower P99 latency than LIPP. The compaction

operation in LSM-Tree which is used by the PGM-Index requires

repeatedly merging multiple sorted arrays, thus leading to the tail

latency issue.

P99.99 Latency and Max Latency. We also collect the P99.99

latency and the max latency in one run. Due to the space limitation,

we only present the results on the representative workloads. Figure

9 (a) and (b) shows that our proposed NFL can produce the lowest

latency both on P99.99 latency and max latency, which also proves

the effectiveness of the NF.

4.4 Other Results
4.4.1 Conflict Degree. The conflict degree reflects the transforma-

tion quality of NF. Table 3 shows that with the transformation of NF,

the conflict degree can be significantly reduced. Although NF only

uses 10% of bulk-loaded keys, after inserting around 100 million

new keys, the tail conflict degree is around 4. For datasets with low

conflict degrees (e.g., YCSB, WIKI), the NF increases the conflict

degrees. The reason is that in our setting, the transformation quality

of the NF has almost reached to its upper limit. But if we can design

a better NF, the conflict degrees can be further reduced.

4.4.2 Bulk Loading Time. Figure 10 demonstrates the time cost

of loading phase. For our proposed NFL, the time cost includes

the time cost of the online transformation of bulk-loaded keys

and the time cost of the bulk loading of the index. Although NFL

takes 78% time to transform keys and requires 2.24x, 0.85x, 2.80x

time to bulk load compared to LIPP, ALEX, and B-Tree, NFL can

make a better approximation of the CDF leading to a faster loading

on the learned index. Figure 7 also proves that the built learned

index can deliver high performance especially for highly non-linear

workloads. Although the bulk-loading time cost of NFL is much

larger than that of PGM-Index, the overall performance of NFL

is much better. In addition, the average time cost of NFL to bulk

load 100 million keys is 13.36 seconds, which is acceptable and

worthwhile considering the high performance.

4.4.3 Index Size. Figure 11 shows the normalized final index size

of existing learned indexes after the running phase of write-heavy

workloads. Since the great improvements of the state-of-the-art

learned indexes benefit from precise placements which require lots

of gaps [7] in the data array, we evaluate the overall index size,

including the sum size of allocated gaps, rather than the model size

in the learned index. The index size of NFL is 2.26x, 3.11x times

2198

LTD LLT LGN YCSB
0

20

40

 NFL-Index NFL-Trans AFLI LIPP ALEX PGM-Index B-Tree
T

h
ro

ug
h

pu
t (

m
ill

io
n

 o
p

s/
se

c)

LTD LLT LGN YCSB
0

5

10

15

20

25

30

AMZN FACE WIKI
0

5

10

15

20

25

30

Figure 10: Bulk loading of NFL and Baselines.

than the index size of ALEX and PGM-Index, respectively. However,

the index size of NFL is only 0.51 of LIPP’s index size. Both NFL

and LIPP create more space to support precise placements, but NFL

makes a better trade-off between allocating more space and fitting

linear models better.

5 RELATEDWORK
5.1 Learned index
Recent works on the learned data structure [2, 13–15, 26] brings a

new direction to the indexing field, which leverage machine learn-

ing models to predict the mapping between keys and positions. In-

spired by [26], a series works fully explore the potential of machine

learning models on the indexing problems. Both FITing-Tree [17]

and PGM-Index [16] approximate the CDF using piece-wise linear

functions to restrict the prediction error in a given bound. Without

a given error bound , ALEX [7] enumerates the best partitions and

places data in the gapped array, achieving a considerable perfor-

mance for both query and insertion. To support precise placements,

LIPP [46] uses the conflict degree to reflect the approximation qual-

ity and directly create new nodes for the conflicted keys. LIPP

[46] achieves a better performance than that of previous learned

indexes. However, our work indicates the fundamental problem

of the approximation on the CDF which can be further improved

via a distribution transformation on the key space, thus improv-

ing the performance of learned indexes. Some works [12, 28] also

focus on improving the approximation while they don’t consider

the impact of different key distributions. Other works investigate

the effectiveness of learned indexes on spatial key space or string

keys [8, 27, 34, 43, 44], construction efficiency [25], multi-threads

[42]. They are different from our scope. Other works also combine

the learned index with modern applications [6, 41], new hardware

[4, 31]. Our works can also be adapted to their scope.

5.2 Normalizing Flows
Normalizing flows are popularised in the context of variational

inference [38] and density estimation [9]. The natural and most

obvious use of normalizing flows is to perform density estimation,

which is the same scope of the problem in learned indexes. The key

point of normalizing flows is how to design the generators, in terms

of invertible transformation and efficient computations. Dinh et

al. introduced a coupling method to improve the expressiveness of

the transformation [9]. The key of [9] is how to partition 𝑥 , which

inspires a series of work [10, 21]. However, such a coupling method

LTD LLT LGN YCSB
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

 NFL AFLI LIPP ALEX PGM-Index

T
h

ro
ug

h
pu

t (
m

ill
io

n
 o

p
s/

se
c)

LTD LLT LGN YCSB
0

2

4

6

8

(a) Write-Heavy

LTD LLT LGN YCSB
0

2

4

6

8

(b) Write-Only

AMZN FACE WIKI
0

2

4

6

8

(c) Write-Heavy

AMZN FACE WIKI
0

2

4

6

8

(d) Write-Only

Figure 11: Index size of NFL and Baselines.

requires the dimension of input keys to be at least greater than 2,

which is not suitable in our problem. Another widely used flow

structure is auto-regressive flow, first proposed by Kingma et al. in

IAF [22]. Huang et al. replace the affine univariate transformations

of MAF [36] and IAF [22] with a more general class of invertible uni-

variate transformations called monotonic neural networks. B-NAF

[3] improves the structure of NAF by using a single feed-forward

network to model the bijections, and becomes much more compact

than NAF while remaining comparable universal approximation.

For the first time, we apply the state-of-the-art auto-regressive

flows to improve the approximation of learned indexes.

6 CONCLUSIONS
In this paper, we address the approximation problem by applying a

distribution transformation.We present a normalizing-flow-learned

index framework to transform the key space for better approxi-

mation on the CDF. We also introduce a 1D-friendly normalizing

flow to achieve the distribution transformer. We further propose

a lightweight and precise learned index to support efficient index-

ing operations. Experimental results on representative workloads

demonstrate the effectiveness of our proposed framework and our

proposed index.

For the future work, we plan to further investigate the poten-

tial of using normalizing flows, including co-design on normaliz-

ing flows and learned indexes, using normalizing flows on multi-

dimension indexing and so on. Besides, it is also worthwhile to

further accelerate the inference of normalizing flows.

ACKNOWLEDGMENTS
The work described in this paper was supported by a grant from the

Research Grants Council of the Hong Kong Special Administrative

Region, China (Project No. CityU 11217020).

2199

REFERENCES
[1] Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu, and Jiebo Luo. 2021.

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 862–871.

[2] Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra. 2021. A Learned

Approach to Design Compressed Rank/Select Data Structures. ACM Transactions
on Algorithms (TALG) (2021).

[3] Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019. Block Neural Autoregressive

Flow. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence (UAI), Vol. 115. 1263–1273.

[4] Leying Chen and Shimin Chen. 2021. HowDoes Updatable Learned Index Perform

on Non-Volatile Main Memory?. In Proceedings of the 37th IEEE International
Conference on Data Engineering Workshops (ICDEW). 66–71.

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC). 143–154.

[6] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From WiscKey

to Bourbon: A Learned Index for Log-Structured Merge Trees. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 155–171.

[7] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In Proceedings of the 2020 International Conference on Management of Data
(SIGMOD). 969–984.

[8] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed

Workloads. Proceedings of the VLDB Endowment 14, 2 (2020), 74–86.
[9] Laurent Dinh, David Krueger, and Yoshua Bengio. 2015. NICE: Non-linear Inde-

pendent Components Estimation. In Proceedings of the 3rd International Confer-
ence on Learning Representations (ICLR).

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation

using Real NVP. In Proceedings of the 5th International Conference on Learning
Representations (ICLR).

[11] Wikimedia downloads. 2013. http://dumps.wikimedia.org.
[12] Martin Eppert, Philipp Fent, and Thomas Neumann. 2021. A Tailored Regression

for Learned Indexes: Logarithmic Error Regression. In Proceedings of the Fourth
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management (aiDM). 9–15.

[13] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2021. On the per-

formance of learned data structures. Theoretical Computer Science 871 (2021),
107–120.

[14] Paolo Ferragina, Giovanni Manzini, and Giorgio Vinciguerra. 2021. Repetition-

and Linearity-Aware Rank/Select Dictionaries. In Proceedings of the 32nd Interna-
tional Symposium on Algorithms and Computation (ISAAC), Vol. 212. 64:1–64:16.

[15] Paolo Ferragina and Giorgio Vinciguerra. 2019. Learned Data Structures. In

Recent Trends in Learning From Data, Vol. 896. 5–41.
[16] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. Proceedings of the
VLDB Endowment 13, 8 (2020), 1162–1175.

[17] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In Proceedings of the
2019 International Conference on Management of Data (SIGMOD). 1189–1206.

[18] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB:

Killing One Thousand Queries With One Stone. Proceedings of the VLDB Endow-
ment 5, 6 (2012), 526–537.

[19] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Koss-

mann. 2014. Shared Workload Optimization. Proceedings of the VLDB Endowment
7, 6 (2014), 429–440.

[20] Chin-Wei Huang, David Krueger, Alexandre Lacoste, andAaron C. Courville. 2018.

Neural Autoregressive Flows. In Proceedings of the 35th International Conference
on Machine Learning (ICML), Vol. 80. 2083–2092.

[21] Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with

Invertible 1x1 Convolutions. InAdvances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS).
10236–10245.

[22] Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. 2016. Improved variational inference with inverse autoregressive

flow. Advances in Neural Information Processing Systems 29 (2016), 4743–4751.

[23] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

In Proceedings of the 2nd International Conference on Learning Representations
(ICLR).

[24] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned

Indexes. CoRR (2019).

[25] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (aiDM). 5:1–5:5.

[26] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD). 489–504.

[27] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A

Learned Index Structure for Spatial Data. In Proceedings of the 2020 International
Conference on Management of Data (SIGMOD). 2119–2133.

[28] Yaliang Li, Daoyuan Chen, Bolin Ding, Kai Zeng, and Jingren Zhou. 2021. A

Pluggable Learned Index Method via Sampling and Gap Insertion. CoRR (2021).

[29] Intel Math Kernel Library. 2003. https://www.intel.com/content/www/us/en/ devel-
oper/tools/oneapi/onemkl.html.

[30] The C++ B-Tree library implemented by Google. 2011. https://code.google.com/
archive/p/cpp-btree.

[31] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.

2021. APEX: A High-Performance Learned Index on Persistent Memory. CoRR
(2021).

[32] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Koss-

mann. 2018. Many-query join: efficient shared execution of relational joins on

modern hardware. The VLDB Journal 27, 5 (2018), 669–692.
[33] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.

BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for

Interactive Applications. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD). 37–50.

[34] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ingMulti-Dimensional Indexes. In Proceedings of the 2020 International Conference
on Management of Data (SIGMOD). 985–1000.

[35] OpenStreetMap on Amazon AWS. 2018. https://registry.opendata.aws/ osm/.
[36] George Papamakarios, IainMurray, and Theo Pavlakou. 2017. Masked Autoregres-

sive Flow for Density Estimation. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017
(NeurIPS). 2338–2347.

[37] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim, Wolfgang

Lehner, and Amr Rizk. 2018. OLTPShare: The Case for Sharing in OLTP Work-

loads. Proceedings of the VLDB Endowment 11, 12 (2018), 1769–1780.
[38] Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with

Normalizing Flows. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), Vol. 37. 1530–1538.

[39] Amazon sales rank data for print and kindle books. 2018. https://www.kaggle.
com/ucffool/amazon-sales-rank-data-for-print-and-kindle-books.

[40] Peter Van Sandt, Yannis Chronis, and Jignesh M. Patel. 2019. Efficiently Searching

In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings
of the 2019 International Conference on Management of Data (SIGMOD). 36–53.

[41] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. PLEX: Towards

Practical Learned Indexing. CoRR (2021).

[42] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie

Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore data

storage. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). 308–320.

[43] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for

Spatial Queries. In Proceedings of the 20th IEEE International Conference on Mobile
Data Management (MDM). 569–574.

[44] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. 2020. SIndex: a

scalable learned index for string keys. In Proceedings of the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys). 17–24.

[45] Valentin Wolf, Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu

Timofte. 2021. DeFlow: Learning Complex Image Degradations From Unpaired

Data With Conditional Flows. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 94–103.

[46] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.

2021. Updatable Learned Index with Precise Positions. Proceedings of the VLDB
Endowment 14, 8 (2021), 1276–1288.

2200

