
Witan: Unsupervised Labelling Function Generation for Assisted
Data Programming

Benjamin Denham
Auckland University of Technology

Auckland, New Zealand
ben.denham@aut.ac.nz

Edmund M-K. Lai
Auckland University of Technology

Auckland, New Zealand
edmund.lai@aut.ac.nz

Roopak Sinha
Auckland University of Technology

Auckland, New Zealand
roopak.sinha@aut.ac.nz

M. Asif Naeem
National University of Computer & Emerging Sciences

Islamabad, Pakistan
asif.naeem@nu.edu.pk

ABSTRACT

Effective supervised training of modern machine learning models

often requires large labelled training datasets, which could be pro-

hibitively costly to acquire formany practical applications. Research

addressing this problem has sought ways to leverage weak supervi-

sion sources, such as the user-defined heuristic labelling functions

used in the data programming paradigm, which are cheaper and

easier to acquire. Automatic generation of these functions can make

data programming even more efficient and effective. However, ex-

isting approaches rely on initial supervision in the form of small

labelled datasets or interactive user feedback. In this paper, we

propose Witan, an algorithm for generating labelling functions

without any initial supervision. This flexibility affords many interac-

tion modes, including unsupervised dataset exploration before the

user even defines a set of classes. Experiments in binary and multi-

class classification demonstrate the efficiency and classification

accuracy of Witan compared to alternative labelling approaches.

PVLDB Reference Format:

Benjamin Denham, Edmund M-K. Lai, Roopak Sinha, and M. Asif Naeem.

Witan: Unsupervised Labelling Function Generation for Assisted Data

Programming. PVLDB, 15(11): 2334 - 2347, 2022.

doi:10.14778/3551793.3551797

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ben-denham/witan.

1 INTRODUCTION

The benefits of leveraging large datasets for supervised training

of classifiers have been clearly demonstrated in recent years. In

particular, deep learning algorithms are able to deliver impressive

results in text classification and image recognition tasks but are

well-known for their reliance on massive training datasets [38].

Unfortunately, acquiring training labels in such large quantities is

often prohibitively expensive, especially if labelling requires the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551797

assessment of training instances by a domain expert. The scarcity

of training labels has led to the development of weak supervision

methods that leverage supervision sources that are noisier but

cheaper to acquire than traditional ground truth training labels.

Such weak supervision sources include crowd-sourced labels [47],

existing knowledge-bases (in so-called distant supervision) [4], and

even class names alone [55].

Data programming has emerged as a popular weak supervision

paradigm, accepting supervision in the form of user-defined heuris-

tic labelling functions (LFs) that assign class labels to instances,

typically based on conditions of instance features [50]. For example,

an LF for text sentiment classification might label any instance

containing the word “wonderfulž with the “positivež class. Not only

can data programming save effort by enabling the user to label

potentially hundreds of instances with each LF, but LFs can also

explicitly capture the user’s domain knowledge. A set of LFs can

serve as high-level documentation of labelling decisions in a way

that a large set of labelled instances cannot. This also means that

labelling decisions can be re-evaluated and changed in light of new

requirements by simply updating the LFs. These attributes make

data programming a natural paradigm for users to systematically

manage and improve their training data in line with the recent trend

toward data-centric AI, where emphasis is placed on improving

training data over models [44].

Despite these benefits, users have reported [37] the need for

guidance in designing LFs that 1) are accurate, 2) cover many in-

stances, and 3) are not overly biased towards certain classes. While

a wide variety of assisted data programming approaches have been

proposed to help users design LFs (see Section 2.2), almost all of

these approaches assume that the user already knows at least the

set of classes they wish to identify within their dataset. However,

there are many situations where this will not be the case; a user

seeking to classify articles by topic or warranty claims by fault

type may not have a fixed set of topics or faults in mind before

exploring the dataset. Such users would benefit from an unsuper-

vised analysis of their dataset to identify a variety of potential LFs

for them to choose from. Even if the user has some idea of their

desired classification scheme, such an unsupervised analysis could

help them avoid human bias in manual LF design and identify other

relevant concepts within the dataset, such as natural sub-classes of

their target classes (e.g. subtopics or special cases of faults).

2334

https://www.acm.org/publications/policies/artifact-review-and-badging-current

To address this need, we propose Witan, an algorithm for unsu-

pervised LF discovery. As illustrated in step 1○ of Figure 1, Witan

takes an unlabelled dataset and uses an information-theoretic ap-

proach to generate a set of potential LFs that are diverse not only in

the instances they cover but also in the dimensions of the dataset

they abstract. In step 2○, a domain expert reviews the entire set of

generated LFs holistically, selecting LFs relevant to their classifica-

tion task and deciding which class labels those LFs should assign.

Finally, the optional step 3○ demonstrates howWitan can extend

an existing set of LFs with complementary LFs that increase diver-

sity, whether the existing LFs were generated byWitan or provided

by the user as seed LFs. Analogous to the historical royal advisors

for which it is named [8], Witan aims to elicit new insights and

assist in classifier training as much as possible while still empower-

ing users with full control over the set of LFs ś a user can easily

interpret the behaviour of a proposed LF and decide whether or not

to use it to assign a class label, and whether to manually amend

the decision criteria to better fit their classification task. In addi-

tion to these benefits, we demonstrate thatWitan-generated LFs

result in competitive classification performance when compared to

alternative LF generation and instance labelling approaches.

Labelling
Functions

Unlabelled
Dataset

WITAN
1

Class
Labels2

3

May
include

seed LFs

Figure 1: Logical view of Witan, demonstrating 1○ initial un-

supervised generation of LFs, 2○ user review and assignment

of class labels to LFs, and 3○ extending an existing set of LFs.

The rest of this paper is organised as follows. Section 2 presents

the current state of the data programming approach to weak super-

vision with an emphasis on assisted data programming. Our novel

algorithm (Witan) for unsupervised LF discovery is described in

Section 3, which includes the core algorithm as well as optional

components to construct LFs based on conjunctions and disjunc-

tions of feature conditions and to guide the selection of additional

LFs based on user approval of previously generated LFs, seed LFs,

or both. In Section 4, results of extensive experimental evaluation

of Witan against other LF generation and labelling approaches

for both binary and multi-class classification tasks are presented.

They demonstrate the ability of Witan to approach peak classifica-

tion performance with less user effort than other methods. Finally,

Section 5 concludes the paper with suggestions for future work.

2 BACKGROUND AND RELATED WORK

2.1 Data Programming for Weak Supervision

Data programming is a recently proposed paradigm for weak su-

pervision from user-defined labelling functions (LFs) [50]. In the

context of a classification task to predict the class label 𝑦 ∈ Y for

an instance with features 𝑥 ∈ X, a labelling function 𝜆 uses an

instance’s features to either assign a predicted class label or abstain

(∅), such that 𝜆 : X → Y ∪ {∅} [49]. While LFs can potentially use

complex decision criteria based on distantly supervising knowledge

bases [49] or arbitrary supervised classifiers [49, 53], we focus on

LFs that can be expressed as conditions on instance features, such

that a user would be able to interpret and potentially amend the

decision criteria of a machine-generated LF.

As LFs essentially act as imperfect classifiers, one or more LFs

may assign different class labels to a given instance. To account for

this, arguably the most important component in a data program-

ming system is a labellingmodel to aggregate LF outputs for training

instances into a consistent set of training class labels. The seminal

Snorkel system [49] learns a generative model that estimates the ac-

curacies of LFs based solely on their agreements and disagreements

on training instances, without the need for any ground truth labels.

The generative model is used to produce probabilistic training labels,

where each of𝑚 possible class labels is assigned a numeric prob-

ability: 𝑦 = (𝑦1, . . . , 𝑦𝑚), 𝑦𝑖 ∈ [0, 1]. These probabilistic training

labels can then be used to train a classifier using a noise-aware

loss function. Alternative labelling models have been subsequently

proposed based on triplet methods [21] and game optimisation [5].

Given the popularity of Snorkel’s open-source library and its use

in previous studies on assisted data programming, we will use it to

experimentally evaluate LFs produced byWitan and other assisted

data programming methods in the context of classification.

As Witan and other assisted data programming methods aid

in the construction of LFs, we highlight desiderata for LFs that

produce accurate classifiers. The primary trade-off in LF design

is between coverage and accuracy [10, 53]; LFs that are general

enough to apply to many instances risk misclassifying a significant

proportion of those instances, while highly specific and accurate

LFs may cover too few instances for the subsequently trained classi-

fier to generalise to broader patterns. An ideal set of LFs optimises

for both coverage and accuracy, taking advantage of the fact that

labelling models are best suited to resolving a moderate degree

of overlap and disagreement between LFs [49]. As labelling mod-

els often assume the class distribution can be specified a priori

or estimated from LF outputs [21, 49], it is also important for LF

coverage to be representative of the true class distribution and not

unduly biased towards certain classes over others. In order to avoid

catastrophic results for extremely biased LFs, our experiments will

apply Snorkel with a uniform class prior. Finally, while Snorkel has

mechanisms for explicitly modelling dependencies between LFs (e.g.

when one LF “reinforcesž another by identically labelling a strict

subset of its covered instances [54]), it assumes independence by

default [49]. Methods have been developed for automatically learn-

ing dependencies [54], and other labelling models are designed to

be robust to dependencies [5]. However, because empirical results

suggest classifier accuracy can be degraded by modelling all but

the strongest dependencies [11], we will limit our experiments to

applying Snorkel under the assumption that all LFs are independent.

2.2 Assisted Data Programming

A variety of methods have previously been proposed to help users

construct effective LFs with minimal effort. We now review these

assisted data programming (ADP) methods, focussing on the inter-

action modes they support and how they compare toWitan.

2335

Some ADP methods simplify the user’s task of defining decision

criteria for LFs. For text classification, one approach is to have the

user simply specify keywords associated with each class [25, 28, 32].

Such keyword lists can be filtered of “noisyž keywords through

co-training [28], used to seed LDA topic models applied as classi-

fiers [32], or even applied to non-text classification tasks by lever-

aging text descriptions for some training instances [25]. Another

approach for assisting users is to identify subsets of instances [13]

or regions of the input space [52] where existing LFs perform poorly

so that the user may target those deficiencies with additional LFs.

However, these methods still rely on users designing criteria for

LFs themselves, which relies on them manually reviewing many

instances to identify common patterns of interest.

Another family of ADP methods generates LFs from a small

number of manually labelled instances. Some of these methods still

rely on the user providing the criteria that influenced their labelling

decisions to form the basis of LFs, whether bymaking a search query

for instances to cover with an LF [37], marking important keywords

in text [19], or providing natural language explanations for their

decisions [26]. Other methods generate LFs based solely on labelled

instances. One such method [36] generates LFs that propagate

manual labelling to similar instances found using a text search

engine, though such instance-based LFs lack interpretable decision

criteria. Other methods generate LFs by training arbitrary classifiers

on a small labelled training set [41, 53]. The Snuba system [53] can

produce reasonably interpretable LFs when a simple classification

model (such as a decision stump) is used to generate LFs. Because

of this, we will include Snuba as a representative of instance-based

LF generation methods in our experimental evaluation.

Rather than having the user label instances, some assisted data

programming methods propose LFs and ask the user to review

their decision criteria and then approve or reject each LF. Similar

approaches for active learning predate data programming, where

users review iteratively proposed classification rules to expand

a labelled training set [17, 48]. Methods for data programming

have been proposed that can learn LFs either for a single “positivež

class [23, 24] or for both classes in a binary classification task [10,

29]. As it is important for the user to be able to interpret and evaluate

the decision criteria of a proposed LF, these methods have been used

to propose LFs with decision criteria based on the presence of text

keywords [10, 23, 29], itemset patterns [24], regular expressions

and parse tree structures [23], and neighbourhoods of images [10].

Of these methods, only Interactive Weak Supervision (IWS) [10]

is amenable to both multi-class classification (though only details

for binary classification are described by the authors) and non-

text-based LFs. Therefore, we will include IWS in our experimental

evaluation as a representative of methods requiring user review

of generated LFs. A limitation of this family of methods is their

reliance on continuous feedback from the user after each LF is

proposed, as the feedback informs the selection of the next LF.

A key limitation of all the ADP approaches discussed above is

that they require the user to know the set of classes for their clas-

sification task a priori. We believe that the ability to begin data

programming without a clear idea of the final class structure is

invaluable for many tasks, such as in document topic classification,

where the user is interested in first discovering the range of topics

that are present. This need inspired our development of Witan,

Table 1: Assisted Data Programming Approaches

Does not require:
Labelled

instances

Designed

LFs

Prior set

of classes

Continuous

feedback

LF design aids

[13, 25, 28, 32, 52]
✓ × × ×

Instance-based

LF design aids

[19, 26, 37]

× × × ✓

Instance-based

LF generation

[36, 41, 53]

× ✓ × ✓

Feedback-based

LF generation

[10, 23, 24, 29]
✓ ✓ × ×

LFs from clusters

[3, 33, 34]
✓ User interaction not supported

Clustering by

intent [7, 20]
Min 1 class ✓ ✓ ✓

Witan ✓ ✓ ✓ ✓

which requires no initial supervision to generate a set of possible

LFs for the user to review and assign class labels to. While unsuper-

vised clustering has previously been used to create LFs [3, 33, 34],

such methods only present a single possible clustering to the user,

whereasWitan will propose diverse LFs that represent a variety of

orthogonal partitionings of the data. The inherent subjectivity of

clustering and the importance of allowing users to choose between

equally valid clusterings has been recognised in the interactive clus-

tering literature [6], though the majority of interactive clustering

methods do not produce clusters with interpretable inclusion cri-

teria that are stable between user interactions [43] as desired for

LFs. Clustering by intent (CBI) [7, 20] is an interactive clustering

approach that produces interpretable rules similar to the LFs gener-

ated byWitan, but it relies on the user providing labelled instances

for at least one class at the outset.

Table 1 comparesWitan to other ADP approaches;Witan’s key

distinguishing properties are summarised below:

• The user does not need to design LF decision criteria; the

user only evaluates and labelsWitan-generated LFs.

• No manual instance labelling is required; all labels are as-

signed by LFs with interpretable decision criteria.

• LFs can be generated in an unsupervised fashion without a

priori knowledge of the set of classes.

• The user can review the whole set of LFs after generation;

Witan does not need feedback after generating each LF.

3 THE PROPOSED ALGORITHM

We now present our proposed Witan algorithm for unsupervised

LF generation. We first describe the utility measure for selecting LFs

and use it to formulate the core Witan algorithm. We then present

extensions for generating LFs with conjunctive and disjunctive

conditions and for incorporating user feedback into LF selection.

We assume Witan is provided with a training set 𝑋 ∈ {0, 1}𝑛,𝑚

of 𝑛 unlabelled instances comprised of𝑚 binary features. Binary

2336

features are required by Witan’s utility function, but they also

allow us to construct an LF 𝜆 using any Boolean combination of

a feature subset 𝑑𝜆 ∈ P({1, . . . ,𝑚}) to produce a coverage vector

𝑐𝜆 ∈ {0, 1}𝑛 . We say that LF 𝜆 assigns a user-given class label 𝑦𝜆 to

instances covered by 𝑐𝜆 and abstain on non-covered instances:

𝜆(𝑥𝑖) =

{

𝑦𝜆 if 𝑐𝜆𝑖 = 1

∅ otherwise
(1)

For example, a simple LF 𝜆 𝑗 that covers instances for which feature

𝑗 is positive would have 𝑑𝜆 𝑗 = { 𝑗} and 𝑐𝜆 𝑗 = 𝑥∗𝑗 . Note that, as an

unsupervised algorithm, Witan selects LFs with optimal coverage

vectors 𝑐𝜆 and leaves class label 𝑦𝜆 for the user to decide later.

Following previous advice on selecting LFs [10, 49], users should

be instructed to approve an LF for a class if they believe it will be

more accurate than an LF that randomly assigns any class label.

Datasets containing non-binary features can still be used with

Witan by applying appropriate feature transformations, such as

one-hot encoding categorical features and binning or thresholding

numeric features. In the framework of Boecking et al.’s LF fami-

lies [10], binary features could be produced from any LF family

where each LF assigns only a single class value. These include LF

families that test for the presence of a keyword in text, test for the

presence of motifs in a times series, or detect the presence of objects

in an image. Whatever binary features are used, it is important that

a user should be able to easily understand which instances a feature

would be positive for so that they can judge whether or not that

feature would be a useful decision criterion for an LF. Throughout

this section, we will describe examples of applying Witan to a set

of binary bag-of-words features that each indicate the presence of

a particular word in a film or television review, with the intent of

generating LFs for positive/negative sentiment classification.

3.1 LF Utility Function

In order forWitan to select LFs to propose to the user, we require a

utility function by which we can compare a set of candidate LFs. Ide-

ally, this function should select LFs that are good classifiers for one

of the classes in the target classification task. A similar problem is

faced by the “covering rulež learning algorithms used for classifica-

tion, which must select feature conditions that optimise a rule’s clas-

sification performance [22]. To solve this problem, the classic CN2

rule learner [12] takes an information-theoretic approach by pre-

ferring a rule with coverage vector 𝑐 that minimises the conditional

entropy 𝐻 (𝑌 |𝑐) of the class variable 𝑌 . Decision tree learners also

commonly make branching decisions 𝑏 that maximise the reduction

in entropy from the previous model state to the new state, referred

to as the information gain [22, 46]: 𝐼𝐺 (𝑌,𝑏) = 𝐻 (𝑌) − 𝐻 (𝑌 |𝑏).

In the context of unsupervised LF generation, the immediate

barrier to using entropy in a utility function is that we do not have

access to class labels 𝑌 for our training set, so we cannot determine

which LF conditions will help predict 𝑌 . However, assuming the

binary features in 𝑋 are relevant to the classification task, it is

fair to assume that at least some features will correlate with 𝑌 .

Therefore,Witanwill aim to construct an LF condition 𝑐𝜆 to predict

a class value 𝑦 ∈ 𝑌 with 𝑃 (𝑦 |𝑐𝜆) ≫ 𝑃 (𝑦) by reducing the entropy

of 𝑦-correlated features 𝑥∗𝑗 . To see how this works, consider the

relationship between 𝑃 (𝑦 |𝑐𝜆) and 𝑃 (𝑦 |𝑥∗𝑗):

𝑃 (𝑦 |𝑐𝜆) = 𝑃 (𝑥∗𝑗 |𝑐
𝜆)𝑃 (𝑦 |𝑐𝜆, 𝑥∗𝑗) + 𝑃 (¬𝑥∗𝑗 |𝑐

𝜆)𝑃 (𝑦 |𝑐𝜆,¬𝑥∗𝑗)

≥ 𝑃 (𝑥∗𝑗 |𝑐
𝜆)𝑃 (𝑦 |𝑐𝜆, 𝑥∗𝑗) (law of total prob.)

𝑃 (𝑦 |𝑐𝜆, 𝑥∗𝑗) → 𝑃 (𝑦 |𝑥∗𝑗) as 𝑃 (𝑐
𝜆 |𝑥∗𝑗) → 1 (prob. chain rule)

𝑃 (𝑐𝜆 |𝑥∗𝑗) = 𝑃 (𝑥∗𝑗 |𝑐
𝜆)𝑃 (𝑐𝜆)/𝑃 (𝑥∗𝑗) (Bayes’ rule)

∴ min(𝑃 (𝑦 |𝑐𝜆))

→ 𝑃 (𝑦 |𝑥∗𝑗) as 𝑃 (𝑥∗𝑗 |𝑐
𝜆) → 1 & 𝑃 (𝑐𝜆)/𝑃 (𝑥∗𝑗) → 1

→ 𝑃 (𝑦 |¬𝑥∗𝑗) as 𝑃 (¬𝑥∗𝑗 |𝑐
𝜆) → 1 & 𝑃 (𝑐𝜆)/𝑃 (¬𝑥∗𝑗) → 1

(2)

Therefore, the minimum ability of 𝑐𝜆 to predict 𝑦 can approach

that of 𝑥∗𝑗 by maximising its coverage 𝑃 (𝑐𝜆) and ability to predict

𝑥∗𝑗 : 𝑃 (𝑥∗𝑗 |𝑐
𝜆) (or 𝑃 (¬𝑥∗𝑗 |𝑐

𝜆) if 𝑥∗𝑗 ’s absence predicts 𝑦). For exam-

ple, with our bag-of-words features, an LF condition based on aword

like “wonderfulž that is common (relatively high 𝑃 (𝑐𝜆)) and helps

predict the presence of positive words (𝑃 (“lovedž|“wonderfulž) ≫

𝑃 (“lovedž) where 𝑃 (𝑦+ |“lovedž) ≫ 𝑃 (𝑦+)) and the absence of

negative words (𝑃 (¬“hatedž|“wonderfulž) ≫ 𝑃 (¬“hatedž) where

𝑃 (𝑦+ |¬“hatedž) ≫ 𝑃 (𝑦+)) also helps predict the positive class:

𝑃 (𝑦+ |“wonderfulž) ≫ 𝑃 (𝑦+). BecauseWitan does not knowwhich

features predict classes through either their presence or absence,

it should aim to minimise the entropy of all features (maximising

max(𝑃 (𝑥∗𝑗 |𝑐
𝜆), 𝑃 (¬𝑥∗𝑗 |𝑐

𝜆))∀𝑥∗𝑗). Similar entropy-based metrics

have been used in hierarchical divisive clustering (HDC) to select

features for splitting clusters: splits based on maximising the mean

of the gain ratio [45] or normalised information gain [56] over all

feature variables compared favourably to other criteria [56]. While

these algorithms seek a single optimal clustering that assigns each

instance to a single cluster,Witan will select LFs that can partition

instances in a variety of ways, allowing the user to choose which

LFs best suit their classification task. This LF diversity is achieved

by ensuring the full set of LFs reduces entropy across many differ-

ent features, e.g. “horrorž predicts genre-aligned words that are not

predicted by sentiment-aligned keywords.

In light of the discussion above,Witan’s utility function is based

on the information gain achieved by LF 𝜆 on a binary feature 𝑥∗𝑗 :

𝐼𝐺 (𝑥∗𝑗 , 𝑐
𝜆) = 𝐻 (𝑥∗𝑗) − 𝐻 (𝑥∗𝑗 |𝑐

𝜆) (3)

where the entropy of Boolean variable 𝐸 is given by:

𝐻 (𝐸) = −𝑃 (𝐸) log2 𝑃 (𝐸) − (1 − 𝑃 (𝐸)) log2 (1 − 𝑃 (𝐸)) (4)

and the probabilities can be calculated from the training set:

𝑃 (𝑥∗𝑗) =
1

𝑛

𝑛
∑︁

𝑖=1

𝑥𝑖, 𝑗 𝑃 (𝑥∗𝑗 |𝑐
𝜆) =

∑𝑛
𝑖=1 𝑥𝑖, 𝑗𝑐

𝜆
𝑖

∑𝑛
𝑖=1 𝑐

𝜆
𝑖

(5)

Because the coverage vectors are binary, there is no need to nor-

malise the information gain or use a gain ratio to reduce bias to-

wards multi-valued conditions [56].

We can now define the utility function𝑈 thatWitan will aim

to maximise when selecting LFs:

𝑈𝑋,�̄�,𝛾,𝑤 (𝜆) =

𝑚
∑︁

𝑗=1,

𝑗∉𝑑𝜆

𝑤 𝑗

𝑛
∑︁

𝑖=1,

𝑐𝜆𝑖 =1

max(0, ℎ̄𝑖, 𝑗 − 𝐻 (𝑥∗𝑗 |𝑐
𝜆))𝛾

(6)

2337

In essence, 𝑈 sums the information gain achieved by LF 𝜆 across

all features 𝑗 over all covered instances 𝑖 , with several parameters

and characteristics of note:

• Values from an entropy matrix 𝐻 are used in place of

𝐻 (𝑥∗𝑗), allowing Witan to update 𝐻 to account for the

information gain of previously selected LFs.

• As an additional LF cannot detract from information already

gained, negative gain is ignored through use of max.

• To reduce bias towards less interpretable LFs based onmany

features, information gain on any feature in 𝑑𝜆 is ignored.

• Because information gain is only summed over instances

covered by 𝑐𝜆 ,𝑈 favours higher coverage as desired.

• We found empirically that LFs with high information gain

over a smaller number of instances were more useful than

those with weaker gain over many instances. Such LFs

can be preferred by setting 𝛾 > 1, which increases the

importance of high information gain. We found 𝛾 = 2 to be

a reasonable setting in our ablation study (Section 4.5).

• Weights vector 𝑤 ∈ {[0, +∞)}𝑚 controls the relative im-

portance of gain on each feature. We will discuss the use of

𝑤 in Section 3.4, but for now assume all weights are 1.

3.2 Core of the Algorithm

Having defined utility function𝑈 , we now use it to formulate the

core Witan algorithm laid out in Algorithm 1. Witan begins by

initialising matrix 𝐻 with the entropy of each feature for each

instance in the training data 𝑋 (line 1) and a set of candidate LFs Λ̂

that each represent a simple condition on a single binary feature

(line 2). The user may choose to constrain the search space of

candidate LFs to only include those covering a minimum proportion

𝑐min ∈ [0, 1] of training instances, and may optionally specify a set

of seed LFs Λ̃ to initialise the set of selected LFs Λ (lines 3ś9).

Each iteration of Witan’s main loop (lines 10ś17) selects the

candidate LF that maximises utility function𝑈 (line 11, Equation (6))

and adds it to Λ (line 13). After an LF 𝜆 is selected, the entropy

matrix 𝐻 used as the baseline entropy by 𝑈 is updated (line 15).

Entries for all instances 𝑖 covered by the LF (𝑐𝜆𝑖 = 1) are assigned the

LF’s conditional entropies for each feature 𝑗 (𝐻 (𝑥∗𝑗 |𝑐
𝜆)) if those

entropies are less than the current 𝐻𝑖, 𝑗 entries (line 23). In this

way, 𝑈 ’s information gain will always be computed against the

minimum entropy achieved by any selected LF matching a given

instance. Because of this, each iteration selects a new LF that can

provide information gain either on instances not covered by other

LFs (increasing coverage) or on features that are not well predicted

by other LFs (increasing LF diversity). We would ideally compute

information gain against the conditional entropy of the full set of

selected LFs (𝐻 (𝑥∗𝑗 |𝑐
𝜆 ∀ 𝜆 ∈ Λ)), but the computational cost of

fully re-computing 𝐻 in each iteration would be prohibitive, and

taking the minimum entropy implies a conservative assumption

that the set of selected LFs has maximal information redundancy.

Witan’s main loop continues until Λ covers a user-specified

proportion 𝐶min ∈ [0, 1] of training instances (line 10), at which

point Λ is returned so that the user may choose which LFs are

relevant to their classification task and assign class labels to them.

Witan’s algorithm also contains several procedures that we will

provide alternative definitions for when we describe extensions

Algorithm 1: CoreWitan Algorithm

Input :Training data 𝑋 , seed LFs Λ̃, gain exponent 𝛾 ,

min. LF coverage 𝑐min, stopping coverage 𝐶 min

Output :Set of proposed LFs Λ

1 ℎ̄𝑖, 𝑗 ← 𝐻 (𝑥∗𝑗) ∀ 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚};

2 Λ̂← {𝜆[𝑑𝜆 = { 𝑗}; 𝑐𝜆 = 𝑥∗𝑗]

∀ 𝑗 ∈ {1, . . . ,𝑚} : 1
𝑛

∑𝑛
𝑖=1 𝑐

𝜆
𝑖 ≥ 𝑐min};

3 Λ← {};

4 foreach �̃� ∈ Λ̃ do

5 Λ← Λ ∪ {�̃�};

6 𝑤 ← getWeights(Λ);

7 updateEntropies(𝐻 , �̃�);

8 updateCandidates(Λ̂, �̃�);

9 end

10 while 1
𝑛

∑𝑛
𝑖=1max({𝑐𝜆𝑖 ∀ 𝜆 ∈ Λ}) < 𝐶 min do

11 𝜆 ← argmax

𝜆∈Λ̂

𝑈𝑋,�̄�,𝛾,𝑤 (𝜆);

12 𝜆 ← extendLF(𝜆);

13 Λ← Λ ∪ {𝜆};

14 𝑤 ← getWeights(Λ);

15 updateEntropies(𝐻 , 𝜆);

16 updateCandidates(Λ̂, 𝜆);

17 end

18 return Λ;

19 Procedure getWeights(Λ):

20 𝑤 𝑗 ← 1 ∀ 𝑗 ∈ {1, . . . ,𝑚};

21 return𝑤

22 Procedure updateEntropies(𝐻 , 𝜆):

23 ℎ̄𝑖, 𝑗 ← min(ℎ̄𝑖, 𝑗 , 𝐻 (𝑥∗𝑗 |𝑐
𝜆)) ∀ 𝑖, 𝑗 : 𝑐𝜆𝑖 = 1;

24 Procedure updateCandidates(Λ̂, 𝜆):

25 Λ̂← Λ̂ \ {𝜆};

26 Procedure extendLF(𝜆):

27 return 𝜆;

to the core algorithm in subsequent sections. These control the

feature weights used by the utility function𝑈 (getWeights, which

currently weights all features equally), how the set of candidate

LFs Λ̂ is updated after an LF is selected (updateCandidates, which

currently just removes the selected LF from the candidate set), and

how a selected candidate LF may be extended before being added

to Λ (extendLF, which does not currently extend LFs).

3.3 Conjunctive and Disjunctive LFs

In the coreWitan algorithm, the best LF is selected from a set of

candidates in each iteration, which is similar to IWS’s approach of

searching through a family of LFs [10]. To limit the computational

cost in each iteration, both the core Witan algorithm and IWS

constrain the candidate set to LFs with conditions based on a sin-

gle feature or heuristic. In this section, we extend the coreWitan

algorithm to generate LFs based on logical conjunctions (ANDs)

2338

Algorithm 2: updateCandidates for conjunctive LFs

Input :Training data 𝑋 , gain exponent 𝛾 , min. LF

coverage 𝑐min, entropy matrix 𝐻 , weights vector𝑤 ,

set of candidate LFs Λ̂, newly selected LF 𝜆

Output :Updated set of candidate LFs Λ̂

1 Λ̂← Λ̂ ∪ {𝜆[𝑑𝜆 = (𝑑𝜆 ∪ { 𝑗}); 𝑐𝜆 = (𝑐𝜆 ∧ 𝑥∗𝑗); 𝑝
𝜆
= 𝜆]

∀ 𝑗 ∈ {1, . . . ,𝑚}

: 1
𝑛

∑𝑛
𝑖=1 𝑐

𝜆
𝑖 ≥ 𝑐min, 𝑗 ∉ 𝑑𝜆};

2 Λ̂← Λ̂ \ {𝜆 ∀ 𝜆 ∈ Λ̂ : 𝑝𝜆 = 𝑝𝜆, 𝑑𝜆 ⊆ 𝑑𝜆};

3 Λ̂← argmax
Λ̂′⊆Λ̂, |Λ̂′ | ≤𝑚

∑

𝜆∈Λ̂′
𝑈𝑋,�̄�,𝛾,𝑤 (𝜆);

and disjunctions (ORs) of feature conditions, incurring minimal ad-

ditional computational cost by dynamically updating the candidate

set and selected LFs. We expect this to improve the effectiveness

of selected LFs, as conjunctive LFs can target narrower subsets of

instances to achieve higher information gain, while disjunctive LFs

can target wider sets of instances to achieve higher coverage.

In Algorithm 2, we redefine updateCandidates to extend the

LF candidate set Λ̂ to include logical conjunctions of a selected LF

𝜆’s condition with other feature conditions. Specifically, for each

feature 𝑗 that is not already part of the selected LF’s condition

(𝑗 ∉ 𝑑𝜆) we construct a new conjunctive candidate LF 𝜆 such that

𝑑𝜆 = 𝑑𝜆 ∪ { 𝑗} and 𝑐𝜆 = 𝑐𝜆 ∧ 𝑥∗𝑗 , excluding LFs that do not achieve

minimum coverage 𝑐min (line 1). As the conjunction means that

each new 𝜆 will only cover a subset of the instances already covered

by 𝜆, we can consider 𝜆 to be a child of 𝜆. This forms a hierarchical

structure of LFs, notated by defining the parent of 𝜆 as 𝑝𝜆 = 𝜆. This

conjunctive structure enables the expression of LFs that identify

subcategories of other LFs: an LF conditional on the word “moviež

could be the parent of LFs conditional on words that identify how

that movie is described, such as “horriblež or “likedž. The new

procedure definition also alters how selected LFs are removed from

the candidate set to account for both conjunctive and disjunctive

LFs: we now remove any candidates that are siblings of the original

LF 𝜆 and are conditioned by a subset or equal set of features (line

2). Finally, to prevent increasing computational cost through the

growth of the candidate set, we maintain the original size of𝑚 by

only retaining candidates with the highest utility (line 3).

In Algorithm 3, we redefine extendLF to attempt extending a

selected LF 𝜆 into a disjunction between the original LF’s condition

and other candidate LF conditions. Each iteration of extendLF’s

main loop finds the sibling candidate LF 𝜆′ that maximises the util-

ity function with weights 𝑤 ′ that are relative to the information

gain achieved by 𝜆 on each feature (lines 2ś3). A sibling that pro-

vides information gain on a similar set of features to 𝜆 tends to have

a logical similarity with 𝜆, which leads to a disjunctive condition

that makes sense to the user. For example, an LF for positive word

“wonderfulž could be extended with a disjunction to a similar posi-

tive word, such as “excellentž. LFs 𝜆 and 𝜆′ are used to construct a

new disjunctive LF 𝜆′ such that 𝑑𝜆
′
= 𝑑𝜆 ∪ 𝑑𝜆

′
and 𝑐𝜆

′
= 𝑐𝜆 ∨ 𝑐𝜆

′

(line 4). If 𝜆′ provides greater𝑤 ′-weighted utility than the original

LF 𝜆, then we can say that it is a superior LF fulfilling the same

Algorithm 3: extendLF for disjunctive LFs

Input :Training data 𝑋 , gain exponent 𝛾 , entropy matrix

𝐻 , set of candidate LFs Λ̂, newly selected LF 𝜆

Output :Extended selected LF 𝜆

1 loop

2 𝑤 ′𝑗 ← max(0, 𝐼𝐺 (𝑥∗𝑗 , 𝑐
𝜆)) ∀ 𝑗 ∈ {1, . . . ,𝑚};

3 𝜆′ ← argmax

𝜆∈Λ̂, 𝑝�̂�=𝑝𝜆

𝑈𝑋,�̄�,𝛾,𝑤′ (𝜆);

4 𝜆′ ← 𝜆′[𝑑𝜆
′
= (𝑑𝜆 ∪ 𝑑𝜆

′
); 𝑐𝜆

′
= (𝑐𝜆 ∨ 𝑐𝜆

′
);𝑝𝜆

′
= 𝑝𝜆];

5 if 𝑈𝑋,�̄�,𝛾,𝑤′ (𝜆
′) > 𝑈𝑋,�̄�,𝛾,𝑤′ (𝜆) then

6 𝜆 ← 𝜆′;

7 else

8 return 𝜆;

9 end

10 end

role for feature diversity, and we can replace 𝜆 with 𝜆′ (lines 5ś6).

Iteration continues to add further disjunctions to 𝜆 until there is

no further increase in utility, at which point 𝜆 is returned so that it

can be added to Λ (line 8).

3.4 Incorporating Feedback

We have highlighted the benefits of being able to use Witan in

an unsupervised fashion, namely that the user does not need to

have a fixed idea of their class structure beforeWitan can begin LF

generation; input is only required from the user to assign class labels

toWitan-generated LFs. However, other LF generation methods

like IWS and Snuba make use of some form of user supervision to

guide the generation of LFs that are suited to the user’s classification

task. We now describe an approach for guiding Witan’s selection

of LFs with user feedback on seed and previously generated LFs.

We allow the user to provide feedback by marking any LF in the

set of selected LFsΛ as approved. We represent feedback on an LF 𝜆

with 𝑓 𝜆 ∈ {approved, null}, where 𝑓 𝜆 = null when the user has

not provided feedback for 𝜆. Given feedback for a subset of selected

LFs, we would like Witan to select subsequent LFs that support

a class structure consistent with approved LFs: {𝜆 ∀ 𝜆 ∈ Λ : 𝑓 𝜆 =

approved}. One way of interpreting this feedback is that approved

LFs have successfully achieved information gain on features that

are correlated with the target class variable. For example, if the

user approves an LF for positive word “wonderfulž that provides

information gain on other positive and negative words, then we

should favour LFs that also provide information gain on such words

as they will likely also be effective classifiers of positive/negative

sentiment. Therefore, we can utilise feedback by using it to update

the weight 𝑤 𝑗 of information gain for each feature 𝑗 in utility

function𝑈 , increasing the weight of features for which approved

LFs provided high information gain. The intent is to prioritise

LFs for classes complementary to approved LFs, as such LFs will

optimiseWitan’s utility function by further reducing entropy on

similar feature sets while covering different sets of instances.

In Algorithm 4, we redefine getWeights to incorporate feedback

𝑓 𝜆 for selected LFs 𝜆 ∈ Λ. If no feedback is available, equal weights

are returned (line 3), otherwise weights are computed as follows.

2339

Algorithm 4: getWeights for incorporating feedback

Input :Training data 𝑋 , selected LFs Λ

Output :Weights vector𝑤

1 Λ
𝑓 ← {𝜆 ∈ Λ : 𝑓 𝜆 = approved};

2 if Λ𝑓
= ∅ then

3 𝑤 𝑗 ← 1 ∀ 𝑗 ∈ {1, . . . ,𝑚};

4 else

5 𝑤 𝑗 ← 0 ∀ 𝑗 ∈ {1, . . . ,𝑚};

6 foreach 𝜆 ∈ Λ𝑓 do

7 𝑤 ′𝑗 ← max(0, 𝐼𝐺 (𝑥∗𝑗 , 𝑐
𝜆)) ∀ 𝑗 ;

8 𝑤 𝑗 ← 𝑤 𝑗 +
𝑤′𝑗

∑𝑚
𝑙=1 𝑤

′
𝑙

∀ 𝑗 ;

9 end

10 end

11 return𝑤

For each approved LF 𝜆, we construct vector𝑤 ′ of the information

gains achieved by 𝜆 on each feature (line 7). The final weights

vector𝑤 is constructed by summing normalised𝑤 ′ for all approved

LFs (line 8), such that the sum of weights contributed by each LF

equals 1. Note that in Algorithm 1, the weights are updated in each

iteration (line 14), allowing the user to interactively guideWitan

by immediately providing feedback on each LF selected by Witan.

3.5 Analysis of Witan

We now analyse Witan, highlighting interaction modes it affords,

assessing its computational complexity, qualitatively analysing Wi-

tan-generated LFs, and discussing potential failure modes.

3.5.1 Interaction Modes. Because Witan can be run without any

labelled instances, seed LFs, or even predefined class structure, it

achieves the primary goal of performing LF generation without any

initial supervision. Once a set of LFs has been generated, the user

can choose which LFs to assign class labels. We argue that this is a

straightforward task for the user, as the conjunctive and disjunctive

feature-based conditions generated byWitan are simply expressed

in conjunctive normal form (an “AND of ORsž). Similar decision

rules have been found to be a highly understandable format for

expressing the behaviour of machine learning models to users [51].

Additionally, a user study with IWS’s single-condition LFs found

that users were able to label LFs accurately and that users could

label LFs faster than they could label individual instances [10].

Users may also provide initial seed LFs for Witan to grow with

additional LFs that increase coverage and feature diversity. Further-

more, once a user has labelled a set of Witan-generated LFs, they

may use them as seed LFs in a subsequent execution of Witan.

With the feedback extension described in Section 3.4,Witan can

use the knowledge of whether or not a generated LF was approved

and assigned a class label to guide LF generation toward those that

are more likely to be useful for the user’s target classification task.

In the extreme case, a user may operateWitan in a step-by-step

manner: generating a single LF, labelling that LF, and then continu-

ing to run Witan with feedback. Such a step-by-step approach is

not suitable when the user must review a full set of LFs to determine

the class structure, but rather when the user already knows their

desired class structure (as required for feedback-based LF gener-

ators like IWS) or would be able to recognise LF conditions that

identify classes relevant to their classification task. For example,

a user starting to classify warranty claims according to fault type

may not know what types of fault exist but would recognise that LF

conditions on keywords like “batteryž or “chargingž clearly iden-

tify a battery-related fault type. We experiment with step-by-step

labelling to demonstrate the feedback extension in Section 4.5.

3.5.2 Computational Complexity. The time complexity of eachWi-

tan iteration is dominated by the computation of utility function

𝑈 for each candidate LF 𝜆 ∈ Λ̂. While the 𝑂 (𝑛) computation of

𝐻 (𝑥∗𝑗 |𝑐
𝜆) for each 𝑗 and 𝜆 can be cached between iterations, per-

forming the sum over𝑚 features and 𝑛 instances in𝑈 for each of up

to𝑚 candidate LFs still results in a complexity of 𝑂 (𝑚2𝑛). There-

fore, the runtime of Witan is largely determined by the number of

features, as demonstrated in our runtime study (Section 4.3).

The time complexity of Witan is not affected by the proposed ex-

tensions to the core algorithm. updateCandidates in Algorithm 2

computes𝑈 for up to𝑚 new candidates for a complexity of𝑂 (𝑚2𝑛),

and also ensures the number of candidates does not exceed 𝑚.

extendLF in Algorithm 3 can use cached candidate conditional en-

tropies and re-weight them by𝑤 ′, leaving the 𝑂 (𝑚𝑛) computation

of 𝑈𝑋,�̄�,𝛾,𝑤′ (𝜆
′) in each of a maximum of𝑚 loop iterations as the

dominating factor. The complexity of computing the Boolean com-

bination of features to produce a coverage vector 𝑐𝜆 for an LF added

by these extensions is at most 𝑂 (𝑚𝑛), so it does not impact the

overall complexity. Finally, getWeights in Algorithm 4 performs

the𝑂 (𝑛) computation of 𝐼𝐺 for𝑚 features and each 𝜆 ∈ Λ𝑓 , giving

complexity 𝑂 (|Λ𝑓 |𝑚𝑛), where |Λ𝑓 | is expected to be much smaller

than𝑚 and entropies used to compute 𝐼𝐺 could be cached.

Witan’s memory requirements are dominated by entropymatrix

𝐻 and candidate coverage vectors 𝑐𝜆 ∀ 𝜆 ∈ Λ̂ that both require

𝑂 (𝑚𝑛) space, as well as cached candidate conditional entropies

𝐻 (𝑥∗𝑗 |𝑐
𝜆) ∀ 𝑗 ∈ {1, . . . ,𝑚}, 𝜆 ∈ Λ̂ that require 𝑂 (𝑚2) space.

3.5.3 Qualitative Analysis. Figure 2 presents LFs generated by 10

iterations of Witan on bag-of-words features from three text clas-

sification datasets, colouring LFs that were accurate enough for

a simulated user to assign a class label, as described in Section 4.

Unlabelled LFs are shown in grey. “∨ž-separated keywords form

disjunctive (OR) LF conditions, and nested LFs prefixed by “∧ž rep-

resent conjunctions (ANDs) between parent and child LFs.

Overall, the LFs tend to use coherent sets of keywords with

understandable meanings while also achieving desirable levels of

coverage and accuracy. Note that while positive/negative sentiment

analysis is the classification target for the IMDb reviews, unsuper-

vised Witan produces a diverse range of LFs that could be used to

classify reviews based on other concepts (e.g. by format: “moviež vs

“episodež; or genre: “documentaryž vs “animationž). In the dataset

for discriminating painter and architect biographiesWitan even

begins to identify LFs associated with sub-classes of the intended

target classes, such as “data/enterprisež architects. Finally, we note

thatWitan is able to capture a range of classes in the multi-class

20Newsgroups dataset, though only one LF is identified for the

rarer “sciencež class, and no LFs are identified for the rare “politicsž

class after only 10 iterations.

2340

IMDb Review Sentiment
• negative: waste∨worst
(coverage: 13%, accuracy: 90%)

• documentary
• movie

• negative: ∧ waste∨bad∨stupid∨crap
(coverage: 22%, accuracy: 79%)

• positive: wonderful∨excellent∨superb
(coverage: 14%, accuracy: 80%)

• films
• animation
• episodes∨episode
• positive: loved
(coverage: 5%, accuracy: 75%)

• rent

Bias Bios: Painter or Architect
• painter: paintings∨painting (coverage: 25%, accuracy: 99%)
• architect: architecture∨development∨architect∨software∨
architectural∨solutions∨management (coverage: 34%, accuracy: 95%)

• painter: art∨gallery∨artist (coverage: 30%, accuracy: 88%)
• architect: data∨enterprise (coverage: 5%, accuracy: 98%)
• architect: experience∨projects (coverage: 19%, accuracy: 86%)
• painter: paints∨life∨paint∨color (coverage: 15%, accuracy: 89%)
• architect: microsoft∨technologies∨business∨services∨applications∨
web∨application (coverage: 13%, accuracy: 91%)

• painter: york (coverage: 8%, accuracy: 71%)
• painter: colors (coverage: 2%, accuracy: 97%)
• painter: images∨work∨arts∨born∨school∨landscape
(coverage: 43%, accuracy: 70%)

20Newsgroups Topics
• nntp
• computer: thanks (coverage: 15%, accuracy: 57%)

• computer: ∧ advance (coverage: 3%, accuracy: 68%)
• article

• religion: ∧ rutgers (coverage: 3%, accuracy: 87%)
• sports: bike (coverage: 2%, accuracy: 100%)
• computer: hi∨windows∨pc∨graphics∨dos∨mac
(coverage: 18%, accuracy: 80%)

• sports: hockey∨season∨baseball
(coverage: 6%, accuracy: 94%)

• science: clipper (coverage: 3%, accuracy: 97%)
• religion: god∨christians∨christian∨jesus∨bible∨
christianity∨religion∨waco∨jews∨christ∨religious∨
church∨israel (coverage: 18%, accuracy: 56%)

Figure 2: Examples of Witan-generated LF sets

3.5.4 Potential Failure Modes. We now discuss scenarios where

Witan’s approach to generating LFs may produce a sub-optimal

classifier. Recall that the intuition behind Witan’s utility function

presented in Section 3.1 is based on the assumption that some fea-

tures will be correlated with target classes. Therefore, Witan is

unlikely to produce accurate LFs if no features correlate with the

target classes. Furthermore, asWitan favours LFs with high cov-

erage, it may struggle to identify LFs for rare classes, such as in

classification tasks with high imbalance or numerous target classes

(as demonstrated with the 20Newsgroups LFs in Section 3.5.3 and

in the multi-class experiments of Section 4.4). This issue may be

addressed in some cases by increasing 𝛾 to prioritise fine-grained

LFs with higher information gain over those with higher coverage

or by providing feedback to focusWitan on LFs that are comple-

mentary to selected LFs. We also note that accurately representing

rare classes is a general problem for weak supervision from coarse

LFs, and discuss the potential for future work to augmentWitan

with instance-level labelling in Section 5.

4 EXPERIMENTAL STUDY

The following experiments compareWitan to state-of-the-art LF

generation methods (IWS [10] and Snuba [53]), LFs produced by

clustering methods (HDC [56] and CBI [20]), and common low-

effort labelling approaches (semi-supervised learning [59] and ac-

tive learning [31]). We demonstrate that, even without initial su-

pervision, Witan is able to achieve competitive F1 scores on both

binary and multi-class classification tasks. We also compare method

runtimes and perform an ablation study to justify Witan’s design

decisions. All experiments were performed on 64-bit Ubuntu 20.04

running on a 12x2.60GHz Intel Core i7 CPU with 48GB of memory.

4.1 Experiment Framework

As the downstream goal of labelling is to produce an effective clas-

sifier, we evaluate the performance of a classifier trained using each

labelling method. In each experiment, a given labelling method is

applied to an unlabelled training dataset to produce labels for all

or a subset of instances. For methods that produce LFs, probabilis-

tic training labels are generated from the LFs using the Snorkel

labelling model [49] under assumptions of independent LFs and bal-

anced classes1. Labelled training instances are then embedded into

1Although this assumption will not hold for all datasets, it is a realistic operating
condition when the user does not know the true class balance.

300 feature dimensions via truncated Singular Value Decomposition

(SVD) and used to train a multilayer perceptron with two hidden

layers of 20 units, RELU activations, softmax output, and logarith-

mic loss. This is the same discriminative model used to evaluate

IWS [10], except the sigmoid output has been replaced with soft-

max to support multi-class classification. We evaluate classification

performance by the mean F1 score achieved across target classes on

the ground-truth labels of a held-out test set. While the AUC metric

used in the evaluation of IWS [10] evaluates performance across

a range of classification thresholds, we believe it is important to

focus on the performance of the default threshold in the context of

low-effort labelling, given that a user will likely not have access to

labelled instances with which to tune the threshold. F1 also has a

precedent in past evaluations of data programming [3, 50, 53].

To compare labelling methods under similar conditions of user

effort, we specify a budget of “user interactionsž (Interaction Count

𝐼𝐶) that a method may leverage in each experiment. The form of

each interaction varies depending on the nature of the method, but

the user effort required for each interaction is approximately equiv-

alent. For methods that accept input in the form of instance labels

(Snuba, semi-supervised learning, and active learning), each pro-

vided label is considered a single interaction. For LF-based methods

(Witan, IWS, HDC, and CBI), each LF the user is asked to approve

or reject is counted as an interaction. For Witan and CBI, each

interaction also includes the selection of the class label that an

approved LF should assign. If the interaction budget is less than

the number of candidate LFs, surplus interactions will effectively

be unused. These user interactions are simulated in experiments

based on ground truth labels for training instances: instance-based

methods may query specific instance labels while LFs are approved

if they would be at least 20% more accurate on the training dataset

than an ideal random classifier for the target class (acc ≥ 1
𝑘
+0.2). As

Witan, IWS, and CBI can also accept seed LFs, we perform seeded

experiments with two seed LFs for each class based on randomly

selected features with accuracy: 0.2 ≤ (acc − 1
𝑘
) ≤ 0.35. The de-

scribed framework of counting interactions (specifically, equating

instance labelling and LF approval), simulating users, and providing

seed LFs is based on that used to evaluate IWS [10].

With the exception of IWS requiring the full set of classes for

initialisation, the user simulated in this experimental framework

is not expected to have prior knowledge of the class structure, but

rather enough understanding of their classification task to identify

2341

the correct class for a given instance or LF condition. While exten-

sive understanding would be required to identify instance classes

for instance-based methods or to identify classes for HDC’s LF con-

ditions (where the conditioned features increase with the number

of LFs), we expect identifying classes for the LF conditions of Wi-

tan and CBI to require minimal prior knowledge, as discussed in

Section 3.5.1. We justify this claim as well as including the selection

of an LF’s class label in each user interaction forWitan and CBI

by arguing that if an LF condition is relevant enough to a proposed

class for the user to approve an IWS-generated LF, then they should

just as easily be able to identify the correct class for such an LF

condition. Also note that, under this experimental framework, any

of the evaluated methods may fail to label instances for one or more

classes after a budgeted number of interactions, in which case the

evaluated classifier will not be trained on those classes.

We present mean F1 scores over five random seedings of methods

and seed LFs, except for unseededWitan and HDC which do not

depend on a random seed. Standard deviations are omitted for

brevity but never exceed 0.3. The median standard deviation for

each method across experiments in each of Table 3, Figure 4, and

Figure 5 never exceeds 0.090, except for semi-supervised learning

which never exceeds 0.135. Because runtimes are reported for non-

parallelised experiments that are more time-consuming to execute,

they represent a single random seeding.

4.1.1 Evaluated Methods. We evaluateWitan both with the exten-

sions for conjunctive and disjunctive LFs described in Section 3.3

and without them (referred to as Witan-Core). Instead of stop-

ping according to 𝐶min, Witan generates a number of LFs equal

to the allowed 𝐼𝐶 , and each LF is either rejected or labelled by the

simulated user. While both Witan variants include the feedback

extension (Section 3.4), only seed LFs will be marked as approved.

Without seed LFs, both variants will test Witan’s ability to gener-

ate an entire set of LFs without supervision, while interactive user

feedback is evaluated in our ablation study. Except as noted in the

ablation study, Witan is run with 𝛾 = 2 and 𝑐min
= 0.02.

We compare Witan to two state-of-the-art LF generation meth-

ods: IWS [10] and Snuba [53]. We base our implementations on each

paper’s accompanying source-code. For IWS, we experiment with

the AS and LSE-AC (�̃� = 100) LF acquisition strategies. As IWS’s

authors only describe binary classification, we exclude IWS from

multi-class experiments. For Snuba, we generalise some binary-

class assumptions in the original implementation to support multi-

class classification, use decision stumps as heuristic models to gen-

erate reasonably interpretable LFs, and randomly sample a number

of instances from the training set equal to 𝐼𝐶 for the input dataset.

We use the formulation of 𝜈 in the paper over that in the codebase,

as𝑚 + 1 in the divisor ensures 𝜈 is never negative. However, we

retain some implementation details of the codebase: the range of

[0.25, 0.45] for 𝛽 , which the codebase states achieves better results,

and keeping three LFs from the first Snuba iteration. We also use the

fixed number of 20 iterations implemented in the codebase rather

than the stopping condition described in the paper because hyper-

parameter values were not specified and initial experimentation

with this method was less promising than fixed iterations.

We also evaluate using clustering to generate LFs that can be

subsequently labelled by users. We evaluate hierarchical divisive

clustering (HDC), implementing the foundational MGR algorithm

[45] with improvements to select conditions based on MNIG and

to always bisect the largest sub-cluster [56]. Unlike most cluster-

ing methods, HDC’s clusters are described by feature conditions,

though its iterative bisections result in complex conditions with up

to as many features as there are clusters. We also evaluate clustering

by intent (CBI) [20], which produces clusters with interpretable con-

ditions, but relies on initial seeding and interactive user feedback.

Our implementation trains the “residualž classifier on instances cov-

ered without disagreement by seed LFs and uses the same model

as the downstream classifier. We use hyper-parameter values from

the original paper, except we always take up to 1000 instances for

the residual, capped at 50% of the training set for smaller datasets.

Finally, we compare against semi-supervised learning and active

learning, which are commonly used approaches for learning with

few labels. For semi-supervised learning, we apply label spread-

ing [59] with a KNN kernel to a random sample of training instances

equal to the allowed interaction count. We initialise active learning

with random training instances until instances from at least two

classes have been selected, and then iteratively apply uncertainty

sampling [31] to query for additional training labels until the inter-

action budget is exhausted. In each uncertainty sampling iteration,

the downstream classification model described above is trained

with the current set of labelled training instances, and the training

instance classified with least certainty is queried for its label.

4.1.2 Datasets. Table 2 lists the binary-class and multi-class text

classification datasets used in our experiments. Text is transformed

to word count feature representations using the pipeline from the

IWS codebase [10]. We use binary bag-of-words features with at

least 2% coverage of training instances as candidates for LF condi-

tions in IWS, Snuba, andWitan. These feature counts are shown

in parentheses next to the raw feature count in Table 2. The word

reuters and other boilerplate text identifying the non-fake news

source was removed from the FNS dataset. Many of these datasets

have been used in other studies on weak supervision and data

Table 2: Binary and multi-class datasets used in experiments

Description Train 𝑛 𝑘 𝑚 (cov. ≥ 2%)

IMD IMDb review sentiment [35] 25,000 2 18,525 (791)
IMG IMDb review drama/comedy 15,261 2 13.761 (770)
BPA Painter/architect bio [15] 6,118 2 3,130 (246)
BPT Professor/teacher bio [15] 12,294 2 4,858 (236)
BJP Journalist/photographer bio [15] 16,129 2 5,597 (217)
BPP Professor/physician bio [15] 27,238 2 6,752 (222)
AZN Amazon review sentiment [27] 160,000 2 22,130 (160)
YLP Yelp review sentiment [58] 19,000 2 7,868 (474)
PLT Plots: action/romance [53] 973 2 211 (61)
FNS Fake news identification [1] 22,449 2 21,179 (1,626)
BDB DBPedia: politics/company [58] 40,022 2 9,161 (178)
BAG AGNews: business/tech [58] 29,979 2 7,454 (137)
ATW Airline tweet sentiment [14] 5,771 2 846 (60)
DMG Identifying disaster tweets [40] 2,915 2 1,143 (91)
SPM SMS spam identification [2] 2,786 2 439 (42)
TWN 20Newsgroups topics [30] 8,935 5 11,948 (799)
DBP DBPedia categories [58] 56,000 14 12,682 (142)
AGN AGNews topics [58] 60,000 4 12,494 (101)
NYT NYT topics [39] 15,999 9 27,029 (2,372)

2342

programming [10, 53, 55] and some feature in the recently pro-

posed WRENCH benchmark datasets for weak supervision [57].

For consistency with other studies, we use predefined train/test

splits where available, and use a random 50/50 split otherwise. All

datasets except for ATW, SPM, TWN, and NYT have approximately

balanced class distributions. DMG and SPM were retrieved from

the UCI Machine Learning Repository [18]. IMG is the subset of

IMD reviews for titles belonging to either, but not both, of the most

common genres (Drama or Comedy); successfully performing differ-

ent classification tasks on the same input data highlights Witan’s

ability to produce diverse LFs without initial supervision.

4.2 Binary-Class Experiments

Table 3 presents the performance of both unseeded and seeded

labelling methods on binary classification tasks, including the base-

line performance achieved by a classifier trained on the fully la-

belled training set.We present the F1 score achieved after 25 and 100

user interactions (𝐼𝐶), representing low and moderate user effort,

respectively. The best performing methods for each dataset after

each 𝐼𝐶 are highlighted in bold, revealing the following insights:

• For 𝐼𝐶 = 25, Witan is the best performing method. This

low interaction setting is important not only because it

requires less user effort, but also because a smaller set of

LFs will be more understandable and maintainable.

• For 𝐼𝐶 = 100,Witan-Core is the best performing method.

For all but three datasets,Witan-Core achieves F1 within

0.1 of the fully supervised baseline, highlighting the ability

of Witan to train an accurate classifier with moderate la-

belling effort. We discuss performance differences between

Witan and Witan-Core in our ablation study (Section 4.5).

• Active learning is the next best performer, particularly with

more interactions. This suggests that the classification tasks

where active learning performs best are better learned with

specific example instances than with coarse LFs that cover

many instances. However, we emphasise that LFs have the

additional benefit over labelled instances of acting as an un-

derstandable and maintainable knowledge representation.

• As expected, seeded methods tend to perform better than

their unseeded counterparts. In particular, IWS without

seeding sometimes fails to generate any approved rules

(F1 = 0) for 𝐼𝐶 = 25. However, this difference is often small,

particularly after more interactions.

We compared methods across datasets using Friedman tests and

accompanying Nemenyi post-hoc tests [16] for 𝐼𝐶 = 25 and 𝐼𝐶 =

100, and in both cases rejected the null-hypothesis that “all methods

produce equivalent F1 scoresž at the 95% confidence level. The

critical difference diagrams in Figure 3 show groups ofmethodswith

statistically insignificant differences. Note that allWitan variants

and active learning are in the top group for both values of 𝐼𝐶 and

that seeded variants of Witan achieve the best overall performance.

Figure 4 further demonstrates how performance changes with

𝐼𝐶 . Note that the performance of most methods tends to converge

after many interactions, butWitan achieves near-optimal perfor-

mance with far fewer interactions than other methods. We also note

that performance may drop at higher 𝐼𝐶 for LF-based methods if

additional labelled LFs are of poorer quality or result in an incorrect

class balance in instance labels; poor performance on even one class

due to incorrect balance can greatly affect F1 scores.

Table 3: Binary classification F1 scores for unseeded and seeded labelling methods at 25 and 100 interactions (IC).

Method IC IMD IMG BPA BPT BJP BPP AZN YLP PLT FNS BDB BAG ATW DMG SPM

Full supervision 0.836 0.780 0.950 0.898 0.933 0.942 0.905 0.872 0.779 0.976 0.995 0.901 0.822 0.964 0.941

Witan 25 0.727 0.710 0.923 0.848 0.892 0.860 0.772 0.737 0.675 0.900 0.979 0.777 0.510 0.723 0.816
100 0.753 0.768 0.931 0.817 0.887 0.875 0.779 0.795 0.624 0.905 0.949 0.708 0.550 0.690 0.781

Witan-Core 25 0.738 0.703 0.910 0.836 0.859 0.840 0.760 0.737 0.667 0.891 0.978 0.728 0.632 0.783 0.745
100 0.785 0.771 0.938 0.833 0.900 0.848 0.834 0.801 0.719 0.908 0.976 0.764 0.594 0.846 0.843

IWS-AS 25 0.363 0.511 0.619 0.398 0.504 0.660 0.559 0.427 0.635 0.448 0.774 0.479 0.536 0.676 0.536
100 0.575 0.746 0.815 0.477 0.845 0.835 0.796 0.565 0.721 0.391 0.965 0.688 0.607 0.808 0.805

IWS-LSE-AC 25 0.000 0.354 0.793 0.524 0.640 0.839 0.574 0.398 0.467 0.375 0.938 0.525 0.526 0.634 0.675
100 0.656 0.594 0.850 0.509 0.826 0.850 0.790 0.651 0.721 0.476 0.964 0.668 0.604 0.809 0.805

Snuba 25 0.458 0.436 0.718 0.726 0.693 0.820 0.507 0.497 0.601 0.584 0.781 0.489 0.519 0.781 0.624
100 0.501 0.521 0.844 0.763 0.759 0.830 0.651 0.668 0.631 0.796 0.862 0.647 0.503 0.783 0.598

HDC 25 0.000 0.388 0.663 0.746 0.688 0.802 0.576 0.495 0.596 0.788 0.753 0.749 0.403 0.865 0.777
100 0.545 0.428 0.686 0.746 0.695 0.862 0.572 0.500 0.714 0.836 0.759 0.806 0.442 0.894 0.452

Semi-supervised 25 0.543 0.464 0.664 0.609 0.743 0.450 0.521 0.468 0.536 0.796 0.861 0.436 0.450 0.502 0.575
100 0.607 0.599 0.551 0.567 0.491 0.590 0.700 0.467 0.558 0.642 0.913 0.592 0.546 0.789 0.571

Active learning 25 0.551 0.562 0.846 0.739 0.739 0.860 0.622 0.596 0.583 0.799 0.894 0.519 0.568 0.761 0.728
100 0.666 0.642 0.917 0.837 0.845 0.911 0.787 0.745 0.684 0.895 0.973 0.780 0.715 0.914 0.876

Seeded Witan 25 0.774 0.761 0.931 0.834 0.890 0.880 0.742 0.795 0.696 0.909 0.980 0.768 0.544 0.759 0.696
100 0.779 0.748 0.931 0.806 0.880 0.881 0.808 0.802 0.616 0.903 0.960 0.726 0.570 0.573 0.696

Seeded Witan-Core 25 0.756 0.756 0.926 0.840 0.863 0.838 0.785 0.768 0.680 0.893 0.974 0.756 0.654 0.792 0.767
100 0.790 0.763 0.941 0.822 0.900 0.861 0.835 0.796 0.718 0.915 0.976 0.770 0.595 0.846 0.843

Seeded IWS-AS 25 0.703 0.657 0.752 0.576 0.644 0.763 0.646 0.594 0.678 0.649 0.899 0.600 0.645 0.716 0.637
100 0.771 0.721 0.912 0.606 0.849 0.836 0.810 0.736 0.721 0.522 0.968 0.687 0.607 0.805 0.806

Seeded IWS-LSE-AC 25 0.333 0.393 0.877 0.652 0.705 0.842 0.632 0.443 0.659 0.521 0.942 0.610 0.621 0.761 0.725
100 0.613 0.457 0.904 0.602 0.834 0.849 0.784 0.721 0.721 0.750 0.967 0.686 0.607 0.821 0.806

Seeded CBI 25 0.554 0.596 0.708 0.672 0.619 0.715 0.510 0.594 0.525 0.740 0.722 0.593 0.428 0.497 0.620
100 0.617 0.603 0.796 0.744 0.781 0.778 0.507 0.653 0.525 0.809 0.926 0.620 0.428 0.497 0.620

2343

Figure 3: Critical difference diagrams for binary classification

F1 of labelling methods at 𝐼𝐶 of 25 (above) and 100 (below).

4.3 Runtime Study

Table 4 compares the runtimes of labelling methods after 100 inter-

actions, with methods faster and slower thanWitan highlighted

in blue and red, respectively. As the computational complexity of

Witan does not depend on the number of classes, we only present

runtimes for binary-class datasets. Without extending the set of

candidate LFs with conjunctions and disjunctions,Witan-Core is

slightly faster than Witan. CBI, Snuba, and semi-supervised learn-

ing are also faster in some cases, as their runtimes are not heavily

dependent on the number of user interactions. Witan is generally

faster than IWS and active learning, with the exception of the FNS

dataset. Witan is much slower than other methods on FNS due to

its large number of features𝑚 and becauseWitan’s runtime scales

with𝑚2. With the exception of this extreme case,Witan’s maxi-

mum average runtime per user interaction is less than 4 seconds

(for IMD), making it practical for use in an interactive setting.

4.4 Multi-Class Experiments

Figure 5 compares labelling methods on four multi-class classifica-

tion tasks. All methods are unseeded, except for CBI which requires

Figure 4: Binary classification results.

seed LFs for two random classes to train its “residualž classifier. In

contrast to the binary classification results, Witan-Core begins to

outperformWitan at lower 𝐼𝐶 and HDC, active learning, and semi-

supervised learning are stronger performers, especially at higher 𝐼𝐶 .

These results suggest that the smaller classes of multi-class prob-

lems are better captured by lower coverage LFs (e.g. those generated

Table 4: Runtime in seconds for labelling methods. Runtimes highlighted when slower thanWitan by more than 10 or 60

seconds, or faster than Witan by more than 10 or 60 seconds.

Method IC IMD IMG BPA BPT BJP BPP AZN YLP PLT FNS BDB BAG ATW DMG SPM

Witan 100 310.4 173.8 17.0 23.7 23.0 50.1 105.8 98.0 0.2 1576.0 43.8 19.4 0.9 1.3 0.2
Witan-Core 100 333.2 187.6 13.3 19.2 19.0 26.4 57.3 93.6 0.3 1340.0 21.9 12.7 0.4 0.7 0.2
IWS-AS 100 626.0 559.9 612.7 621.2 617.0 620.8 668.9 632.8 577.6 653.6 641.3 636.2 583.0 618.2 472.5
IWS-LSE-AC 100 655.7 584.3 635.3 640.8 636.1 652.3 690.6 653.0 596.0 673.5 665.6 655.9 602.1 642.5 497.3
Snuba 100 158.7 144.4 48.6 48.6 45.0 46.7 58.6 95.0 14.7 326.2 41.8 31.8 14.9 20.3 3.9
HDC 100 423.4 250.7 11.0 19.1 22.0 19.9 83.8 133.5 0.3 1019.2 34.4 20.6 0.3 0.9 0.2
CBI 100 70.4 55.3 7.1 12.7 15.3 20.7 118.6 34.2 0.7 115.2 26.0 17.9 2.3 2.4 1.4
Semi-supervised 100 30.5 11.2 1.0 4.4 6.4 20.7 550.7 12.9 0.0 33.8 34.3 19.4 0.6 0.1 0.1
Active learning 100 927.8 682.0 203.5 272.4 303.1 355.1 987.5 432.5 40.9 1132.8 459.7 391.6 74.8 102.8 55.8

2344

Figure 5: Multi-class classification results.

by HDC andWitan-Core, without disjunctions) or by labelling spe-

cific example instances (e.g. active and semi-supervised learning).

An extreme example of this is the highly-imbalanced NYT dataset,

where the smallest class contains only ∼ 1% of instances. However,

we re-emphasise that semi-supervised and active learning do not

produce interpretable LFs, and HDC LFs are difficult to interpret

due to their many features. Overall,Witan-Core is still generally

the best performer up to a moderate interaction count (𝐼𝐶 ≤ 100).

4.5 Ablation Study

Table 5 presents the results of our ablation study comparing variants

of Witan across binary-class and multi-class datasets, highlighting

methods that achieve an F1 score greater or less than Witan in

blue and red, respectively. These results again highlight that while

Witan outperformsWitan-Core at low 𝐼𝐶 for binary classification,

Witan-Core is superior at higher 𝐼𝐶 and for multi-class datasets.

From the No ANDs and No ORs variants that respectively disable

conjunctive and disjunctive LFs, we can see that these differences

are largely the result of disjunctive LFs. This confirms our observa-

tion that Witan-Core performs better in settings where narrower,

more targeted LFs without disjunctions are more appropriate. The

generally inferior results with 𝛾 = 1 justify our default setting

of 𝛾 = 2 to prefer high information gain over wide coverage for

LFs. Finally, we testWitan with interactive user feedback: we set

𝑓 𝜆 = approved for each generated LF 𝜆 if it is accurate enough

to be assigned a class label by the simulated user. If an LF is not

approved, conjunctive child LFs are not added to the candidate set.

There is a strong performance benefit with interactive feedback

for some datasets, though the performance drop for other datasets

highlights the importance of exploring LFs that are not necessarily

similar to already approved LFs in order to achieve diversity.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed Witan, a novel algorithm for the

unsupervised generation of labelling functions (LFs) for data pro-

gramming. Themain advantage of Witan is its support for a variety

of user interaction modes, most notably being able to effectively

generate LFs without any interactive feedback, labelled instances,

seed LFs, or even a predefined set of classes. Our experimental re-

sults demonstrate thatWitan can be used to train a classifier that is

competitive with alternative labelling methods on both binary and

multi-class classification tasks, even without initial supervision.

This work also creates opportunities for future research. While

we have experimented with bag-of-words LFs for text classification

tasks, Witan could also be applied to other kinds of data with LFs

based on characteristics of images or numeric features. Furthermore,

given the hierarchical nature of Witan’s conjunctive LFs, it may

be beneficial to account for the inherent dependencies among LFs

in the labelling model. Finally, based on past successes combining

weak supervision with active learning [9, 42] and on our own

positive results with instance-level labelling for smaller classes, we

expect it could be beneficial for multi-class and imbalanced tasks

to combine Witan with active-learning, allowing a small set of

labelled instances to act as specific “exceptionsž to coarser LFs.

ACKNOWLEDGMENTS

This research was funded by a Callaghan Innovation R&D Fellow-

ship Grant (FPAP1902), for a Fisher & Paykel Appliances Ltd project.

The first author is also funded by a Doctoral Fees Scholarship from

Auckland University of Technology.

Table 5: F1 scores of Witan variants. Scores highlighted when less than baselineWitan by more than 0.01 or 0.05 , or greater

than baseline Witan by more than 0.01 or 0.05 .

Method IC IMD IMG BPA BPT BJP BPP AZN YLP PLT FNS BDB BAG ATW DMG SPM TWN DBP AGN NYT

Witan 25 0.727 0.710 0.923 0.848 0.892 0.860 0.772 0.737 0.675 0.900 0.979 0.777 0.510 0.723 0.816 0.472 0.235 0.557 0.258
100 0.753 0.768 0.931 0.817 0.887 0.875 0.779 0.795 0.624 0.905 0.949 0.708 0.550 0.690 0.781 0.615 0.341 0.481 0.236

Core 25 0.738 0.703 0.910 0.836 0.859 0.840 0.760 0.737 0.667 0.891 0.978 0.728 0.632 0.783 0.745 0.535 0.520 0.551 0.302
100 0.785 0.771 0.938 0.833 0.900 0.848 0.834 0.801 0.719 0.908 0.976 0.764 0.594 0.846 0.843 0.638 0.558 0.645 0.294

No ANDs 25 0.772 0.729 0.936 0.858 0.897 0.877 0.572 0.737 0.675 0.906 0.973 0.775 0.501 0.734 0.816 0.537 0.223 0.507 0.256
100 0.783 0.770 0.932 0.781 0.893 0.887 0.572 0.808 0.675 0.925 0.973 0.758 0.501 0.732 0.796 0.614 0.223 0.507 0.252

No ORs 25 0.741 0.703 0.910 0.836 0.859 0.830 0.760 0.737 0.667 0.891 0.978 0.728 0.645 0.783 0.745 0.542 0.529 0.551 0.300
100 0.784 0.767 0.940 0.835 0.900 0.848 0.827 0.781 0.601 0.908 0.977 0.764 0.552 0.820 0.769 0.640 0.562 0.647 0.272

𝛾 = 1 25 0.727 0.719 0.917 0.842 0.869 0.888 0.705 0.791 0.719 0.891 0.976 0.719 0.661 0.549 0.624 0.512 0.237 0.488 0.250
100 0.744 0.746 0.928 0.833 0.865 0.901 0.777 0.782 0.684 0.907 0.969 0.722 0.554 0.449 0.624 0.572 0.277 0.477 0.255

Interactive 25 0.770 0.636 0.917 0.820 0.880 0.863 0.744 0.782 0.697 0.837 0.976 0.794 0.502 0.801 0.767 0.533 0.259 0.642 0.253
100 0.754 0.683 0.922 0.788 0.863 0.882 0.842 0.783 0.657 0.818 0.974 0.753 0.494 0.702 0.738 0.514 0.330 0.633 0.244

2345

REFERENCES
[1] Hadeer Ahmed, Issa Traore, and Sherif Saad. 2018. Detecting opinion spams and

fake news using text classification. Security and Privacy 1, 1 (2018), e9.
[2] Tiago A Almeida, José María G Hidalgo, and Akebo Yamakami. 2011. Contribu-

tions to the study of SMS spam filtering: new collection and results. In Proceedings
of the 11th ACM symposium on Document engineering. 259ś262.

[3] Pedro Alonso Doval. 2021. Strategies for the programmatic generation of labelled
corpus for text classification. Master’s thesis. University of Vigo.

[4] Reem Alrashdi and Simon O’Keefe. 2020. Automatic labeling of tweets for
crisis response using distant supervision. In Companion Proceedings of the Web
Conference 2020. Association for Computing Machinery, New York, NY, USA,
418ś425.

[5] Chidubem Arachie and Bert Huang. 2021. Constrained labeling for weakly
supervised learning. In Uncertainty in Artificial Intelligence. PMLR, 236ś246.

[6] Juhee Bae, Tove Helldin, Maria Riveiro, Sławomir Nowaczyk, Mohamed-Rafik
Bouguelia, and Göran Falkman. 2020. Interactive clustering: a comprehensive
review. ACM Computing Surveys (CSUR) 53, 1 (2020), 1ś39.

[7] Benjamin Bergner and Georg Krempl. 2016. Active Subtopic Detection in Multi-
topic Data. In Proceedings of the Workshop Active Learning: Applications, Founda-
tions and Emerging Trends, AL@iKNOW 2016. 35ś44.

[8] William Betham. 1834. The Origin and History of the Constitution of England:
And of the Early Parliaments of Ireland. William Curry, Jun. And Co., 44.

[9] Samantha Biegel, Rafah El-Khatib, Luiz Otavio Vilas Boas Oliveira, Max Baak,
and Nanne Aben. 2021. Active WeaSuL: Improving Weak Supervision with
Active Learning. arXiv:2104.14847 [cs.LG]

[10] Benedikt Boecking, Willie Neiswanger, Eric Xing, and Artur Dubrawski. 2021.
Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling. In
International Conference on Learning Representations.

[11] Salva Rühling Cachay, Benedikt Boecking, and Artur Dubrawski. 2021. Depen-
dency Structure Misspecification in Multi-Source Weak Supervision Models.
arXiv:2106.10302 [cs.LG]

[12] Peter Clark and Tim Niblett. 1989. The CN2 induction algorithm. Machine
Learning 3, 4 (1989), 261ś283.

[13] Benjamin Cohen-Wang, Stephen Mussmann, Alex Ratner, and Chris Ré. 2019.
Interactive programmatic labeling for weak supervision. In Proceedings of the
KDD Data Collection, Curation, and Labeling for Mining and Learning Workshop.

[14] Crowdflower. 2019. Twitter US Airline Sentiment. Retrieved July 4, 2022 from
https://www.kaggle.com/crowdflower/twitter-airline-sentiment

[15] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Chris-
tian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and
Adam Tauman Kalai. 2019. Bias in bios: A case study of semantic representa-
tion bias in a high-stakes setting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency. 120ś128.

[16] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research 7 (2006), 1ś30.

[17] Jun Du and Charles X Ling. 2010. Asking generalized queries to domain experts
to improve learning. IEEE Transactions on Knowledge and Data Engineering 22, 6
(2010), 812ś825.

[18] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. Retrieved
July 4, 2022 from http://archive.ics.uci.edu/ml

[19] Sara Evensen, Chang Ge, Dongjin Choi, and Çağatay Demiralp. 2020. Data Pro-
gramming by Demonstration: A Framework for Interactively Learning Labeling
Functions. arXiv:2009.01444 [cs.LG]

[20] George Forman, Hila Nachlieli, and Renato Keshet. 2015. Clustering by intent:
a semi-supervised method to discover relevant clusters incrementally. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 20ś36.

[21] Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and
Christopher Ré. 2020. Fast and three-rious: Speeding up weak supervision
with triplet methods. In International Conference on Machine Learning. PMLR,
3280ś3291.

[22] Johannes Fürnkranz and Peter A Flach. 2005. Roc ‘n’rule learningÐtowards a
better understanding of covering algorithms. Machine Learning 58, 1 (2005),
39ś77.

[23] Sainyam Galhotra, Behzad Golshan, and Wang-Chiew Tan. 2021. Adaptive rule
discovery for labeling text data. In Proceedings of the 2021 International Conference
on Management of Data. 2217ś2225.

[24] Arnaud Giacometti and Arnaud Soulet. 2017. Interactive pattern sampling for
characterizing unlabeled data. In International Symposium on Intelligent Data
Analysis. Springer, 99ś111.

[25] Maxim Grechkin, Hoifung Poon, and Bill Howe. 2018. EZLearn: Exploiting
Organic Supervision in Automated Data Annotation. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence. 4085ś4091.

[26] Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy
Liang, and Christopher Ré. 2018. Training Classifiers with Natural Language
Explanations. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1884ś1895.

[27] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In Proceedings
of the 25th International Conference on World Wide Web. 507ś517.

[28] Giannis Karamanolakis, Daniel Hsu, and Luis Gravano. 2019. Leveraging Just a
Few Keywords for Fine-Grained Aspect Detection Through Weakly Supervised
Co-Training. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). 4611ś4621.

[29] David Kartchner, Wendi Ren, David Nakajima An, Chao Zhang, and Cassie S
Mitchell. 2020. ReGAL: Rule-Generative Active Learning for Model-in-the-Loop
Weak Supervision. In NeurIPS 2020 Workshop on Human And Model in the Loop
Evaluation and Training Strategies.

[30] Ken Lang. 1995. Newsweeder: Learning to filter netnews. In Machine Learning
Proceedings 1995. Elsevier, 331ś339.

[31] David D Lewis andWilliam A Gale. 1994. A sequential algorithm for training text
classifiers. In Proceedings of the 17th Annual International ACM-SIGIR Conference
on Research and Development in Information Retrieval. Springer, 3ś12.

[32] Bin Lu, Myle Ott, Claire Cardie, and Benjamin K Tsou. 2011. Multi-aspect
sentiment analysis with topic models. In 2011 IEEE 11th International Conference
on Data Mining Workshops. IEEE, 81ś88.

[33] Zhipeng Luo andMilos Hauskrecht. 2018. Hierarchical active learningwith group
proportion feedback. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence. 2532ś2538.

[34] Zhipeng Luo and Milos Hauskrecht. 2019. Hierarchical Active Learning with
Proportion Feedback on Regions. In Machine Learning and Knowledge Discovery
in Databases. ECML PKDD 2018. Lecture Notes in Computer Science, Vol. 11052.
464ś480.

[35] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. 142ś150.

[36] Neil Mallinar, Abhishek Shah, Tin Kam Ho, Rajendra Ugrani, and Ayush Gupta.
2020. Iterative Data Programming for Expanding Text Classification Corpora. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 13332ś13337.

[37] Neil Mallinar, Abhishek Shah, Rajendra Ugrani, Ayush Gupta, Manikandan
Gurusankar, Tin KamHo, QVera Liao, Yunfeng Zhang, Rachel KE Bellamy, Robert
Yates, et al. 2019. Bootstrapping conversational agents with weak supervision.
Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (2019), 9528ś
9533.

[38] GaryMarcus. 2018. Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.AI]
[39] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. 2018. Weakly-supervised

neural text classification. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. 983ś992.

[40] Hussein Mouzannar, Yara Rizk, and Mariette Awad. 2018. Damage Identification
in Social Media Posts using Multimodal Deep Learning. In The 15th International
Conference on Information Systems for Crisis Response and Management (ISCRAM).
529ś543.

[41] Mona Nashaat, Aindrila Ghosh, James Miller, and Shaikh Quader. 2020. Asterisk:
Generating Large Training Datasets with Automatic Active Supervision. ACM
Transactions on Data Science 1, 2 (2020), 1ś25.

[42] Mona Nashaat, Aindrila Ghosh, James Miller, Shaikh Quader, Chad Marston, and
Jean-Francois Puget. 2018. Hybridization of active learning and data program-
ming for labeling large industrial datasets. In 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 46ś55.

[43] Thais Rodrigues Neubauer, Sarajane Marques Peres, Marcelo Fantinato, Xixi
Lu, and Hajo Alexander Reijers. 2021. Interactive clustering: a scoping review.
Artificial Intelligence Review 54, 4 (2021), 2765ś2826.

[44] Andrew Ng. 2021. MLOps: From Model-centric to Data-centric AI. DeepLearn-
ing.AI. Retrieved November 24, 2021 from https://www.deeplearning.ai/wp-
content/uploads/2021/06/MLOps-From-Model-centric-to-Data-centric-AI.pdf

[45] Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain. 2014. MGR:
An information theory based hierarchical divisive clustering algorithm for cate-
gorical data. Knowledge-Based Systems 67 (2014), 401ś411.

[46] John Ross Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1
(1986), 81ś106.

[47] Martin Rajchl, Matthew C. H. Lee, Franklin Schrans, Alice Davidson, Jonathan
Passerat-Palmbach, Giacomo Tarroni, Amir Alansary, Ozan Oktay, Bernhard
Kainz, and Daniel Rueckert. 2016. Learning under Distributed Weak Supervision.
arXiv:1606.01100 [cs.CV]

[48] Parisa Rashidi and Diane J Cook. 2011. Ask me better questions: active learn-
ing queries based on rule induction. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 904ś912.

[49] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proceedings of the VLDB Endowment 11, 3 (2017), 269ś282.

[50] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. 2016. Data programming: Creating large training sets, quickly. Advances
in Neural Information Processing Systems 29 (2016), 3567ś3575.

2346

[51] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret Burnett, Thomas Dietterich,
Erin Sullivan, Russell Drummond, and Jonathan Herlocker. 2007. Toward harness-
ing user feedback for machine learning. In Proceedings of the 12th International
Conference on Intelligent User Interfaces. 82ś91.

[52] Paroma Varma, Dan Iter, Christopher De Sa, and Christopher Ré. 2017. Flipper:
A systematic approach to debugging training sets. In Proceedings of the 2nd
Workshop on Human-in-the-Loop Data Analytics. 1ś5.

[53] Paroma Varma and Christopher Ré. 2018. Snuba: Automating Weak Supervision
to Label Training Data. Proceedings of the VLDB Endowment 12, 3 (2018), 223ś236.

[54] Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, and Christopher Ré.
2019. Learning dependency structures for weak supervision models. In Interna-
tional Conference on Machine Learning. PMLR, 6418ś6427.

[55] Zihan Wang, Dheeraj Mekala, and Jingbo Shang. 2020. X-Class: Text Classifica-
tion with Extremely Weak Supervision. arXiv:2010.12794 [cs.CL]

[56] Wei Wei, Jiye Liang, Xinyao Guo, Peng Song, and Yijun Sun. 2019. Hierarchical
division clustering framework for categorical data. Neurocomputing 341 (2019),
118ś134.

[57] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and
Alexander Ratner. 2021. WRENCH: A Comprehensive Benchmark for Weak
Supervision. arXiv:2109.11377 [cs.LG]

[58] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. Advances in Neural Information Processing
Systems 28 (2015), 649ś657.

[59] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Schölkopf. 2004. Learning with local and global consistency. In Advances in
Neural Information Processing Systems. 321ś328.

2347

