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ABSTRACT
Since its invention, data-centric code generation has been adopted
for query compilation by various database systems in academia
and industry. These database systems are fast but maximize per-
formance at the expense of developer friendliness, flexibility, and
extensibility. Recent advances in the field of compiler construction
identified similar issues for domain-specific compilers and intro-
duced a solution with MLIR, a generic infrastructure for domain-
specific dialects.

We propose a layered query compilation stack based on MLIR
with open intermediate representations that can be combined at
each layer. We further propose moving query optimization into the
query compiler to benefit from the existing optimization infrastruc-
ture and make cross-domain optimization viable. With LingoDB,
we demonstrate that the used approach significantly decreases the
implementation effort and is highly flexible and extensible. At the
same time, LingoDB achieves high performance and low compila-
tion latencies.
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1 INTRODUCTION
Despite the wide adoption of data-centric code generation [22] in
academia [5, 10, 23] and industry [7, 33, 35], modern query compil-
ers face a number of issues. First, developing a query compiling sys-
tem is still a non-trivial undertaking. This is partly due to a missing
consensus on how query compilers should be built [11, 13, 32, 34],
but also due to a lack of an open framework for building query
compilers. As a result, new systems often start from scratch and rein-
vent solutions for many reoccurring tasks like the interaction with
low-level compiler frameworks (e.g., LLVM [16]), type systems, and
runtimes. Second, compiling query engines are usually not designed
with flexibility as the main feature and instead aim for maximum
performance. This makes it difficult to integrate novel ideas into an
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Figure 1: Our proposal of an open query compilation stack.
It enhances prior work on layered query compilation with
two major ideas: 1) Introducing open IRs, designed to be
combined with other IRs, and 2) implementing query opti-
mization as compiler passes.

existing query compiler. Especially incremental research in this field
that targets heterogeneous hardware platforms [27] or advanced
aggregation operators [15] are often built with very different sys-
tem architectures and cannot be easily combined. Evaluating such
ideas often requires building dedicated research prototypes, which
increases the barriers to adoption and quickly leads to incomparable
system performances. Finally, current compiling database systems
are also hard to extend beyond relational workloads. Other data
processing domains cannot be easily integrated, and cross-domain
optimization on a higher abstraction level is often left out despite
its potential [9].

These issues are not unique to database architectures and also
affect other domain-specific compilers. Machine-learning frame-
works, for example, are composed of various representations that
target a wide range of runtime systems [1]. Their solution to this
problem is called Multi-Level Intermediate Representation (MLIR),
which proposes a novel compiler infrastructure [17]. MLIR offers
a unified intermediate representation that can express domain-
specific dialects (a set of custom operations that operate on custom
types) on different abstraction levels. This allows for representing
low-level, assembly-like languages like the LLVM IR and high-level
dataflow graphs (e.g., Tensorflow graphs) within the same interme-
diate representation. The main achievement of MLIR is, therefore,
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the reusability of dialects, besides providing a common language
infrastructure. It encourages to reuse existing dialects as building
blocks which simplifies the development, evaluation, and integra-
tion of new ideas.

In this paper, we address the issues raised above by proposing
an open query compilation stack in the spirit of MLIR. To make
query compilers more flexible, Shaikhha et al. [32] proposed using
multiple layers of intermediate representations (IR), as depicted on
the left side of Figure 1. However, layered query compilation often
leads to high implementation efforts as multiple IRs and lowerings
must be implemented. Furthermore, existing implementations suf-
fer from high compilation latencies. In this work, we make layered
query compilation more practical by reducing the implementation
effort and the compilation latency. To both increase the flexibility
even further and to enable true extensibility, we propose using
multiple, open, combinable IRs on each layer, as shown on the right
side of Figure 1. This increases the reusability of database-specific
dialects and allows for directly integrating existing IRs of other
domains. As shown in Figure 1, we can extend our query compiler
with an already existing IR X of a neighboring domain and reuse
the available lowerings (e.g., IR X → IR Y). Finally, to fully unleash
the potential for flexibility and extensibility, we propose to extend
the scope of query compilers to also perform query optimization as
a sequence of compiler passes. This enables interleaving query opti-
mization passes with existing compiler passes, implementing new
ideas for query optimization, or optimizing IRs of other domains.
Thus, we can then perform effective cross-domain optimization in
a natural way and speed up data processing by more than one order
of magnitude [9]. Based on these ideas, we built a SQL-capable
prototype system called LingoDB that is flexible and extensible yet
reaches a competitive performance to state-of-the-art systems.

LingoDB is based on four new MLIR dialects that are designed
as open IRs for data processing. Common query optimizations are
now implemented as compiler passes. Lowering passes are used to
lower the MLIR dialects until one final, low-level dialect is reached.
Using LingoDB, we first show that our approach based on MLIR
results in much lower compilation latencies compared to existing
layered query compilers. Afterward, we compare the codebases of
LingoDB, NoisePage, and DuckDB, to show that by using MLIR and
by implementing query optimization as compiler passes we can
significantly reduce the implementation effort. Finally, we show the
extensibility of our approach by using a case study that integrates
a PyTorch model into a SQL query, thereby demonstrating the
opportunities of cross-domain optimizations combined with query
optimization.

In this work, we first motivate the need for an open query compi-
lation stack in Section 2 and give an overview of MLIR in Section 3.
Building on prior work that we revisit in Section 4.1, we derive
a compilation stack using MLIR that uses multiple dialects, im-
plements query optimization as compiler passes, and overcomes
previous obstacles of layered compilation in Section 4. In Section 5
we describe four new MLIR dialects for data processing, as well as
their corresponding lowerings and optimizations. Afterward, we
explain the design of LingoDB (cf. Section 6) before evaluating its
performance in Section 7. Finally, we discuss software economics
and extensibility in Sections 8 and 9 before concluding by outlining
the future work potential in Section 10.

2 THE NEED FOR AN OPEN QUERY
COMPILATION STACK

Over the last decade, dynamic code generation has continuously
pushed the limits of SQL analytics in academia [5, 10, 23], and in-
dustry [7, 33, 35]. Today, many compiling database systems use
data-centric code generation [22] to translate SQL queries to effi-
cient machine code. Despite these advances, code generation still
presents a major challenge for database developers as we have not
yet reached a consensus on how a full query compiler should look
like [11, 13, 32, 34]. Especially, no open query compilation stack
exists. For us, an open stack for query compilation should fulfill
three major aspects:

Openly Available. An openly available query compilation stack
would significantly reduce the entry barrier for research on compil-
ing databases. Today, without such a framework, building a com-
piling query engine is a non-trivial undertaking. It requires im-
plementing a suitable type- and runtime system, code generation
for relational operators, and efficient low-level frameworks like
LLVM to yield low compilation latencies. Additionally, compiling
query engines require novel solutions for long-solved tasks such as
profiling and debugging since input query and generated code are
only loosely coupled [3, 12].

Open with regard to flexiblity. The absence of a common de-
nominator diversifies the development and makes many systems
incompatible and incomparable to one another. This makes it hard
to benefit from the latest research [2, 4, 6, 11, 15, 26, 27] in this area
as new advances are often tied to architectural details of the present
code generation stack and cannot be easily implemented in one’s
system without also adopting their original system architecture.

Open with regard to Extensibility. Extensibility has not been an
important design goal for many query compilers. Since their de-
sign is focused on relational algebra, integrating other high-level
concepts like machine learning operations is non-trivial. This is
unfortunate as it fails to support cross-domain optimizations that
were shown to be very effective [9]. Extending the support to new,
increasingly popular processing domains like UDFs, machine learn-
ing, or graph processing is unnecessarily hard. Combined with the
lack of flexibility, we cannot even benefit from the fact that these
other processing domains have already built their own domain-
specific compilation stacks.

We argue that research around compiling database systems lacks
an open platform where ideas can flourish and grow. In the compiler
community, this role is taken on by LLVM, which has established
itself as the shared environment for novel compiler optimizations.
An equivalent framework for compiling database systems would
spare researchers the reimplementation of fundamentals and re-
duce the entry barrier for new ideas. In this work, we propose a
platform that achieves abstraction, ease of development, flexibility,
and extensibility to other domains without sacrificing performance.

3 BACKGROUND: MLIR
Building high-level domain-specific compilers is a complex task,
and the resulting codebases are often hard to extend and maintain.
The developers of Tensorflow [1] made similar observations as
modern machine learning frameworks are composed of various
representations (e.g., Tensorflow graphs and XLA HLO), use many
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different compilers (e.g., TensorRT, XLA), and target a multitude of
runtime systems (e.g., CPU, TPU). They, therefore, initiated MLIR,
short for Multi-Level Intermediate Representation, which is a new
flexible and extensible compiler infrastructure. It aims to reduce
software fragmentation, support compilation for heterogeneous
hardware out of the box, and reduce the cost of developing domain-
specific compilers through the reuse of common infrastructure and
existing intermediate representations.

Existing compiler frameworks like LLVM are successful because
they enable and simplify the reuse of common compiler technolo-
gies. However, LLVM (and similar systems) only offer a single ab-
straction level. In the case of LLVM, this is a low-level, instruction-
based IR. This single abstraction level might be too low or too high
for certain analysis and optimization. Thus, many programming lan-
guages like Swift, Rust, or Julia invent their own language-specific
intermediate representations on top of, e.g., LLVM to perform high-
level, language-specific optimizations. Still, developing and main-
taining custom IRs is expensive since one has to implement and
maintain common functionality for e.g., debugging and diagnostics.
MLIR aims to solve this problem by providing an infrastructure for
introducing new abstraction levels in the form of IR dialects.

Region

Block

%results:2 = d.operation(%arg0, %arg1) ({

a // Regions are attached to operations

// and can contain multiple blocks:

âblock(%argument: !d.type):

// nested operations use block arguments:a

%calculated = d.calc %argument : !d.type

a d.return %calculated : !d.type

a})

// Ops can have a list of attributes:

{attribute="value" : !d.type} : !d.type,!d.type

Figure 2: MLIR’s IR format – An operation can take typed SSA-
values as operands and produce result values. Furthermore, regions
with blocks can be attached. Each block can take block arguments
that are processed by nested operations.

3.1 Intermediate Representation
MLIR uses a single, standardized intermediate representation. Cus-
tom abstraction levels are introduced as MLIR dialects that concep-
tually group a set of types and operations. This unified intermediate
representation uses the Static Single Assignment form (SSA) [21],
which simplifies dataflow analysis and is widely used in the com-
piler community. Unlike many SSA-based IRs, MLIR uses nested
regions instead of a flat control flow graph to natively support
high-level abstractions like loops. Figure 2 shows an example op-
eration with one region that contains nested operations. In MLIR,
SSA-values always have an associated type that is specified by a
dialect. MLIR further allows annotating operations with named
attributes to represent compile-time information like constants.
Beyond modeling constants, they are also useful for lowering hints,
debugging information, and optimization. Additionally, the authors
of MLIR argue that the original source location and applied trans-
formations should be easily traceable for operations. Thus, each
operation stores source location information in a dedicated MLIR

attribute. This detailed source code tracking simplifies debugging
as well as profiling across code transformations.

MLIR dialects can be combined in order to leverage built-in
dialects and preserve high-level operations as long as necessary.
This also allows to progressively lower programs to the hardware
abstraction level in small, isolated steps. To simplify these lowerings,
MLIR provides infrastructure for pattern-based rewrites.

3.2 Built-in Dialects
MLIR makes it easy to define new, custom dialects but also comes
with several built-in dialects that can be reused. These dialects can
be split into three groups. First, high-level dialects that are domain-
specific and, e.g., provide linear algebra operations. Second, are the
so-called mid-level dialects that abstract from hardware details but
are mostly general-purpose (e.g., arith that provides arithmetic
operations). Third are low-level dialects that are backend-specific
(e.g., llvm). In this section, we will mainly discuss the mid-level
and low-level dialects, on top of which we build custom dialects.

The following five dialects are among MLIR’s mid-level dialects:
A central builtin dialect defines common types like integers,
floating-point, or function types as well as the corresponding at-
tributes. Additionally, it also provides module and func operations
to represent modules and functions. On top of the builtin dialect,
the so-called std dialect adds basic primitives for (conditional)
branching, function calls, and atomic memory operations. Com-
mon arithmetic and logic operations on integers and floating-point
values are provided in a separate arith dialect. Finally, operations
for creating and manipulating memory references are defined by
the memref and high-level control-flow operations like for, while,
and if by the scf dialect.

MLIR also comes with a variety of backend dialects that represent
different targets. This includes a llvm dialect that represents a
useful subset of the LLVM IR, a generic gpu dialect, and hardware
specific dialects such as a nvvm dialect for CUDA or a SPIR-V dialect
(spv). However, high-level dialects can usually lower to mid-level
dialects without defining lowerings to low-level dialects like llvm.

3.3 Passes
In addition to its built-in dialects, MLIR also provides its own com-
piler passes. They range from dialect-specific passes to generic
passes that can transform arbitrary dialects. The generic inlining
pass, for example inlines callable operations such as functions. Ad-
ditionally, MLIR can perform generic common subexpression elimi-
nation (CSE) that relies on traits to specify side-effects. And finally,
MLIR provides a canonicalization pass that performs dead code
elimination, constant folding, and constant hoisting and applies
operation-specific rewrite patterns.

4 DESIGNING AN OPEN QUERY
COMPILATION STACK BASED ON MLIR

As noted by Tahboub et al [34], database systems are essentially
domain-specific compilers. In conventional systems, the journey of
a SQL query, as depicted on the left side of Figure 1, usually starts
as input for a parser, very similar to the compilation of high-level
programming languages. The output of the SQL parser is an ab-
stract syntax tree (AST) that is transformed into a logical plan. The
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database then analyzes the semantics of this plan and optimizes
it using well-known techniques like predicate pushdown, query
unnesting, and join order optimization. Afterward, the optimizer
transforms the logical plan into a physical plan by selecting a spe-
cific implementation for every node. If the database system employs
query compilation, this physical plan serves as input for the query
compiler that emits a compact query program. In this last step,
databases usually leverage compiler frameworks like LLVM.

4.1 Prior Work
Over a decade ago, HyPer pioneered data-centric code genera-
tion [22] to generate tight loops across operator borders while avoid-
ing materialization whenever possible. Using LLVM for code gen-
eration enabled high performance and low compilation latencies in
the two-digit millisecond range. Kohn et al. further improved com-
pilation latencies by introducing Adaptive Execution [14]. However,
HyPer’s approach for code generation was contrasted by Klonatos
et al. for being too low-level andmissing optimization potential [13].
Instead, they proposed to use high-level languages like Scala for
building query compilers and demonstrated this with LegoBase.

In 2016, Shaikka et al. [32] proposed building layered query com-
pilers as an alternative to complex, monolithic query compilers that
are hard to extend and maintain. As shown in Figure 1, an opti-
mized, physical plan is translated into a first, high-level declarative
intermediate representation. This IR 1 is then lowered progressively
over several intermediate representations until a low-level IR N is
reached. This final IR is then translated to, for example, a C program
to obtain executable machine code.

Such a layered approach has multiple advantages: First, query
compilers get more flexible. The effort to support a new frontend
is reduced to lowering into an existing IR in the stack. Conversely,
supporting a new backend only requires translating an existing IR
at a lower level to machine code. Second, new medium layers of
abstraction facilitate new optimizations for which previous abstrac-
tion levels were either too low or too high. Finally, splitting the
lowering process into multiple steps also reduces the overall com-
plexity (separation of concerns). However, these advantages come
at the cost of increased compilation times and having to implement
multiple IRs and compiler passes, which can require much effort
depending on the available infrastructure. Alternatively, Tahboub
et al. propose using the first Futamura projection [34] to generate
query compilers from query interpreters. This reduces the overall
complexity but also decreases flexibility and extensibility.

In 2020, Müller et al. proposed the Collection Virtual Machine
(CVM), a common compiler infrastructure for collection-oriented
IRs on multiple abstraction levels [21]. Its goals are similar to
MLIR’s, but CVM is constrained to collection-oriented IRs, which
limits the scope. With MLIR, we can represent high-level collection-
oriented IRs as well as scalar IRs at lower levels. Furthermore, unlike
MLIR, CVM is not publicly available, which hinders any collective
effort to develop a broad spectrum of IRs for specialized use cases.

4.2 Practical Layered Query Compilation
As we discussed above, a layered approach to query compilation
offers high flexibility and extensibility. However, it also requires

implementing multiple layers of IR and compiler passes and of-
ten comes with high compilation latencies. In this work, we show
that MLIR makes layered query compilation more practical. First,
MLIR can significantly reduce the effort for building a stack of
IRs significantly by offering declarative syntax for specifying IRs
and rewriting patterns. For example, MLIR allows reusing entire
dialects to abstract from control flow and use built-in compiler
passes. Second, MLIR can decrease compilation times significantly
compared to prior work: It was written from scratch in C++ and is
optimized for efficient, layered compilation. For example, types and
attributes are represented as uniquified C++ objects, i.e., for each
type with the same type parameters, exactly one C++ object is cre-
ated. Furthermore, MLIR is also designed to optimize and compile
larger programs multi-threaded. Finally, existing prototypes like
DBLab [32] or Legobase [13] usually emit a standalone C program
that is separately compiled, which causes very high compilation
latencies. In contrast, we use LLVM for machine-code generation
and executed code can call arbitrary library functions of the current
process. This enables competitive compilation latencies since we do
not have to compile the complete runtime per query. Furthermore,
generated code can also call into a precompiled, shared runtime
library, making it feasible to implement a complete database system
around the compiling query engine.

4.3 Open IRs
Shaikka et al. proposed a layered approach with one IR per layer and
constrained the lowering process by requiring a unique lowering
path between two layers. In this work, we adapt this approach
and propose using multiple open IRs per layer to achieve higher
reusability and extensibility. This allows for high extensibility as
one can combine arbitrary IRs at one level, e.g., use IRs representing
UDFs or other forms of analytics within relational operators. This
makes query compilation much more powerful as one can reuse
and recombine already existing IRs. To fully profit from reusability
and recombinability, we design our database-related IRs to work
seamlessly with other IRs. For example, a join operator can use
arbitrary IRs as part of its predicate by attaching the predicate
as an MLIR region. As sketched in Figure 1, lowering also differs
from previous approaches: We first translate SQL (combined with
UDFS, machine learning, ...) into a combination of IRs that e.g.,
represent relational operators and scalar expressions. We can then
lower these IRs independently from each other, e.g., first lower
relational operators (IR1) into control-flow (IR3), while keeping
the scalar expressions (IR2) used in predicates or computations.
This also allows keeping embedded IRs as long as we want without
implementing corresponding operations at each level.

4.4 Integrating Query Optimization
Prior work [32, 34] assumes that query optimization is performed
before invoking the query compiler. This reduces the complexity of
query compilers but comes at a high cost.

First, query optimizers require a lot of infrastructure that is
already available in compiler infrastructure, for example, to match
patterns, rewrite rules, and perform fixpoint iterations. Even whole
optimization passes like common subexpression elimination are
already performed by compilers. Second, relational workloads are
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Figure 3: Visualization of the iterative design process

increasingly entangled with external code for machine-learning or
complex UDFs. However, performing cross-domain optimization
within a classical query optimizer is hard, despite the huge potential.
Logical plans within databases are structured as trees of relational
algebra operators and differ significantly from the control flow of
non-relational data processing. Cross-domain optimization has to
interleave query optimization techniques with control-flow analysis
for optimal results.

To make cross-domain optimization practical, we have to close
the gap between query optimizers and compilers. This can either
be achieved by extending the query optimizer with compiler tech-
niques to also reason about e.g., control-flow or convert query
optimization into a sequence of compiler passes that can be inter-
leaved with other domain-specific passes. Since we already use
compiler infrastructure for query compilation, it is only natural to
choose the latter and move the whole query optimization into the
query compilation phase.

4.5 Open Query Compilation Stack using MLIR
Similar to Shaikka et al., we derive our MLIR-based compilation
stack in seven steps as sketched in Figure 3.

(1) Overall, we want to compile SQL queries into machine code;
(2) We use LLVM for generating optimized machine code
(3) However, SQL is not suitable for query optimization; There-

fore, we introduce a relational MLIR dialect into which SQL
can be translated;

(4) To reduce the overall complexity, we reuse the existing
llvm dialect instead of directly translating to LLVM IR;

(5) We want to work on a higher abstraction level than llvm,
both to reduce effort and increase flexibility; Thus, we reuse
existing standard dialects on top of the llvm dialect;

(6) However, standard dialects miss capabilities like e.g., work-
ing with composite types; We thus add a util dialect which
provides such features independent of the used backend
dialect to increase flexibility;

(7) To abstract from implementation details of algorithms and
data structures, we introduce a dsa dialect into which rela-
tional operators can be lowered;

(8) To avoid reimplementing database-specific scalar opera-
tions that can e.g., handle null values on multiple layers, we
introduce a separate db dialect that is used for specifying
e.g. predicates but is still available after lowering relational
operators.

module{

func @main () -> !db.table {

%1 = relalg.basetable {a=>@R::@a({type=!db.nullable <i64 >})}

%2 = relalg.basetable {b=>@S::@b({type=i64})}

%3 = relalg.join %1, %2 (%4: !relalg.tuple) {

%5 = relalg.getcol %4 @R::@a : !db.nullable <i64 >

%6 = relalg.getcol %4 @S::@b : i64

%7 = db.compare %5, %6

relalg.return %7 : !db.nullable <i1>

}

%4 = relalg.materialize %3 [@R::@a ,@S::@b ]

=> ["R.a","S.b"] : !db.table

return %4 : !db.table

}

}

Figure 4: A simple query (select R.a, S.b from R,S where
a=b) is represented by operations of different MLIR dialects.

▷◁p

parent

child1 child2

statistics

a%child2a= ...

a%child1a= ...

a%joineda= join a%child1a,a%child2aa(%tuple){a

%cond = //evaluate p using %tuple

return %cond

a} attributes: {astatistics: ... a}

%parent = ... a%joineda...

Figure 5: Representing plan nodes in MLIR – Child and parent
relationships are expressed through A-values. User-defined expres-
sions such as join predicates are represented as single-block regions.
Statistics and her metadata are attached as attributes.

5 DIALECTS FOR DATA PROCESSING
In the following section, we explain the design of the four newMLIR
dialects (relalg, db, dsa, and util) as discussed in Section 4.5.
To give an outlook, Figure 4 illustrates how a simple SQL query
can be represented using a combination of different MLIR dialects:
The relational relalg dialect provides relational operators while
predicates are represented by operations of the db dialect. Modules
and functions are declared using built-in operations.

5.1 relalg: Relational Algebra
For database engines, relational algebra provides the theoretical
foundation for query processing. While classical relational algebra
is specified on sets of tuples, logical operators in databases usually
work on tuple streams as this enables ordering and multi-set seman-
tics. Thus, we propose a high-level declarative MLIR dialect with
relational operators that produce and/or consume values of type
!relalg.tuplestream. However, in contrast to other intermediate
representations, this dialect only includes relational operators, but
not operations for building expressions used in e.g., predicates. Ex-
pressions can be freely constructed using arbitraryMLIR operations.

In addition to well-known operators like selections, maps, and
joins we also include three additional join operators required for
unnesting correlated subqueries as proposed in [24]: A singlejoin
corresponds to a left outer join but expects exactly one tuple on the
right side. A markjoin adds a new column to the left side that indi-
cates if any tuple on the right fulfilled the join conditions. Similarly,
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for each tuple on the left side, a collectionjoin materializes all
matching tuples on the right side and appends the resulting list as
a column. Furthermore, we also add operations for materialization
and working with tuples and column values. Altogether, the types
and operations listed in Table 1 enable formulating and optimizing
complex, relational queries.

Since columns (i.e., relational attributes) are one of the core
ingredients of relational algebra, we need to model them inMLIR. In
order to refer to columns declaratively, we represent them as MLIR
attributes similar to the way symbols are implemented in MLIR.
We, therefore, introduce two new attributes: One for declaring a
new column (e.g., during a map operator), and one for referring to
a previously declared column (e.g., inside a selection operator,
or the grouping specification for an aggregation). To simplify the
usage we pretty print both attributes: @scope::@col(type:!type)
declares a new column @col in the namespace @scope with the
provided type, and @scope::@col refers to it.

Many complex relational operators contain expressions either as
conditions (selections and joins) or for computing new values (e.g.,
map, aggregation). As already discussed in Section 4 and shown
in Figure 5, we represent such expressions as attached MLIR re-
gions with nested, arbitrary operations. The current tuple of type
!relalg.tuple is provided as an argument for the region, and one
can access the current value for specific columns using the getcol
operation on the tuple value. To simplify analysis and make it
more generic, operators implement different MLIR Interfaces that
allow calling interface methods (e.g. getAvailableColumns()) in-
dependent of the concrete operation. Metadata such as statistics
or estimates can be attached as MLIR Attributes. Overall, using
the design decisions outlined above, we can map all concepts of
classical plan nodes to MLIR as shown in Figure 5.

5.2 Query Optimization Passes
As motivated in Section 4, we implement standard query optimiza-
tion techniques commonly performed on plan nodes as compiler
passes over MLIR operations. In this section, we describe how we
implemented five common query optimization techniques in MLIR
as sketched in Figure 6: 1 expression simplification, 2 query
unnesting, 3 selection pushdown, 4 join order optimization, and
5 physical optimization.
First, we try to simplify the query expressed as an MLIR module

as far as possible. Thus, we apply MLIR’s built-in CSE pass to elimi-
nate common subexpressions and the canonicalization pass to
eliminate dead-code and to apply canonicalization patterns. To
perform database-specific simplifications, we add corresponding
canonicalization patterns which, e.g., extract common conditions
from disjunctive expressions. By performing these simplifications
first, we enable optimizations like pushing predicates further down.

After simplification, we perform query unnesting in three steps :
First, nested relalg operations i.e., a subquery inside a selection
operation are extracted. Here, it is crucial to correctly handle values
that are defined in the surrounding operator but are used inside a
region of the nested operation. Second, implicit joins represented
by getscalar, getlist, exists, or in operations are transformed
into explicit joins represented by singlejoin, collectionjoin,
and markjoin operations. Finally, we apply the unnesting rules

Table 1: Types and Operations of the relalg dialect

Type / Operation Description

ty
pe
s tuple conceptual tuple of relational algebra

tuplestream stream of tuples produced by operators

re
la
tio

na
lo

pe
ra
to
rs

const_relation creates a stream from constant tuples
basetable returns a tuple stream from a scanned table
selection 𝑟𝑒𝑠 ∶= 𝜎[𝑟𝑒𝑔𝑖𝑜𝑛](𝑎𝑟𝑔0)
map 𝑟𝑒𝑠 ∶= 𝜒[𝑟𝑒𝑔𝑖𝑜𝑛](𝑎𝑟𝑔0)
projection 𝑟𝑒𝑠 ∶= Π𝐴(𝑎𝑟𝑔0) (distinct possible)
renaming 𝑟𝑒𝑠 ∶= 𝜌@𝑏←@𝑎,...(𝑎𝑟𝑔0)
aggregation 𝑟𝑒𝑠 ∶= Γ[𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠];[𝑟𝑒𝑔𝑖𝑜𝑛](𝑎𝑟𝑔0)
crossproduct 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 × 𝑎𝑟𝑔1

innerjoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 ⋈[𝑟𝑒𝑔𝑖𝑜𝑛] 𝑎𝑟𝑔1
semijoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 ⋉[𝑟𝑒𝑔𝑖𝑜𝑛] 𝑎𝑟𝑔1
antisemijoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 ⊳[𝑟𝑒𝑔𝑖𝑜𝑛] 𝑎𝑟𝑔1
outerjoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 [𝑟𝑒𝑔𝑖𝑜𝑛]𝑎𝑟𝑔1
singlejoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0

1
[𝑟𝑒𝑔𝑖𝑜𝑛]𝑎𝑟𝑔1

markjoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0
𝑀∶𝑚
[𝑟𝑒𝑔𝑖𝑜𝑛]𝑎𝑟𝑔1

collectionjoin 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0
𝐶∶𝑐
[𝑟𝑒𝑔𝑖𝑜𝑛]𝑎𝑟𝑔1

sort sorts the tuple stream by some attributes
limit only return the first #num tuples of the stream
tmp caches a tuple stream to avoid reevaluation

tu
pl
e
su
pp

or
t

getcol 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 .@𝑐𝑜𝑙

materialize 𝑟𝑒𝑠 ∶= 𝑎𝑠𝑡𝑎𝑏𝑙𝑒([𝑐𝑜𝑙𝑢𝑚𝑛𝑠], 𝑎𝑟𝑔0)
getscalar 𝑟𝑒𝑠 ∶= 𝑎𝑠𝑙𝑖𝑠𝑡(𝑐𝑜𝑙𝑢𝑚𝑛,𝑎𝑟𝑔0)[0]
getlist 𝑟𝑒𝑠 ∶= 𝑎𝑠𝑙𝑖𝑠𝑡([𝑐𝑜𝑙𝑢𝑚𝑛𝑠], 𝑎𝑟𝑔0)
exists 𝑟𝑒𝑠 ∶= ∣𝑎𝑟𝑔0∣ > 0
in 𝑟𝑒𝑠 ∶= ∃𝑡 ∈ 𝑎𝑟𝑔0 ∶ 𝑡 .[@𝑎] = 𝑎𝑟𝑔1

proposed by Neumann et al. [24] and restructure the operations
accordingly.

Next, we push selections down in two steps. We first split selec-
tions with a conjunctive predicate as well as map operations that
compute more than one attribute. For this, we need to conceptu-
ally split the corresponding regions as well, which might require
duplicating operations. Afterward, a second pass pushes selections
down as far as possible and moves the selection operation before
its new child.

After selections have been pushed down, we optimize the join or-
der. We first scan the MLIR module for operations that materialize a
tuple stream or cannot be handled by algorithms for optimizing the
join order. For each of these operations, we then optimize the join-
order of the corresponding subtree: First, we build a query graph
that references the involved operations and annotate cardinality
and selectivity estimations that are attached as MLIR Attributes
to the basetable operations. On this query graph, we then apply
dynamic programming [20] to yield the best join plan, which is
then used to reorganize and restructure the already existing MLIR
operations.

Finally, we perform physical optimization by introducing tmp
operations to temporarily materialize a tuple stream consumed
multiple times and deciding on an implementation for each operator.
The implementation choice is then annotated as MLIR attribute for
every operator and respected during lowering.

2394



%1 = and ,

%2 = and ,

%3 = or %1, %2

%1 = or ,

%2 = and , %1

%1= %0=

exists %0 %1= exists %0

%0=

join ,join ,

Extract

To Joins

Decorrelate

split

reorder

%1

IR Query Graph

Join Plan

analyze

DPrewrite

join join{hash}

op

op2
op %X

op2 %X

%X = tmp

1 Simplification 2 Unnesting 3 Pushdown 4 Join Ordering 5 Physical Opt.

Figure 6: Visualization of different steps of query optimization

5.3 Lowering of Relational Operators
After running the custom compiler passes, we lower the declarative
relalg dialect into a combination of imperative dialects. We use
data-centric code generation as proposed by Neumann et al. [22] to
transform declarative to imperative operations, according to anno-
tations introduced during query optimization. During the lowering
pass, we scan the MLIR module for operations that materialize a
tuple stream. For each materializing operation, we traverse the cor-
responding operator tree represented by relalg operations. During
the traversal, we build a tree of translator objects that implement
produce() and consume() methods according to the producer-
consumer model used by data-centric code generation. Calling
produce() on the top-level translator object then inserts new im-
perative db operations that implement the operator tree. After every
materializing operation is processed and removed, we run MLIR’s
canonicalize pass to clean up now unused declarative operations
and simplify the lowered module. Figure 7 shows this lowering
into imperative operations for an example query. Note how the
highlighted predicate does not change besides lowering the getcol
operation.

5.4 db: Database-specific Types and Operations

Table 2: Types and Operations of the db dialect

Type / Operation Description

ty
pe
s

decimal<p,s> decimal with precision p and scale of s digits
char<len> fixed-length string type with length len
string variable-length string type
date<unit> date type with different units
interval<unit> interval type with different units
timestamp<unit> timestamp type with different units
nullable<type> nullable version of type

nu
ll

null creates null value
isnull returns true if value is null
nullable_get_val return scalar value for nullable
as_nullable create a nullable value from a scalar value

sc
al
ar

op
er
at
io
ns

constant 𝑟𝑒𝑠 ∶= 𝑐

add, sub, mul, div, mod arithmetic operations with null semantic
compare, 𝑟𝑒𝑠 ∶= 𝑎𝑟𝑔0 𝑝𝑟𝑒𝑑null 𝑎𝑟𝑔1
between, oneof compare value with range or set of values
and, or, not logical operations with null semantic
cast semantic cast (e.g., string→ int)
hash compute a 64-bit hash for a value
runtime_call 𝑟𝑒𝑠 ∶= ”𝐹𝑢𝑛𝑐”(𝑎𝑟𝑔0, 𝑎𝑟𝑔1, ...)

1 %0= relalg.basetable {a=>@R::@a(type=!db.string),b=>...}

2 %1 = relalg.selection %0 (%arg0: !relalg.tuple){

3 a%a = relalg.getcol %arg0 @R::@aa

4 %s = db.constant("STR")

5 a%cmp = db.compare eq %a, %sa

6 relalg.return %cmp : i1

7 }

8 %table = relalg.materialize %1 [@R::@b] => ["b"]

(a) Simple Query expressed as MLIR Operations

1 %tb = dsa.create ["b"] -> !dsa.table_builder

2 %scan = dsa.scan_source "{...}"

3 dsa.for %chunk in %scan {

4 dsa.for %row in %chunk {

5 a%a = dsa.at %row[0] : !db.string a

6 %s = db.constant("STR")

7 a%cmp = db.compare eq %a, %s a

8 %5 = db.not %cmp : i1

9 dsa.cond_skip (%5 : i1)

10 %b = dsa.at %row[1] : i32

11 dsa.append %tb, %b

12 dsa.next_row %tb

13 }

14 }

15 %table = db.finalize %tb -> !db.table

(b) Same Query after lowering to imperative operations

Figure 7: Lowering a query from relalg to db

In addition to the relalg dialect, we implemented a second
imperative db dialect with database-specific types and operations.
These can then be used to represent common expressions in SQL
queries as well as implement e.g., comparisons that get created
during the lowering of an aggregation.

The type system of database systems usually deviates from the
built-in types of most programming languages as they support types
for storing dates, timestamps, or fixed-point decimal numbers. Since
MLIR is mainly focused on numerical application, it does not offer
any scalar types beyond integer and floating-point types. Hence,
the db dialect adds 6 scalar types as shown in Table 2.

Furthermore, relational databases have the notion of null val-
ues that come with their own semantics. To reduce the overhead
and only handle null values where necessary, we introduce an
explicit nullable type that specifies that a value can also be null
and add four supporting operations. For example, a value of type
!db.nullable<i32> can either be an integer value or null.

On top of the available types (bool (1-bit integer), integers, floating-
point, database-specific, and nullable types), we define operations
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for defining constants, performing basic arithmetic and logical op-
erations, comparing, hashing, and casting them. For operations
beyond this basic set, we provide a runtime_call operation that
calls a registered runtime function (e.g. "ExtractYearFromDate").
This allows for adding new functionality without new operations.

We implemented one optimization pass (–db-eliminate-nulls
that transforms many operations on nullable types into operations
on non-nullable types. This can be achieved by introducing explicit
null checks and control-flow if necessary. After this simplification
step, one can perform a lowering pass that transforms types and
operations of the db dialect into a combination of arith, std, scf,
and util types and operations. For this, we provide a set of MLIR
rewrite patterns and specify the type conversion. Everything else
is handled by the MLIR infrastructure.

5.5 dsa: Data Structures and Algorithms
Besides operations on scalar types, database engines also have to
build and process a variety of complex data structures. This includes
database tables, buffers for materialization, but also (temporary)
index structures like hashtables.

Therefore, the dsa dialect provides a generic for operation that
can iterate over a variety of iterable types (Figure 7b, line 3 and
4). The cond_skip operation can skip the remainder of the current
iteration and proceed with the next value based on a boolean value
(Figure 7b, line 9). This is especially useful for efficiently evaluating
conjunctive predicates.

Figure 7b also shows an example for building a result table:
Initially, we create a table_builder in line 1. For each matching
tuple, we append the corresponding value in line 11 using the
generic append operation and switch to the next row using the
next_row operation. Finally, we use the finalize operation in line
16 to yield the final Apache Arrow table. In addition to the table
builder, we also implemented a vector type and different hashtable
types.

5.6 util: Utility Types and Operations
Since MLIR mainly focuses on numerical applications, many types
and instructions that are critical for data processing tasks are not
provided by built-in generic MLIR dialects. Up until now, only very
low-level target-specific dialects like the llvm dialect offer these
capabilities. To keep flexibility, reusability, and maintainability, we
do not use the llvm dialect directly. Instead, we define a util dialect
that provides the missing types and operations in an abstract way
and implement a lowering to the llvm dialect using MLIR rewrite
patterns.

Even though MLIR defines a TupleType in its builtin dialect, it
does not provide operations to pack values into a tuple and unpack
it later. We therefore add pack and unpack operations that operate
on the already defined TupleType. Additionally, when dealing with
a separate runtime system, we often need to provide the size of a
type, e.g., to sort a buffer of values. While the size is still clear for
single integers, it gets more complex with composite and custom
types. The util dialect, therefore, provides a sizeof operation that
also considers alignment and padding.

For data-processing applications, referencing data in memory
and performing load and store operations is critical. MLIR already

comes with a memref type and the corresponding operations. How-
ever, their design is focused on numerical applications like multi-
plying large matrices. To optimize for such cases, a value of the
memref type holds not only a pointer but also metadata. While this
overhead is not relevant when working with large matrices, even
for small queries, it is noticeable during runtime but, worse, also
impacts compilation times significantly. Since the built-in memref
type is not suitable for simple and dynamically-sized references, we
provide a simplified ref type for simple references and a varlen
type for referencing variable-length data. These types are accom-
panied by a narrow set of operations that work on them (e.g., load
a value from a typed reference).

6 SYSTEM OVERVIEW

LLVM IR

llvm

util arith scf . . .

dsa db arith . . .

relalg db arith . . .

relalg db torch . . .

SQL PyTorch . . .

Parser & Semantic Analyis
Module Creation

Existing Lowerings for
high-level dialects

--lower-relalg

--lower-db

--lower-dsa

Existing Lowerings

+ Lowering for util

Query

Opt.

Opt.

Opt.

machine code

Convert MLIR module

Optimizing 3

JIT Compiler

Runtime Calls

Runtime

Tables

Sorting

Date
Functionality

String
Functionality

M
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/data/lineitem.arrow

load

Figure 8: The developed prototype system consisting of 1
a SQL frontend that performs parsing and semantic anal-
ysis, 2 MLIR dialects, optimizations, and lowerings, 3 a
LLVM-based optimizing JIT-compiler, and 4 a runtime sys-
tem based on Apache Arrow

To evaluate the ideas proposed in Section 4, we implemented
a prototype system called LingoDB based on the MLIR dialects
explained in Section 5. Figure 8 gives an overview of LingoDB.
It consists of four main components: 1 Parsing and Semantic
Analysis, 2 MLIR-based optimization and lowerings, 3 LLVM-
based jit-compilation, and 4 a dynamic runtime.
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Figure 10: Total compilation times for Hyper and LingoDB.

In the first step, a provided SQL query is parsed and transformed
into an equivalent representation in MLIR. The resulting MLIR
module mainly consists of a relational relalg dialect and an imper-
ative db dialect. As these dialects are statically typed, translating
an untyped SQL query requires extensive semantic analysis to infer
types.

The resulting MLIR module is then optimized by several MLIR
passes that perform logical and physical query optimization. After-
ward, high-level dialects are progressively lowered until the llvm
dialect is reached. On each layer, we optimize the MLIR module
using the canonicalization pass and specific passes for different di-
alects: For the db dialect, we eliminate null-handling and optimize
used runtime functions to e.g., make the evaluation of constant
like expressions efficient. When the standard control flow dialect
is reached, we perform passes to move loop-invariant operations
outside loops and move operations after checking conditions.

Then, one has to convert the MLIR module containing only
llvm operations into an LLVM IR module and compile it to ma-
chine code. MLIR already provides an ExecutionEngine class that
converts MLIR modules, performs LLVM optimizations, and gen-
erates machine code. As we emit already optimized LLVM IR due
to MLIR passes, and compilation time is also a concern, we only
perform four LLVM passes: -instcombine, -reassociate, -gn,
and-simplifycfg. These passes perform basic peephole instruc-
tions, eliminate redundant instructions, and simplify the control
flow. This set of LLVM passes is known to be useful for a wide
variety of code [29].

Finally, we implemented a dynamically linked runtime system
based on Apache Arrow. For a given database directory, the runtime
loads all available files ending with ".arrow" as Apache Arrow tables
into main memory. These tables are then identified by the base-
names of the original file names. Using a set of runtime functions,
one can then iterate efficiently over these tables in a batch-oriented
manner. Additionally, the runtime system enables creating new
Apache Arrow tables with a new schema constructed at runtime.
This is especially useful to efficiently return query results back to
the user. Complex functionality like sorting, string comparisons, or
date arithmetic is also implemented in C++ and available through
runtime functions.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of LingoDB by looking
into query execution and query compilation times. We then check
how competitive our MLIR-based approach is compared to other
solutions and how much overhead we introduce. Using the TPC-
H benchmark, we compare our prototype system LingoDB with
the vectorized database system DuckDB [31] and the commercial
version of Hyper [10] published by Tableau [8].

All experiments were run single-threaded on a machine with an
AMD Ryzen 9 5950X CPU with a base frequency of 3.4 GHz and
a maximal frequency of 4.9 GHz. Each of the sixteen cores has an
L1 data cache of 32 kiB, an L2 cache of 512 KiB, and shares an L3
cache of 64 MiB. The system runs Ubuntu 21.04 and provides 64
GiB of main memory.

In the first experiment, we compare the raw query execution
times (no compilation time included) of Hyper, DuckDB, and Lin-
goDB. To compensate for the fact that our prototype does not yet
implement primary key indexes, we also do not create indexes for
Hyper and DuckDB. Figure 9 shows the absolute query runtimes
for running the TPC-H benchmark with a scale factor of 1.

On average, our prototype system is faster than DuckDB by a
factor of 3.5. Also, for eight queries, we outperform Hyper because
it is optimized for multi-threaded performance and therefore comes
with a slight overhead when executed single-threaded. On the other
hand, Hyper is faster for 12 queries due to advanced features like
group joins, vectorized table scans, and early probing. Hence, Hyper
is, on average 1.3 as fast as our prototype.

For compiling database engines, the raw execution time is only
half of the truth as the query must first be compiled in contrast to
interpreting engines. Thus, compilation times matter, especially for
smaller datasets and short-running queries.

Existing layered query compilation prototypes written in high-
level languages come with very high compilation latencies. For
example, DBLab [32] reported more than 900 ms for TPC-H query
8 to internally lower and optimize intermediate representations.
Additionally, CLang is invoked for generating machine code which
takes another 300ms. In the remainder of this section, we show that
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Figure 11: Times for different compilation phases of LingoDB
– Compilation phases: Query Optimization (Query Opt.), Lowering
to imperative dialects using data-centric code generation (→ db/dsa),
Lowering to standard dialects (→ std/util), Lowering to llvm dialect
(→ llvm), Conversion to LLVM IR (→ LLVM IR), LLVM optimizations
and machine code generation (LLVM)

LingoDB compiles queries significantly faster, and thus, layered
query compilation does not imply high compilation latencies.

Figure 11 shows the compilation times for all TPC-H queries
and the different compilation steps. One important observation is
that all the optimizations and lowerings in MLIR only take a few
milliseconds, and most time is spent in LLVM for optimizations
and machine-code generation. For example, the query that took the
most time to compile (Q2) takes only 13 ms to optimize the MLIR
module, lower it and convert it to LLVM IR. Then, LLVM takes 68
ms to optimize it and generate efficient machine code. This means
that our layered approach to building a performant yet flexible and
extensible query compiler does not bring any significant overhead.

Figure 10 compares the compilation times for Hyper and Lin-
goDB for all TPC-H queries. Since Hyper is using Adaptive Execu-
tion [14] and avoids LLVM for short-running queries, we include
Hyper both for scale factors 1 and 10. While we can observe that
Hyper compiles significantly faster for SF=1, compilation times get
much more comparable for SF=10 when Hyper also uses LLVM.
However, even then, Hyper compiles faster than our prototype
since LLVM is only used for computationally-intensive pipeline
functions. On the contrary, our prototype compiles the whole query
with LLVM, leading to higher compilation times. We note, however,
that Adaptive Execution is an orthogonal optimization that can also
be applied to LingoDB in the future.

8 DISCUSSION: SOFTWARE ECONOMICS
Developing a compiling query engine is a complex task that often
results in a large, monolithic codebase. In this section, we discuss
how building on MLIR reduces the complexity significantly. We,
therefore, compare selected parts (that match the implemented fea-
tures) of the codebase between LingoDB, DuckDB, and NoisePage,
a system that employs query compilation and has reported similar
performance to Hyper for TPC-H queries [19]. Numbers do not
include blank lines, comments, or lines only containing brackets to
account for different code styles.

Query Optimization. Since we propose integrating query opti-
mization into the query compiler, we first compare the effort to
implement query optimization in the three systems. As we can
observe in Figure 12, LingoDB requires less than 2000 lines of code,

whereas DuckDB requires more than 3x and NoisePage more than
5x as much code. Two main reasons cause this: First, both NoiseP-
age and DuckDB need to reimplement optimizations like CSE that
MLIR already provides. Second, NoisePage and DuckDB have to
build an optimization infrastructure from scratch that can apply
rewrite patterns. On the contrary, MLIR already provides an effi-
cient infrastructure for which one only has to provide optimization
and canonicalization patterns.
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Figure 12: Lines of Code for Implementing Query Optimiza-
tion in LingoDB, NoisePage, and DuckDB

Query Execution. Next, we compare the three systems regarding
code complexity used for executing an already optimized query.
Even though the three different systems use different strategies for
executing queries, we can split the corresponding codebases into
four categories:

(1) IR: This includes all code required for implementing differ-
ent intermediate representations (including the optimized
plan).

(2) OperatorImpl: This includes all code required for imple-
menting the relational operators, either in a vectorized way
or by emitting a lower-level IR.

(3) Lowering+Backend: This includes all further lowering
steps for imperative IRs as well as implementing an execu-
tion backend via e.g., LLVM.

(4) Runtime: All runtime functionality that is implemented
in C++ and required by the query execution layer.

DuckDB

LingoDB

NoisePage

0 K 10 K 20 K 30 K 40 K 50 K

Lines of CodeIR Lowering+Backend OperatorImpl Runtime

Figure 13: Lines of Code for Implementing Query Execution
in LingoDB, NoisePage, and DuckDB

Figure 13 displays the code complexity for the three systems and
the four categories. Overall, we can observe that our prototype
requires about 3x less code than NoisePage and 4x less code than
DuckDB for implementing a similar feature set.

Since DuckDB executes queries vectorized, it does not need
other intermediate representations than the optimized plan. How-
ever, vectorized execution must provide one function for every
operation, type, and underlying storage. This leads to a very large
runtime system. In contrast, using query compilation makes an
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extensive runtime unnecessary as we can generate specialized code.
We, therefore, use runtime only where it makes sense to reduce the
compilation time (by avoiding inlining large code snippets) or to
interact with, e.g., the storage engine.

Overall, NoisePage’s bar looks similar to the one of LingoDB
as NoisePage also uses query compilation with three layers of ab-
straction: declarative query plan, imperative, high-level IR, and a
bytecode format. However, compared to LingoDB, NoisePage re-
quires much more code to implement these IRs because of three
main reasons: First, NoisePage cannot reuse MLIR infrastructure
and instead has to reimplement many components. Second, com-
pared to LingoDB, NoisePage cannot build on existing IRs and has
to define and implement lowerings for operations that MLIR already
provides. Finally, MLIR allows to define entire dialects declaratively
in a TableDef format from which MLIR’s TableGen utility generates
C++ code. This significantly reduces the effort for adding new di-
alects as, for our dialects, 1 thousand lines in the TableDef format
correspond to around 20 thousand lines of generated C++ code.

Furthermore, the second difference is the size of the runtime.
Whereas LingoDB generates machine code for many operations,
NoisePage relies more on precompiled runtime functions to simplify
the interpretation of the bytecode format at the cost of a more
complex runtime.

Testing. For the development of compilers as well as database
engines, testing is crucial to avoid new bugs. However, compilers
and databases are usually tested slightly differently: Database en-
gines are commonly tested through unit tests specified in the used
programming language and by running end-to-end SQL tests. In
contrast, it is quite common for compilers to have text-based tests.
The compiler then processes the contained code fragment, and the
expected behavior is checked against comments in the test file.
This simplifies writing new tests and abstracts from internal rep-
resentations. Building on top of LLVM, MLIR also uses text-based
tests successfully for built-in dialects. Additionally, since MLIR en-
forces that every operation is printable and parseable, every dialect
can be tested that way. For our prototype, we test all dialects and
transformations, including query optimization, using text-based
testing. This allows us to reach high test coverage without writing
repetitive unit tests in C++. Furthermore, regression tests can be
directly derived from a respective MLIR module by annotating the
expected output as comments.

9 DISCUSSION: EXTENSIBILITY
As previous work [9, 26] shows, integrating different analytic frame-
works into a single system can yield speedups of more than one
order of magnitude. In the past, this was achieved by crafting cus-
tom IRs that covered different areas. With our approach, this is no
longer necessary: we can focus on a relational dialect and mix it
naturally with other domain-specific dialects.

In the following, we demonstrate this extensibility of our pro-
totype by showing how we can extend LingoDB to also represent
and cross-optimize a simple machine-learning model. In Figure 14a,
a SQL query uses a trained PyTorch model for linear regression
as a predicate. Traditional database systems can implement this
query, if at all, by calling a user-defined function for each tuple. We,

however, show how to leverage MLIR as a common denominator
to cross-optimize and inline this model for efficient execution.

In previous sections, we already showed how SQL queries can be
represented as MLIR operations of different dialects. Furthermore,
using the Torch-MLIR project[30], we can translate the PyTorch
model into corresponding MLIR operations of a torch dialect. Thus,
both the query and the PyTorch model can be represented in one
MLIR module with the query calling the model as depicted in Fig-
ure 14b. Note that this is made possible by designing relational oper-
ators to useMLIR regions for expressions. In a second step, we apply
already existing lowerings and optimizations to transform torch
operations into simple arithmetic operations as shown in Figure 14c.
Finally, we perform query optimization. For our example, thismeans
inlining the model function and expression simplification. Start-
ing with an expression like 𝑎 ∗ 2.06032777 + 0.581083298 < 5,
we can apply simple rewrite rules to finally yield the predicate
𝑎 < 2.144763938 as shown in Figure 14d. Such a simple predicate
can be executed efficiently and allows for more optimizations like
pushing the predicate into the table scan to prune entire data blocks
or efficient cardinality estimation using sampling.

In the future, we want to look into how to design transitions
between different high-level dialects, how to generate mixed MLIR
modules, and which cross-domain optimizations can be applied.
This is relevant for properly integrating machine-learning frame-
works that already provide MLIR dialects but can be extended
to other areas like graph analytics using, for example, MLIR’s
SparseTensor dialect.

10 FUTUREWORK
The flexibility and extensibility of the proposed platform for build-
ing query compilers leave a lot of room for future work. Of course,
we plan to make our prototype more feature complete and imple-
ment many optimizations regarding execution and compilation
times. Additionally, we plan on working on the four areas discussed
in this section.

Currently, our prototype runs single-threaded on a single ma-
chine and, therefore, cannot fully utilize modern hardware that is
increasingly more parallel. Thus, in the future, we want to generate
code for parallel and distributed systems. For implementing intra-
query parallelism, we have two options: First, we could explicitly
schedule pipeline functions with morsel-driven parallelism [18],
which requires implementing a scheduler and adding correspond-
ingMLIR operations. Alternatively, we could implement parallelism
by only using already existing MLIR dialects such as the omp dialect
that represents parallel execution using OpenMP [25].

While MLIR already supports parallel execution, it still lacks
a dialect for modeling distributed systems. Thus, implementing
distributed query processing in our prototype would require intro-
ducing new dialects. Similar to MLIR’s gpu dialect, one could add
a generic distributed dialect that provides high-level primitives.
Further low-level dialects could then implement these primitives
based on, for example, MPI or RDMA.

Supporting heterogeneous hardware is getting more and more
important for database systems. Luckily, one of MLIR’s design goals
was to enable and simplify the compilation for heterogeneous hard-
ware. Thus, we can benefit from the existing support without much
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model = torch.nn.Linear(1, 1) // trained model

db.query("select␣a␣from␣R␣where␣model(a)␣<␣5")

(a) A SQL query that uses a pytorch model as predicate

module{

func @torch_model (%arg0: !torch.vtensor <[1,1],f32 >){

%0 = torch.vtensor.literal(dense <0.581083298 >)

%1 = torch.vtensor.literal(dense <2.06032777 >)

%2 = torch.aten.linear %arg0 , %1, %0

return %2 : !torch.vtensor <[1,1],f32 >

}

func @model (%val : f32) -> f32 {

%0= tensor.from_elements %val

%1 = torch_c.from_builtin_tensor %0

%2 = call @torch_model (%1)

%3 = torch_c.to_builtin_tensor %2

%c0 = arith.constant 0 : index

%4 = tensor.extract %3[%c0 ,%c0]

return %4 : f32

}

func @main () -> !db.table {

%1 = relalg.basetable {a=>@R::@a({type=f32})}

%2 = relalg.selection %1 (%3: !relalg.tuple) {

%4 = relalg.getcol %3 @R::@a : f32

%5 = call @model (%4) : f32 -> f32

%6 = db.constant 5 : f32

%7 = db.compare lt %5, %6

relalg.return %7 : i1

}

%3 = relalg.materialize %2 [@R::@a ] => ["a"]

return %3 : !db.table

}

}

(b) MLIR module that represents both query and pytorch model

module{

func @model (%val : f32) -> f32 {

%cst = arith.constant 2.06032777 : f32

%cst_0 = arith.constant 0.581083298 : f32

%0 = arith.mulf %arg0 , %cst : f32

%1 = arith.addf %0, %cst_0 : f32

return %1 : f32

}

func @main () -> !db.table {

%1 = relalg.basetable {a=>@R::@a({type=f32})}

%2 = relalg.selection %1 (%3: !relalg.tuple) {

%4 = relalg.getcol %3 @R::@a : f32

%5 = call @model (%4) : f32 -> f32

%6 = db.constant 5 : f32

%7 = db.compare lt %5, %6

relalg.return %7 : i1

}

%3 = relalg.materialize %2 [@R::@a ] => ["a"]

return %3 : !db.table

}

}

(c) MLIR module after lowering the torch dialect

module{

func @main () -> !db.table {

%1 = relalg.basetable {a=>@R::@a({type=f32})}

%2 = relalg.selection %1 (%3: !relalg.tuple) {

%4 = relalg.getcol %3 @R::@a : f32

%5 = arith.constant 2.144763938 : f32

%6 = arith.cmpf olt %4, %5

relalg.return %6 : i1

}

%3 = relalg.materialize %2 [@R::@a ] => ["a"]

return %3 : !db.table

}

}

(d) MLIR module after query optimization

Figure 14: Example: Integration of ML models

effort by relying on MLIR’s standard dialects. For example, MLIR
already offers built-in support for different GPUs, as GPU support
is important for MLIR’s main users: machine learning frameworks.
Especially for application areas where queries are mostly static and
compilation times do not matter, it could also be possible to leverage
FPGAs since there are already related MLIR-based projects [28].

Over the last years, several intermediate representations have
been proposed to improve query compilation. Previously, integrat-
ing such proposals was complex and labor-intensive. However,
since MLIR significantly reduces the efforts needed to add new in-
termediate representations, we plan to integrate multiple proposals
into the current prototype. At the moment, we directly lower the re-
lational relalg dialect into the imperative db dialect. In the future,
we want to add dialects in between that represent different kinds of
sub-operators. Especially for the compilation of aggregations and
window functions, this has been shown to reduce complexity and
improve performance [15]. Other sub-operators could also reduce
complexity through reuse and expose a non-relational, declarative
interface [2]. Finally, low-level dialects that represent existing IRs
like Umbra IR [11] could serve as additional backends with, e.g.,
faster compilation time.

11 CONCLUSION
This paper argues that research around compiling database sys-
tems lacks an open, flexible, and extensible platform. We propose
building on MLIR, a new compiler infrastructure that aims to sim-
plify the development of domain-specific compilers such as query
compilers. First, we explained how to make layered query compi-
lation practical and more flexible and extensible using open IRs.
We further proposed to move query optimization inside the query
compilation phase to enable effective cross-domain optimization.
Based on these novel ideas, we designed a query compilation stack
using MLIR with four new dialects for data processing. Using these
dialects, we built LingoDB, a SQL-capable prototype system that
uses LLVM as a code-generating backend and achieves competitive
performance and low compilation times. Finally, we showed that
our approach not only significantly reduces the implementation
effort compared to state-of-the-art database systems but also that
our design is highly extensible. For example, we can use already
existing MLIR dialects, for e.g., machine-learning, to integrate and
cross-optimize inference models within SQL queries.
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