
In-Page Shadowing and Two-Version Timestamp Ordering for
Mobile DBMSs

Lam-Duy Nguyen
Sungkyunkwan University

Suwon, Korea
duynguyen269@skku.edu

Sang-Won Lee
Sungkyunkwan University

Suwon, Korea
swlee@skku.edu

Beomseok Nam
Sungkyunkwan University

Suwon, Korea
bnam@skku.edu

ABSTRACT
Increasing the concurrency level in mobile database systems has not
received much attention, mainly because the concurrency require-
ments of mobile workloads has been regarded to be low. Contrary
to popular belief, mobile workloads require higher concurrency. In
this work, we propose novel journaling and concurrency mecha-
nisms for mobile DBMSs, both of which build upon one common
concept - In-Page Shadowing (IPS). We design and implement a
novel In-Page Shadowing recovery method for SQLite to resolve
the journaling of journal anomaly, which is known to quadruple the
I/O traffic in mobile devices. IPS unions the previous and the next
versions of a database page in the same physical page. Using the
consolidated two versions of database page, we design Two-Version
Timestamp-Ordering (2VTO) protocol that enables non-blocking
reads as in multi-version concurrency control, but reduces the
garbage collection overhead. Designed with mobile environments
in mind, IPS and 2VTO are high-performant and resource-efficient
transactional solutions. Our performance study shows that IPS and
2VTO outperform state-of-the-art logging methods and an opti-
mistic concurrency control protocol for real mobile workloads.

PVLDB Reference Format:
Lam-Duy Nguyen, Sang-Won Lee, and Beomseok Nam. In-Page
Shadowing and Two-Version Timestamp Ordering for Mobile DBMSs .
PVLDB, 15(11): 2402 - 2414, 2022.
doi:10.14778/3551793.3551802

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DICL/sqlite.

1 INTRODUCTION
With the growth of IoT connectivity and wireless display tech-
nology, mobile devices are now replacing desktop computers for
a variety of performance-intensive tasks. With this trend, multi-
threading has become a must for mobile apps to meet the perfor-
mance expectations[1, 10, 21, 25]. To improve the performance and
usability, mobile processors have transitioned to multi-core proces-
sors since 2010. This is because power efficiency is paramount for
mobile devices and multi-core processors use less battery power

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551802

for the same amount of computation than single-core processors
with higher clock frequencies.

For mobile apps, SQLite has become the de facto standard stor-
age interface. SQLite is a serverless library database engine that
provides transactional support for numerous mobile apps. However,
SQLite provides poor concurrency in multithreaded apps because it
uses coarse-grained file-based locking and allows atmost one thread
to acquire an exclusive lock on the entire database file. Although
a growing number of modern mobile apps use multi-threading,
SQLite serializes concurrent accesses to database files, degrading
the performance of multithreaded mobile apps. The concurrency
level required by mobile apps is not as high as server-client envi-
ronments, but our study shows that the file-based locking in SQLite
is too coarse-grained for core Android mobile apps and it fails to
leverage IO parallelism and multi-core processors.

This shortcoming is an undesirable consequence of taking a sim-
plistic approach to transaction atomicity, isolation, and durability.
Recall that, as an embedded database system, SQLite is designed to
simplify its code, to minimize the memory footprint, and to reduce
the use of battery and computing resources. Therefore, SQLite is
a set of in-process library functions and does not require back-
ground server processes or threads. Without using background
server processes, SQLite relies on the operating system’s file lock-
ing to serialize concurrent writes to database tables. Specifically,
SQLite has to acquire exclusive locks on WAL and database files to
ensure atomic propagation of multiple dirty pages to the database.
As a result, SQLite poses two performance problems. First, concur-
rency is poor because the dependency on the WAL/database file
allows only one writer transaction at a time. Second, the force policy
exacerbates the write amplification problem of NAND flash[18, 26],
i.e., if SQLite writes a log or journal using the force policy, the
underlying Linux file system triggers another journaling to log its
file system metadata. This phenomenon of journaling of journal
has been reported to quadruple the I/O traffic, degrading the I/O
performance of the Android I/O stack[13].

In order to alleviate the journaling of journal problem and im-
prove SQLite’s I/O performance, various efforts have been made
to reduce the number of calls to fsync() in the SQLite layer (e.g.,
database file shadowing (DASH)[34], multi-version B-tree[16], and
doubleheader logging (DHL)[24]). In addition, several efforts have
been made to reduce the fsync() overhead in the file system
layer[19, 31]. Although these previous works have been shown
to be effective in mitigating the journaling of journal problem, they
neglect the concurrency control management, despite the close
relationship between database logging and concurrency control.
That is, each log entry must be applied in serializable order [22].

2402

https://doi.org/10.14778/3551793.3551802
https://github.com/DICL/sqlite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551802
https://www.acm.org/publications/policies/artifact-review-and-badging-current

In this work, we advocate the in-page logging scheme, which not
only resolves the journaling of journal anomaly but also improves
the concurrency level of SQLite for resource-constrained mobile
devices. Specifically, we present In-Page Shadowing (IPS) that places
the per-record redo log entry at the internal free space of the cor-
responding database page itself. IPS consolidates an original page
and its shadow copy into a single physical page. Thereby, unlike
conventional shadow paging techniques that perform page-level
copy-on-writes, IPS eliminates the need for separate log pages (and
files) and thus completely removes the logging I/O overhead. Fur-
thermore, by providing two logical versions with a single physical
page, IPS enables a novel multi-version concurrency control scheme,
Two-Version Timestamp-Ordering (2VTO), which allows concurrent
read transactions to proceed without being blocked. In addition
to improving the concurrency level of SQLite, 2VTO reduces the
garbage collection overhead. To sum up, IPS and 2VTO are resource-
efficient transactional solutions suitable for mobile environment.
Contributions of this study are summarized as follows.
• First, by consolidating the unmodified version of a database page
and its shadow page on a single physical page, IPS resolves the
journaling of journal problem, achieving the single-write jour-
naling and thus reducing the IO traffic in half.
• Second, a positive side effect of IPS in terms of concurrency con-
trol is that IPS does not relocate committed records and metadata,
enabling concurrent non-blocking reads. To support a moder-
ate level of concurrency, we propose Two-Version Concurrency
Control (2VTO), a lightweight page-level concurrency control
protocol for mobile database systems. 2VTO only manages two
versions of database pages, allowing non-blocking reads and
simple but efficient rollback operations.
• Third, we propose a novel starvation avoidance mechanism for
2VTO, namedAbortee-or-First-UpdaterWins (AFUW) rule. Classic
First Writer/Updater Wins (FCW/FUW) rules abort the same
transactions repeatedly, which is undesirable and thus should
be refrained in resource-constrained mobile devices. AFUW rule
is a pessimistic starvation avoidance mechanism that limits the
number of aborts per transaction to at most one.
The rest of this paper is organized as follows. In Section 2, we

discuss the background and motivations. In Section 3, we present
the design and implementation of IPS. In Section 4, we describe
2VTO concurrency control protocol and AFUW starvation avoid-
ance rule. In Section 5, we evaluate the performance of IPS and
2VTO with AFUW using synthetic and real mobile workloads. Fi-
nally, we conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATIONS
2.1 Slotted-Page Structure and SQLite
The slotted-page structure [28, 30] is a page format commonly
used to store a set of variable-length records. The slotted-page
structure adds a level of indirection in database pages to manage
variable-length records (in sorted order in SQLite) while minimizing
data movement upon record insertions, updates, or deletions. The
slotted-page structure has a metadata region, called slot-header, at
the beginning of page, free space in the middle, and an array of
variable-length records (slots), called records content area at the end
of page. The slot-header contains metadata about the database page,

i.e., the number of records stored in the page (numSlots), the end
of free space (free_offset), and an array of offsets (arrSlots[])
that point to records and their lengths (similar to Figure 2).

In SQLite, a transaction updates a database table at page granu-
larity, and the changes made to dirty pages are forced to be written
to disks. Even if a transaction inserts a small 8-byte record into a
database page, it creates a copy of the page and inserts the record
into one of the two copies while the other copy (original database
file or a journal file) remains intact [14]. Such logging at page gran-
ularity not only results in duplicate writes of unmodified records
inside the page, but also doubles the number of fsync() calls.

Although SQLite updates database tables at page granularity,
SQLite prevents concurrent read transactions from accessing clean
pages if a write transaction is writing to another page in the same
database file. This is because SQLite uses file-based locking to con-
trol concurrent accesses, even for multi-threaded environments.

2.2 Journaling of Journal Anomaly
Traditional database systems and file systems have used logging
(journaling) or copy-on-write (CoW, shadowing) to create modifi-
able, isolated snapshots of data. Logging and CoW are particularly
expensive in SQLite since the force policy is used with the Linux
file system[13, 16, 19]. Since a large portion of write transactions in
mobile apps run in auto-commit mode, each insert, update, or delete
statement becomes an individual transaction. In this mode, each
write query calls expensive fsync() system calls to synchronize its
small changes to a write-ahead log (WAL) or rollback journal file,
and then the database file at page granularity. Linux file systems
then double the database logging overhead because it does journal-
ing to protect the file system metadata, i.e., it allocates a free block
for the new log page and journals the corresponding inode informa-
tion. As a result, storing a short message such as “Hi” in WAL mode
results in sixteen dirty pages (16 KB) in the Linux filesystems[13].
Specifically, SQLite writes at least two pages i.e., one for the log file
and the other for the database file (i.e., 2x amplification). For each
file, the file system writes at least one metadata journal page (i.e.,
4x amplification). To aggravate the problem, the Flash Translation
Layer in flash devices amplifies the internal write due to garbage
collection. This problem is called journaling of journal anomaly[13].

2.3 Concurrency Requirements in Mobile Apps
Numerous mobile apps run multiple threads that access the same
database tables. Figure 1 shows the characteristics of SQLite trans-
actions (434,164 SQL statements) that we collected from represen-
tative mobile apps running on a Samsung Galaxy S10 (Android 10),
as was done in the previous studies [14, 23, 34]. To measure the
ratio of read-write and write-write conflicts between transactions,
we tagged each SQL statement with the thread ID and analyzed if
multi-query transactions from different threads overlap in time.

In the trace, contrary to popular belief, we find the demand
for concurrency in mobile apps is not negligible mainly due to
Google Play Services. Google Play Services allow third-party An-
droid apps to utilize Google APIs for various Google services, such
as authentication, contact lookups, access to user privacy settings,
location-based services, and many more[2, 7, 20]. Our traces shows
that each application depends to varying degrees on Google Play

2403

Figure 1: Conflicts in Concurrent Mobile Workloads

Services. Figure 1 shows that Gmail delegates more than 90% of
transactions to Google Play Services, and about 47% of transactions
conflict (37% write conflicts and 10% read conflicts), and Google
Maps also delegates about 47% of transactions to Google Play Ser-
vices. Being used by most mobile apps, Google Play Services is
reported to be the process that submits the most SQL queries to
SQLite in Android devices [15]. The SQL traces we collected show
the same results as about 80.4% of SQL transactions are from Google
Play Services. The number of concurrent transactions in Google
Play Services is higher than the other apps (i.e., up to 5 vs. up to 2).
Therefore, the database lock contention in Google Play Services is
high; overall, 48.85% of Google Play Services transactions conflict.
Given that Google Play Services is a core service in Android, our
observation indicates the need to design a new concurrency control
protocol for SQLite.

2.4 Concurrency Control for Mobile Databases
For scalable enterprise database systems, multi-version concurrency
control (MVCC), and its variants such as MVTO [29], MVOCC [17],
MV2PL [6], SSI [8], and SSN [32], are commonly used because
they enable non-blocking access and provide high concurrency, i.e.,
writers do not block readers, and vice versa.

However, mobile computing devices pose unprecedented chal-
lenges to database systems because of their resource-constrained
environments. In particular, power consumption is one of the most
significant challenges in mobile computing devices, and a small
number of cores is another [9, 33]. In mobile computing devices,
the CPU is one of the largest power consumers, along with the
backlight and display components as well as cellular network com-
ponents. Carroll et al. [9] showed that CPUs consume more than
10× power than NAND flash storage for I/O intensive benchmarks,
and computation-intensive workloads consume 2× more power
than the backlight at maximum brightness level[9]. This result indi-
cates that running background processes or threads that constantly
consume CPU cycles should be avoided whenever possible.

Classic MVCC protocols require background threads for garbage
collection (GC) to detect and delete obsolete versions. Therefore,
MVCC, which requires garbage collectors, is not suitable for mo-
bile devices. Besides this, if a database table has a large number of
versions scattered over different pages, queries have to traverse a
long version chain, which incurs more disk I/O and worsens query
response time. As mentioned earlier, the number of concurrent
transactions in Android mobile apps is not as high as server-client
enterprise database systems. Therefore, the classic MVCC is inap-
propriate for mobile devices in terms of performance and energy.

3 IN-PAGE SHADOWING
In order to reduce the number of writes and the I/O traffic, In-Page
Shadowing (IPS) obviates costly copy-on-write or journaling, but
performs in-place updates at page granularity. In particular, IPS
appends uncommitted records to the free space on the page, allow-
ing undo operations and guaranteeing consistency. In this sense,
IPS takes an out-of-place update approach at record granularity.
DHL [24] is another logging method that performs in-place updates
at page granularity but performs out-of-place updates at record
granularity. In this section, we present how IPS works. The simi-
larities and differences between DHL and IPS will be discussed in
Section 4.1.

3.1 Data Structure for In-Page Shadowing
IPS requires three additional metadata in the slotted-page structure,
as shown in Figure 2, i.e., (1) transaction ID (TID) of the transac-
tion that modified the page (i.e., the last modified timestamp), (2)
two versions of number of slots (records) in use (numSlots[0] and
numSlots[1]), and (3) two versions of tombstone bitmaps (TB[0]
and TB[1]).

In SQLite, each transaction is assigned with a monotonically
increasing transaction ID (TID). TID is generated by reading and
incrementing the File Change Counter (henceforth referred to as
FCC) which is stored in the first page (database header page) of a
database file. In SQLite, FCC plays the role of the commit timestamp
(𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡) of the latest write transaction. Upon commit of every
successful write transaction, SQLite increments the FCC and uses it
to serialize concurrent transactions. In each page, numSlots[0] and
numSlots[1] take turns representing the current and the previous
number of valid slots, i.e., one of the two numSlots becomes the
journal of the other. Tombstone bitmaps (TB[0] and TB[1]) are used
for deletions, i.e., each bit indicates whether its corresponding slot
is valid or not. Similar to numSlots[], the two tombstone bitmaps
take turns becoming the journal of the other. To indicate which
index of numSlots[] and TB[] is more recent, we reserve one bit
(denoted as F) in the TID field, and flip the bit flag every time a write
transaction updates the page. For example, if F is 0, subsequent
transactions consider numSlots[0] and TB[0] aremore recent than
numSlots[1] and TB[1]. If F is 1, it is the opposite case.

However, the more recent numSlots and TB are not always com-
mitted ones, i.e., even if a write transaction updates and flushes a
database page to a file, it may fail to update another page or put
a commit mark (i.e., increment the FCC). Therefore, the bit flag
alone does not provide enough information to determine which
numSlots and TB are more recently committed metadata. When a
transaction accesses a database page, IPS determines whether the
more recent numSlots and TB are committed metadata or not by
comparing the page’s TID (last modified timestamp) against the
transaction’s start timestamp (𝑇𝑆𝑠𝑡𝑎𝑟𝑡), which is the FCC the trans-
action read from the database header page when it was scheduled,
as shown in Algorithm 1. In the case the page’s TID is older than
𝑇𝑆𝑠𝑡𝑎𝑟𝑡 , the bit flag (F) in the TID is considered valid and we use
numSlots[F] and TB[F] to construct a logical view of the page in
the buffer cache. In the opposite case, i.e., the page’s TID is younger
than 𝑇𝑆𝑠𝑡𝑎𝑟𝑡 , the query ignores the more recent numSlots[F] and
TB[F] because the transaction that updated the page has not yet

2404

Algorithm 1 Version Selection in IPS
1: function selectVersionForRead(page)
2: if 𝑝𝑎𝑔𝑒.𝑇 𝐼𝐷 > 𝐹𝐶𝐶 then – page is dirty
3: – Uncommitted TXN has modified {𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠,𝑇𝐵 } [𝑝𝑎𝑔𝑒.𝐹]
4: return ¬𝑝𝑎𝑔𝑒.𝐹 – read the old version
5: end if
6: return 𝑝𝑎𝑔𝑒.𝐹 – read the more recent version
7: end function
8: function selectVersionForWrite(txn, page)
9: 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑝𝑎𝑔𝑒.𝑇 𝐼𝐷 ≤ 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡)
10: – {𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠,𝑇𝐵 } [𝐹] are new journals
11: 𝑝𝑎𝑔𝑒.𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 [¬(𝑝𝑎𝑔𝑒.𝐹)] ← 𝑝𝑎𝑔𝑒.𝑛𝑢𝑚𝑆𝑙𝑜𝑡𝑠 [𝑝𝑎𝑔𝑒.𝐹]
12: 𝑝𝑎𝑔𝑒.𝑇𝐵 [¬(𝑝𝑎𝑔𝑒.𝐹)] ← 𝑝𝑎𝑔𝑒.𝑇𝐵 [𝑝𝑎𝑔𝑒.𝐹]
13: < 𝑝𝑎𝑔𝑒.𝐹, 𝑝𝑎𝑔𝑒.𝑇 𝐼𝐷 >← < ¬𝑝𝑎𝑔𝑒.𝐹, 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 >

14: return ¬(𝑝𝑎𝑔𝑒.𝐹)
15: end function

put a commit mark (i.e., increment the FCC in the database header
page). Therefore, the bit flag is considered invalid, and we use the
journaledmetadata, i.e., numSlots[¬F]) and TB[¬F]. Using the ver-
sioned metadata, IPS provides two consecutive versions of pages,
which enables Two-Version Concurrency Control, as will be detailed
in Section 4.

3.2 Database Operations in In-Page Shadowing
In the following, we describe how IPS updates a single-slotted page
for insert, delete, and update queries, and how IPS updates mul-
tiple pages for B+tree rebalancing operations. Then, we discuss how
IPS guarantees failure-atomicity and supports rollback operations.

3.2.1 Insert. All slotted-pages that SQLite uses for database files
and index files are B-tree pages, so SQLite keeps records in sorted
order by their keys and overwrites the existing array of offsets as
well as records. However, IPS updates pages in an append-only
manner. That is, appended records are written to the free space
area regardless of key order, so existing records and metadata are
not modified. If we append a new record and its offset in inser-
tion order rather than key order, we can easily roll back the latest
transaction by truncating the appended record and offset. Another
key rationale for relaxing the sort constraint is that the position of
committed records should not be changed by write transactions to
allow non-blocking reads (i.e., 2VTO). That is, if a write transaction
is allowed to move records around, concurrent read transactions
must wait. But, if committed records do not change their positions,
concurrent read transactions can access other records while a write
transaction is storing a new record in the same page. For concurrent
write transactions, IPS requires that an exclusive lock be held on
the updated page until the write transaction commits. Otherwise,
subsequent write transactions may overwrite the journaled page
view and make recovery impossible.

Suppose a transaction inserts a new record <30,R2> into a page
shown in Figure 2(a). The new record is written to the free space
extending the record content area towards the beginning of the page.
Accordingly, the new record’s offset is appended to the arrSlots[]
and the free_offset is updated to 900, as illustrated in Figure 2(b).
The existing key 10 is smaller than the inserted key 30, but the offset
of <30,R2> (900 in the example) is appended at the end without
considering the order of the keys.

(a) Slotted-Page with a Single Record <10,R1>

(b) Insertion of Record <30,R2>

(c) Transaction Commits Incrementing FCC

(d) Deletion of Record <10,R1>

(e) Transaction Commits Incrementing FCC

Figure 2: Walk Through Example of In-Page Shadowing

The overhead of sorting keys can be imposed either when records
are written to the page, or when the page is loaded into the buffer
cache. The vanilla SQLite takes the former approach, whereas IPS
takes the latter approach. When a page is loaded into the buffer
cache, IPS sorts keys and constructs a logical view, i.e., binary search
tree (BST), for the more recent committed version.

When a write transaction acquires an exclusive lock on a page,
IPS creates a copy of the logical view so that the write transaction
can change it while concurrent read transactions access the previ-
ous logical view. To improve the concurrency level of 2VTO, IPS
does not discard the old logical view for concurrent read transac-
tions until the write transaction becomes the oldest transaction
and commits, or until the old logical view is evicted from the cache
due to memory pressure. With the logical views, no modification to
SQLite database operations is required except they use BSTs instead
of sorted arrays.

3.2.2 Delete and Update. For deletion, IPS uses tombstone bitmaps.
That is, it sets the deletion bit for a deleted record in the latest
tombstone bitmap. Suppose a transaction deletes <10,R1> from the
page shown in Figure 2(c). By checking the bit flag, the transaction
finds which numSlots and TB will become the more recent meta-
data. In the example, numSlots[1] and TB[1] are the committed
metadata. Hence, the write transaction decrements numSlots[0]
and sets the first bit of TB[0] to mark the deletion of the first record,
i.e., the record pointed by arrSlot[0]. Even if the page is written
to the database file before the transaction commits, the deleted
record <10,R1> can be found by using the previous numSlots and
TB because IPS does not overwrite the previous snapshot. Therefore,
upon a transaction abort, we can revert the page to the previously
consistent state by simply flipping the bit flag.

For an update, IPS does not overwrite an existing record, but
appends its new version to the free space and sets the tombstone bit

2405

Figure 3: B+tree Node Split with IPS

for the previous version of the updated record in TB. Multiple update
or delete operations can result in deleted records accumulating on a
page, which need to be garbage collected. Unlike traditional MVCC,
IPS collocates multiple versions of the same records in the same
physical page. By clustering multiple versions in the same page, the
garbage collection overhead can be reduced. Also, unlike MVCC,
IPS does not eagerly garbage collect those obsolete records even
if no longer needed by concurrent transactions. Instead, they are
lazily garbage collected when the page overflows. The rationale
behind this decision is that garbage collection overhead can be
minimized by doing the garbage collection in batches instead of
garbage collecting each record one at a time.

When a page overflows, IPS garbage collects obsolete records via
copy-on-write. Because a page split causes to allocate and write a
new page via copy-on-write anyway, garbage collection at the time
of page overflow masks its overhead with the page split overhead.
When a page overflows, IPS checks whether the node has any obso-
lete records to delete. If there is any, IPS creates a copy of the node
with only valid records without creating a new sibling page. The
throughput of lazy garbage collection is 3.2% higher than that of ea-
ger garbage collection in our experiments. Despite the performance
benefits, this lazy garbage collection has the disadvantage that the
page is fragmented internally and page overflows more frequently.
In our experiments, IPS causes about 2.9% of write queries to page
overflow, whereas only 1.3% of write queries make pages overflow
in WAL mode. However, our experiments show that the advantages
of increasing the concurrency level outweigh the disadvantages
caused by internal fragmentation.

3.2.3 Multiple Page Writes: B+tree Node Split. A transaction often
writes multiple database pages. Even auto-commit transactions that
insert a single record may update multiple pages if a B+tree node
splits. Consider the B+tree node split example shown in Figure 3
that describes how IPS updates multiple pages atomically.

In the example, we assume each page can hold up to four key-
value records. Suppose we insert key 70 into Node A. Since there
is no empty slot, we create two new nodes - Node B and Node
C to redistribute the keys across the two new nodes as shown in
Figure 3(b). Then, we insert the keys and pointers of the two child
nodes into the parent node. Instead of overwriting the pointer for
Node A, we append the two key-pointer pairs to the free space in a
log-structured fashion, and update numSlots, TB, and TID of the
parent node as shown in Figure 3(c). After updating all three nodes
(Node B, Node C, and Node P), we increment the FCC in the header
page of the database file.

Node P provides two logical views - one for the transactions older
than TID 5 and the other view for younger transactions. Even if
multiple pages are updated, the previous consistent pages (i.e., pages
consistent in version 4 in the example) can be reconstructed when

the system crashes or a transaction aborts before increasing the FCC.
Once the transaction successfully commits, the obsolete journal
version (in the example, Node A) is no longer needed. Thus, the
write transaction deletes Node A from the database file. However,
IPS does not eagerly delete the obsolete key[0] 40 from Node P.
Instead, IPS defers garbage collection until Node P overflows.

3.2.4 Rollback. If a transaction aborts, the vanilla SQLite removes
its dirty pages from the buffer cache. In contrast, IPS does not drop
dirty pages from the buffer cache because they are not just dirty
pages but also clean pages accessed by concurrent read transactions.
To rollback the aborted transaction, IPS (1) drops its dirty logical
views (BSTs), (2) inverts the bit flag (F) of the pages, and (3) restores
the previous TID of the pages. To restore the previous TID, IPS keeps
the previous TID of each dirty page along with old consistent logical
views in memory. By reusing the cached pages for subsequent and
concurrent transactions, IPS not only avoids reading the same pages
from disks but also improves the concurrency level.

If a system crashes while a transaction is committing, uncom-
mitted dirty pages can be written to a database file. Besides, IPS
employs steal/force buffer manager policy. Hence, a stolen dirty
page can be also written to the database with an uncommitted TID.
Nonetheless, since UNDO information is in the page itself, it is
recoverable and the UNDO information (i.e., the journal version of
the page) will not be lost because the transaction that updated the
stolen page will keep holding an exclusive lock until it commits.
For UNDO operations, the last modified timestamp (TID) of the
uncommitted pages is reset to zero (since we lost the previous TID)
and the bit flag (F) is flipped. The recovery process does not need
to restore the previous TID correctly because subsequent transac-
tions will check whether its start timestamp is more recent than
the timestamp of restored pages.

While the no-force buffer management policy is known to outper-
form the force policy, the overhead of the WAL implementation in
SQLite is not less than that of other SQLite journal modes that use
force policy [26]. This is because the no-force policy complicates
enforcing durability and SQLite is a lightweight embedded data-
base system that should avoid such complexity. When a transaction
commits, the SQLite WAL mode flushes all its dirty pages to the
WAL file as-is. Therefore, the efficiency and complexity of IPS’s
buffer management are similar to that of WAL.

3.2.5 Failure-Atomic Multiple Pages Updates. In IPS taking the
steal policy, a transaction is allowed to flush its dirty pages to
disks before commit. To undo such prematurely written pages and
reduce the number of fsync()/fdatasync() calls, IPS employs
the counting commit protocol [24]. Because fsync()/fdatasync()
does not enforce the order in which multiple pages are written,
there is no guarantee that database header pages will be flushed
after all data pages are flushed.

In the counting commit protocol, a transaction counts the num-
ber of dirty pages updated by the transaction (i.e., the transaction
size) and writes the number in the database header page as a com-
mit mark along with the FCC. Then, it calls fsync() for the dirty
pages and the header page. To recover from failures, the counting
commit protocol requires that the recovery process scans the entire
database file to count the number of dirty pages with a transaction

2406

ID greater than or equal to the FCC. If there are pages with a trans-
action ID greater than the FCC, it is either because they are stolen
pages or because a transaction with TID greater than the FCC has
aborted before writing a commit mark in the header page. In either
case, the recovery process needs to roll them back to the previous
version. If there is no page with a transaction ID greater than the
FCC, the FCC is considered the TID of the latest write transaction,
and the number of pages with the same transaction ID as the FCC
is compared to the size of the transaction written along with the
FCC in the header page. If the two numbers are equal, no recovery
is necessary. Otherwise, the latest write transaction is considered
to have failed to flush all the dirty pages it wrote. Hence, the latest
write transaction needs to be rolled back, and the bit flag (F) of the
dirty pages with a TID equal to the FCC is flipped to restore their
previous versions. Since 2VTO does not allow multiple transactions
to commit at the same time, the FCC increases monotonically and
transactions with a TID smaller than the FCC are guaranteed to
have been committed.

4 TWO-VERSION TIMESTAMP ORDERING
IPS updates metadata and records in an append-only fashion with-
out relocating them. This property provides an opportunity to
design a new concurrency control protocol that seamlessly inte-
grates journaling and multi-version concurrency control (MVCC)
for mobile DBMS.

To improve the concurrency level of SQLite, we develop a fine-
grained page-level concurrency control protocol called Two-Version
Timestamp-Ordering (2VTO). 2VTO, a variant of Multi-Version
Timestamp-Ordering (MVTO) protocol, manages two versions of
each database page for multi-threaded apps. For concurrent access
frommultiple processes, the operating systems’ file-based locking is
still used because SQLite is an embedded library DBMS. By manag-
ing only two versions, 2VTO eliminates the need for a background
garbage collection mechanism.

4.1 IPS vs. DHL for Non-Blocking Reads
DHL (DoubleHeader Logging) [24] is another in-page journaling
scheme that provides two logical views of a single slotted-page.
DHL is similar to IPS in that it uses the free space of the slotted-
page structure as a journal space for page metadata, i.e., it manages
two page headers including the offset arrays and one page header
behaves as a journal of the other.

The key difference between IPS and DHL is that DHL duplicates
the offset array to maintain the old and new sorted orders. Because
each array size changes dynamically, DHL relocates the two arrays
and it makes non-blocking reads impossible. For example, if a write
transaction is shifting the offset arrays for insertions, concurrent
read transactions may access incorrect records. This constraint
makes DHL unsuitable for 2VTO.

4.2 2VTO: Two-Version Timestamp Ordering
Using the two logical views of each page provided by IPS, 2VTO
follows the isolation specification of SQLite [4]. That is, read trans-
actions must see an unchanging snapshot of the database file as it
existed at the time when the read transaction started. Thus, any

partial change made by a concurrent writer that has not been com-
mitted is invisible to the reader. Multiple writers can access the
same database file concurrently, but they must update disjoint sets
of pages. If a write transaction splits a page, the writer garbage-
collects the old page in 2VTO. If an old transaction needs to access
the garbage-collected page, the old transaction is aborted. We note
that old releases of Oracle also took the same approach, i.e., they
abort a transaction if undo logs it needs to access have been over-
written by concurrent writers.

As inMVTO, 2VTO assigns transactions two timestamps -𝑇𝑆𝑠𝑡𝑎𝑟𝑡
and 𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 when they start, which is used to determine the seri-
alizability order. Implementing 2VTO in SQLite,𝑇𝑆𝑠𝑡𝑎𝑟𝑡 is set to the
FCC when a transaction starts, i.e., a transaction can read data writ-
ten by a transaction older or equal to its 𝑇𝑆𝑠𝑡𝑎𝑟𝑡 . 𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 is also
assigned to write transactions during initialization, and determines
the commit order of write transactions. For example, if two write
transactions 𝑇𝑖 and 𝑇𝑗 are scheduled when FCC is 𝑓 𝑐𝑐 , their start
timestamps (𝑇𝑖 .𝑇𝑆𝑠𝑡𝑎𝑟𝑡 and𝑇𝑗 .𝑇𝑆𝑠𝑡𝑎𝑟𝑡) are set to 𝑓 𝑐𝑐 , but their com-
mit timestamps are incremented atomically in the order they are
scheduled, i.e.,𝑇𝑖 .𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 = 𝑓 𝑐𝑐 +1,𝑇𝑗 .𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 = 𝑓 𝑐𝑐 +2. 2VTO
commits 𝑇𝑖 before 𝑇𝑗 regardless of how long each transaction runs.
That is, a write transaction can commit only if all other previously
scheduled write transactions have already been committed.

4.2.1 Conflict Resolution. IPS requires one of the two logical views
to play the role of journal. Therefore, 2VTO does not allow a write
transaction to update database pages modified by other uncommit-
ted write transactions, as each page must be updated exclusively
by at most one transaction until the transaction commits.

2VTO does not prevent a younger write transaction from updat-
ing a database page before an older write transaction accesses it.
Therefore, cyclic write-write conflicts can occur in 2VTO. 2VTO
resolves the cyclic dependency using the commit timestamps, and
thus, deadlock does not occur. Specifically, if a write-write conflict
occurs, 2VTO gives priority to the first updater and aborts subse-
quent transaction that fails to acquire a lock, as in the traditional
First-Updater-Wins [5, 11]. To resolve write-write conflicts, vari-
ous database systems including Oracle, MySQL, and PostgreSQL
have implemented First Committer Wins (FCW) or its variant First
Updater Wins (FUW) rule [5, 27, 28]. If a write transaction makes
an update that conflicts with another concurrent write transac-
tion, FCW and FUW commit the first committer and first writer,
respectively, and the other transactions are aborted.

For read-write conflicts, 2VTO ensures that a read transaction
finds all committed records that existed at the time the transaction
started, despite IPS only provides two versions. This is because
2VTO does not allow more than one concurrent write transaction
to update the page until it is committed. Suppose a transaction 𝑇𝑖
reads the current consistent logical view of a page (𝐿𝑉 [𝐹]) while
a younger write transaction 𝑇𝑗 (i.e., 𝑇𝑖 .𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 < 𝑇𝑗 .𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡)
updates the same page and creates the next logical view (𝐿𝑉 [¬𝐹]).
Unless 𝑇𝑖 commits, 2VTO does not allow 𝑇𝑗 to commit. Therefore,
the current consistent logical view of the page (𝐿𝑉 [𝐹]) is guar-
anteed to be available for all transactions older than the write
transaction. When the write transaction commits, the previous log-
ical view (𝐿𝑉 [𝐹]) is not needed by other transactions and can be
overwritten by a subsequent write transaction.

2407

Algorithm 2 Abortee-or-First-Updater Wins Algorithm
1: function Abort(txn)
2: 𝑆𝑡𝑜𝑝𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑡𝑥𝑛)
3: 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 ← 𝑁𝑒𝑥𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ()
4: while 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 > 𝑐𝑢𝑟_𝑜𝑙𝑑𝑒𝑠𝑡_𝑇𝑆 do ⊲ ForcedSleep
5: 𝑐𝑜𝑛𝑑_𝑣𝑎𝑟 .𝑤𝑎𝑖𝑡 (𝑡𝑥𝑛)
6: end while
7: 𝑡𝑥𝑛.𝑇𝑆𝑠𝑡𝑎𝑟𝑡 ← 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡

8: 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 (𝑡𝑥𝑛)
9: end function
10: function Exclusive_Reqest(txn, page)
11: L1: 𝑙𝑜𝑐𝑘_𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 ← 𝐺𝑒𝑡𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐿𝑜𝑐𝑘 (𝑡𝑥𝑛, 𝑝𝑎𝑔𝑒)
12: if 𝑙𝑜𝑐𝑘_𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 == 𝐹𝑎𝑙𝑠𝑒 then ⊲ Step (1)
13: if 𝑡𝑥𝑛.𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡 == 𝑐𝑢𝑟_𝑜𝑙𝑑𝑒𝑠𝑡_𝑇𝑆 then ⊲ Step (1-1)
14: 𝐴𝑏𝑜𝑟𝑡 (𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟 (𝑝𝑎𝑔𝑒))
15: goto L1
16: end if
17: 𝐴𝑏𝑜𝑟𝑡 (𝑡𝑥𝑛) ⊲ Step (1-2)
18: end if ⊲ Step (2)
19: if 𝑝𝑎𝑔𝑒.𝑇 𝐼𝐷 > 𝑡𝑥𝑛.𝑇𝑆𝑠𝑡𝑎𝑟𝑡 then ⊲ Step (2-1)
20: 𝐴𝑏𝑜𝑟𝑡 (𝑡𝑥𝑛)
21: end if
22: – Otherwise, txn proceeds normally ⊲ Step (2-2)
23: end function

4.3 Abortee-or-First-Updater Wins
To prevent any deadlock and also to reduce the number of replays
of aborted transactions, which waste a significant amount of com-
puting resources and battery power, 2VTO employs a variant of
FUW - Abortee-or-First-Updater Win (AFUW) rule that limits the
number of aborts per transaction to at most one.

FUW uses exclusive locks to detect conflicts early. In contrast,
FCW calls expensive memcpy() to create a thread-local copy of each
object and checks write-write conflicts at commit time. Out of these
two rules, FUW is more suitable for IPS than FCW because IPS also
requires write transactions to hold locks until they commit, i.e., the
two logical views provided by IPS must be protected using an ex-
clusive lock until the transaction commits. Similar to FUW, AFUW
aborts one of two conflicting transactions to prevent deadlocks.

To prevent the same transaction from being aborted multiple
times, AFUW forces an aborted transaction to sleep until it be-
comes the oldest transaction so that it has the highest priority and
prevents other transactions from blocking it. When a transaction
aborts, it calls wait on a condition variable so that its immediately
preceding transaction can wake it up. When a transaction wakes up,
it checks the transaction manager object, which contains metadata
for all active transactions, to ensure that it is the oldest transac-
tion. Alternatively, transactions can call usleep() in a while loop
and periodically query the list of IDs. Once an aborted transaction
becomes the oldest transaction, it runs with the highest priority
so that it can steal exclusive locks from other conflicting transac-
tions and abort them. UnlikeWound-Wait deadlock prevention rule,
AFUW allows only the oldest transaction to wound other transac-
tions. When a transaction is aborted and rescheduled as the oldest
transaction, the transaction’s start and commit timestamps (𝑇𝑆𝑠𝑡𝑎𝑟𝑡
and𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡) will have the same value. This property ensures that
aborted transactions under AFUW always read the latest commit-
ted data and commit successfully, i.e., AFUW compensates for the

(a) First-Updater-Wins

(b) Abortee-or-First-Updater-Wins

Figure 4: First-Updater- vs. Abortee-or-First-Updater-Wins

problem of FUW on mobile devices as it makes FUW fall back to
a serial schedule if FUW fails to make a concurrent serializable
schedule using two logical views.

Algorithm 2 shows how AFUW works. Suppose a write trans-
action 𝑇𝑖 requests a write lock on a database page to update. (1) If
the write lock for the page is held by another transaction 𝑇𝑗 , the
lock request will be rejected and two cases must be considered.
First, (1-1) if 𝑇𝑖 is currently the oldest transaction, i.e. 𝑇𝑖 .𝑇𝑆𝑐𝑜𝑚𝑚𝑖𝑡

is smallest amongst all running transactions, 𝑇𝑖 has the highest
priority and it can abort𝑇𝑗 to steal the write lock. Second, (1-2) if𝑇𝑖
is not the oldest transaction, 𝑇𝑖 aborts and sleeps until it becomes
the oldest transaction. When it becomes the oldest transaction, it
replays its operations with the highest priority and steals write
locks from any other concurrent transactions if necessary. Thereby,
AFUW guarantees that a transaction is aborted at most once. (2)
If the lock is acquired, 2VTO checks if the page has been updated
by another concurrent transaction, i.e. 𝑝𝑎𝑔𝑒.𝑇 𝐼𝐷 > 𝑇𝑖 .𝑇𝑆𝑠𝑡𝑎𝑟𝑡 . (2-1)
If it is, transaction 𝑇𝑖 aborts. (2-2) Otherwise, the transaction 𝑇𝑖
is allowed to modify the page to create a new logical view while
keeping the old journal view in the same page using IPS.

Figure 4 is an example illustrating the difference between AFUW
and FUW. In the example shown in Figure 4(a), FUW aborts trans-
action B twice because both transactions A and C acquire exclusive
locks on the object before transaction B. In contrast, AFUW makes
transaction B sleep until all the previous transactions (in the exam-
ple, transaction A and C) commit. Once transaction B wakes up, it
may abort other younger transactions if it has to steal exclusive
locks from them regardless of whether they are first writers or not.

4.3.1 Overhead of AFUW: Forced Sleep. FUW is more optimistic
than AFUW in that FUW expects that a rescheduled transaction will
not conflict again. However, as we discussed in Section 2, resource-
constrained embedded database systems such as SQLite should not
repeat replaying the same transaction over and over due to battery
usage. Therefore, AFUW takes a rather pessimistic approach to limit
the number of aborts. If there are many concurrent transactions that
conflict with each other, AFUW will abort and reschedule most of

2408

them one by one, as in a serial schedule. As a result, the concurrency
level of AFUW can be lower than that of FUW. However, as we
have discussed, the level of concurrency requirements of mobile
apps is not as high as that of enterprise database systems.

In exchange for limiting the number of aborts to one, AFUW
forces transactions to sleep. In addition, 2VTO forces a transaction,
though ready to commit, to wait for its previous transactions to
commit, as in other timestamp-ordering protocols [35]. In Section 5,
we will show that the forced sleep overhead of AFUW is lower
than the rollback/replay overhead of SQLite’s implementation of
optimistic concurrency control. This is in part because mobile work-
loads mostly consist of single query transactions in auto-commit
mode, and in part because transactions that conflict with other
transactions continue to conflict with subsequent transactions in
the mobile workload [26].

5 EVALUATION
We evaluate the performance of IPS against state-of-the-art logging
schemes - DASH [34] and DHL [24], as well as the stock WAL
and OFF modes of SQLite 3.7. To evaluate the concurrency level
of 2VTO, we enable the shared-cache mode, which allows multiple
connections to the same database to share the buffer cache. All
presented results are the average of five runs. DASH [34] is a state-
of-the-art logging method that mitigates the journaling of journal
problem by shadowing the entire database file. Both DHL andDASH
rely on file-based locking. However, DHL can be improved to use
2VTO by the position of the offset arrays fixed. For example, the
first offset array can be preallocated to its maximum size, taking
into account the case where the largest number of smallest 4-byte
records can fit on a page. Alternatively, the two offset arrays can
be interleaved to reduce the size of pre-allocated space. However,
in either approach, DHL duplicates offset array elements and store
fewer records per page compared to IPS. We implemented a variant
of DHL that preallocates the first offset array to make it work with
2VTO, and evaluate its performance (denoted as DHL+2VTO) for
concurrent workloads.

5.1 Experimental Setup
Our testbed is a Samsung Galaxy S10, which runs Android 10 (Linux
Kernel 4.14) on two 2.7 Ghz Exynos M4 processors, 8GB mem-
ory, and 256GB UFS 2.1 formatted with the EXT4 file system with
data-ordered journal mode. We fixed the frequency to the maxi-
mum 2.7 GHz to reduce the standard deviation of the experiments.

We use two types of workloads for performance evaluation. First,
we run Mobibench [12], a microbenchmark commonly used to eval-
uate the performance of the mobile database systems [16, 19, 24, 34].
Mobibench runs a single thread that that inserts, deletes, or up-
dates 128-byte records using randomly generated keys. To evaluate
the concurrency level of SQLite, we made small modifications to
Mobibench to run multiple concurrent client threads. We populate
a database table with 5000 records (552KB DB table). Then, we
run a variable number of client threads, each submitting additional
5000 queries in auto-commit mode. We generate keys in both uni-
form and Zipfian distributions to evaluate the effect of potential
conflicts between concurrent transactions. In addition to the micro-
benchmark, we evaluate IPS and 2VTO using SQL statement traces

that we collected from five representative mobile apps: Facebook,
Twitter, Google Play Services, Google Calendar, and Google Maps.

5.2 Evaluation of In-Page Shadowing
5.2.1 Latency Breakdown with Mobibench. In the first set of exper-
iments shown in Figure 5, we run single-threaded Mobibench that
submits 5000 queries in a batch, and break down the average query
latency into 1) computation time, 2) the time taken for write()
system call, and 3) the time taken for fsync() system call.

Our experiments show that WAL is slower than DHL, OFF, and
IPS modes because of file system metadata journaling. Contrary
to popular belief, WAL does not perform sequential writes but
random writes because each transaction appends new dirty pages,
increasing the size of a log file. Therefore, the file system journals
the file systemmetadata (i.e., inode and file size updates) [13, 19, 24].

We evaluate WAL using two different journal size limit config-
urations. If journal_size_limit is set to -1 (unlimited) as in the
default configuration of SQLite, checkpointing does not truncate
the WAL file but overwrites it to avoid the metadata journaling.
However, a drawback of this default configuration is that it wastes
the storage space. Therefore, our trace shows that all mobile apps
in our testbed smartphone (e.g., Twitter, Facebook, Gmail, Calen-
dar, and Maps) set the journal_size_limit (i.e., reserved journal
space) to 512 KB such that they truncate WAL files and reuse 512
KB. If a WAL file grows larger than the limit, WAL suffers from
the file system metadata journaling. We denote the performance
of the latter configuration (i.e., 512 KB reserved journal space as
in real workload) as W-r. Figure 5 shows that W, the default WAL
mode with unlimited journal size, shows performance superior
to W-r and comparable to the DHL mode because it mitigates the
journaling of journal problem. However, WAL mode periodically
checkpoints dirty pages from WAL files to database files and ampli-
fies the amount of I/O and increases the fsync() time. As a result,
Figure 5(a) shows that the fsync() overhead of W is 28% higher
than that of DHL, OFF, and IPS modes.

DASH exhibits the worst performance in the experiments. This
is because DASH manages two database files. As the two files take
turns in behaving as a shadow file, DASH manages a recent history
of which dirty page was written to which file. Using the history,
DASH writes the pages updated by the latest two transactions to a
new shadow file. It not only increases the computation time, but also
flushes a larger number of dirty pages than other logging modes
that commit only one transaction.

OFF mode disables database logging. Thus, it does not suffer
from the journaling of journal problem and reduces the number of
writes in half. As a trade-off, OFF mode does not support rollback.
The fsync() overhead of DHL and IPS is similar to that of OFF
mode while they allow transactions to rollback since both logging
schemes perform in-place logging. As we discussed in Section 3.2.2,
IPS has the internal fragmentation problem. Therefore, the fsync()
overhead of IPS is slightly but less than 1% higher than that of OFF
mode. The fsync() overhead of DHL is about 10% higher than that
of IPS. This is because DHL has 2x larger metadata, so it has fewer
node fanouts and splits more often than IPS.

The computation time of IPS is much lower than that of DHL and
OFF modes because IPS allows non-blocking reads and eliminates

2409

(a) Insert Latency (b) Delete Latency (c) Update Latency

Figure 5: Latency Breakdown of Mobibench Queries
S: DASH, W-r: WAL-512KB, W: WAL-unlimited, D: DHL, O: OFF, I: IPS Figure 6: CPU Time Figure 7: Recovery Time

the overhead of acquiring shared locks, whereas OFF and DHL
require every transaction to acquire shared locks. Therefore, IPS
invokes fewer system calls and also triggers fewer context switches
than DHL and OFF. As a result, IPS spends less time in the kernel,
as shown in Figure 6, which breaks down the computation time of
an individual insert query into kernel time and user-level time.

Figure 5(b) shows IPS outperforms all other logging modes for
delete queries. This is because IPS performs deletions by flipping
the tombstone bits and defers B+tree rebalancing operations until
the page overflows. That is, if a page overflows due to inserts, the
deleted records and under-utilized pages are garbage collected via
copy-on-write in IPS. Therefore, the tree rebalancing computation
overhead is only included in inserts, but not in deletions.

While IPS outperforms DHL and OFF modes by 22% and 20% for
inserts and deletions, Figure 5(c) shows that IPS is only 5% faster
than DHL and OFF modes for updates because internal fragmen-
tation issues are more problematic in update queries. Unlike DHL
and OFF modes, IPS does not overwrite obsolete records until the
page overflows.

5.2.2 Recovery Performance. In the experiments shown in Figure 7,
we measure the latency for crash recovery. We warm up a database
table with 1500 records and then inject a fault while an insert
transaction is running. We vary the number of inserted records in
the faulty transaction from one to sixteen. The size of each record
is 128 bytes.

Overall, the recovery time of WAL is much longer (16 msec)
than the other logging modes due to the overhead of copying dirty
pages from the WAL file to the database file. In addition, this check-
pointing process updates the file system metadata, i.e., inode table
and block bitmap, to truncate the WAL file. Although the recovery
process of DASH is much faster than WAL, its recovery time is
longer than DHL and IPS because it has to make the shadow file
and the database file identical, i.e., DASH has to copy the pages
written by the last two, not just one, transactions to one of the two
files. Therefore, as the transaction size becomes larger, its overhead
increases. The recovery process of DHL compares two transaction
IDs against the FCC value in all pages, and overwrites invalid meta-
data with valid one using memcpy(). In contrast, IPS flips only a
dirty bit flag to rollback. By avoiding the memcpy() overhead, the
recovery process of IPS is slightly faster than DHL.

5.2.3 Storage Overhead. In terms of storage overhead, DASH is
the worst because it shadows the entire database file. WAL isn’t
much better than DASH because it writes additional metadata, i.e.,
WAL header per each dirty page and WAL index, and the WAL file

often grows larger than small database files. In contrast, IPS and
DHL place recovery information inside slotted-pages and require
negligible storage overhead.

5.3 Evaluation of 2VTO
In this section, we evaluate the concurrency of SQLite using multi-
threaded Mobibench with varying numbers of client threads sub-
mitting 5000 transactions each. We set the checkpoint interval to
100 transactions (i.e., wal_autocheckpoint=100) and the journal
size limit to 512 KB as set in the mobile app trace. We vary the num-
ber of threads to a maximum of four because at most five threads
submit queries concurrently in the trace. We compare 2VTO with
IPS against the vanilla SQLite in WAL mode. In vanilla SQLite,
if multiple write transactions are scheduled, only one of them is
granted the exclusive lock and the other transactions abort. How-
ever, due to the growing demand for higher concurrency, BEGIN
CONCURRENT branch (SQLite 3.37) for WAL mode is under devel-
opment [3]. BEGIN CONCURRENT branch employs an optimistic
page-level-locking and prevents conflicting transactions from being
committed. That is, each commit operation checks whether any
database page, which the transaction has modified, was altered by
other concurrent transactions. If any conflict is found, the transac-
tion cannot commit and therefore aborts. Otherwise, it commits.
Although BEGIN CONCURRENT branch is not merged into the
main, it shares the same goal with 2VTO. Hence, we compare 2VTO
against BEGIN CONCURRENT.

We do not show the performance of DASH because it is even
slower than WAL, and is not designed for concurrent workloads.
The original DHL also does not support concurrent transactions, but
we implemented a variant of DHLwith fixed positions of offset array
elements so that DHL can use 2VTO. We denote it as DHL+2VTO.

5.3.1 Concurrent Throughput. In the experiment shown in Fig-
ure 8, we runMobibench to populate the database with 5000 records
(552 KB) and submit another 5000 auto-commit queries per client
thread. The percentage of write transactions (UPDATE statements)
is varied to increase conflicts between client threads. Baseline de-
notes the performance of the default SQLite inWALmode using file-
based locks. We use the shared-cache mode for Baseline because
Baseline performs better in shared-cache mode than private-cache
mode. This is because the shared-cache mode allows multiple client
threads to share the same schema cache, which reduces the memory
usage and I/O. For BEGIN CONCURRENT, denoted as BeginConc,
we use the private-cache mode because the private cache allows
each client thread to work on its own private cache and defers

2410

(a) Write Ratio=10% (b) Write Ratio=20% (c) Write Ratio=50%

Figure 8: Concurrent Throughput with Various Locking Schemes Figure 9: Txn Size Effect
Figure 10: Latency

Breakdown

locking until a commit is executed. As such, BeginConc performs
better in private-cache mode.

Figure 8(a) shows that Baseline and BeginConc gain a very
small throughput improvement from a larger number of threads
even when the conflict is low (i.e., write ratio is 10%). This is be-
cause their locking schemes depend on theWAL file. That is, even if
BeginConc employs fine-grained optimistic page-level locking and
improves the concurrency level during computation, write trans-
actions compete with each other and only one write transaction
can append to the very end of the WAL file at any time, i.e., only
one write transaction can write and commit. Thus, the through-
put of BeginConc is not quite different from that of Baseline. If
the write ratio is higher than 10%, transactions conflict more of-
ten and the overall throughput degrades with a larger number of
client threads because optimistic BeginConc rolls back and replays
transactions frequently. In contrast, DHL+2VTO and IPS+2VTO
scale to 4 threads and exhibit more than 2x higher throughput than
Baseline as they reduce the number of replays and benefit from
non-blocking reads of internal tree nodes when traversing B-trees.
Although DHL+2VTO scales, its throughput is up to 23.7% lower
than IPS+2VTO, mainly due to low page utilization.

5.3.2 Physical Battery Consumption Test. To evaluate the battery
usage efficiency of 2VTO, we ran physical experiments to measure
how much power each logging mode consumes. For each experi-
ment, we emptied the battery of our testbed smartphone completely,
and charged it only for exactly 3 minutes. Then, we repeated the
same workload used for the experiments shown in Figure 8(c) until
the phone turns off with no battery left. On average, BeginConc
and Baseline executed approximately 140K and 200K transactions
until the phone drained the battery and shut down in 105 and 90
seconds, respectively. In contrast, IPS+2VTO ran about 400K trans-
actions before the phone turns off in 90 seconds. That is, IPS+2VTO
executes approximately 2x and 2.8x number of transactions than
vanilla SQLite and BeginConc with the same battery charge, re-
spectively.

5.3.3 Transaction Latency in Concurrent Workload. In Figure 10,
we breakdown the query response time of three concurrency modes
for the experiments that submit 20% write queries using four client
threads. Baseline suffers from high latency waiting for locks due
to the coarse-grained file locking. In particular, it spends 69% of
its execution time waiting for file-based locks. On the other hand,
BeginConc spends 48% of its execution time on rollback operations.
Taking an optimistic approach, BeginConc defers conflict checks
until transactions are ready to commit. Because the database table

Figure 11: Impact of Conflicts
NS: IPS+2VTO without Forced Sleep, (T): Throughput, (R): # of Replays

has only about 140 pages in the experiments, even with 20% of write
transactions, transactions conflict and abort frequently. Due to its
optimistic concurrency control, BeginConc keeps repeating and
aborting the same transactions. As a result, its Replay/Rollback
overhead is high, and Computation time is also much higher than
the other two modes. Note that fsync() overhead of BeginConc
is also higher than the other two modes. This is because it employs
private-cache and checkpointing occurs more frequently. On the
other hand, IPS+2VTO shows much lower query response times
than the other modes because IPS+2VTO limits the number of
aborts. The largest portion of the query latency in IPS+2VTO is
ForcedSleep, which is the time transactions spend sleeping, i.e.,
if a transaction is aborted or ready to commit, it sleeps until it
becomes the oldest transaction. In the experiments, ForcedSleep
accounts for 66% of the average latency. It should be noted that
although IPS+2VTO spends a significant amount of time sleeping,
the CPU cores are busy processing other transactions.

5.3.4 Effect of Transaction Size. In the experiments shown in Fig-
ure 9, we generate transactions of various sizes using Mobibench.
We run four client threads, each submitting 5000 transactions. Keys
are in uniform distribution, and 85% of SQL statements are SELECT
statements regardless of transaction size. As the transaction size
increases, the transaction throughput decreases, but 2VTO consis-
tently outperforms Baseline and BeginConc. Interestingly, unlike
auto-commit transactions, BeginConc exhibits much better perfor-
mance than Baseline. BeginConc shows 27.3%, 43.8%, and 43.9%
higher throughputs than Baseline when the transaction size is
two, four, and six, respectively. This is because of the private-cache
mode. That is, as a transaction accesses a larger number of pages,
the wait time for page-level locks increases in the shared-cache
mode. In particular, the lock wait time in the private-cache mode is
only 1/8 compared to that of the shared-cache mode.

2411

Table 1: Workload Characteristics

T: Number of Threads, DS: Initial DB Size in KB
Apps Txn Size Read Write(Update) T DS

GPS 9.82 58.70% 41.3(0.1)% 4 244
Facebook 1.86 27.98% 72.0(36.2)% 2 88
Twitter 4.24 66.71% 33.3(19.0)% 2 396
Calendar 1.26 99.61% 0.4(0.2)% 2 156
Maps 1.41 91.14% 8.8(5.5)% 2 40 Figure 12: Concurrent

Throughput with Real Workload Figure 13: Real Workload Latency Breakdown

Another interesting observation is that the replay/rollback cost
of BeginConc in the private-cache mode is smaller than the shared-
cache mode as the transaction size grows, i.e., only 1/4 compared to
that of BeginConc and Baseline both in the shared-cache mode.
This result is different from Figure 10 because long running trans-
actions in the shared-cache mode conflict more frequently and
rollback in the shared-cache mode requires coordination with other
concurrent transactions over shared data structures.

5.3.5 Skew Effect. In the experiments shown in Figure 11, we vary
the Zipfian skew factor and measure its impact on the number of
aborted transactions. We run four client threads, each of which sub-
mits 5000 transactions, and the write ratio is 15%. When keys are
generated in uniform distribution (skew factor=0), DHL+2VTO and
IPS+2VTO abort about 1% of the transactions. As the skew factor
increases, the number of aborted transactions increases, and when
the skew factor is 1.0, about 5.7% transactions abort in IPS+2VTO.
As a result, the throughput degrades by 13%. DHL+2VTO aborts a
slightly fewer number of transactions than IPS+2VTO because its
page utilization is low and popular records are distributed across
more pages. As a result, the throughput of DHL+2VTO is only re-
duced by 5%, but its throughput is still lower than that of IPS+2VTO.
Disabling forced sleep in IPS+2VTO causes aborted transactions
to conflict with other transactions up to 3.8x more frequently. As
a result, its throughput (denoted as NS(T)) degrades by at least
11.5% compared to IPS+2VTO. We note that BeginConc mode is
rather insensitive to the skew factor, i.e., its throughput degrades
only 4.7%. This is because BeginConc suffers from replaying a large
number of aborted transactions repeatedly even when keys are in
uniform distribution, and its throughput is already much lower than
that of IPS+2VTO. On average, BeginConc aborts each transaction
more than 2.4 times even in uniform distribution. When the skew
factor is 1.0, the average number of aborts increases to 2.5, and the
throughput degrades by 4.7%.

5.4 Evaluation with Real Workloads
Finally, we evaluate the performance of IPS and 2VTO using the
SQL traces that we collected from mobile apps. For BEGIN CON-
CURRENT branch, we replace all BEGIN statements in the trace to
BEGIN CONCURRENT statements to enable the enhanced concurrency
control mode. We did not modify other types of BEGIN statements
(e.g. BEGIN EXCLUSIVE) for correctness.

Table 1 shows different characteristics of five workloads we use.
Since Gmail is heavily dependent on Google Play Services (GPS)
and its performance is similar to that of GPS, we do not present the

performance of Gmail. The average number of operations per trans-
action in GPS workload is 9.825, and 41% of transactions contain
either INSERT or DELETE queries. Facebook is the most write-
intensive workload as 72% of its transactions are write transactions
and about a half of write transactions contain UPDATE queries.
Calendar is a read-intensive workload, i.e., 99.6% of its transactions
are reads. Google Maps is also read-intensive but 8.8% of transac-
tions contain write queries. We use four threads for GPS, i.e., one
less number of threads than the actual number of threads used in
the trace, because GPS runs less than 5 threads for 99.98% of the
transactions in our trace.

5.4.1 Throughput. Overall, Figure 12 illustrates that IPS+2VTO con-
sistently outperforms Baseline and BeginConc in all workloads
due to its fine-grained concurrency control and non-blocking reads.
For write-intensive workloads (GPS, Twitter, and Facebook), the
throughput improvement comes mostly from fine-grained lock-
ing granularity. Specifically, for Facebook workload, BeginConc
shows comparable performance with IPS+2VTO (i.e. only 4.4%
lower throughput than BeginConc) and is even more performant
than DHL+2VTO. This is because Facebook workload consists of a
large number of UPDATE queries. That is, IPS suffers from internal
fragmentation for UPDATE queries, as discussed in Section 5.2. For
GPS and Twitter, IPS+2VTO shows 31% and 19% higher throughput
than BeginConc. We could not run DHL+2VTO for Twitter due
to implementation issues with emulating DHL. For read-intensive
workloads (Calendar and Maps), IPS+2VTO and BeginConc benefit
from page-level locking, and IPS+2VTO shows up to 89% higher
throughputs than Baseline.

5.4.2 Latency Breakdown. Figure 13 shows the latency breakdown
for write-intensive GPS and read-intensive Calendar workloads. We
note that the results are slightly different from the multithreaded
Mobibench results. Unlike theMobibench that submits auto-commit
transactions consisting of a single query, the real transactions are
long running as they consist of multiple queries. On average, a GPS
transaction consists of 9.825 read and write queries. As a result,
Baseline aborts a large number of GPS transactions. Aborted trans-
actions need to rollback the changes they made to the metadata
in the shared buffer cache (e.g., BtShared in SQLite). In addition,
long running transactions often execute read queries before write
queries, which need to be replayed every time they are aborted.
Therefore, Figure 13 shows that Replay/Rollback time accounts
for more than 43% of transaction latency in Baseline. On the other
hand, BeginConc employs fine-grained locks to avoid write-write
conflicts. Therefore, its Replay/Rollback time and Wait time are

2412

(a) Google Play Services (b) Facebook (c) Twitter (d) Google Calendar (e) Google Maps

Figure 14: CDF of Latencies Spent for Real Workloads

smaller than those of Baseline. The number of aborted trans-
actions in 2VTO is only 1/12 of that of Baseline because long
running transactions that conflict are serialized by AFUW. As such,
its Replay/Rollback overhead is much smaller than Baseline and
BeginConc. Instead, IPS+2VTO makes transactions sleep for about
about 40% of its execution time. Since IPS+2VTO does not use CPU
cycles during the forced sleep, IPS+2VTO executes 23.7% and 20%
less instructions than BeginConc and Baseline does, respectively.

For read-intensive Calendarworkload, write-write conflicts rarely
occur and fewer transactions abort. Therefore, BeginConc shows
much better performance than Baseline due to higher concurrency.
With fewer write-write conflicts, the overhead of ForcedSleep is
almost negligible in IPS+2VTO. Also, read transactions benefit from
non-blocking reads. Thus, the scheduling overhead of IPS+2VTO
accounts for less than 4% of the transaction response time.

In the experiments shown in Figure 14, we measure the transac-
tion latencies of real workloads. Note that we do not include the
queueing delay in the latency. In Google Play Services workload,
about 58.7% of the transactions are read-only. Therefore, about 50%
of the transactions show similar latencies for all concurrency modes
although IPS+2VTO and DHL+2VTO show lower latencies than
the others. However, it is noteworthy that, for 72th∼90th percentile
latencies, IPS+2VTO, DHL+2VTO, and BeginConc perform worse
than file-based locking (i.e., Baseline). This is because of the Roll-
back/Replay overhead. I.e., about 18% of write transactions using
per-page locks are aborted due to write-write conflicts, whereas
file-based locking does not. However, these aborted transactions
are rescheduled and commit fast enough to have lower latencies
than the 90th percentile latency. The 90th percentile and higher tail
latencies show different results. IPS+2VTO and DHL+2VTO have
the lowest tail latencies of all others because they limit the number
of aborts per transaction to one. In addition, the tail latencies of
BeginConc and Baseline are higher because they perform periodic
checkpointing operations.

Facebook is the most write-intensive workload, but its trans-
actions consist of UPDATE statements and its transaction size is
not as large as GPS, as shown in Table 1. Due to the internal frag-
mentation issue, the 30th∼80th percentile latencies of IPS+2VTO
and DHL+2VTO are higher than those of BeginConc. However, the
90th percentile and higher tail latencies of IPS+2VTO are much
lower than the others, as in GPS workload. DHL+2VTO has higher

tail latencies than IPS+2VTO due to low page utilization. Twitter is
another write-intensive workload, in which 19% of transactions con-
tain UPDATE queries. However, the transaction size is larger than
Facebook. Therefore, the effect of the internal fragmentation issue
of IPS is offset by its higher concurrency, and it outperforms the oth-
ers. In terms of the 90th and higher tail latencies, IPS+2VTO is sim-
ilar to the others. This is because Twitter workload has many large
transactions that rarely conflict. For read-intensive Google Calendar
and Maps, small read transactions in IPS+2VTO and DHL+2VTO
benefit from non-blocking reads.

6 CONCLUSION
In this work, we develop In-Page Shadowing (IPS) that resolves
the journaling of journal anomaly and enables 2VTO (Two-Version
Timestamp-Ordering) protocol to support a moderate level of con-
currency in mobile devices. 2VTO with AFUW (Abortee-or-First
UpdaterWins) rule limits the number of aborted transactions to one
for resource-constrained mobile devices. Our performance study
using synthetic and real workloads shows that IPS successfully
reduces the IO traffic and outperforms the state-of-the-art logging
schemes such as DASH and DHL. Our study also shows that 2VTO
significantly reduces the number of aborted transactions while
improving the concurrency level. Thereby, 2VTO outperforms an
optimistic concurrency control protocol - Begin Concurrent. For
future work, we intend to explore the possibility of extending IPS
for MVCC for higher concurrency. To be specific, if we address
the challenges of managing an arbitrary number of version-related
metadata without the help of a background garbage collection
thread, higher concurrency is not going to be impossible.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments and feedback. We would also like to give special thanks
to Kisung Lee at Samsung Electronics for motivating this work.
This research was supported in part by Samsung Electronics, and
also by the R&D program of IITP (grant No. 2015-0-00314, 2018-0-
00549, and 2021-0-01817) and Electronics and Telecommunications
Research Institute (ETRI) (grant No. 20ZS1310). The corresponding
author is Beomseok Nam.

2413

REFERENCES
[1] Android Processes and Threads Overview.

https://developer.android.com/guide/components/processes-and-threads.
[2] Google Play Services. https://developers.google.com/android.
[3] SQLite Begin-concurrent Work-in-progress. https://sqlite.org/src/doc/begin-

concurrent/doc/begin_concurrent.md.
[4] SQLite Isolation. https://www.sqlite.org/isolation.html.
[5] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. A critique of ansi sql isolation levels. ACM SIGMOD Record, 24(2):1–10,
1995.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[7] Visutr Boonnateephisit. Andros Store: The Open-Source Android Application Store.
PhD thesis, AIT, 2019.

[8] Michael J Cahill, Uwe Röhm, andAlanD Fekete. Serializable isolation for snapshot
databases. ACM Transactions on Database Systems (TODS), 34(4):1–42, 2009.

[9] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a
smartphone. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, page 21, USA, 2010. USENIX Association.

[10] Calin Cascaval, Seth Fowler, Pablo Montesinos-Ortego, Wayne Piekarski,
Mehrdad Reshadi, Behnam Robatmili, Michael Weber, and Vrajesh Bhavsar.
Zoomm: a parallel web browser engine for multicore mobile devices. ACM
SIGPLAN Notices, 48(8):271–280, 2013.

[11] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A read-only transaction
anomaly under snapshot isolation. ACM SIGMOD Record, 33(3):12–14, 2004.

[12] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and Youjip Won.
Androstep: Android storage performance analysis tool. Software Engineering
2013-Workshopband, 2013. https://github.com/ESOS-Lab/Mobibench.

[13] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won.
I/O stack optimization for smartphones. In Proceedings of the USENIX Annual
Technical Conference, 2013.

[14] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo
Min. X-ftl: transactional ftl for sqlite databases. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 97–108, 2013.

[15] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. Pocket data: The
need for tpc-mobile. In Performance Evaluation and Benchmarking: Traditional to
Big Data to Internet of Things, pages 8–25, Cham, 2016. Springer International
Publishing.

[16] Wook-Hee Kim, Beomseok Nam, Dongil Park, and Youjip Won. Resolving jour-
naling of journal anomaly in Android I/O: Multi-version B-tree with lazy split. In
Proceedings of the 11th USENIX conference on File and Storage Technologies (FAST),
2014.

[17] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[18] Sang-Won Lee and Bongki Moon. Design of flash-based dbms: An in-page logging
approach. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, page 55–66, 2007.

[19] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee Kim, Beomseok Nam, and
Youjip Won. WALDIO: Eliminating the filesystem journaling in resolving the
journaling of journal anomaly. In 2015 USENIX Annual Technical Conference

(USENIX ATC 15), pages 235–247, July 2015.
[20] Douglas J. Leith and Stephen Farrell. Contact tracing app privacy: What data

is shared by europe’s gaen contact tracing apps. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pages 1–10, 2021.

[21] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting
performance bugs for smartphone applications. In Proceedings of the 36th Inter-
national Conference on Software Engineering, pages 1013–1024, 2014.

[22] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems (TODS), 17(1):94–162, 1992.

[23] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. Sqlite optimization
with phase change memory for mobile applications. Proceedings of the VLDB
Endowment (PVLDB), 8(12):1454–1465, August 2015.

[24] Sehyeon Oh, Wook-Hee Kim, Jihye Seo, Hyeonho Song, Sam H. Noh, and Beom-
seok Nam. Doubleheader logging: Eliminating journal write overhead for mobile
dbms. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),
pages 1237–1248. IEEE Computer Society, apr 2020.

[25] Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic pipeline array: a
flexible multicore accelerator with virtualized execution for mobile multimedia
applications. In Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 370–380, 2009.

[26] Jong-Hyeok Park, Gihwan Oh, and Sang-Won Lee. Sql statement logging for
making sqlite truly lite. Proceedings of the VLDB Endowment (PVLDB), 11(4):513–
525, 2017.

[27] Dan RK Ports and Kevin Grittner. Serializable snapshot isolation in postgresql.
Proceedings of the VLDB Endowment (PVLDB), 5(12), 2012.

[28] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 2005.

[29] David Patrick Reed. Naming and synchronization in a decentralized computer
system. PhD thesis, Massachusetts Institute of Technology, 1978.

[30] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H. Noh.
Failure-atomic slotted paging for persistent memory. In Proceedings of the 22nd
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[31] Kai Shen, Stan Park, and Meng Zhu. Journaling of journal is (almost) free. In
Proceedings of the 11th USENIX conference on File and Storage Technologies (FAST),
2014.

[32] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. Efficiently
making (almost) any concurrency control mechanism serializable. The VLDB
Journal, 26(4):537–562, 2017.

[33] Gregory F. Welch. A survey of power management techniques in mobile com-
puting operating systems. ACM SIGOPS Operating Systems Review, 29(4):47–56,
oct 1995.

[34] Youjip Won, Sundoo Kim, Juseong Yun, Dam Quang Tuan, and Jiwon Seo. Dash:
Database shadowing for mobile dbms. Proceedings of the VLDB Endowment
(PVLDB), 12(7):793–806, 2019.

[35] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical
evaluation of in-memory multi-version concurrency control. Proceedings of the
VLDB Endowment (PVLDB), 10(7):781–792, March 2017.

2414

