
Example-based Spatial Pattern Matching
Yue Chen

Nanyang Technological University

yue004@e.ntu.edu.sg

Kaiyu Feng
∗

Nanyang Technological University

kfeng002@e.ntu.edu.sg

Gao Cong
∗

Nanyang Technological University

gaocong@ntu.edu.sg

Han Mao Kiah

Nanyang Technological University

hmkiah@ntu.edu.sg

ABSTRACT
The prevalence of GPS-enabled mobile devices and location-based

services yield massive volume of spatial objects where each ob-

ject contains information including geographical location, name,

address, category and other attributes. This paper introduces a

novel type of query termed example-based spatial pattern matching
(EPM) query. It takes as input a set of spatial objects, each of which

is associated with one or more keywords and a location. These

objects serve as an example that depicts the spatial pattern that

users want to retrieve. The EPM query returns all sets of objects

that match the spatial pattern. The EPM query can be used for

applications like urban planning, scene recognition and similar

region search. We propose an efficient algorithm and three pruning

techniques to answer EPM queries. Furthermore, we provide an

approximation guarantee for intermediate results of the algorithm.

Our experimental evaluations on four real-world datasets demon-

strate the effectiveness and efficiency of our proposed algorithm

and techniques.

PVLDB Reference Format:
Yue Chen, Kaiyu Feng, Gao Cong, and Han Mao Kiah. Example-based

Spatial Pattern Matching. PVLDB, 15(11): 2572 - 2584, 2022.

doi:10.14778/3551793.3551815

1 INTRODUCTION
With the proliferation of GPS-enabled mobile devices and location-

based services, massive volume of spatial objects are being gener-

ated rapidly. For example, Gowalla [19] and Foursquare [26] contain

2.7 million and 10.1 million points of interest (POIs), respectively.

Each POI has information such as geographical location, name,

address, category and other category-specific attributes. Users can

pose spatial keyword queries [6–10, 16, 22, 23, 25, 27] on such

databases to search for their desired POIs. For example,What are
the POIs with category “shopping mall” in this region?

Although spatial keyword queries are useful for many appli-

cations, they would not be able to meet the need of many other

occasions. A prevalent requirement is to search several objects

∗
Corresponding authors

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:10.14778/3551793.3551815

Figure 1: An example of spatial pattern

with desired attributes and relative spatial locations. Consider the

following three motivating examples.

Example 1: Scene recognition [17]. It aims to find scenes when

only attributes of several objects and their approximate relative

locations are given, but no addresses are given. For example, Julia

wants to identify a place in a foreign city that she visited many

years ago. She cannot remember the name and the address, which

are in foreign languages, but she still recalls that “there was a coffee

shop, when she went out the coffee shop, she walked along the

street around 1km and entered a Chinese restaurant, and she could

see a car park on her right hand side about 300 meters away”. Scene

recognition may have other application scenarios, e.g., a person

may read a traveling blog mentioning the general categories of

the locations and their approximate relative positions but without

specific location names, and she would like to find out the places.

Example 2: Similar region search [20]. It may have applications

in Urban planning, where it aims to find similar layouts of facilities

for a given draft layout design. For instance, inappropriate layouts

of public facilities have potential danger in urban planning [1].

When government plans to develop a new district, they could pose

queries on databases to check if their devised draft layouts (i.e.,

described by a set of facilities and their approximate relative loca-

tions) have potential danger. As another example, landscape design

concerns the placement of car parks, swimming pools and other

facilities in a region. Given a draft design, the designer wants to

retrieve the existing designs with similar layouts for the purposes

such as intellectual property protection or improving the draft

design. Another example could be improving services like POI rec-

ommendation [18] and region recommendation [24] by searching

the regions with similar distribution of POIs as the previous visited

region of the user.

Example 3: Pattern recognition. It aims to find patterns in which

the approximate relative positions of objects are preserved. For ex-

ample, sports like football, basketball, hockey and rugby have tactics

such as attack and defense. The positions of different players (e.g.,

center forward, defensive midfielder, center attacking midfielder,

etc.) usually reveal their tactics. The players can review and iden-

tify their tactics by retrieving similar position layouts from the

2572

https://doi.org/10.14778/3551793.3551815
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551815

Figure 2: Matching under tolerance 𝜀 = 0.5𝑘𝑚

snapshots or video frames of historical competitions
1
. As another

example, in astro-photography stacking and alignment, given a set

of astral images and a reference image, it aims to find all astral

images which exhibit the similar layout as the reference image to

enable the recovery of the complete astral images
2
. Other examples

may include searching objects of similar distributions from images

after computer vision techniques are applied to identify objects

from images.

In the aforementioned examples, there is one running theme

throughout the problems encountered: we have an example-based

spatial pattern that defines the relative locations of a set of spatial

objects together with their categories. We aim to retrieve the sets of

objects that exhibit a similar pattern. Note that in these examples, a

user often needs to repeat the following: issue a query and explore

the returned results, and modify the query. The process may be

repeated many times before the user gets satisfactory results. This

problem cannot be well addressed by existing techniques designed

for pattern-based queries, including graph-based spatial pattern

matching [11] and spatial exemplary query [21], as to be discussed

in Section 2.

Inspired by these example applications, in this paper, we pro-

pose a novel type of query termed example-based spatial pattern

matching (EPM) query. It takes as input a set of example (or target)

spatial objects that depict the spatial pattern that users want to

retrieve, and returns all sets of spatial objects that match the spatial

pattern. Each example (or target) object is associated with posi-

tional information and at least one category. For example, Figure 1

shows an EPM query consisting of 7 example objects, each of which

contains one category and one geolocation. However, given such

an EPM query, it may not always be possible to find 7 objects from

the database such that they contain the specified categories and

exhibit exactly the same geometrical shape as Figure 1. To support

fault tolerance and make EPM query more realistic, we adopt a

new criterion for matching from the problems of points matching
under noise regions [2, 3, 15] by the community of computational

geometry, in which matching under tolerance 𝜀 is defined as follow:

Given two sets 𝐴, 𝐵 of 𝑛 points each, if there exists a congruence that
maps in a 1-to-1 fashion the points of 𝐵 into the 𝜀-neighbourhood of
points of 𝐴, then we say 𝐴 matches 𝐵 under tolerance 𝜀.

We follow this definition to decide if a set of spatial objects in the

database matches the target objects in an EPM query geographically.

In Figure 2, 7 objects in red dots constitute a match under tolerance

𝜀 = 0.5km for the EPM query in Figure 1. EPM aims to return all

sets of objects that match the query under tolerance 𝜀.

1
http://outsideoftheboot.com/

2
https://www.mathworks.com/matlabcentral/fileexchange/65328-astrotnstack-align-

and-stack-astro-photography-pictures

To answer the EPM query, an intuitive idea is as follow: we start

from one target object of the EPM query, then find the candidate ob-

jects with the same category from the database. For each candidate

object, we check its neighbourhood to see if there exist objects with

same categories as the remaining target objects. If so, we determine

whether they match the EPM query under tolerance 𝜀. We propose

an efficient algorithm to implement this process. To further improve

the performance, we propose three advanced techniques to prune

the unpromising candidate objects, reduce the search space, and

avoid the same match being found multiple times. Moreover, the

intermediate results of our algorithm can be considered as approxi-

mate results of the EPM query and we establish an approximation

guarantee for the intermediate results of our algorithm.

In summary, the key contributions of this paper are as follows.

•We propose a novel type of query termed example-based spatial

pattern matching (EPM) query, and illustrate its applications. To

the best of our knowledge, it is the first work to adopt thematching
under tolerance 𝜀 in POI retrieval.

•We propose an efficient algorithm for the EPM query and 3

advanced pruning techniques to improve the algorithm. In addi-

tion, we establish an approximation guarantee for the intermediate

results of our algorithm, which can serve as approximate results

when higher efficiency is needed.

•We conduct extensive experiments on 4 real-world datasets to

evaluate the effectiveness and efficiency of our proposed algorithm.

Furthermore, we demonstrate that our approximate solution is two

orders of magnitude faster than the exact solution and returns

matches with comparable quality.

In the rest of this paper, Section 2 reviews the related work

and Section 3 gives problem definition. We present the proposed

algorithm in Section 4 and three pruning techniques in Section 5. In

Section 6, approximation guarantee is provided. Section 7 reports

the experimental evaluations, and Section 8 offers conclusions.

2 RELATEDWORK
Spatial Keyword Query. A spatio-textual object 𝑜 consists of

geographical location 𝑜.𝑙𝑜𝑐 and a set of keywords 𝑜.𝑡𝑒𝑥𝑡 . Spatial

keyword queries aim to retrieve such spatio-textual objects of inter-

est. Most types of spatial keyword queries [6, 8–10, 16, 22, 23, 25, 27]

aim to return a single object as a result. For example, boolean range

keyword query [6, 8, 9, 16, 22, 23, 25] takes as input a region and a

set of keywords, and returns all the objects each of which is located

inside the region and contains all the query keywords. As another

example, location-aware top-𝑘 text retrieval query [10] takes as

input a query location and a set of query keywords, and returns

the top-𝑘 ranked objects, where the ranking score of each object is

computed by a linear combination of the spatial proximity and the

text relevancy between the object and the query. Some spatial key-

word queries consider the nearby objects when retrieving objects to

better meet users’ need. For example, top-k prestige-based relevant

spatial web object retrival [4] considers the nearby relevant objects

in ranking objects. As another example, clue-based spatio-textual

query [17] takes as input a querying POI along with its nearby

POIs (called clue POIs), and returns top-𝑘 POIs which have the

same category as querying POI and have the highest spatio-textual

2573

context similarities against the clue POIs. Several other propos-

als [5, 13, 28, 29] aim to return a set of objects as a result to the user

query. For example, 𝑚-closest keywords query [13, 28] takes as

input a set of query keywords, and returns a set of objects such that

they collectively cover all the query keywords and the maximum

distance between any pair of them is minimized.

Our EPM query differs from these spatial keyword queries. They

rank the objects with smaller distance to the query point higher,

or the group of objects close to each other higher. However, our

EPM query cares about the relative locations between the returned

spatial objects. Therefore, the query processing algorithms for these

queries cannot be extended to answer the EPM query.

Spatial Pattern Matching Query. This type of query aims to

retrieve a set of objects satisfying the query pattern. First, SPM

(graph-based spatial pattern matching query) [11] takes as input a

graph which consists of a set of target objects along with distance

constraints between them. For example, a house is 2–5km away

from a school, and is at least 3km from a hospital. SPM aims to

return all instances (ℎ𝑜𝑢𝑠𝑒, 𝑠𝑐ℎ𝑜𝑜𝑙, ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙) satisfying these dis-

tance constraints. SPM does not care about the relative locations of

target objects, which makes it difficult for users to compose such

SPM queries to reflect their intentions. If we adapt SPM to solve

the aforementioned three motivating examples, the drawbacks are

three folds. (i) If the user requires 𝑛 target objects in the spatial

pattern, then he needs to specify
𝑛 (𝑛−1)

2
distance constraints for all

pairs of target objects. It would be troublesome for users to compose

so many distance constraints. (ii) Worse still, these distance con-

straints cannot control the geometrical shape of the target objects

and do not preserve the relative locations of them. It would bring

matches of low quality in the returned objects. We illustrate this

observation in the case study in Section 7.2. (iii) SPM is proven to

be NP-hard and is rather inefficient when pattern size is large. We

adapt SPM to serve as a baseline in our experiments. Compared

with SPM, our EPM query is user-friendly to compose, generates

matches of high quality, and is efficient even if pattern size is large.

Second, Luo et al. introduce SEQ (spatial exemplary query) in

a poster paper [21], which takes as input a set of objects together

with the Euclidean distance between each pair of them. Similar to

previous spatial keyword query, SEQ uses a linear combination of

spatial proximity and textual relevancy to measure the similarity

between a set of objects and the query, whose semantics is totally

different from the matching under tolerance 𝜀 in EPM. For example,

an SEQ query could be {(“house”, “school”, “hospital”); “house” is
2km away from “school” and 2.5km away from “hospital”, “school”
is 3km away from “hospital”}. Under the definition of SEQ, a set

of objects {(“restaurant”, “school”, “hospital”); “restaurant” is 2.5km
away from “school” and 2km away from “hospital”, “school” is 3.5km
away from “hospital”} could be returned in the top-𝑘 results since

its scores of spatial similarity and textual similarity are moderate.

However, it will never happen in our EPM query because their

categories do not match in a one-to-one manner and SEQ does not

take into account the tolerance 𝜀 either. Clearly, SEQ cannot solve

our motivating examples precisely. Furthermore, it is unclear how

to specify the parameters in SEQ (e.g., relative weights in scoring

functions and the number of results to be returned), which makes

it difficult to adapt SEQ to solve EPM.

Spatial PointsMatching.Alt et al. [2] study the problem of finding

the geometric transformations (rotation, translation and reflection)

that map a point set 𝐴 approximately into the neighbourhood of a

point set 𝐵. Arkin et al. [3] consider the points matching problem

that aims to find a transformation of a set of 𝑛 points such that each

transformed point lies in one of 𝑛 given pairwise-disjoint noise

regions. Heffernan et al. [14] propose an efficient approximate

algorithm to test whether two equal cardinality point sets 𝐴 and 𝐵

in the plane are 𝜀-congruent.

The idea of “matching under tolerance” is inspired by these

proposals. The difference is that, they focus on determining if two

sets of points match under tolerance, whereas EPM aims to find

out all sets of POIs, each of which matches the given pattern. Their

solutions inspire us to design the baseline algorithm for the EPM.

3 PROBLEM DEFINITION
Let 𝐷 be a database of spatial objects. Each object 𝑜 ∈ 𝐷 is repre-

sented by (𝑜.𝜌, 𝑜 .𝜙) where 𝑜.𝜌 is the location of 𝑜 (i.e., latitude and

longitude), and 𝑜.𝜙 is a keyword to indicate the category of 𝑜 or

describe 𝑜 . For example, Figure 3(𝑎) shows 5 objects in the database,

where 𝑜1 is described by its keyword “house”. An example-based

spatial pattern 𝑃 is represented by a set {𝑝1, 𝑝2, · · · , 𝑝𝑛}, where
each point 𝑝 = (𝑝.𝜌, 𝑝.Φ) ∈ 𝑃 has a location 𝑝.𝜌 and a set of key-

words 𝑝.Φ. Figure 3(𝑏) gives an example 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. The
keywords of 𝑝1 are {“house”, “apartment”}. The notations used in

this paper are summarized in Table 1.

Definition 1. Rigid motion. Rigid motion denotes a set of trans-
formations, each of which is one of the following operations:
• Translation. If a point 𝑝 (𝑥,𝑦) is translated along vector ®𝑣 (𝑎, 𝑏),

we get its new position 𝑝 (𝑥 + 𝑎,𝑦 + 𝑏).
• Rotation. If a point 𝑝 (𝑥,𝑦) is rotated counterclockwise 𝜃 radians

based on the center (𝑎, 𝑏), we get its new position 𝑝 ((𝑥−𝑎) cos𝜃−
(𝑦 − 𝑏) sin𝜃 + 𝑎, (𝑥 − 𝑎) sin𝜃 + (𝑦 − 𝑏) cos𝜃 + 𝑏).

Definition 2. Match. Given an example-based spatial pattern
𝑃 = {𝑝1, · · · , 𝑝𝑛}, a set 𝑂 of 𝑛 objects, and a tolerance 𝜀, we call 𝑂
a match of 𝑃 if there exists a rigid motion (i.e., a set of translation
and rotation) on 𝑃 , and a bijection 𝑓 : 𝑃 → 𝑂 , such that after rigid
motion, for each 𝑖 ∈ {1, · · · , 𝑛}, we have (1) 𝑓 (𝑝𝑖).𝜙 ∈ 𝑝𝑖 .Φ; and (2)
𝑝𝑖 is located inside 𝐶𝜀

𝑓 (𝑝𝑖) , which denotes the circle with center 𝑓 (𝑝𝑖)
and radius 𝜀.

For example, in Figure 3, if we rotate and translate the spatial

pattern 𝑃 in Figure 3(𝑏) to the position in Figure 3(𝑐), we can find

a bijection: 𝑃 → {𝑜1, 𝑜2, 𝑜3, 𝑜4}, i.e., 𝑝1 → 𝑜1, 𝑝2 → 𝑜2, 𝑝3 → 𝑜3,

𝑝4 → 𝑜4, since 𝑝1 (𝑝2, 𝑝3, 𝑝4, resp.) covers the keyword of 𝑜1 (𝑜2,

𝑜3, 𝑜4, resp.) and is located inside the circle𝐶𝜀
𝑜1

(𝐶𝜀
𝑜2
,𝐶𝜀

𝑜3
,𝐶𝜀

𝑜4
resp.).

Therefore {𝑜1, 𝑜2, 𝑜3, 𝑜4} is a match of 𝑃 . Similarly, {𝑜1, 𝑜2, 𝑜5, 𝑜4} is
also a match of 𝑃 .

Definition 3. EPM problem. Given a database 𝐷 , an example-
based spatial pattern 𝑃 and a tolerance 𝜀, the EPM problem (denoted
by 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀)) returns all matches of 𝑃 in 𝐷 .

Remark. In this work, we assume each object is associated with

only one keyword, and each point in the spatial pattern may have

multiple keywords. However, our work can be easily extended to the
case where each object contains multiple keywords. We only need

2574

Table 1: Table of notations
Notation Definition
𝐷 database of spatial objects

𝑜,𝑂 an object, a set of objects

𝑝, 𝑃 a point in spatial pattern, a spatial pattern

𝑜.𝜌, 𝑝.𝜌 location of 𝑜 , location of point 𝑝

𝑜.𝜙, 𝑝.Φ keyword of 𝑜 , the set of keywords of 𝑝

𝜀-circle a circle with radius 𝜀

𝐶𝜀
𝑜 a circle with center 𝑜 and radius 𝜀

𝐷𝑝.Φ a set of objects whose keywords are covered by

𝑝.Φ, i.e., {𝑜 ∈ 𝐷 |𝑜.𝜙 ∈ 𝑝.Φ}
𝑛,𝑚,𝑑 𝑛 = |𝑃 |,𝑚 = |𝐷 |, 𝑑 = max1≤𝑖≤𝑛 |𝐷𝑝𝑖 .Φ |
|𝑝1𝑝2 | length of line segment 𝑝1𝑝2 (i.e., Euclidean distance

between 𝑝1, 𝑝2)

supermarket,
shop

shop

house

supermarket

bus stop
house

house, apartment

bus stop

 Database Spatial pattern Match

house

Figure 3: EPM query

() translate and
 on border

() pattern () rotate and
 on borders

Figure 4: Observation: 2 points onto borders

to change the first condition in Definition 2 as: 𝑓 (𝑝𝑖) .𝜙 ∩ 𝑝𝑖 .Φ ≠ ∅.
Our proposed algorithm (in Section 4) and techniques (in Section 5)

are equally applicable to solve this generalized query. Furthermore,

each point in the pattern may have different importance/weights,

we can allow different tolerances for each point in the EPM. Our

proposed algorithm and techniques are also applicable for this case.

4 BASIC FRAMEWORK
To solve 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀), intuitively, we need to consider two aspects.

• A1. How to efficiently find all sets of objects, such that each

set has |𝑃 | objects and contains all required keywords in 𝑃 .

• A2. For each set of objects𝑂 in A1, how to decide if it matches

𝑃 geographically.

We may not get too many insights from A1 directly. But when

considering A2, we observe that 𝑂 matches 𝑃 geographically, if and
only if there exists a rigid motion which maps at least two points 𝑝𝑖 ,
𝑝 𝑗 of 𝑃 onto the borders of 𝐶𝜀

𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
, and other points 𝑝𝑘 (𝑘 ≠ 𝑖, 𝑗)

inside 𝐶𝜀
𝑜𝑘

[2]. We use Figure 4 to illustrate this observation. In

Figure 4(𝑎),𝑂 matches 𝑃 and each 𝑝𝑖 is located inside𝐶𝜀
𝑜𝑖
. For each

𝑝𝑖 ∈ 𝑃 , we compute 𝑟𝑖 = 𝜀 − |𝑜𝑖𝑝𝑖 |, which is the minimum distance

that moves 𝑝𝑖 onto the border of 𝐶𝜀
𝑜𝑖
. We find 𝑟∗ = min𝑖 {𝑟𝑖 }. In

this example, 𝑟3 is the smallest. Then we translate 𝑃 by 𝑟3 units in

direction
−−−→
𝑜3𝑝3. As a result, we make 𝑝3 onto the border as shown

in Figure 4(𝑏). Next, for each 𝑖 = {1, 2, 4}, based on rotation center

𝑝3, we rotate 𝑝3𝑝𝑖 to make 𝑝𝑖 onto the border of𝐶
𝜀
𝑜𝑖

and record the

: [0, /6] [/3, /3]

: [0, /4]

: [/3,]

: [0, /2]

() sets
() bipartite graph
when =(0, /6)() checking pair

Figure 5: Find matches when checking (𝑝1, 𝑝2)

rotation angle 𝛼𝑖 . We find 𝛼∗ = min𝑖 {𝛼𝑖 }. Here, 𝛼2 is the smallest.

Then we rotate 𝑃 by angle 𝛼2 with rotation center 𝑝3. As a result,

we make 𝑝2, 𝑝3 onto the borders and other points inside the circles

as shown in Figure 4(𝑐). Based on this example, we give a proof

sketch of the above observation.

• Sufficiency. Given 𝑃 , 𝑂 , if at least two points 𝑝𝑖 , 𝑝 𝑗 reside on the

borders of 𝐶𝜀
𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
, and other points inside their 𝜀-circles, then

𝑂 matches 𝑃 by definition.

• Necessity. If 𝑂 matches 𝑃 , then we can apply the method in

Figure 4 to make at least two points onto the borders of their

𝜀-circles, and others inside the corresponding 𝜀-circles.

Based on this observation, we can find all the matches if we

check each pair (𝑝𝑖 , 𝑝 𝑗) ∈ 𝑃 and let them move on the borders of

𝐶𝜀
𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
, where 𝑜𝑖 ∈ 𝐷𝑝𝑖 .Φ, 𝑜 𝑗 ∈ 𝐷𝑝 𝑗 .Φ. Here 𝐷𝑝𝑖 .Φ is the candidate

objects of 𝑝𝑖 , i.e., the set of objects whose keywords are covered by

𝑝𝑖 .Φ, and 𝐷𝑝 𝑗 .Φ is defined similarly.

Now 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀) becomes:How to findmatches when 𝑝𝑖 , 𝑝 𝑗
move on the borders of 𝐶𝜀

𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
, where 𝑜𝑖 ∈ 𝐷𝑝𝑖 .Φ, 𝑜 𝑗 ∈ 𝐷𝑝 𝑗 .Φ.

We use Figure 5 to illustrate the solution of this problem. In Fig-

ure 5(𝑎), suppose |𝑃 | = 4, we are checking pair (𝑝1, 𝑝2). We let 𝑝1
run on the border of 𝐶𝜀

𝑜1
, as the distance |𝑝1𝑝2 | is fixed, we can

determine 𝑝2’s position on the border of 𝐶𝜀
𝑜2
. After 𝑝1, 𝑝2 has been

determined, we can determine the positions of other points in 𝑃 . In

other words, the trajectories of 𝑝3, 𝑝4 (dash curves in Figure 5(𝑎))

can be completely determined when 𝑝1 moves on 𝐶𝜀
𝑜1
. We can see

that the trajectory of 𝑝3 (𝑝4 resp.) intersects with a few circles cen-

tered at its candidate objects, i.e., 𝐶𝜀
𝑜31

, 𝐶𝜀
𝑜32

(𝐶𝜀
𝑜41

, 𝐶𝜀
𝑜42

resp.). We

store in the set 𝐼𝑝3,𝑜31 (𝐼𝑝3,𝑜32 resp.) the angle 𝜃 such that when 𝑝1
has polar coordinates 𝜃 , 𝑝3 is located inside 𝐶𝜀

𝑜31
(𝐶𝜀

𝑜32
resp.). We

also compute 𝐼𝑝4,𝑜41 , 𝐼𝑝4,𝑜42 for 𝑝4 as shown in Figure 5(𝑏). For ex-

ample, 𝐼𝑝4,𝑜41 = [0, 𝜋/2], it indicates 𝑝4 is located inside 𝐶𝜀
𝑜41

when

𝑝1 has coordinate 𝜃 ∈ [0, 𝜋/2]. These sets 𝐼𝑝𝑘 ,𝑜𝑘 help to identify the

circles where each 𝑝𝑘 is located, and thus can be used to find out the

matches. Now, it remains to find all ways to assign one of {𝑜31, 𝑜32}
to 𝑝3, and one of {𝑜41, 𝑜42} to 𝑝4. This can be solved by modelling as

a bipartite graphmatching problem. Specifically, all 𝐼𝑝𝑘 ,𝑜𝑘 ’s partition

[0, 2𝜋] into a set of disjoint subintervals. For each subinterval, we

construct a bipartite graph, and each maximum cardinality match-
ing corresponds to a match in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀). For example, in Fig-

ure 5(𝑏), 4 sets 𝐼𝑝3,𝑜31 , 𝐼𝑝3,𝑜32 , 𝐼𝑝4,𝑜41 , 𝐼𝑝4,𝑜42 partition [0, 2𝜋] into 13

subintervals, i.e., {0}, (0, 𝜋/6), {𝜋/6}, (𝜋/6, 𝜋/4), {𝜋/4}, (𝜋/4, 𝜋/3),
{𝜋/3}, (𝜋/3, 𝜋/2), {𝜋/2}, (𝜋/2, 2𝜋/3), {2𝜋/3}, (2𝜋/3, 𝜋), {𝜋}. For
subinterval 𝐼 = (0, 𝜋/6), as 𝐼 is contained in 𝐼𝑝3,𝑜31 , 𝐼𝑝3,𝑜32 and

𝐼𝑝4,𝑜41 , we construct a bipartite graph 𝐺 with 3 edges, namely,

(𝑝3, 𝑜31), (𝑝3, 𝑜32) and (𝑝4, 𝑜41), as shown in Figure 5(𝑐). Appar-

ently, two maximum cardinality matchings {(𝑝3, 𝑜31), (𝑝4, 𝑜41)},

2575

{(𝑝3, 𝑜32), (𝑝4, 𝑜41)}, combined with {(𝑝1, 𝑜1), (𝑝2, 𝑜2)}, form two

matches in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀).

Algorithm 1: EPM-Alg(𝑃, 𝐷, 𝜀)

Input :Database 𝐷 , spatial pattern 𝑃 , tolerance 𝜀

Output :All matches of 𝑃

1 initialize the result set 𝑅;

2 foreach pair (𝑝𝑖 , 𝑝 𝑗) of 𝑃 do
3 𝐷𝑝𝑖 .Φ←− candidate objects of 𝑝𝑖 , {𝑜 |𝑜.𝜙 ∈ 𝑝𝑖 .Φ};
4 𝐷𝑝 𝑗 .Φ←− candidate objects of 𝑝 𝑗 , {𝑜 |𝑜.𝜙 ∈ 𝑝 𝑗 .Φ};
5 foreach pair (𝑜𝑖 , 𝑜 𝑗) ∈ 𝐷𝑝𝑖 .Φ × 𝐷𝑝 𝑗 .Φ do
6 foreach 𝑝𝑘 ∈ 𝑃 (𝑘 ≠ 𝑖, 𝑗) do
7 𝐷𝑝𝑘 .Φ←− candidates of 𝑝𝑘 , {𝑜 |𝑜.𝜙 ∈ 𝑝𝑘 .Φ};
8 foreach 𝑜𝑘 ∈ 𝐷𝑝𝑘 .Φ do
9 𝐼𝑝𝑘 ,𝑜𝑘 ←− set of angles 𝜃 s.t. when 𝑝𝑖 has

polar coordinate 𝜃 , 𝑝𝑘 is located in 𝐶𝜀
𝑜𝑘
;

10 sort all 𝐼𝑝𝑘 ,𝑜𝑘 , partition [0, 2𝜋] into subintervals I;
11 foreach subinterval 𝐼 ∈ I do
12 construct bipartite graph 𝐺 = (𝑉1 ∪𝑉2, 𝐸),

𝑉1 = 𝑃 \ {𝑝𝑖 , 𝑝 𝑗 },
𝑉2 = {𝑜 | ∃𝑝 ∈ 𝑉1, 𝑠 .𝑡 . 𝐼 ⊆ 𝐼𝑝,𝑜 },
𝐸 = {(𝑝, 𝑜) |𝑝 ∈ 𝑉1, 𝑜 ∈ 𝑉2, 𝑠 .𝑡 . 𝐼 ⊆ 𝐼𝑝,𝑜 };

13 𝑅←− 𝑅 ∪ max. matches of size (𝑛 − 2) in 𝐺 ;

14 return 𝑅

Algorithm 1 gives the basic framework to solve 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀).
(The idea of Lines 5–10 is inspired by [2]). First, for each pair (𝑝𝑖 , 𝑝 𝑗)
of 𝑃 (Line 2), we fetch their candidate objects 𝐷𝑝𝑖 .Φ, 𝐷𝑝 𝑗 .Φ (Line

3–4). For each candidate object pair (𝑜𝑖 , 𝑜 𝑗), we let 𝑝𝑖 , 𝑝 𝑗 run on

the borders of 𝐶𝜀
𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
, respectively (Line 5). For each 𝑝𝑘 ∈ 𝑃 (𝑘 ≠

𝑖, 𝑗), we get its candidate objects 𝐷𝑝𝑘 .Φ, observe its trajectory and

compute the sets 𝐼𝑝𝑘 ,𝑜𝑘 (Line 6–9). These sets

⋃
𝑝𝑘≠𝑝𝑖 ,𝑝 𝑗

{𝐼𝑝𝑘 ,𝑜𝑘 }
partition [0, 2𝜋] into a set of disjoint subintervals I, each of which

is contained in some source sets 𝐼𝑝𝑘 ,𝑜𝑘 ’s. For each subinterval 𝐼 ∈ I,
we construct a bipartite graph𝐺 = (𝑉1∪𝑉2, 𝐸), where𝑉1 comprises

points of 𝑃 excluding 𝑝𝑖 , 𝑝 𝑗 , i.e., 𝑉1 = 𝑃 \ {𝑝𝑖 , 𝑝 𝑗 }, 𝑉2 comprises

the candidate objects associated with 𝑉1 during subinterval 𝐼 , i.e.,

𝑉2 = {𝑜 | ∃𝑝 ∈ 𝑉1, 𝑠 .𝑡 . 𝐼 ⊆ 𝐼𝑝,𝑜 }, and 𝐸 consists of such pair (𝑝, 𝑜)
that 𝑝 is located inside 𝐶𝜀

𝑜 during 𝐼 , i.e., 𝐸 = {(𝑝, 𝑜) |𝑝 ∈ 𝑉1, 𝑜 ∈
𝑉2, 𝑠 .𝑡 . 𝐼 ⊆ 𝐼𝑝,𝑜 } (Line 11–12). Each maximum cardinality matching

of size (|𝑃 | − 2) in 𝐺 (i.e., each 𝑝𝑘 (𝑘 ≠ 𝑖, 𝑗) is assigned an object)

corresponds to a match of the EPM problem, and is included into 𝑅

(Line 13) as a result (Line 14).

Index and Complexity. We use inverted lists to index the objects

based on the keywords, to facilitate the retrieval of 𝐷𝑝𝑖 .Φ. Let 𝑛 =

|𝑃 |, 𝑑 = max1≤𝑖≤𝑛 |𝐷𝑝𝑖 .Φ |. At first, we need to check all pairs of 𝑃

which require 𝑂 (𝑛2) iterations. At each iteration when we check

(𝑝𝑖 , 𝑝 𝑗), 𝑂 (𝑑) time is required to retrieve 𝐷𝑝𝑖 .Φ, 𝐷𝑝 𝑗 .Φ and 𝑂 (𝑑2)
object pairs (𝑜𝑖 , 𝑜 𝑗) are generated. For each (𝑜𝑖 , 𝑜 𝑗), it takes 𝑂 (𝑛𝑑)
time to compute all 𝐼𝑝𝑘 ,𝑜𝑘 ’s [2] and𝑂 (𝑛𝑑 log(𝑛𝑑)) time to sort them,

and𝑂 (𝑛𝑑) subintervals are generated. For each subinterval, it takes

𝑂 (𝑐 · (|𝑉 | + |𝐸 |) + |𝑉 |0.5 |𝐸 |) time to find all maximum cardinality

matchings on graph 𝐺 (𝑉 , 𝐸) [12]. In our case, |𝑉 | = 𝑂 (𝑛), |𝐸 | =

() based on () () based on () () based on ()

Figure 6: Checking all pairs (𝑝𝑖 , 𝑝 𝑗) of 𝑃
𝑂 (𝑛𝑑), thus𝑂 (𝑐 ·𝑛𝑑+𝑛1.5𝑑) time is required for one graph𝐺 , where

𝑐 is the number of maximum cardinality matchings in 𝐺 . As we

have𝑂 (𝑛𝑑) subintervals, which means we need𝑂 (𝑐 ·𝑛2𝑑2 +𝑛2.5𝑑2)
time in this step. Overall, the total complexity is

𝑛2 (𝑑 + 𝑑2 (𝑛𝑑 + 𝑛𝑑 log𝑛𝑑 + 𝑐 · 𝑛2𝑑2 + 𝑛2.5𝑑2)) = 𝑛4𝑑4 (𝑐 + 𝑛0.5).
Usually, pattern size 𝑛 is very small in our real-world applications.

Typically, 𝑛 is not exceeding 10. 𝑐 is also a small number, it de-

notes the number of maximum cardinality matchings in one bipar-

tite graph, which is much smaller than the number of matches in

𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀).

Lemma 1. Checking all pairs (𝑝𝑖 , 𝑝 𝑗) of 𝑃 in Algorithm 1 is com-
pulsory to find all matches of 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀).

Proof. We prove this lemma with 3 examples. In Figure 6(𝑎), 𝑝1
and 𝑝2 are diametrically symmetric (i.e., |𝑝1𝑝2 | = |𝑜1𝑜2 | + 2𝜀). To
determine {𝑜1, 𝑜2, 𝑜3} is indeed a match, we have to check (𝑝1, 𝑝2).
Only when 𝑝1, 𝑝2 run on the border of 𝐶𝜀

𝑜1
,𝐶𝜀

𝑜2
, will 𝑝3 be located

inside 𝐶𝜀
𝑝3
. If we use other pairs, say (𝑝1, 𝑝3), i.e., let 𝑝1, 𝑝3 run

on the borders of 𝐶𝜀
𝑜1
, 𝐶𝜀

𝑜3
, then 𝑝2 will never enter 𝐶

𝜀
𝑝2
. Similarly,

in Figure 6(𝑏), {𝑜4, 𝑜5, 𝑜6} can be detected as a match only when

checking (𝑝2, 𝑝3); in Figure 6(𝑐), we can find the match {𝑜7, 𝑜8, 𝑜9}
only when checking (𝑝1, 𝑝3). Therefore, to find all matches, we

need to check all 3 pairs (𝑝𝑖 , 𝑝 𝑗) of 𝑃 . In general case, given a

pattern 𝑃 (𝑝1, 𝑝2, · · · , 𝑝𝑛), for each (𝑝𝑖 , 𝑝 𝑗), there might exist a set

𝑂 (𝑜1, · · · , 𝑜𝑖 , · · · , 𝑜 𝑗 , · · · , 𝑜𝑛) such that 𝑝𝑖 , 𝑝 𝑗 are diametrically sym-

metric with regard to 𝑜𝑖 , 𝑜 𝑗 (i.e., |𝑝𝑖𝑝 𝑗 | = |𝑜𝑖𝑜 𝑗 | + 2𝜀 or |𝑝𝑖𝑝 𝑗 | =
|𝑜𝑖𝑜 𝑗 | − 2𝜀), then we must check (𝑝𝑖 , 𝑝 𝑗) to determine𝑂 as a match.

Overall, to find out all matches of 𝑃 , we have to check all pairs

(𝑝𝑖 , 𝑝 𝑗). □
Based on Lemma 1, we cannot reduce the complexity of Algo-

rithm 1. But we can prune object pairs (𝑜𝑖 , 𝑜 𝑗) to reduce search

space. Next, we present 3 pruning techniques to achieve this goal.

5 PRUNING TECHNIQUES
We present three pruning techniques to reduce the number of

candidate objects for each 𝑝 of 𝑃 , and thus reduce the number of

candidate object pairs (𝑜𝑖 , 𝑜 𝑗) that need to be checked.

In Section 5.1, we propose feasibility test to determine the can-

didate objects for each 𝑝 ∈ 𝑃 . In Section 5.2, we propose feasible
set and derive an upper bound of number of matches that each

object belongs to, which enables us to prune unpromising objects.

In Section 5.3, we propose heuristic rules for ordering object pairs
to be checked for early termination of Algorithm 1.

5.1 Feasibility Test
Consider an object pair (𝑜𝑖 , 𝑜 𝑗) ∈ 𝐷𝑝𝑖 .Φ × 𝐷𝑝 𝑗 .Φ. To ensure 𝑝𝑖 , 𝑝 𝑗

can move on the borders of 𝐶𝜀
𝑜𝑖
, 𝐶𝜀

𝑜 𝑗
respectively, (𝑜𝑖 , 𝑜 𝑗) should

satisfy the following distance constraint,

|𝑜𝑖𝑜 𝑗 | ∈ [|𝑝𝑖𝑝 𝑗 | − 2𝜀, |𝑝𝑖𝑝 𝑗 | + 2𝜀] . (1)

2576

Definition 4. 𝑭 (𝒐𝒊, 𝒑𝒋). Let 𝑜𝑖 be a candidate object of 𝑝𝑖 , i.e.,
𝑜𝑖 ∈ 𝐷𝑝𝑖 .Φ. We denote by 𝐹 (𝑜𝑖 , 𝑝 𝑗) the set of candidate objects of 𝑝 𝑗
that can form a candidate object pair with 𝑜𝑖 , i.e., 𝐹 (𝑜𝑖 , 𝑝 𝑗) = {𝑜 𝑗 ∈
𝐷𝑝 𝑗 .Φ | |𝑜𝑖𝑜 𝑗 | ∈ [|𝑝𝑖𝑝 𝑗 | − 2𝜀, |𝑝𝑖𝑝 𝑗 | + 2𝜀]}.

Lemma 2. Given 𝑜 ∈ 𝐷𝑝𝑖 .Φ, if there exists 𝑝 𝑗 ∈ 𝑃 (𝑗 ≠ 𝑖) such that
𝐹 (𝑜, 𝑝 𝑗) = ∅, then 𝑜 cannot constitute a match and can be pruned.

Lemma 2 holds obviously. We can apply this lemma to reduce the

number of candidate objects for each 𝑝 ∈ 𝑃 . To efficiently compute

𝐹 (𝑜𝑖 , 𝑝 𝑗), we can build an IR-tree [10] on database 𝐷 beforehand.

Algorithm 2 gives the pseudo codes to generate complete 𝐹 (𝑜, 𝑝).
First we find the candidate objects for each 𝑝𝑖 (Line 2–3), and sort

them in ascending order of candidate size (Line 4), which aims

to decrease the number of times of computing 𝐹 (𝑜𝑖 , 𝑝 𝑗). In Line

5–14, we visit each 𝑜 ∈ 𝐷𝑝𝑖 .Φ and compute 𝐹 (𝑜, 𝑝 𝑗) using IR-tree,
1 ≤ 𝑖 < 𝑗 ≤ 𝑛. If 𝑜 is pruned, we add (𝑜, 𝑝𝑖) into 𝑆1 (𝑝𝑖 is used to

identify where 𝑜 comes from); otherwise, we update 𝐹 (𝑜, 𝑝 𝑗), as
𝐹 (𝑜, 𝑝) is symmetric, we update 𝐹 (𝑜 𝑗 , 𝑝𝑖) as well. The removal of

𝑆1 may invalidate some other objects. In Line 15–24, we repeatedly

check if there are new infeasible objects. For each object 𝑜 ∈ 𝑆1, we
find those affected objects 𝑜 𝑗 such that 𝑜 ∈ 𝐹 (𝑜 𝑗 , 𝑝𝑖), and update

the 𝐹 (𝑜 𝑗 , 𝑝𝑖). If 𝑜 𝑗 becomes infeasible, we put (𝑜 𝑗 , 𝑝 𝑗) into 𝑆2. After
checking all objects in 𝑆1, if no new infeasible object is found, then

we terminate; otherwise, we send 𝑆2 to 𝑆1 and repeatedly check 𝑆1.

Complexity. Let 𝑛 = |𝑃 |, 𝑑 = max1≤𝑖≤𝑛 |𝐷𝑝𝑖 .Φ |,𝑚 = |𝐷 |. It takes
𝑂 (𝑛𝑑) time to get all 𝐷𝑝𝑖 .Φ and 𝑂 (𝑛 log𝑛) time for sorting. In Line

5–14, for each 𝑜 ∈ 𝐷𝑝1 .Φ, we invoke subroutine 𝐹 (𝑜, 𝑝 𝑗) (𝑛 − 1)
times; for each 𝑜 ∈ 𝐷𝑝2 .Φ, we invoke 𝐹 (𝑜, 𝑝 𝑗) (𝑛 − 2) times, · · · .
Overall, we invoke 𝐹 (𝑜, 𝑝 𝑗)

𝑑 (𝑛 − 1) + 𝑑 (𝑛 − 2) + · · · + 𝑑 = 𝑂 (𝑛2𝑑)

times. Sincewe invoke 𝐹 (𝑜𝑖 , 𝑝 𝑗) on IR-treewhich takes𝑂 (𝑎𝑀 log𝑚)
time, where 𝑎 is the maximum number of nodes being accessed in

each layer of the IR-tree and 𝑀 is the fanout. Therefore, it takes

𝑂 (𝑛2𝑑 · 𝑎𝑀 log𝑚) time in Line 5–14. In Line 15–24, if 𝑜 ∈ 𝐷𝑝𝑖 .Φ,⋃
𝑗≠𝑖 𝐹 (𝑜, 𝑝 𝑗) contains 𝑂 (𝑛𝑑) objects, which means 𝑜 will be ac-

cessed 𝑂 (𝑛𝑑) times. And we have at most |𝑃 | · 𝑑 = 𝑂 (𝑛𝑑) objects.
Therefore, it requires 𝑂 (𝑛𝑑 · 𝑛𝑑) = 𝑂 (𝑛2𝑑2) time. Overall, Algo-

rithm 2 takes

𝑂 (𝑛𝑑 + 𝑛 log𝑛 + 𝑛2𝑑𝑎𝑀 log𝑚 + 𝑛2𝑑2) = 𝑂 (𝑛2𝑑𝑎𝑀 log𝑚 + 𝑛2𝑑2).

Usually, fanout𝑀 is very small. 𝑎 is also very small as the maximum

distance between any (𝑝𝑖 , 𝑝 𝑗) is much smaller than the Euclidean

space of 𝐷 , resulting in that only a small fraction of nodes are

visited in each layer of the IR-tree.

Table 2 gives 𝐹 (𝑜, 𝑝) for objects in Figure 5. Since 𝑜1 is the can-

didate object of 𝑝1, we do not need to compute 𝐹 (𝑜1, 𝑝1), the corre-
sponding column is filled with ‘x’.

Improvement. We first execute Algorithm 2, then execute Algo-

rithm 1. (1) We can prune infeasible objects based on Lemma 2;

(2) we can generate all candidate object pairs (𝑜𝑖 , 𝑜 𝑗) to be fed

into Algorithm 1. Specifically, Line 5 of Algorithm 1 is changed

to: foreach pair (𝑜𝑖 , 𝑜 𝑗), 𝑜 𝑗 ∈ 𝐹 (𝑜𝑖 , 𝑝 𝑗), and Line 7 is changed to:

𝐷𝑝𝑘 .Φ ←− 𝐹 (𝑜𝑖 , 𝑝𝑘) ∩ 𝐹 (𝑜 𝑗 , 𝑝𝑘).

Algorithm 2: FeasibilityTest(𝑃, 𝐷, 𝜀)
Input :Database 𝐷 , spatial pattern 𝑃 , tolerance 𝜀

Output :𝐹 (𝑜, 𝑝) for each promising object 𝑜

1 initialize a filtered set 𝑆1;

2 foreach 𝑝𝑖 ∈ 𝑃 do
3 𝐷𝑝𝑖 .Φ←− candidate objects of 𝑝𝑖

4 sort {𝑝1, · · · , 𝑝𝑛} in ascending order of |𝐷𝑝𝑖 .Φ |;
5 for 𝑖 = 1 to 𝑛 − 1 do
6 foreach 𝑜 ∈ 𝐷𝑝𝑖 .Φ do
7 for 𝑗 = 𝑖 + 1 to 𝑛 do
8 𝐿←− 𝐹 (𝑜, 𝑝 𝑗) using IR-tree;

9 if 𝐿 is empty then
10 𝑆1 .𝑎𝑑𝑑 (𝑜, 𝑝𝑖); break
11 else
12 update 𝐹 (𝑜, 𝑝 𝑗) using 𝐿;
13 foreach 𝑜 𝑗 ∈ 𝐿 do
14 update 𝐹 (𝑜 𝑗 , 𝑝𝑖) with 𝑜

15 repeat
16 initialize a filtered set 𝑆2;

17 foreach (𝑜, 𝑝𝑖) ∈ 𝑆1 do
18 𝐽 ←− {𝑜 𝑗 | 𝑜 ∈ 𝐹 (𝑜 𝑗 , 𝑝𝑖)};
19 foreach 𝑜 𝑗 ∈ 𝐽 do
20 remove 𝑜 from 𝐹 (𝑜 𝑗 , 𝑝𝑖);
21 if 𝑜 𝑗 pruned by Lemma 2 then
22 𝑆2 .𝑎𝑑𝑑 (𝑜 𝑗 , 𝑝 𝑗)

23 𝑆1←− 𝑆2;
24 until 𝑆1 is empty;

Table 2: Table 𝐹 (𝑜, 𝑝)

objects 𝐹 (∗, 𝑝1) 𝐹 (∗, 𝑝2) 𝐹 (∗, 𝑝3) 𝐹 (∗, 𝑝4)
𝑝1 𝑜1 × {𝑜2} {𝑜31, 𝑜32} {𝑜41, 𝑜42}
𝑝2 𝑜2 {𝑜1} × {𝑜31, 𝑜32} {𝑜41, 𝑜42}

𝑝3
𝑜31 {𝑜1} {𝑜2} × {𝑜41}
𝑜32 {𝑜1} {𝑜2} × {𝑜41, 𝑜42}

𝑝4
𝑜41 {𝑜1} {𝑜2} {𝑜31, 𝑜32} ×
𝑜42 {𝑜1} {𝑜2} {𝑜32} ×

5.2 Feasible Set
Let𝑈𝐵(𝑜) denote the upper bound of the number of matches con-

taining 𝑜 . If current matches found so far containing 𝑜 has reached

𝑈𝐵(𝑜), it means 𝑜 will no longer constitute a new match, and thus

can be pruned. Based on this observation, we propose feasible set

and derive an 𝑈𝐵(𝑜) for each object 𝑜 . This enables us to prune

unpromising objects and reduce duplicate matches in Algorithm 1.

Definition 5. Feasible set. Given pattern 𝑃 = {𝑝1, · · · , 𝑝𝑛}
and objects 𝑂 = {𝑜1, · · · , 𝑜𝑛}, if (1) ∀ 𝑖 , 𝑜𝑖 .𝜙 ∈ 𝑝𝑖 .Φ; and (2) ∀ 𝑖 , 𝑗 ,
|𝑝𝑖𝑝 𝑗 | ∈ [|𝑜𝑖𝑜 𝑗 | − 2𝜀, |𝑜𝑖𝑜 𝑗 | + 2𝜀], then we call 𝑂 a feasible set of 𝑃 .

Lemma 3. If 𝑂 is a match, then𝑂 must be a feasible set. However,
if 𝑂 is a feasible set, 𝑂 is not necessarily a match.

2577

Proof. A match is a feasible set by definition. But a feasible set

is not necessarily a match. Figure 7 provides a counterexample.

𝑝1, 𝑝2 are diametrically symmetric, i.e., |𝑝1𝑝2 | = |𝑜1𝑜2 | + 2𝜀. Let
𝐶1, 𝐶2 be circles with radius 𝑟 , centered at 𝑝1, 𝑝2 respectively. 𝑝3,

𝑔, ℎ are intersection points of 𝐶1 and 𝐶2, 𝐶1 and 𝐶
𝜀
𝑜3
, 𝐶2 and 𝐶

𝜀
𝑜3

respectively. Then we have |𝑝1𝑝3 | = |𝑝1𝑔| = |𝑝2ℎ | = |𝑝2𝑝3 | = 𝑟 .

Since |𝑜1𝑜3 | − 2𝜀 ≤ |𝑝1𝑔| ≤ |𝑜1𝑜3 | + 2𝜀, then |𝑜1𝑜3 | − 2𝜀 ≤ |𝑝1𝑝3 | ≤
|𝑜1𝑜3 | + 2𝜀, which means pair (𝑝1, 𝑝3) meets Eq. 1. Similarly, we

can also verify that pair (𝑝2, 𝑝3) meets Eq. 1. Hence, {𝑜1, 𝑜2, 𝑜3} is a
feasible set. However, it is not amatch. Due to diametrical symmetry,

we have to put 𝑝1, 𝑝2 onto the borders of𝐶
𝜀
𝑜1
,𝐶𝜀

𝑜2
, in such situation,

𝑝3 cannot enter 𝐶
𝜀
𝑜3
. Hence, {𝑜1, 𝑜2, 𝑜3} is not a match. □

Figure 7: Counterexample Figure 8: Feasible set

Based on Lemma 3, feasible sets contain all matches, we can set

𝑈𝐵(𝑜) to be the number of feasible sets containing 𝑜 . Fortunately,

we can apply Depth-First-Search (DFS) on 𝐹 (𝑜, 𝑞) to obtain all fea-

sible sets. We take Table 2 and Figure 8 for explanation. In Figure 8,

we start from 𝑜1 (∈ 𝐷𝑝1 .Φ). As 𝑜2 ∈ 𝐹 (𝑜1, 𝑝2), we can move to 𝑜2.

Since 𝑜31 ∈ 𝐹 (𝑜1, 𝑝3) ∩ 𝐹 (𝑜2, 𝑝3), we can reach 𝑜31 in the next step.

Finally we arrive at 𝑜41 as 𝑜41 ∈ 𝐹 (𝑜1, 𝑝4) ∩ 𝐹 (𝑜2, 𝑝4) ∩ 𝐹 (𝑜31, 𝑝4),
and we get a feasible set 𝐻 = {𝑜1, 𝑜2, 𝑜31, 𝑜41}. Once we find a

feasible set 𝐻 , we increase𝑈𝐵(𝑜) by 1 for each 𝑜 ∈ 𝐻 .

Algorithm 3: FeasibleSet(𝑇,𝐻, 𝑘)

Input :Table 𝐹 (𝑜, 𝑝), current set 𝐻 , current position 𝑘

Output :Feasible setsH , upper bound of each object

1 if 𝑘 = 𝑛 + 1 then // a feasible set is found
2 H .𝑎𝑑𝑑 (𝐻);
3 foreach 𝑜 ∈ 𝐻 do
4 𝑈𝐵(𝑜) ←− 𝑈𝐵(𝑜) + 1;

5 else
6 foreach 𝑜 ∈ 𝐷𝑝𝑘 .Φ do
7 𝐻 [𝑘] = 𝑜 ; // put 𝑜 into current set

8 for 𝑙 = 𝑘 + 1 to 𝑛 do
// update candidate objects for 𝑝𝑙 ∈ 𝑃

9 𝐷𝑝𝑙 .Φ = 𝐷𝑝𝑙 .Φ ∩ 𝐹 (𝑜, 𝑝𝑙);
10 FeasibleSet(𝑇 , 𝐻 , 𝑘 + 1);

Algorithm 3 presents the pseudo codes of searching all feasible

sets. We use 𝐻 to represent a feasible set, and 𝑘 denotes the current

position in 𝐻 . If 𝑘 equals 𝑛 + 1, which means a feasible set has been

found, we put 𝐻 into setH and update the upper bound for each

object in the set 𝐻 (Line 1–4). Otherwise, we check each candidate

object in current point 𝑝𝑘 (Line 6–10). When exploring 𝑜 ∈ 𝐷𝑝𝑘 .Φ,

we put 𝑜 into 𝐻 (Line 7), and narrow down the size of candidate

objects for subsequent points of 𝑃 (Line 8–9), and then continue

exploring next position in set 𝐻 (Line 10).

Table 3: Candidate Inverted Lists (CIL)

object pair 𝐷𝑝1 .Φ 𝐷𝑝2 .Φ 𝐷𝑝3 .Φ 𝐷𝑝4 .Φ

(𝑜1, 𝑜2) ∅ ∅ {𝑜31, 𝑜32} {𝑜41}
(𝑜1, 𝑜31) ∅ {𝑜2} ∅ {𝑜41}
(𝑜1, 𝑜32) ∅ {𝑜2} ∅ {𝑜41}
(𝑜1, 𝑜41) ∅ {𝑜2} {𝑜31, 𝑜32} ∅
(𝑜2, 𝑜31) {𝑜1} ∅ ∅ {𝑜41}
(𝑜2, 𝑜32) {𝑜1} ∅ ∅ {𝑜41}
(𝑜2, 𝑜41) {𝑜1} ∅ {𝑜31, 𝑜32} ∅
(𝑜31, 𝑜41) {𝑜1} {𝑜2} ∅ ∅
(𝑜32, 𝑜41) {𝑜1} {𝑜2} ∅ ∅

Complexity. Note that each row of table 𝐹 (𝑜, 𝑝) is accessed at

most once during DFS. Since we have at most 𝑂 (𝑛𝑑) rows in table

𝐹 (𝑜, 𝑝), where each row contains at most 𝑂 (𝑛𝑑) objects. Therefore,
Algorithm 3 takes 𝑂 (𝑛𝑑 · 𝑛𝑑) = 𝑂 (𝑛2𝑑2) time, where 𝑛 = |𝑃 |,
𝑑 = max1≤𝑖≤𝑛 |𝐷𝑝𝑖 .Φ |.
Improvement. We sequentially execute Algorithm 2, Algorithm 3

and Algorithm 1. In Algorithm 3, we obtain all feasible sets H
which can be used to save the redundant computations in searching

𝐷𝑝𝑘 .Φ in Line 7 of Algorithm 1. Specifically, in Section 5.1, we have

𝐷𝑝𝑘 .Φ = 𝐹 (𝑜𝑖 , 𝑝𝑘) ∩ 𝐹 (𝑜 𝑗 , 𝑝𝑘), and this requires a lot of intersec-

tion operations of sets during the whole algorithm. To reduce the

overhead, we can useH to generate all𝐷𝑝𝑘 .Φ’s directly through can-
didate inverted lists (CIL). For each feasible set 𝐻 = {𝑜1, 𝑜2, · · · , 𝑜𝑛}
inH , for each (𝑜𝑖 , 𝑜 𝑗) of 𝐻 , we create a CIL as follows,

(𝑜𝑖 , 𝑜 𝑗) : 𝐷𝑝1 .Φ = {𝑜1}, · · · , 𝐷𝑝𝑖 .Φ = ∅, 𝐷𝑝 𝑗 .Φ = ∅, · · · , 𝐷𝑝𝑛 .Φ = {𝑜𝑛},
After visiting all feasible sets in H , we combine those CILs with

same object pair (𝑜𝑖 , 𝑜 𝑗).
For example, suppose H contains 𝐻1 = {𝑜1, 𝑜2, 𝑜31, 𝑜41} and

𝐻2 = {𝑜1, 𝑜2, 𝑜32, 𝑜41}. In 𝐻1, we create a CIL for (𝑜1, 𝑜2),
(𝑜1, 𝑜2) : 𝐷𝑝1 .Φ = ∅, 𝐷𝑝2 .Φ = ∅, 𝐷𝑝3 .Φ = {𝑜31}, 𝐷𝑝4 .Φ = {𝑜41},

while in 𝐻2, we create another CIL for (𝑜1, 𝑜2),
(𝑜1, 𝑜2) : 𝐷𝑝1 .Φ = ∅, 𝐷𝑝2 .Φ = ∅, 𝐷𝑝3 .Φ = {𝑜32}, 𝐷𝑝4 .Φ = {𝑜41},

after combining them, we get complete CIL for (𝑜1, 𝑜2), i.e.,
(𝑜1, 𝑜2) : 𝐷𝑝1 .Φ = ∅, 𝐷𝑝2 .Φ = ∅, 𝐷𝑝3 .Φ = {𝑜31, 𝑜32}, 𝐷𝑝4 .Φ = {𝑜41}.

We can get complete CILs for H as shown in Table 3. Line 5 of

Algorithm 1 can be replaced by the object pairs in CILs. And in

Line 7, 𝐷𝑝𝑘 .Φ can also be obtained directly from CILs.

Furthermore, in Algorithm 3, we also get𝑈𝐵(𝑜) for each object 𝑜 .
We derive Lemma 4 to further improve Algorithm 1.When checking

(𝑜𝑖 , 𝑜 𝑗) in the CILs, we first apply Lemma 4 to see if it can be pruned.

And in Line 8 of Algorithm 1, we will also apply Lemma 4 to see if

𝑜𝑘 can be pruned.

Lemma 4. 𝑜 can be pruned if the number of matches found so far
which contain 𝑜 , has reached 𝑈𝐵(𝑜). Object pair (𝑜𝑖 , 𝑜 𝑗) in the CILs
can be pruned if at least one of {𝑜𝑖 , 𝑜 𝑗 } is pruned.

5.3 Order of Object Pairs
To prune as many objects as possible based on Lemma 4, we propose

to reorder object pairs in the CILs to achieve that we can find as

2578

many matches as possible in the first a few rounds, so that objects

can reach their upper bounds earlier.

As there is no metric that can best characterise the number of

matches, here we propose a few heuristic metrics to define the score

of object pairs in the CILs, and sort them accordingly.

Number of remaining matches. Let 𝐿(𝑜) be the number of found

matches that contain 𝑜 . We define

𝑆1 (𝑜𝑖 , 𝑜 𝑗) = |𝑈𝐵(𝑜𝑖) − 𝐿(𝑜𝑖) | × |𝑈𝐵(𝑜 𝑗) − 𝐿(𝑜 𝑗) |.
If 𝑆1 (𝑜𝑖 , 𝑜 𝑗) is large, there remains plenty of matches containing

𝑜𝑖 or 𝑜 𝑗 to be found, and (𝑜𝑖 , 𝑜 𝑗) should be explored as early as

possible.

Candidate size. For (𝑜𝑖 , 𝑜 𝑗), suppose 𝑜𝑖 , 𝑜 𝑗 are candidates of 𝑝𝑖 , 𝑝 𝑗
respectively, we define

𝑆2 (𝑜𝑖 , 𝑜 𝑗) = Π𝑘≠𝑖, 𝑗 |𝐷𝑝𝑘 .Φ |.
If 𝑆2 (𝑜𝑖 , 𝑜 𝑗) is large, it means (𝑜𝑖 , 𝑜 𝑗)may constitute a lot of matches,

and (𝑜𝑖 , 𝑜 𝑗) should be prioritized for processing.

Freedom of rigid motion. Suppose 𝑜𝑖 , 𝑜 𝑗 are candidate objects
of 𝑝𝑖 , 𝑝 𝑗 respectively. When 𝑝𝑖 , 𝑝 𝑗 run on the borders of 𝐶𝜀

𝑜𝑖
,𝐶𝜀

𝑜 𝑗
,

if their moves are restricted (see Figure 6), it is less likely to find

matches. We define

𝑆3 (𝑜𝑖 , 𝑜 𝑗) = 1 −
��|𝑜𝑖𝑜 𝑗 | − |𝑝𝑖𝑝 𝑗 |��

2𝜀
.

If 𝑆3 (𝑜𝑖 , 𝑜 𝑗) is large, 𝑝𝑖 , 𝑝 𝑗 can move freely on the borders, then 𝑝𝑘
(𝑘 ≠ 𝑖, 𝑗) will scan larger area as 𝑝𝑖 moves, which makes it easier

for 𝑝𝑘 to enter 𝐶𝜀
𝑜𝑘

(𝑜𝑘 ∈ 𝐷𝑝𝑘 .Φ), and thus more matches could be

found. Therefore, (𝑜𝑖 , 𝑜 𝑗) should be processed first.

Mixedmetric.We combine the aforementioned factors to measure

the significance of (𝑜𝑖 , 𝑜 𝑗). We propose the following score function

using linear interpolation,

𝑆4 (𝑜𝑖 , 𝑜 𝑗) = 𝑆1 (𝑜𝑖 , 𝑜 𝑗) + 𝛼 · 𝑆2 (𝑜𝑖 , 𝑜 𝑗) + 𝛽 · 𝑆3 (𝑜𝑖 , 𝑜 𝑗),
where 𝛼 and 𝛽 can be set empirically. The higher score, the better.

Improvement. We first execute Algorithm 2, Algorithm 3, then

build and reorder CILs, we sort object pairs based on a score function

(𝑆1 (𝑜𝑖 , 𝑜 𝑗) by default). After that, we execute Algorithm 1 (Line 6–

13) on each (𝑜𝑖 , 𝑜 𝑗) in the CILs.

6 APPROXIMATE MATCHES
In some applications that have high demands in query latency,

we can provide approximate results to trade off the efficiency and

accuracy. Recall that feasible sets are intermediate results of our

improved algorithms (i.e., only executing Algorithm 2 and Algo-

rithm 3). They cover all the matches and take less running time

than the complete algorithm. Thus, it is a natural idea to return the

feasible sets to users as approximate results.

In the remaining of this section, we prove that we can guarantee

the quality of the approximate results by parameter 𝜀 ′, i.e., the
feasible sets in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀) are true matches in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀 ′). To
complete the proof, we consider the number of points in 𝑃 in three

cases: (1) |𝑃 | < 3, (2) |𝑃 | = 3, and (3) |𝑃 | > 3.

Case 1: |𝑃 | < 3. It is trivial to show that each feasible set is indeed

a match. In this case, 𝜀 ′ = 𝜀.

Case 2: |𝑃 | = 3. Given pattern 𝑃 = {𝑝1, 𝑝2, 𝑝3}, tolerance 𝜀, and
feasible set 𝑂 = {𝑜1, 𝑜2, 𝑜3}, consider the following 3 cases:

() postion of () maximum

Figure 9: Estimate 𝜀1

Figure 10: Other situations of 𝜀1

(1) 𝑜2, 𝑜3 reside in the circular disks of 𝐶𝜀
𝑝2
, 𝐶𝜀

𝑝3
respectively.

Denote the maximum distance between 𝑝1 and 𝑜1 as 𝜀1;

(2) 𝑜1, 𝑜3 reside in the circular disks of 𝐶𝜀
𝑝1
, 𝐶𝜀

𝑝3
respectively.

Denote the maximum distance between 𝑝2 and 𝑜2 as 𝜀2;

(3) 𝑜1, 𝑜2 reside in the circular disks of 𝐶𝜀
𝑝1
, 𝐶𝜀

𝑝2
respectively.

Denote the maximum distance between 𝑝3 and 𝑜3 as 𝜀3.

Now we proceed to find out 𝜀1 in case (1). In Figure 9(𝑎), as 𝑜2 is

inside 𝐶𝜀
𝑝2
, we have |𝑝2𝑜2 | ≤ 𝜀. Based on triangle inequality, we

have

|𝑜1𝑜2 | − |𝑝2𝑜2 | ≤ |𝑜1𝑝2 | ≤ |𝑜1𝑜2 | + |𝑝2𝑜2 |,
as |𝑜1𝑜2 | satisfies Eq. 1, then we have

|𝑜1𝑝2 | ≤ |𝑝1𝑝2 | + 2𝜀 + |𝑝2𝑜2 | ≤ |𝑝1𝑝2 | + 3𝜀, (2)

|𝑜1𝑝2 | ≥ |𝑝1𝑝2 | − 2𝜀 − |𝑝2𝑜2 | ≥ |𝑝1𝑝2 | − 3𝜀. (3)

That means 𝑜1 must be located inside a ring-shaped area with center

𝑝2, inner radius 𝑟1 = |𝑝1𝑝2 | − 3𝜀 and outer radius 𝑟2 = |𝑝1𝑝2 | + 3𝜀,
denoted by 𝑅

𝑟1,𝑟2
𝑝2

, as illustrated in Figure 9(𝑎). Similarly, as 𝑜3 is

inside𝐶𝜀
𝑝3
, 𝑜1 must be located inside another ring-shaped area𝑅

𝑟3,𝑟4
𝑝3

,

where 𝑟3 = |𝑝1𝑝3 | − 3𝜀, 𝑟4 = |𝑝1𝑝3 | + 3𝜀. Obviously, the circle 𝐶𝜀
𝑝1

is contained in the intersection area of 𝑅
𝑟1,𝑟2
𝑝2

and 𝑅
𝑟3,𝑟4
𝑝3

as shown

in Figure 9(𝑏). We only consider the intersection area above the

line 𝑝2𝑝3, it is because that if 𝑜1 is located below line 𝑝2𝑝3, then

the orientation of 𝑂 is opposite to that of 𝑃 , i.e., (∠−−−→𝑝2𝑝1 - ∠
−−−→
𝑝2𝑝3)

and (∠−−−→𝑜2𝑜1 - ∠−−−→𝑜2𝑜3) have opposite signs, here ∠−−−→𝑝2𝑝1 is the angle of−−−→
𝑝2𝑝3 in polar coordinates, we will check the orientation of𝑂 before

putting it into the feasible sets.

Now that 𝑜1 is located in the shaded area in Figure 9(𝑏), we can

deduce that 𝜀1 = max{|𝐴𝑝1 |, |𝐵𝑝1 |, |𝐶𝑝1 |, |𝐷𝑝1 |}, where 𝐴, 𝐵, 𝐶 , 𝐷
are the intersection points of 𝑅

𝑟1,𝑟2
𝑝2

and 𝑅
𝑟3,𝑟4
𝑝3

. It is easy to find

out 𝜀1 using cosine formula. Actually there are other situations

concerning the intersection area of 𝑅
𝑟1,𝑟2
𝑝2

and 𝑅
𝑟3,𝑟4
𝑝3

, as illustrated

in Figure 10, which depends on each |𝑝𝑖𝑝 𝑗 | of 𝑃 and 𝜀. Whichever

situation it is, the 𝜀1 is determined by maximum distance between

𝑝1 and the intersection points of 𝑅
𝑟1,𝑟2
𝑝2

, 𝑅
𝑟3,𝑟4
𝑝3

and triangle △𝑝1𝑝2𝑝3.
Likewise, we can find out 𝜀2, 𝜀3 in the remaining two cases.

After that, we set 𝜀 ′ = min{𝜀1, 𝜀2, 𝜀3}. For example, if 𝜀 ′ = 𝜀1, then

following the case (1), we can put 𝑂 into the 𝜀1-circles of 𝑃 on

one-to-one basis. Equivalently, we can put 𝑃 into the 𝜀1-circles of𝑂

on one-to-one basis, which suggests 𝑂 is a match in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀1).

2579

Table 4: Table of datasets

Datasets Object Total keywords Size

Gowalla 2,705,595 630 1.20GB

4SQ1 3,410,868 429 2.05GB

4SQ2 10,150,064 519 5.68GB

Weeplaces 894,582 762 829MB

Case 3: |𝑃 | > 3. Given pattern 𝑃 = {𝑝1, · · · , 𝑝𝑛} and tolerance 𝜀,

suppose 𝑂 = {𝑜1, · · · , 𝑜𝑛} is feasible set of 𝑃 , we can derive an 𝜀 ′

as follows:

(1) We choose (𝑝𝑖 , 𝑝 𝑗) from 𝑃 and factorize 𝑃 into 𝑛 − 2 sub-
patterns of size 3: {𝑝𝑖 , 𝑝 𝑗 , 𝑝1}, {𝑝𝑖 , 𝑝 𝑗 , 𝑝2}, · · · , {𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑛}.

(2) For each subpattern {𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 }, we let (𝑜𝑖 , 𝑜 𝑗) reside in

the circular disks of 𝐶𝜀
𝑝𝑖
, 𝐶𝜀

𝑝 𝑗
respectively, and denote the

maximum distance between 𝑝𝑘 and 𝑜𝑘 as 𝜀𝑘 . After finding

all 𝜀𝑘 ’s, we set 𝜀𝑖, 𝑗 = max𝑘≠𝑖, 𝑗 {𝜀𝑘 } and derive Lemma 5.

(3) After enumerating all (𝑝𝑖 , 𝑝 𝑗) of 𝑃 , we set 𝜀 ′ = min𝑖, 𝑗 {𝜀𝑖, 𝑗 }
and derive Lemma 6.

Lemma 5. Consider a pattern 𝑃 = {𝑝1, · · · , 𝑝𝑛} and tolerance
𝜀. If 𝑂 is feasible set of 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀), then 𝑂 must be a match in
𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀𝑖, 𝑗).

Proof. In each subpattern {𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 }, we know that if we locate 𝑜𝑖 ,

𝑜 𝑗 inside the circular disks of 𝐶
𝜀
𝑝𝑖
, 𝐶𝜀

𝑝 𝑗
respectively, the maximum

distance |𝑜𝑘𝑝𝑘 | ≤ 𝜀𝑘 ≤ 𝜀𝑖, 𝑗 . That means, 𝑂 can be located inside

the 𝜀𝑖, 𝑗 -circles of 𝑃 on 1-to-1 basis. Therefore, 𝑂 is a match in

𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀𝑖, 𝑗). □

Lemma 6. Consider pattern 𝑃 and tolerance 𝜀, if 𝑂 is feasible set
of 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀), then 𝑂 must be a match in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀 ′).

Proof. Suppose 𝜀 ′ = 𝜀𝑖′, 𝑗 ′ , from Lemma 5, we know that𝑂 is a match

in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀𝑖′, 𝑗 ′), then 𝑂 is also a match in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀 ′). □

Remark. When choosing (𝑝𝑖 , 𝑝 𝑗), it takes 𝑂 (1) to obtain an 𝜀𝑘 .

Hence,𝑂 (𝑛) time is required to get 𝜀𝑖, 𝑗 . As there are𝑂 (𝑛2) pairs of
(𝑝𝑖 , 𝑝 𝑗), it takes 𝑂 (𝑛3) time in total to get final 𝜀 ′.

7 EXPERIMENTS
We evaluate the effectiveness, efficiency and scalability of our algo-

rithms
1
. All methods are implemented in Java 8 and run on a PC

with Intel Xeon W-2133 CPU @ 3.60GHz and 32GB RAM.

7.1 Experimental Setup
Datasets. We use 4 real-world datasets from location-based social

networks (LBSN), namely, Gowalla, Weeplaces, 4SQ1 and 4SQ2.
The last two datasets are crawled from Foursquare. They contain

location and category information of venues. They contain 2705595,

894582, 3410868 and 10150064 venues respectively. And they cover

630, 762, 429 and 519 categories respectively. Table 4 lists the details.

EPM Queries. We generate pattern 𝑃 as follows: 1) the size |𝑃 |
varies from 3 to 11, the default value is 7 (in addition, we add two

extreme cases |𝑃 | = 50, 100); 2) we randomly choose an object

𝑜 ∈ 𝐷 and assign it to 𝑝1 ∈ 𝑃 . Then we collect the objects 𝑂 inside

the circular region with center 𝑜 and radius 𝑟 . Next we randomly

1
Code will be released.

Figure 11: Case study
choose objects from 𝑂 and assign them to the remaining points of

𝑃 . By default, 𝑟 = 20km, we will study the effect of 𝑟 in Section 7.6.

For each 𝑝 ∈ 𝑃 , we set 𝑝.𝜌 = 𝑜.𝜌 , 𝑝.Φ = {𝑜.𝜙}. To enrich 𝑝.Φ, we
retrieve the nearby objects of 𝑜 and add their keywords into 𝑝.Φ.
|𝑝.Φ| varies from 1 to 5, the default value is 3; 3) tolerance 𝜀 varies

from 0.5km to 2.5km, the default value is 1.5km.

Index and methods. We use IR-tree [7] to index the objects in

database and set the fanout𝑀 = 32. Note that our algorithms can

adopt any other spatial-textual indexes. To evaluate our proposed

algorithm and techniques, we compare following methods: 1) BA:
Algorithm 1 in Section 4. 2) FT: Algorithm 1 combined with fea-

sibility test. 3) FS: Algorithm 1 combined with feasibility test and

feasible set . 4) OD: Algorithm 1 combined with all pruning tech-

niques . As there exists no baseline, we adapt SPM [11] to serve as a

baseline.We convert an EPM instance to an SPM instance as follows:

for each pair (𝑝𝑖 , 𝑝 𝑗) in EPM, we create an edge (𝑝𝑖 , 𝑝 𝑗) with mutual

inclusion relationship and distance interval [|𝑝𝑖𝑝 𝑗 | − 2𝜀, |𝑝𝑖𝑝 𝑗 | + 2𝜀]
in SPM. Since SPM does not consider the positional information of

target objects, for each returned result, we adopt our algorithm to

verify whether it is a match in EPM. We use the codes of SPM from

its inventors, which also uses the IR-tree for indexing. For each

test case, we randomly choose 20 queries and report the average

running time.

7.2 Case Study
We give a case study on urban planning to show the superiority

of EPM over SPM [11]. We choose 4 objects (in Los Angeles) from

Gowalla as an EPM query and set 𝜀 = 0.1km, as shown in Fig-

ure 11(𝑎). Figure 11(𝑏) shows one of the matches (in San Diego)

returned in EPM, which preserves the relative positions between

the target objects in Figure 11(𝑎) and can be useful for further

analysis. In order to achieve the same goal using SPM, we need to

describe the desired layout with a complete graph𝐺 as shown in

Figure 11(𝑐), then we feed𝐺 into an SPM solver. As a result, SPM re-

turns a match (in San Jose) as shown in Figure 11(𝑑), which deviates

far from users’ desired layout and lower down users’ satisfaction. It

demonstrates that SPM is not suitable for applications where users

want to preserve the relative locations of target objects.

7.3 Efficiency
In this section, we study the effect of pattern size, the number

of keywords and the tolerance to evaluate the efficiency of our

proposed methods on 4 datasets.

2580

 0

 50

 100

 150

 200

 250

3 5 7 9 11 50 100

T
im

e
 (

se
c
o
n

d
)

Pattern size |P|

SPM
BA
FT
FS
OD

(a) Gowalla

 0

 50

 100

 150

 200

 250

3 5 7 9 11 50 100

T
im

e
 (

se
c
o
n

d
)

Pattern size |P|

SPM
BA
FT
FS
OD

(b) 4SQ1

 0

 50

 100

 150

 200

 250

 300

3 5 7 9 11 50 100

T
im

e
 (

se
c
o
n

d
)

Pattern size |P|

SPM
BA
FT
FS
OD

(c) 4SQ2

 0

 50

 100

 150

 200

3 5 7 9 11 50 100

T
im

e
 (

se
c
o
n

d
)

Pattern size |P|

SPM
BA
FT
FS
OD

(d) Weeplaces

Figure 12: Effect of pattern size

 0

 50

 100

 150

 200

 250

1 2 3 4 5

T
im

e
(s

ec
o
n

d
)

Number of keywords |p.Φ|

SPM
BA
FT
FS
OD

(a) Gowalla

 0

 50

 100

 150

 200

 250

1 2 3 4 5

T
im

e
(s

ec
o
n

d
)

Number of keywords |p.Φ|

SPM
BA
FT
FS
OD

(b) 4SQ1

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5

T
im

e
(s

ec
o
n

d
)

Number of keywords |p.Φ|

SPM
BA
FT
FS
OD

(c) 4SQ2

 0

 50

 100

 150

 200

1 2 3 4 5

T
im

e
(s

ec
o
n

d
)

Number of keywords |p.Φ|

SPM
BA
FT
FS
OD

(d) Weeplaces

Figure 13: Effect of keywords

 0

 50

 100

 150

 200

0.5 1 1.5 2 2.5

T
im

e
 (

se
c
o

n
d
)

Tolerance ε (km)

SPM
BA
FT
FS
OD

(a) Gowalla

 0

 50

 100

 150

 200

 250

 300

0.5 1 1.5 2 2.5

T
im

e
 (

se
c
o

n
d
)

Tolerance ε (km)

SPM
BA
FT
FS
OD

(b) 4SQ1

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.5 1 1.5 2 2.5

T
im

e
 (

se
c
o

n
d
)

Tolerance ε (km)

SPM
BA
FT
FS
OD

(c) 4SQ2

 0

 50

 100

 150

 200

0.5 1 1.5 2 2.5

T
im

e
 (

se
c
o

n
d
)

Tolerance ε (km)

SPM
BA
FT
FS
OD

(d) Weeplaces

Figure 14: Effect of tolerance

 0

 200

 400

 600

 800

 1000

 1200

1M 10M 30M 50M

T
im

e
(s

ec
o

n
d
)

Database size |D|

SPM
BA
FT
FS
OD

(a) Gowalla

 0

 200

 400

 600

 800

 1000

 1200

 1400

1M 10M 30M 50M

T
im

e
(s

ec
o

n
d
)

Database size |D|

SPM
BA
FT
FS
OD

(b) 4SQ1

 0

 200

 400

 600

 800

 1000

1M 10M 30M 50M

T
im

e
(s

ec
o

n
d
)

Database size |D|

SPM
BA
FT
FS
OD

(c) 4SQ2

 0

 200

 400

 600

 800

 1000

 1200

 1400

1M 10M 30M 50M

T
im

e
(s

ec
o

n
d
)

Database size |D|

SPM
BA
FT
FS
OD

(d) Weeplaces

Figure 15: Scalability

Effect of pattern size. Figure 12 gives the running time w.r.t. the

pattern size |𝑃 |. We observe that (1) equipped with all pruning

techniques,OD is very efficient and can find all matches in less than

20 seconds even on the dataset with over 10 million objects. (2) The

running time of FS and OD grows very slowly or even decreases

when |𝑃 | increases. On the one hand, when |𝑃 | increases, we need
to enumerate more pairs (𝑝𝑖 , 𝑝 𝑗), which increase the running time.

On the other hand, if there are more points in the pattern, the

distance constraints between each other are stronger, which helps

to prune more objects and decrease the running time. The total

running time depends on which of the two factors is dominant. The

decreasing trend of FS and OD with |𝑃 | indicates that our proposed
techniques can efficiently prune a large number of unpromising

objects and avoid unnecessary searches. In contrast, BA and FT are

dominated by the first factor when |𝑃 | is small or moderate (3 to

11), and dominated by the second factor when |𝑃 | is large (over 50).
(3)When |𝑃 | is small or moderate, the gap between the running time

of BA, FT, FS andOD increases with |𝑃 |. In Figure 12(𝑎), when𝑛 = 3,

FT, FS andOD improve BA by 20.1%, 41.3% and 60.6%. When 𝑛 = 11,

they improve BA by 43.0%, 72.7% and 89.4%. Similar observations

can be made in Figure 12(𝑏)-(𝑑). The reason for this phenomenon

is that, when there are more points in the pattern, there are more

distance constraints between the points and leaves us more space

for pruning. This explains why FT, FS andOD outperform BAmore

notably when |𝑃 | is larger. Interestingly, when |𝑃 | is sufficiently

large (over 50), the gap becomes small. This is because in such

case, there are very few matches in the database, strong distance

constraints will prune most of the objects and make all methods

2581

have comparable performance. (4) OD achieves over 10x speedup

compared with SPM. This is because SPM treats each (𝑝𝑖 , 𝑝 𝑗) ∈ 𝑃
independently and generates matches by incrementally joining the

candidate objects pairs for each (𝑝𝑖 , 𝑝 𝑗), which is much slower than

our methods.

Effect of keywords. Figure 13 gives the running time w.r.t. the

number of keywords on each point in the pattern. When there are

more keywords on each point 𝑝 ∈ 𝑃 , the size of candidate objects
|𝐷𝑝.Φ | grows, and we need to explore more object pairs (𝑜𝑖 , 𝑜 𝑗)
in Algorithm 1, which increases the running time. However, we

observe that the running time of FT, FS and OD grows more slowly

than that of BA, which indicates the effectiveness and efficiency

of our pruning techniques. FT, FS and OD provide much better

performance than BA when the number of keywords is larger. For

example, in Figure 13(𝑏), when |𝑝.Φ| = 1, FT, FS and OD improve

BA by 48.5%, 76.4% and 81.5%. When |𝑝.Φ| = 5, they improve BA
by 50.4%, 78.1% and 82.3%. Similar observations can also be made

in other figures in Figure 13. This is because, when the number

of keywords is larger, there are more candidate objects for each

point in the pattern. However, in fact, most candidate objects will

not constitute the true matches and thus can be pruned based on

Lemma 2, which indicates that FT, FS and OD have more signifi-

cant improvements over BA when |𝑝.Φ| is larger. Furthermore, we

observe that OD is over 10x faster than SPM in all situations.

Effect of tolerance. Figure 14 gives the running time w.r.t. the

tolerance. When the tolerance is larger, the distance constraints

in the pattern are looser and more candidate objects survive from

the pruning, which implies more time is required to find all the

matches. The running time of all methods grows nearly linearly

w.r.t. the tolerance. Our proposed techniques scale well w.r.t. the

tolerance and consistently outperform SPM (over 10x speedup).

7.4 Scalability
We study scalability w.r.t. the database sizes. We apply random

sampling to generate smaller dataset and random duplicating to

generate larger dataset, thus generating datasets from 1 million

to 50 million. Figure 15 shows the running time under different

database sizes. We observe that the running time of BA grows

faster than FT, FS and OD. This is because the complexity of BA is

𝑂 (𝑛4𝑑4 (𝑐+𝑛0.5)), when |𝐷 | increases 𝑡 times, then𝑑 (𝑑 << |𝐷 |) will
increase nearly 𝑡 times as well, and thus the total complexity will

increase 𝑡4 times. Compared with BA, the running time of FS and

OD grows more slowly, which indicates our pruning techniques can

effectively prune a huge number of unpromising object pairs. For

example, in Figure 15b, when |𝐷 | = 50M, FT, FS and OD improve

BA by 45.3%, 67.8% and 87.4%. From Figure 15, we observe that

our methods have good scalability w.r.t. the database size. As for

SPM, its running time increases exponentially as |𝐷 | increases. Our
methods are more than an order of magnitude faster than SPM.

7.5 Approximate Matches
To further reduce query latency, we can return feasible sets com-

bined with bounded error 𝜀 ′ as approximate matches to users.We re-

port the efficiency and quality of approximate matches on Gowalla.

Efficiency. To evaluate the efficiency, we compare 3 methods. (1)

OD. It returns all exact matches. (2) AP. After generating 𝐹 (𝑜, 𝑝)

Table 5: Performance of approximate matches
Running time (ms) Quality

OD AP EN Prec. 𝜀(km) 𝜀 ′(km) 𝜀𝑡 (km)

Gowalla 9,638 32 120 37.2% 1.5 2.17 1.93

4SQ1 17,558 128 795 31.3% 1.5 2.76 2.28

4SQ2 14,822 338 1,437 34.5% 1.5 2.98 2.15

Weeplaces 14,315 55 264 36.1% 1.5 2.73 1.87

using Algorithm 2, we find all feasible sets via DFS on 𝐹 (𝑜, 𝑝) using
Algorithm 3. Then we deduce an 𝜀 ′ based on Lemma 6. Finally, AP
returns all feasible sets and 𝜀 ′. (3) EN. It is a baseline for finding all

feasible sets without the help of 𝐹 (𝑜, 𝑝): starting from a candidate

object (say 𝑜1) of 𝑝1, we retrieve the candidate objects of 𝑝2 (say

𝑜2) which satisfy the distance constraint (i.e., Eq. 1) with 𝑜1. Next

we find candidate objects of 𝑝3 (say 𝑜3) which satisfy Eq. 1 with

𝑜1, 𝑜2 simultaneously. We repeat this procedure until all feasible

sets are found. Table 5 lists the running time (ms) of 3 methods.

Comparing AP and EN, we can see that AP is 4x–6x faster than

EN, which demonstrates the efficiency of our feasibility test. And

comparing AP and OD, we find that over 90% running time of OD
is used to verify the feasible sets to obtain the exact matches.We
can reduce the query latency by two orders of magnitude if we report
approximate matches.

Quality. To measure the quality, we report following metrics in

method AP. (1) Precision rate, i.e., #(true matches)/#(feasible sets).

(2) 𝜀, 𝜀 ′ and 𝜀𝑡 . 𝜀 is the EPM tolerance. 𝜀 ′ is the theoretical tolerance
derived from Lemma 6, representing that the returned feasible sets

are matches in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀 ′). 𝜀𝑡 is the minimum tolerance that

makes all returned feasible sets true matches in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀𝑡), and
is derived as follows: for each false match𝐻 in the returned feasible

sets of AP, we find out the minimum 𝜀𝑡 such that 𝐻 is a match

in 𝐸𝑃𝑀 (𝑃, 𝐷, 𝜀𝑡) [14]. After considering all false matches in the

returned feasible sets, we report the largest 𝜀𝑡 . Table 5 shows these

metrics of AP. We can see that about 30% of feasible sets are true

matches. As 𝜀𝑡 is very close to 𝜀 (𝜀𝑡 ≈ 1.5𝜀), it implies that the

returned feasible sets are approximate matches of high quality.

Furthermore, 𝜀 ′ is also close to 𝜀 (𝜀 ′ ≈ 2𝜀), which demonstrates that

we can find approximate matches with good quality efficiently.

7.6 Miscellaneous Experiments
Effect of score functions.We study the effect of different score

functions in method OD. As 𝑆1 (𝑜𝑖 , 𝑜 𝑗), 𝑆2 (𝑜𝑖 , 𝑜 𝑗), 𝑆3 (𝑜𝑖 , 𝑜 𝑗) take
values in different scales of magnitude, we vary 𝛼 from 0.1 to 1 and

𝛽 from 100 to 1000 in 𝑆4 (𝑜𝑖 , 𝑜 𝑗). Table 6 lists the running time (ms)

under 4 different score functions. For 𝑆4, we present the optimum

𝛼 and 𝛽 that give the best performance. Though there is no signif-

icant difference among these score functions, we can see that 𝑆1
consistently performs the best, followed by 𝑆2 and 𝑆4, and finally 𝑆3.

It suggests that it is more beneficial to sort the pair (𝑜𝑖 , 𝑜 𝑗) based
on the number of remaining matches (i.e., 𝑆1). Freedom of rigid

motion (i.e., 𝑆3) is less effective because it does not consider the

number of remaining matches to be found. Mixed metric (i.e., 𝑆4)

needs to maintain more additional information of (𝑜𝑖 , 𝑜 𝑗) compared

with others, which makes it slower than 𝑆1. By default we apply

score function 𝑆1 in method OD.

2582

Table 6: Running time (ms) of score functions

𝑆1 𝑆2 𝑆3 𝑆4

Gowalla 9,136 9,596 9,960 9,606 (𝛼 = 0.3, 𝛽 = 1000)
4SQ1 17,346 17,602 17,724 17,568 (𝛼 = 0.1, 𝛽 = 1000)
4SQ2 6,762 6,810 7,064 6,942 (𝛼 = 0.3, 𝛽 = 800)

Weeplaces 14,316 14,716 14,756 14,464 (𝛼 = 0.1, 𝛽 = 200)

 0

 50

 100

 150

 200

 250

 300

5 10 15 20 25

T
im

e
 (

se
c
o
n

d
)

Pattern area r(km)

SPM
BA
FT
FS
OD

(a) Gowalla

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 15 20 25

T
im

e
 (

se
c
o
n

d
)

Pattern area r(km)

SPM
BA
FT
FS
OD

(b) 4SQ1

Figure 16: Effect of pattern area

 0

 10

 20

 30

 40

 50

1 2 3 4 5

#
(O

b
je

ct
 p

ai
rs

)
(×

1
0

3
)

Number of keywords |p.Φ|

BA
FT
FS
OD

(a) Gowalla

 0

 10

 20

 30

 40

 50

1 2 3 4 5

#
(O

b
je

ct
 p

ai
rs

)
(×

1
0

3
)

Number of keywords |p.Φ|

BA
FT
FS
OD

(b) 4SQ1

Figure 17: #(object pairs) to be checked

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5

#
(s

u
b
-i

n
te

rv
al

s)
 (

×
1

0
3
)

Number of keywords |p.Φ|

BA
FT
FS
OD

(a) Gowalla

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

#
(s

u
b
-i

n
te

rv
al

s)
 (

×
1

0
3
)

Number of keywords |p.Φ|

BA
FT
FS
OD

(b) 4SQ1

Figure 18: #(sub-intervals) to be checked

Effect of pattern area. To study this factor, we generate pattern

𝑃 as follows. First we find an object 𝑜 from𝐷 and assign it to 𝑝1 ∈ 𝑃 .
Then we collect the objects 𝑂 in the circular region with center 𝑜

and radius 𝑟 . Next we randomly choose objects from 𝑂 and assign

them to the remaining points of 𝑃 . We vary 𝑟 from 5km to 25km

and the effect of it is shown in Figure 16. As 𝑟 increases, the running

time decreases. It is because, when 𝑟 is smaller, the points in 𝑃 are

more semantically and spatially connected. They are more like a

real-life community and thus have more potential matches in the

database. Therefore, it takes more time for query processing when

𝑟 is smaller. Furthermore, we can also observe that in all situations,

FT, FS and OD improve BA over 50%, 70% and 80% respectively.

Our methods consistently outperform SPM. OD achieves over 10x

speedup compared with SPM.

Table 7: Breakdown of SPM (𝑡𝑓 , 𝑡𝑣) (seconds)

size |𝑃 | 3 5 7 9 11

Gowalla (𝑡𝑓) 16.3 30.7 44.8 69.0 95.2

(𝑡𝑣) 24.5 37.5 73.2 105.9 111.8

4SQ1 (𝑡𝑓) 19.8 32.9 59.1 73.6 79.0

(𝑡𝑣) 19.0 37.1 78.4 105.9 123.6

Efficiency of pruning techniques. Technically, our three prun-
ing techniques aim to reduce the object pairs (𝑜𝑖 , 𝑜 𝑗) to be checked

in the Algorithm 1 (Line 5). Besides the running time, we can also

record the number of object pairs to be checked to quantify the

improvements of three pruning techniques. We compare BA, FT, FS
and OD under different number of keywords, and the results are

shown in Figure 17. We can see that the our pruning techniques can

effectively reduce the number of object pairs to be checked. And

the pruning power is stronger when there are more keywords on

each point 𝑝 ∈ 𝑃 . For example, in Figure 17(𝑎), when |𝑝.Φ| = 1, FT,
FS and OD improve BA by 35.4%, 47.6% and 56.1%. When |𝑝.Φ| = 5,

they improve BA by 50.8%, 69.7% and 77.3%. This observation co-

incides with the conclusion in Figure 13. To further illustrate the

efficiency of each algorithm in a finer granularity, we also report

the number of sub-intervals being checked in each algorithm (Line

10–13 in Algorithm 1). The results are shown in Figure 18. We can

draw similar conclusions as we do from Figure 17.

Breakdown of SPM. In Figure 12, the running time SPM contains

(i) 𝑡𝑓 : finding SPM matches, and (ii) 𝑡𝑣 : verifying as EPM matches.

We report the separate running time in Table 7. We observe that

almost 40% running time is used for finding SPMmatches. It implies

that (1) SPM is inefficient in finding candidate sets which preserve

the pairwise distances of a given pattern; and (2) verification proce-

dure is indeed time-consuming, which coincides with observations

in the comparison of methods OD and AP in Section 7.5.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we propose EPM query. This is the first work to

adopt matching under tolerance region in object set retrieval. To

efficiently solve EPM query, we propose an efficient algorithm and 3

advanced pruning techniques. Furthermore, we provide theoretical

analysis and approximation guarantee for the approximate results

returned by our algorithm. Experimental evaluations demonstrate

the effectiveness and efficiency of our proposed methods.

This work opens a few directions for future work. First, we plan

to investigate the possibility of integration with other example-

based queries in relational databases, where data has both spatial

attributes and other rich types of attributes. Second, we plan to

support more complex transformations (e.g., reflection, scaling) in

the EPM query. Third, it is an interesting open problem to define

sub-pattern matching problem which returns partially matching

results. Finally, it is interesting to develop approximate solutions

which allow the users to specify the error bounds.

ACKNOWLEDGMENTS
This research is supported in part by MOE Tier-2 grant MOE2019-

T2-2-181 and a grant awarded by AI.SG with award No. AISG2-TC-

2021-001.

2583

REFERENCES
[1] Hashem R Al-Masaeid and Ghassan Suleiman. 2004. Relationships between

urban planning variables and traffic crashes in Damascus. Road & Transport
Research 13, 4 (2004), 63–73.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. 1988. Congruence, similarity,

and symmetries of geometric objects. Discrete & Computational Geometry 3, 3

(1988), 237–256.

[3] E. M Arkin, K. Kedem, J. SBMitchell, J. Sprinzak, andM.Werman. 1992. Matching

points into pairwise-disjoint noise regions: combinatorial bounds and algorithms.

ORSA Journal on Computing 4, 4 (1992), 375–386.

[4] X. Cao, G. Cong, and C. S. Jensen. 2010. Retrieving Top-k Prestige-Based Relevant

Spatial Web Objects. Proc. VLDB Endow. 3, 1–2 (2010), 373–384.
[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. 2011. Collective Spatial Keyword

Querying. In SIGMOD. 373–384.
[6] L. Chen, G. Cong, and X. Cao. 2013. An efficient query indexing mechanism for

filtering geo-textual data. In SIGMOD. 749–760.
[7] L. Chen, G. Cong, C. S Jensen, and D.Wu. 2013. Spatial keyword query processing:

an experimental evaluation. Proc. VLDB Endow. 6, 3 (2013), 217–228.
[8] Y. Chen, Z. Chen, G. Cong, A. R Mahmood, and W. G Aref. 2020. SSTD: a

distributed system on streaming spatio-textual data. Proc. VLDB Endow. 13, 12
(2020), 2284–2296.

[9] Z. Chen, G. Cong, Z. Zhang, T. Z. J. Fuz, and L. Chen. 2017. Distributed Pub-

lish/Subscribe Query Processing on the Spatio-Textual Data Stream. In ICDE.
1095–1106.

[10] G. Cong, C. S Jensen, and D. Wu. 2009. Efficient retrieval of the top-k most

relevant spatial web objects. Proc. VLDB Endow. 2, 1 (2009), 337–348.
[11] Y. Fang, R. Cheng, G. Cong, N. Mamoulis, and Y. Li. 2018. On spatial pattern

matching. In ICDE. IEEE, 293–304.
[12] K. Fukuda and T. Matsui. 1994. Finding all the perfect matchings in bipartite

graphs. Applied Mathematics Letters 7, 1 (1994), 15–18.
[13] T. Guo, X. Cao, and G. Cong. 2015. Efficient Algorithms for Answering the

M-Closest Keywords Query. In SIGMOD. 405–418.
[14] P. J Heffernan and S. Schirra. 1994. Approximate decision algorithms for point

set congruence. Computational Geometry 4, 3 (1994), 137–156.

[15] A Helmut and JG Leonidas. 1996. Discrete geometric shapes: matching, interpo-

lation, and approximation: a survey. Institute of Computer Science (1996).
[16] G. Li, Y. Wang, T. Wang, and J. Feng. 2013. Location-aware publish/subscribe. In

KDD. 802–810.
[17] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S. Jensen. 2017. Clue-Based

Spatio-Textual Query. Proc. VLDB Endow. 10, 5 (2017), 529–540.
[18] Yiding Liu, Tuan-Anh Nguyen Pham, Gao Cong, and Quan Yuan. 2017. An

Experimental Evaluation of Point-of-Interest Recommendation in Location-Based

Social Networks. Proc. VLDB Endow. 10, 10 (2017), 1010—-1021.
[19] Y. Liu, W.Wei, A. Sun, and C. Miao. 2014. Exploiting Geographical Neighborhood

Characteristics for Location Recommendation. In CIKM. 739–748.

[20] Yiding Liu, Kaiqi Zhao, and Gao Cong. 2018. Efficient Similar Region Search

with Deep Metric Learning. KDD, 1850–1859.

[21] S. Luo, J. Hu, R. Cheng, J. Yan, and B. Kao. 2017. SEQ: Example-based Query for

Spatial Objects. In CIKM. 2179–2182.

[22] A. R Mahmood, A. M Aly, and W. G Aref. 2018. FAST: frequency-aware indexing

for spatio-textual data streams. In ICDE. IEEE, 305–316.
[23] A. RMahmood, A. Daghistani, A. MAly, M. Tang, S. Basalamah, S. Prabhakar, and

W. G Aref. 2018. Adaptive processing of spatial-keyword data over a distributed

streaming cluster. In SIGSPATIAL. 219–228.
[24] Tuan-Anh Nguyen Pham, Xutao Li, and Gao Cong. 2017. A General Model for

Out-of-Town Region Recommendation. WWW, 401—-410.

[25] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. 2015. Ap-tree: Efficiently

support continuous spatial-keyword queries over stream. In ICDE. 1107–1118.
[26] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. 2019. Revisiting User Mobility

and Social Relationships in LBSNs: A Hypergraph Embedding Approach. In

WWW. 2147–2157.

[27] C. Zhang, Y. Zhang,W. Zhang, and X. Lin. 2016. Inverted linear quadtree: Efficient

top k spatial keyword search. TKDE 28, 7 (2016), 1706–1721.

[28] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa. 2009.

Keyword Search in Spatial Databases: Towards Searching by Document. In ICDE.
688–699.

[29] D. Zhang, B. C. Ooi, and A. K. H. Tung. 2010. Locating mapped resources in Web

2.0. In ICDE. 521–532.

2584

