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ABSTRACT

The huge demand for computation in artificial intelligence (Al) is
driving unparalleled investments in hardware and software systems
for Al This leads to an explosion in the number of specialized

hardware devices, which are now offered by major cloud vendors.

By hiding the low-level complexity through a tensor-based interface,
tensor computation runtimes (TCRs) such as PyTorch allow data
scientists to efficiently exploit the exciting capabilities offered by the
new hardware. In this paper, we explore how database management

systems can ride the wave of innovation happening in the Al space.

We design, build, and evaluate Tensor Query Processor (TQP):
TQP transforms SQL queries into tensor programs and executes
them on TCRs. TQP is able to run the full TPC-H benchmark
by implementing novel algorithms for relational operators on
the tensor routines. At the same time, TQP can support various
hardware while only requiring a fraction of the usual development
effort. Experiments show that TQP can improve query execution

time by up to 10X over specialized CPU- and GPU-only systems.

Finally, TQP can accelerate queries mixing ML predictions and SQL
end-to-end, and deliver up to 9x speedup over CPU baselines.
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1 INTRODUCTION

DBMS vendors have delivered constant performance improvement
for decades by evolving software to keep up with Moore’s law while
influencing hardware development through close relationships with
manufacturers. While data volumes and demand for analytics are
growing faster than ever [129], the performance improvement on
CPU has slowed down [136]. However, the count of processor
transistors has continued to grow over the last decade, as hardware
manufacturers adopted first multi-core CPU architectures and then
augmented their computing platforms with specialized components
such as GPUs, FPGAs, compression and encryption chips, DSPs, and
neural-network (NN) accelerators. Although DBMS builders have
taken advantage of multi-core and SIMD instructions effectively
[76, 109, 146], the explosion in the number of specialized hardware
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components, each with different characteristics and programming
abstractions, makes it challenging to support all the exciting
capabilities that these new powerful devices can offer.

On the other hand, the huge demand for computation in artificial
intelligence (AI) [59], combined with the market fever for Al, is
driving unparalleled investments in new hardware and software
for AL Hardware makers (e.g., Intel [62], Apple [34], Xilinx [142],
AMD [33]), cloud vendors (e.g., Amazon [37], Microsoft [438],
Google [72]), startups (e.g., Graphcore [6], Sambanova [11],
Cerebras [4]), and car companies like Tesla [135] are investing
heavily in this space. Venture capitals alone are pouring nearly
$2B a quarter on special hardware for Al, aiming for a market
expected to exceed $200B a year by 2025 [130]. On the software
side, companies and open source communities are rallying behind
a small number of big efforts (e.g., PyTorch [9], TensorFlow [31],
TVM [46]). The combination of investments in specialized hardware
and large software communities focusing on performance allows
these efforts to thrive. Our realization is that the ML community
has made hardware accelerators accessible to nonspecialists (e.g.,
data scientists). The fact that the most popular ML frameworks
are open-source, creates a virtuous cycle whereby any hardware
vendor interested in the ML space must support these frameworks
well to get adoption. At the same time, these large open source
communities successfully tackle the labor-intensive problem of
providing specialized kernels for various hardware, e.g., a month
after Apple M1 was announced, TVM outperformed Apple’s
CoreML by 2x [134]. Hardware vendors can directly improve
the kernels’ performance or the hardware itself [21, 22, 25]. This
further helps adoption since the performance improves at each new
software and hardware release.

We argue that the best path forward for analytical DBMSs
is to embrace this tectonic shift and take advantage of the
groundswell of new hardware and software targeting Al workloads.
To demonstrate the viability of this idea, we propose and prototype
a new query processor which runs SQL queries atop tensor
computation runtimes (TCRs) such as PyTorch, TVM, and ONNX
Runtime [23]. We name our prototype Tensor Query Processor (TQP).
TQP transforms a SQL query into a tensor program and executes it
on TCRs. To our knowledge, TQP is the first query processor built
atop TCRs. Careful architectural and algorithmic design enables
TQP to: (1) deliver significant performance improvements over
popular CPU-based data systems, and match or outperform custom-
built solutions for GPUs; (2) demonstrate portability across a wide
range of target hardware and software platforms; and (3) achieve
all the above with parsimonious and sustainable engineering effort.

The above might appear surprising as specialized hardware
accelerators are notoriously hard to program, requiring much
customization to extract the best performance. Furthermore, their
programming abstractions differ sufficiently to make our goals of
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performance (G1), portability (G2), and parsimonious engineering
effort (G3) seemingly hard to reconcile. However, the key is a
compilation layer and a set of novel algorithms, which can map
the classical database abstraction to the prevalent one in machine
learning (ML), i.e., mapping relational algebra to tensor computations.
This allows us to free-ride on existing labor-intensive efforts from
the ML community to port and optimize TCRs across all the new
specialized hardware platforms. The initial performance results
are encouraging. On GPU, TQP is able to outperform open-source
GPU databases in terms of query execution time. On CPU, TQP
outperforms Spark [145], and it is comparable to a state-of-the-art
vectorized engine, DuckDB [117], for several queries. Furthermore,
when ML and SQL queries are used in concert, TQP is able to provide
end-to-end acceleration for a 9x speedup over CPU baselines.
Pursuing our goals of portability and parsimonious engineering
effort, we make a deliberate decision to target existing tensor
APIs rather than customize lower-level operators. This decision
potentially leaves some performance on the table but leads to a very
sustainable long-term play, as TQP benefits from any performance
enhancement and optimization added to the underlying software
and hardware (e.g., [21]). To validate this proposition, we run TQP
on several different hardware settings: from CPUs, to discrete GPUs,
to integrated GPUs (Intel and AMD), to NN-accelerators (TPUs [72]),
and web browsers. Furthermore, TQP is able to run the full TPC-H
benchmark on both CPU and GPU with just around 8,000 lines of
code—this is quite an achievement considering that until 2021 no
GPU database was able to run all the 22 TPC-H queries [84].
Contributions. This paper makes the following core contributions:
e We propose Tensor Query Processor (TQP) that comprises a
collection of algorithms and a compiler stack for transforming
relational operators into tensor computations.
e With TQP, we demonstrate that the tensor interface of TCRs is
expressive enough to support all common relational operators.
o We evaluate the TQP approach extensively against state-of-the-
art baselines on the TPC-H benchmark.
Organization. §2 introduces some background on TCRs. §3
summarizes the challenges and the design choices we make. §4
introduces TQP, and §5 describes the algorithms used to implement
several key relational operators with tensor programs. Experiments
are in §6. Related works are in §7. The paper is concluded by §8.

2 BACKGROUND

In this section, we summarize the system support for tensor
computation (§2.1), and provide a taxonomy of the tensor
operations used throughout the paper (§2.2).

2.1 Tensor Computation Runtimes (TCRs)

The last years have witnessed an increase in the popularity of ML
models based on NNs [60]. While in the heydays, these models
were implemented manually in C++, data scientists now can take
advantage of several open-source ML frameworks simplifying the
authoring and deployment of NN models. TensorFlow [1] and
PyTorch [102] are considered the most popular of such frameworks.

ML frameworks follow a common architecture: at the top, they
have a high-level Python API' where data is commonly represented

!Note that TCRs allow implementation in other languages too (e.g., Java [113], Rust [89],
C# [56]). Python is however the default language of choice by data scientists.
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as multi-dimensional arrays called tensors, while computation is
expressed as a composition of tensor operations embedded into
the Python language. At the lower level, they have a runtime and
a dispatcher/compiler allowing to run the tensor operations over
different hardware backends such as CPU, GPU, custom ASICs, and
using single node execution, distributed [86], or mobile/edge [61].

Modern ML frameworks allow running computation in an
interpreted mode (often referred to as eager execution), or in a
compiled mode (graph execution), enabling code optimizations such
as common sub-expression elimination, operator fusion, code
generation [18], and removing Python dependency [137, 138].
Interpreted vs. compiled execution is a popular dichotomy in query
processing system implementations [75]. ML frameworks allow
both modalities and we explore the trade-offs involved when using
one vs. another, and the current limits of tensor compilers in §6.

We will refer to ML frameworks, runtimes [2, 23], and compilers
as tensor computation runtimes (TCRs) in the rest of the paper.

2.2 Tensor Operations

TCRs provide hundreds of tensor operations. We provide a brief
summary of the operators used in TQP, organized by category?.

Creation. This category contains all operations used to create
tensors, e.g., from_numpy, fill a tensor with specific elements (zeros,
ones, empty, fill, arange) or create a tensor using the same shape
of another tensor (zeros_like, ones_like).

Indexing and slicing. This category involves operations for
selecting one or more elements of a tensor using the square
bracket notation, or using indexing (index_select), a mask
(masked_select), or a range (narrow).

Reorganization. This category includes reshape, view, and
squeeze that reorganize the shape of a tensor (eventually by
changing only its metadata). gather, scatter reorganize the
elements of a tensor using an index, while sort sorts its elements.

Comparison. eq, 1t, gt, le, ge, isnan are operators in this
category. Other operations are where that implements conditional
statements, and bucketize that implements binary search.

Arithmetic. add, mul, div, sub, fmod, remainder are in this
category. We also include logical operators such as logical_and,
logical_or, negative, and shift operations.

Join. This category allows to concat or stack multiple tensors.

Reduction. This category contains operations for calculating
simple aggregates (sum, max, min, mean), aggregates over groups
(scatter_add, scatter_min, scatter_max, scatter_mean),
logical reductions (all, any), as well as operations to build
histograms (bincount, histc), nonzero (returning the indexes of
non-zero elements), unique and unique_consecutive.

3 QUERY PROCESSING ON TCRS

In this section, we summarize the challenges (§3.2) and the design
principles we commit to (§3.3) when building TQP. First, we show
how relational operators can be implemented using tensor programs
with an example (§3.1).

2Since TQP is currently built on top of PyTorch, from now on we will use the PyTorch
naming convention. Note that similar tensor operations can be found on other TCRs.
Additionally, here we take the freedom to provide a different taxonomy than the one
found in the PyTorch documentation [115] and in our previous work [81].



3.1 Relational Operators as Tensor Programs

TCRs operate over data represented as tensors. Tensors are arrays
of arbitrary dimensions containing elements of the same data type.
0d-tensors are referred to as scalars, 1d-tensors as vectors, and 2d-
tensors as matrices. For a tensor of n dimensions, its shape is a
n-tuple where each element i € {0, 1,..., n} specifies the size of the
i-dimension. For example, a matrix with 10 rows and 5 columns is a
2d-tensor of shape (10, 5). This paper only considers dense tensors
where each element is explicitly stored in memory.

ML practitioners implement programs (NNs) as a composition of
operations over tensors. While relational operations are commonly
expressed as queries in a standalone language (e.g., SQL), tensor
operations are embedded in a host language (e.g., Python), which
is used to implement control flows and etc. Next, we introduce
examples of implementing a filter using tensors.

Let us assume that we want to implement a simple filter
condition over the L_QUANTITY column of the LINEITEM table:
WHERE L_QUANTITY < 24. First, we can represent L_QUANTITY as a
1d-tensor of floating point numbers. We can then use the 1t (less
than) operator to implement the filter condition (line 1 of Listing 1).
1t generates a boolean mask which is then used as a parameter of
the masked_select operator to generate the filtered version of the
L_QUANTITY column vector (line 2 of Listing 1).

Listing 1: Filter implementation using bitmaps.

1 mask = torch.lt(l_quantity, 24)

output = torch.masked_select(l_quantity, mask)

This implementation is almost identical to the Bitmap-based
representation [101] of filters in vectorized query processors [110,
118]. On CPU, TCRs have SIMD implementations for several
condition and intersection operators. An alternative is to use
indexes rather than masks. This is commonly referred to as Selection
Vector representation [101, 122], and can be similarly implemented
using tensor operators 1t, nonzero, and index_select.

Listing 2 shows another implementation. Here, we iterate over
all the elements of the input tensor and use a Python conditional
statement. This implementation does not take advantage of any
tensor operation beyond creating the output tensor.

Listing 2: Filter implementation using Python control flow.

1 output = torch.zeros_like(l_quantity), j = @
for i in range(l_quantity.shapel[0]):
datum = 1_quantity[i]
4 if datum < 24:
output[j] = datum, j = j + 1
output = outputl[:j, :]

Table 1 shows the performance of the two implementations. The
implementation using Python control flow is considerably slower.
, and GPU execution of Python control flow is slower than CPU
execution. This result highlights one of the design choices (§3.3)
we make in TQP: avoid the use of data-dependent code in Python.

Table 1: Execution times of filter over ~6M elements in
interpreted (Torch) and compiled (TorchScript) modes.

CPU GPU
Implementation
Torch  TorchScript Torch  TorchScript
Bitmap 36.6ms 36.6ms 2.9ms 2.9ms
Python 23s 22.7s 200.3s 200s
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3.2 Challenges

Implementing a query processor on TCRs requires overcoming
several challenges. After all, TCRs are built for authoring and
executing NN models, not relational queries.

C1: Expressivity. Relational queries can contain filters with
fairly complex expressions (e.g., LIKE, IN), sub-queries, group-by
aggregates, joins (e.g., natural, anti, semi, outer), etc. It is not clear
whether the tensor operations currently available in TCRs are
enough to support all these relational operators.

C2: Performance. Even if a relational operator is implementable
using tensors, this does not automatically lead to good performance,
as the example in Listing 2 suggests. In fact, it is not clear whether
tensor programs can achieve good performance, beyond NNs.

C3:Data Representation. To use TCRs as execution engines,
relational tables must be transformed into a tensor representation.
Previous approaches have explored this challenge (e.g., [66]), but
their cost of translation is not negligible. Furthermore, TCRs
commonly do not support strings or date data types.

C4: Extensibility. Running relational queries over TCRs makes
running a query seamlessly over different hardware (CPU, GPU,
ASICs, etc.) and backends (single node, distributed, edge, web
browser, etc.) possible. A single monolithic compiler architecture
does not work in all situations, therefore TQP’s design must be
flexible enough to address all these use cases.

3.3 Design Choices

When building TQP, we embrace the following design choices.

DC1: Avoid implementing data-dependent control flow in Python.
As Table 1 suggests, computation in TQP must use tensor operations
as much as possible. Note that for loops and conditionals over
schema elements are acceptable (e.g., loops over the columns of a
table). This design choice allows us to address C2 and achieve G1.

DC2: Tensor-based columnar format for input tabular data.
Relational data must be transformed into the tensor format. To do
this, TQP adopts a columnar representation of tables, and considers
each column in a table as a tensor. We provide more details on our
data representation in §4.1. This design choice addresses C3.

DC3: Adherence to TCRs’” APL This design choice is required for
achieving G2 and G3. In fact, if we start extending TCRs with new
features and operators, eventually the system will hinter portability
and increase the engineering effort because we will have to support
them on any hardware. Hence, we take advantage of existing TCRs’
API rather than try to extend them. With this design choice, we are
also able to address C1.

DC4: Extensible infrastructure allowing easy integration with
relational and ML frameworks. Having a flexible infrastructure
is of paramount importance since we desire to ride the wave
of investments in ML. Therefore, we embrace an extensible
architecture that allows different output target formats (e.g.,
PyTorch, ONNX), composed of a core compiler, pluggable frontends
(e.g., query parser and optimizer). This design choice addresses C4.

4 TENSOR QUERY PROCESSOR (TQP)

In TQP, relational operators and ML models are compiled into
tensor programs using a unified infrastructure, extended from
HUMMINGBIRD [95, 97]. Here, we focus on the relational operator
part, as the ML part was described in [97].
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Figure 1: TQP represents input tables in a columnar format
with a 2d-tensor per column.

TQP Overview. TQP’s workflow has two phases: (1) compilation:
an input query is transformed into an executable tensor program;
(2) execution: input data is first transformed into tensors, and
then fed into the compiled program to generate the query result.
Currently, TQP uses vanilla PyTorch in the compilation phase as
the implementation target for the tensor programs. If necessary,
PyTorch programs are lowered into different target formats for
portability or performance goals. The selection of the hardware
device to target is generally made in the compilation phase. Next,
we first describe how TQP represents relational data using tensors
(§4.1), and then describe each phase in detail (§4.2 and §4.3).

4.1 Data Representation

Before executing the query, TQP must convert the input (tabular)
data to tensors. Databases often manage and convert data into their
own proprietary format, and TQP is no different. TQP internally
represents tabular data in a columnar format with virtual IDs [29],
as illustrated in Figure 1. Data for each column is stored as a
(n X m) tensor, where n is the input number of rows, and m
is the length required to store the values. The translation logic
is different depending on the column data type. For example,
numerical columns (sid in Figure 1) can be directly represented
as (n X 1) tensors. The conversion of numerical columns to tensors
is often zero-copy. TQP represents date data in (n X 1) numeric
tensors as the number of nanoseconds since some pre-defined epoch.
In this case, (de)serialization may be required depending on the
source/target date representation. Finally, TQP represents string
columns using (n X m) numeric tensors, where m is the maximum
character length of any string for that column. Given a string, TQP
stores a character per tensor column and right-pads it with 0s if
its length is smaller than m. We are actively working on adding
support for encoded data (e.g., bit packing, run-length encoding,

dictionary encoding) and more compact string representations [16].

4.2 Query Compilation

TQP’s compilation phase is composed of four main layers, as shown
in Figure 2: (1) The Parsing Layer (§4.2.2) converts an input SQL
statement into an internal intermediate representation (IR) graph
depicting the query’s physical plan, which is generated by an
external frontend database system. The architecture decouples
the physical plan specification from the other layers, therefore
allowing to plug different frontends. (2) The Canonicalization

and Optimization Layer (§4.2.3) performs IR-to-IR transformations.

(3) The Planning Layer (§4.2.4) translates the IR graph generated in
the previous layer into an operator plan in which each operator is
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Figure 2: TQP’s compilation phase.

mapped into a tensor program implementation. (4) The Execution
Layer (§4.2.5), using the operator plan, generates an executor which
is the program that runs on the target TCR and hardware. Next,
before describing each layer in more detail, we give a quick overview
of TQP’s intermediate representation (IR).

4.2.1 Intermediate Representation (IR). The IR is a graph-based
data structure. It consists of a list of operators and variables. Each
operator corresponds to a node in the graph, and it contains:
(1) a list of input variables; (2) a list of output variables; (3) an
alias identifying the operator type; and (4) a reference to the
corresponding operator instance in the original physical plan. The
latter is used to instantiate the tensor program implementing the
operator. For example, to create a filter, TQP needs to access the
expressions contained in the original physical operator.

Edges represent data (tensors) flowing between operators. In
particular, an edge connects an output variable from an operator
to an input variable of another operator. A variable contains: (1) a
unique identifier, and (2) the corresponding frontend column name
in the original plan, which is used to translate expressions. When a
variable is created, a unique identifier is generated deterministically
based on information available in the graph. Variables in the IR
are generated as follows. First, TQP generates a variable for each
column in the input table. Then, these variables can be used as input
to many operators; however, a new variable will always be created
for an output of an operator. Thanks to this design: (1) properties
(e.g., sorting information) can be immutably attached to columns;
(2) the IR is easier to debug because variables, once defined, are
never changed; and (3) TQP can detect at runtime when a column
is not used anymore and safely garbage-collect it.

4.2.2  Parsing Layer. The goal of the Parsing Layer is to translate
input queries into TQP’s internal IR. This goal is accomplished in
two steps: (1) input queries are parsed, optimized, and exposed as



frontend-specific physical query plans; and (2) a frontend-specific
parsing logic translates the physical plan into an IR plan.

In its current version, TQP supports queries expressed as Spark
SQL statements, and it uses the PySpark API to parse, optimize, and
return the physical plan in a JSON format. We plan to add support
for Calcite [39], DuckDB [117], and eventually Substrait [26]3. Then
the Spark parser constructs the internal IR version of the physical
plan using a DFS post-order traversal. If an unsupported operator
is found in the plan, this phase will fail with an exception. The list
of operators supported by the IR is extensible (DC4).

4.2.3 Canonicalization and Optimization Layer. This layer
implements IR graph transformations similarly to a classical
rule-based optimizer. Rules are applied to the IR graph in two
stages. In the first stage, canonicalization, the rules are used to

eliminate any of the frontend-system idiosyncrasies in the IR graph.

For example, Apache Spark returns a projection operator with no
inputs for COUNT * statements. In the second stage, optimization,
rules rewrite the IR graph for obtaining better performance. While
we did not explore in depth the optimization space enabled by
TQP’s design, we show that hand-optimized tensor programs are
more efficient than the one currently generated by TQP in §6.6.

4.24  Planning Layer. In this layer, TQP transforms the optimized
IR graph into an operator plan composed of PyTorch tensor
programs implementing each operator in the IR graph. In
§5, we describe some operator implementations in detail. The
implementation of the Planning Layer is straightforward. For
each operator in the IR graph, TQP fetches the corresponding
implementation containing the tensor program from a dictionary,
which is then instantiated with the IR operator’s reference to the
frontend physical operator instance.

4.2.5 Execution Layer. Here the operator plan is wrapped around
a PyTorch executor object. This object is responsible for: (1) calling
the tensor programs in the operator plan following a topological
order; (2) wiring the output tensors generated by each program
into the successive one; and (3) keeping track of tensor references
to garbage collect them if not used anymore. Once the executor
program is generated, TQP provides options to compile it into

different target formats in addition to PyTorch interpreted execution.

Currently, TQP allows lowering the executor into the TorchScript
and ONNX formats, as well as to use TVM to compile it directly
into machine-level code. Note that not all queries can be compiled
into all formats since not all tensor operations are supported by all
the target formats.

4.3 Execution

Once the executor program is generated, it can be executed over
the input data. The program automatically manages (1) converting
data into the tensor format; (2) data movements to/from device

memory; and (3) scheduling of the operators in the selected device.

Once the data is in the proper format and on the desired device, all
the operators are executed sequentially. Regarding parallelization,
TQP exploits the tensor-level intra-operator parallelism provided by
the TCRs. However, given the poor scalability performance (§6.3),

3Note that we currently only support Apache Spark for relational frontends, not in
general. TQP, in fact, supports all the ML frontends available in HUMMINGBIRD [95].
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we are exploring support for inter-operator parallelism and data-
parallel strategies. Once the executor completes, TQP returns the
query result in tensor, NumPy, or Pandas formats.

5 OPERATOR IMPLEMENTATION IN TQP

We described how TQP uses the Planning Layer to translate
relational operators in the IR graph into tensor programs. Here
we provide an overview of a few program implementations. TQP
provides tensor-based implementations for the following relational
operators: selection, projection, sort, group-by aggregation (sort-
based), natural join (hash-based and sort-based), non-equi, left-
outer, left-semi, and left-anti joins. TQP supports expressions
including comparison and arithmetic operations, functions on
date data type, IN, CASE, LIKE statements, as well as aggregate
expressions using SUM, AVG, MIN, MAX, and COUNT aggregates (with
and without p1sTINCT). Finally, TQP supports nulls, and subqueries
(scalar, nested, and correlated), and prepICT UDF* [93, 94]. With
all the above, TQP is able to compile and execute all 22 queries
of the TPC-H benchmark (C1). Interestingly, to support the full
TPC-H benchmark, only the tensor operations listed in §2.2 are
required, and we did not have to introduce any additional custom
tensor operators (DC3). Due to space constraints, we only describe
how TQP implements relational expressions with tensor operations
(§5.1), and implementations for two representative operators: join
(sort- and hash-based, in §5.2 and §5.3, respectively), and group-by
aggregation (§5.4). Finally, note that the filter implementation in
TQP is close to the Bitmap representation described in §3.1.

5.1 Expressions

Relational expressions such as SUM(L_EXTENDEDPRICE * (1 -
L_DISCOUNT)) can be found in projection operators, filter conditions,
etc. In an expression tree, each leaf node represents a column or
a constant value (e.g., L_EXTENDEDPRICE) and each branch node
represents an operator (e.g., *). TQP keeps an internal dictionary
that maps operators to their corresponding tensor operations, e.g., *
to torch.mul. To implement an expression with tensor operations,
TQP then performs a post-order DFS traversal on the expression
tree. For each leaf node, TQP fetches (or generates) the proper
column-tensor (constant value). For each internal operator, TQP
retrieves the corresponding tensor operation (or a series of tensor
operations) from the internal dictionary. In this way (and with the
help of Python lambda functions), TQP generates a chain of tensor
operations representing the evaluation of the expressions. As an
example, from Q21 in TPC-H, the expressions 0_ORDERSTATUS

‘F’ AND RECEIPTDATE > L_COMMITDATE is implemented
as torch.logical_and(torch.eq(o_orderstatus,[70])
,torch.gt(l_receiptdate,l_commitdate)), where [70] is a
1x1 tensor storing the ASCII value for the constant ‘F’.

5.2 Sort-Based Join

TQP adopts a late materialization strategy for joins, similar to the
one commonly used in columnar databases [30, 87]. TQP takes only
the columns in the join predicate as input to the join, and the output
is a set of pairs of indexes identifying the records for which the join

4While generic UDFs are hard to support in TQP because of data conversion and data
representation mismatches, Spark vectorized UDFs [17] can be supported on CPU.



Algorithm 1 Sort-Based Join

Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left, right < GETJOINKEYCOLUMNS (data)

> Sort join keys

2: left, leftldx «— sort(left)

3: right, rightldx < sort(right)

> Build histograms for the left and right key columns

4: leftHist, rightHist « bincount(left), bincount(right)

> Compute the number of rows for each pair of matching keys

5: histMul « mul(leftHist, rightHist)

> Compute the prefix sums of histograms

6: cumLeftHist < cumsum(leftHist, dim = 0)

7: cumRightHist < cumsum(rightHist, dim = 0)

8: cumHistMul < cumsum( histMul, dim = 0)

> Initialize the output size and output offsets

9: outSize « cumHistMul[—1]
10: offset « arange(outSize)

> Find the bucket of matching keys to which each output belongs
11: outBucket « bucketize (offset, cumHistMul)
> Compute the indexes from left and right in the join output
12: offset.sub_(cumHisMul[ outBucket| — histMul[ outBucket])
13: leftOutldx « leftldx [ cumLeftHist [ outBucket |- leftHist [ outBucket |
+ div(offset, rightHist | outBucket], rounding = “floor”) |
14: rightOutldx « rightldx [ cumRightHist [ outBucket | —rightHist[outBucket]
+ remainder (offset, rightHist [ outBucket]) |

15: return cCREATEOUTPUT(data, leftOutldx, rightOutldx)

O x 6
o N . ®
0 2 3
histMul

l
®
T

e/\f:’

leftHist  rightHist

6  Binarysearch to
Sorted left ,/ \, find the bucket 1
(1] 2 3 Sorted right (7] 2
2 (4 5 (1)

cumHistMul

cumLeftHist cumRightHist
Previous bucket

cumHistMul offset
(8] offset ﬁ offset
8—-6 \*

leftOutldx = 2 +—— rightOutldx =3+ (8—-6) %2

2
Previous Previous
bucket rightHist bucket rightHist
cumLeftHist cumRightHist

Figure 3: An example of the sort-based join implementation.

predicate succeeds. The sort-based equi-join algorithm is shown in
Algorithm 1, where, to simplify the description, we describe the case
in which two integer columns are joined. With a few modifications,
the algorithm is also able to support non-equi joins, left-semi joins,
and outer joins. We use the typewriter font (e.g., bucketize) to
denote tensor operations, and the capital font (e.g., CREATEOUTPUT)
to denote class methods. Figure 3 further illustrates the algorithm.

First, TQP sorts the join-key columns from each table (lines 1to 3
in Algorithm 1, @ in Figure 3). Then, @, TQP builds two histograms
for the join keys from left and right, respectively, i.e., TQP counts
the number of occurrences for each unique join key (line 4). Then, ©

2816

by multiplying the values (element-wise) of the histograms (line
5), TQP computes the bucket sizes: the number of output rows
for each matching join key from left and right. Afterward, TQP
computes the prefix sums for the left and right histograms (@), as
well as their element-wise multiplication (@) (lines 6 to 8). The
prefix sums will be used later to retrieve, from each join output, the
position in left and right. The total size of the output of the join is
then computed as the last element of the prefix sum containing the
bucket sizes (line 9), and ® TQP generates an index array (offset)
of the same size (line 10). Then, @ TQP performs a parallel binary
search on the prefix sum containing the bucket sizes to find the
matching join key (bucket) to which each row in the output of the
join belongs (line 11). Next, @ TQP computes the indexes from left
and right that generate each row in the output of the join. Figure 3
shows the computation process for row 8 in the join output of the
example. To compute the indexes from left and right that are part
of a given offset in the output of the join, TQP first subtracts offset
by the prefix sum of bucket sizes prior to the current bucket (line
12). Now offset becomes the offset in each bucket of the matching
join keys. TQP then adds to the offset the previous bucket from the
respective prefix sum histogram (cumLeftHist and cumRightHist,
respectively), and adds the result (quotient for leftOutldx, remainder
for rightOutldx) of offset divided by the number of join keys from
right in the current bucket of matching join keys (lines 13 to 14).
Finally, for each row in the join output, TQP knows which rows
from left and right contributed to it. It then generates the join
output (line 15, not depicted in Figure 3). It is important to note that
all computations in this join implementation are achieved using
tensor operations, with only minimal usage of Python code.

5.3 Hash-Based Join

The hash equi-join algorithm is shown in Algorithm 2. The
definition of the input and output here is the same as in §5.2. The
algorithm is similar to the classical hash join algorithm, except that
the build and probe phases are interleaved and repeated as many
times as the maximum number of elements that share a hash value
(line 6). The algorithm is as follows: TQP first generates the indexes
(line 2) and the hash values (line 3) for the left and right tables.
Afterward, TQP computes a histogram over the table on which
the hash table will be built (left in this case, line 4) and checks the
maximum number of elements in a hash bucket (line 5). Then, TQP
repeatedly builds a hash table (lines 7 and 8) and probes it (lines
11 to 14) to find matching keys (lines 15 to 17). Matching keys are
accumulated across iterations (lines 18 and 19). In each iteration,
TQP also keeps track of the indexes that are stored in the hash table
such that they will not appear in subsequent iterations (lines 9 and
10). To achieve this, let m be the hash table size; TQP appends an
additional (m + I)-th bucket to the hash table and uses it to redirect
the already scattered indexes. Note that when there are no hash
collisions, TQP skips the logic of lines 9 to 10 and 18 to 19. This
path is therefore close to the optimal.

Compared to the sort-based join, when there are no hash
collisions, this implementation is around 30% to 50% faster on
CPU and 2x faster on GPU. When there are hash collisions, it is
faster than the sort-based join for cases in which at most around 15
elements share a hash value; when there are more than 15 elements



Algorithm 2 Hash-Based Join

Input: data: input columns passed as an array of tensors.
Output: an array of tensors representing the join output.

1: left, right < GETJOINKEYCOLUMNS (data)

2: leftldx, rightldx < arange(left.shape[0]), arange (right.shape[0])
> Compute the hash values for join keys (m is the max hash table size)
3: leftHash, rightHash < remainder (left, m), remainder (right, m)

> Build the histogram of hash values for the left join keys

4: hashBincount «— bincount (leftHash)

5: maxHashBucketSize < max ( hashBincount)

> Build and probe the hash table in an interleaved way

6: for i € range(maxHashBucketSize) do

7: hashTable «— full((m+1,),-1)

8: hashTable.scatter_(0, leftHash, leftldx)

> Skip those scattered for future iterations by setting their hashes to m
9: leftldxSct < masked_select (hashTable, hashTable > 0)
10: leftHash| leftldxSct] < m

> Probe the current hash table and get the left and right indexes
11: leftCandldx <« hashTable|rightHash]

12: validKeyMask « leftCandldx > 0
13: validLeftldx < masked_select (leftCandldx, validKeyMask)
14: validRightldx < masked_select (rightldx, validKeyMask)

> Find the indexes that have matching join keys

15: matchMask « left|validLeftldx]| == right[validRightldx]
16: leftMatchldx «— masked_select (validleftldx, matchMask)
17: rightMatchldx «— masked_select (validrightldx, matchMask)

> Append the indexes to the global results
18: leftOutldx «— cat((leftOutldx, leftMatchldx))
19: rightOutldx < cat((rightOutldx, rightMatchldx))

20: return cREATEOUTPUT(data, leftOutldx, rightOutldx)

Algorithm 3 Aggregation

Input: data: input columns passed as an array of tensors.
Output: the aggregation output as an array of tensors.

1: grpByCols < GETGROUPBYCOLUMNS (data)

> Generate unique groups

2: grps « cat(grpByCols, dim = 1)

3: grps, grpsinvldx « sort(grps)

4: data « [col|grpsInvldx] for col in data]

5: grpsUnique,invldxs < uniqueConsecutive(grps, inverse=True)

> Evaluate the aggregation expression

6: return [EVALUATE(data, grpsUnique, invldxs) |

sharing a hash value, the sort-based join is faster. We are currently
working on a partitioned hash-join implementation.

54 Aggregation

Algorithm 3 shows the pseudocode of the aggregation
implementation. First, TQP horizontally concatenates the
values of the group-by columns (lines 1 and 2). TQP then sorts the
values of the concatenated columns using radix sort and permutes
all the input data columns according to this sorted order (lines 3
and 4). Using uniqueConsecutive, TQP eliminates all but the first
key from every consecutive group of equivalent keys. Concurrently,
TQP computes the inverted indexes that indicate which bucket
(unique key) each row in the sorted list ends up in (line 5). Finally,
with the unique key list and inverted indexes, TQP evaluates the
aggregate expression for all groups. This last operation makes use
of the expression generated (at compile time) as described in §5.1.
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6 EVALUATION

The evaluation aims to answer the following questions: (1) On
CPU, is TQP’s performance comparable to other data processing
systems on a single core (§6.1)? (2) On GPU, is TQP’s performance
comparable to other GPU databases (§6.2)? (3) How well does TQP
scale with the increase in the number of CPU cores and dataset sizes
(§6.3)? (4) What is the cost/performance trade-off of TQP on GPU
(§6.4)? (5) Which operation takes the most time in query execution
(§6.5)? (6) Can hand-optimized query plans improve TQP’s query
time (§6.6)? (7) Can TQP accelerate workloads mixing ML and
relational queries (§6.7)? (8) What are the overheads (§6.8)? (9)
Can TQP run over different hardware and software backends while
minimizing the engineering effort (§6.9 and §6.10)?

Baseline systems. Our goal is to compare TQP with state-of-
the-art query processing systems for different hardware settings.
Specifically, for CPU execution, we compare TQP with Apache
Spark [145] (recall that Spark and TQP share the same query plans)
and DuckDB [117]: a state-of-the-art vectorized engine. For GPU
execution, we compare TQP with two well-known open-source
GPU databases: BlazingSQL [3] and OmnisciDB [7].

Hardware and software setup. For all the experiments (except
when noted otherwise), we use an Azure NC6 v2 machine with 112
GB of RAM, an Intel Xeon CPU E5-2690 v4 @ 2.6GHz (6 virtual
cores), and an NVIDIA P100 GPU (with 16 GB of memory). The
machine runs Ubuntu 18.04 with PyTorch 1.11, torch-scatter 2.0.9,
BlazingSQL 21.8.1, PySpark 3.1.1, OmnisciDB 5.9.0, DuckDB 0.4.0,
RAPIDS 21.08, CUDA 10.2, TVM 0.8 and scikit-learn 0.21.3.
Experimental setup. We use the TPC-H benchmark [49] which
consists of 22 queries. We use the parameters specified in the
query validation sections in [49]. We generate data at different
scale factors (from 1 to 10 where 1 means 1 GB of data in total®)
using the dbgen tool. We load the generated data from disk into
Pandas dataframes. All dataframes use the data types as specified
in the benchmark, except for decimals: we use doubles for all
systems since TQP does not support decimals yet. Subsequently,
we register/convert each dataframe into each system’s internal
format, e.g., Spark dataframes for Spark®, PyTorch tensors for TQP,
CUDA dataframes for BlazingSQL, etc., and move the data to the
GPU, when applicable. We measure the total query execution time,
including the time for generating the output. For each experiment,
we do 10 runs where the first 5 are for warm-up. The reported
numbers are median values of the last 5 runs.

Key takeaways. (1) TQP’s query execution time on CPU using
a single core is better than Spark’s over the same physical plans;
however, (2) TQP’s scalability on CPU is poor because of PyTorch
lacking parallelization in some operators’ implementation and its
intra-operator parallelism model. (3) TQP is, in general, slower than
DuckDB on CPU, but for a few queries, TQP is comparable or even
better. (4) Hand-optimized plans can improve TQP’s performance,
which suggests that a TCR-aware query optimizer is required to
achieve the best performance. (5) TQP’s query execution time on
GPU is usually better than both BlazingSQL’s and OmnisciDB’s,
and TQP supports more queries than they do. (6) When ML

SNote that some queries can run on scale factors larger than 10 in GPUs, thanks to
TQP’s ability to push projections into data conversion. We are working on supporting
out-of-memory computation by leveraging PyTorch’s DataLoader [19].

®For Spark, we additionally load the working datasets in memory using cache.



Table 2: Query execution time (in seconds) on the TPC-
H benchmark (scale factor 1). Bold numbers highlight the
best performance for the specific setup (CPU or GPU). We
evaluate TQP in two modalities: interpreted (TQP) and
compiled using TorchScript (TQPJ). N/A means the query
execution did not finish because of an error. TQP]J currently
does not support materialized views.

CPU (1 core) GPU
Spark DuckDB TQP TQPJ Blazing Omnisci TQP TQPJ

Query

Q1 2.261 0.664 7.535 7.301 0.216 0.095  0.027 0.026
Q2 8.751 0.101 0.629 0.577 0.238 0.351  0.039 0.028
Q3 3.669 0.273 1.154 1.165 0.128 0.293  0.027 0.024
Q4 4719 0216 1.050 1.087 0.093 0.292  0.020 0.018
Q5 6.963 0302 2459 2963 0.164 0.064 0.048 0.042
Q6 0.381 0.156 0.143 0.073 0.045 0.047  0.003 0.002
Q7 5569 0430 2236 1.931 0.244 0.067  0.042 0.035
Q8  4.034 0.278 2460 2503 0.215 0.079  0.050 0.039
Q9 17.61  2.533 4518 4.616 0.569 0.072  0.105 0.092
Q10 1598 0.430 1.168 1.184 0.173 0.740  0.057 0.052
Q11 1.047 0.034 0476 0324 N/A 0.084 0.016 0.009
Q12 4063 0.309 0.976 0.966 0.069 0.062  0.025 0.021
Q13 6.081 0.181 9.379 9.197 0.303 0.069 0.153 0.136
Q14 0509 0.171  0.124 0.096 0.076 N/A  0.007 0.005
Q15 2640 0.291 0.133 N/A N/A 0.086 0.129 N/A
Q16 1694 0.093 3.664 3.699 N/A 3.689  0.320 0.301
Q17 3.165 0.381 2303 2466 0.121 0.132  0.061 0.051
Q18 6942 0.765 2.245 2.406 0.204 0.593  0.053 0.048
Q19 2300 0.419 1577 1316 0.188 0.058  0.042 0.036
Q20 4232 0.276 2.032 1975 0.149 N/A  0.048 0.041
Q21 1239 0932 2549 2425 N/A N/A  0.158 0.151
Q22 3919 0.069 0315 0.296 N/A N/A  0.011 0.010

model prediction and SQL queries are mixed together, TQP is
able to provide end-to-end acceleration which delivers up to 9x
performance improvement over CPU baselines. (7) TQP on GPU
performs favorably, and the query time speedup justifies the dollar
cost increase compared to CPU-only systems. (8) TQP can run
queries on different hardware and software backends (including
even integrated GPUs and web browsers), with orders of magnitude
fewer lines of code required compared to the baseline systems.

6.1 Single Core Execution on CPU

In this first experiment, we use a single CPU core and TPC-H at
scale factor 1. The results are shown in Table 2 (under CPU). We
compare Spark and DuckDB vs. TQP, using both interpreted (TQP)
and compiled execution with TorchScript (TQPJ). Spark, DuckDB,
and TQP can support all 22 queries.

In terms of query time, TQPJ is either comparable to TQP
or better. This is because TorchScript removes Python code
dependency and provides optimizations not offered by vanilla
PyTorch [52]. TQP outperforms Spark for most queries, sometimes
by an order of magnitude (e.g., Q10, Q15, and Q22). Given that TQP
uses the same physical plans as Spark, this suggests that the tensor
abstraction is indeed good for executing relational queries. The
practical reasons are: (1) TQP is column-oriented, while Spark is
row-oriented. This makes the former better suited for analytical
queries; (2) some tensor operations use SIMD instructions, while
Spark does not exploit vectorization; (3) in TQP, tensor operations

2818

are implemented in C++, while Spark is Java-based; (4) Spark is
designed as a scale-out system. For queries (i.e., Q1, Q13, and Q21)
where TQP is slower than Spark, the reasons are: (1) TQP’s left anti-
join and left outer-join implementations are not optimized; (2) the
performance of the uniqueConsecutive operator in PyTorch is not
optimal. Finally, TQP has better performance than DuckDB only for
3 queries. For the other queries, DuckDB clearly outperforms TQP.
If we exclude Q1, Q13, and Q21 (discussed above), TQP’s query
times are within the same order of magnitude as DuckDB’s. To
evaluate whether this poor performance compared with DuckDB
is due to bad query plans or the tensor abstraction, we hand-code
better query plans and tensor programs in §6.6 and show that TQP
can match and even outperform DuckDB on CPU.

6.2 Execution on GPU

In this experiment, we evaluate the performance of TQP on GPU.
The results are shown in Table 2 (under GPU). Starting from TQP
vs. TQP]J, as in the CPU case, TQP]J outperforms TQP. Compared
with the baselines, TQP (interpreted or compiled) outperforms
BlazingSQL (Blazing in the table) for all the queries, and it
outperforms OmnisciDB (Omnisci) on 15 queries out of the 18
queries supported by OmnisciDB. For the remaining 3 queries, TQP
achieves query times within a factor of 2 from OmnisciDB. Note
that TQP supports all 22 TPC-H queries, while BlazingSQL and
OmnisciDB only support 17 and 18 queries, respectively.

Finally, if we compare the best CPU performance versus the best
GPU ones, in general, we see that the query times on GPU are
1.5 to 48X better than the CPU ones (single core), except for Q16
where DuckDB is about 3X faster than the best-performing GPU
system. This somehow counter-intuitive result is due to the fact
that, at scale factor 1, GPU resources are not completely saturated.
Therefore, it makes sense to explore how these systems scale with
more data and more available core. This is what we explore next.

6.3 Scalability

For this and the following experiments, we select a representative
set of queries: complex aggregation (Q1), joins and filters (Q2),
simple filters (Q6), complex joins (Q9), simple join and aggregation
(Q14), a complex mix of join, aggregation, and sub-queries (Q18).

6.3.1 Scaling the Number of Cores. In this experiment, we scale
the number of available CPU cores from 1 to 6 over TPC-H at
scale factor 1. Figure 4a compares the scaling performance of Spark,
DuckDB, and TQP. Spark has the best scalability trend lines almost
for all queries. DuckDB also scales well. TQP’s scaling performance
is, however sub-optimal, and for some queries increasing the
number of cores provides no benefits. There are two reasons:
(1) PyTorch uses intra-operator parallelism , which is not as
efficient as the shuffle [145] or morsel-based [85] approaches in
Spark and DuckDB, respectively; (2) some PyTorch operators run
on a single core (e.g., unique and unique_consecutive [116]
used in aggregation). We are investigating how to overcome
this limitation by adding data-parallel support to TQP leveraging
PyTorch Distributed Data Parallel [24, 86] or by adding parallel
operator implementations.

6.3.2  Scaling the Data. In this experiment, we scale the dataset
from 1 GB to 10 GB. In Figure 4b, we compare the scalability
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Figure 5: Cost/performance trade-off for TQP on selected
queries at scale factor 10. We plot the speedups of TQP on
various GPUs (NVIDIA T4, P100 and V100) over DuckDB on a
baseline CPU-only machine. The dashed lines represent the
query time speedups required by the GPU executions to be
more cost-effective compared to the DuckDB CPU baseline.

performance of CPU implementations running over 6 cores (Spark,
DuckDB), as well as GPU systems (BlazingSQL and OmnisciDB).
In general, we see that TQP CPU scales the worst for almost all
queries (only Spark is worst for Q6 and Q14), while GPU systems
scale better than the CPU ones. For Q1, OmnisciDB provides the
best performance, followed by TQP GPU. For Q2, Q14, and Q18,
TQP GPU has the best performance, while for Q6, TQP GPU is
comparable to OmnisciDB. Finally, for Q9, OmnisciDB has the best
performance. Q9 has six joins, and OmnisciDB is able to better use
the GPU resources. This query is memory-bound, and the memory
bandwidth of the P100 makes it much faster on GPU than on CPU.

6.4 Cost/Performance Trade-off

We now provide a cost/performance analysis of TQP on GPU
compared to a CPU-only baseline. Specifically, we select a general-
purpose (CPU-only) VM in Azure with a dollar cost similar to
the cheapest VM equipped with GPU (NC4as_T4_v3), and with
similar main memory size. Following these constraints, we select
a D2ds_v5 with 8 CPU cores and 32GB of memory. Then we
compare the performance of DuckDB on the D2ds_v5 with TQP
on (1) NC4as_T4_v3 (with an NVIDIA T4 GPU, about 15% more
expensive than the CPU-only machine), (2) NCé6s_v2 (with an
NVIDIA P100, around 4.6X more expensive than the CPU-only
VM), and (3) NCé6s_v3 (with an NVIDIA V100, around 6.6X more
expensive than the CPU-only VM). For each GPU VM type, we show
the query time speedup required to be more cost-effective than the
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DuckDB baseline. That is, for the T4, the speedup provided by TQP
has to be more than 15% to justify the cost increase of the T4 VM
compared to the DuckDB CPU baseline, 4.6x for the P100, 6.6x for
the V100. The results for scale factor 10 are shown in Figure 5 for a
few representative TPC-H queries. As shown, TQP on GPU is more
cost-effective compared to DuckDB on the CPU-only machine: for
6 of the 6 selected queries (17 of the 21 supported queries’ in the
full TPC-H) for the T4; 5 of 6 (10 of 21 in the full TPC-H) for the
P100; and 5 of 6 (9 of 21 in the full TPC-H) for the V100.

6.5 Performance Breakdown

In this experiment, we show the major contributing factors to the
query execution time. TQP is integrated with TensorBoard [13],
which provides performance breakdowns and makes it easy to spot
bottlenecks [36]. We start by looking into which tensor operators
are responsible for the majority of the execution time. Figures 6a
and 6b show the breakdown for a few selected queries on CPU
and GPU, respectively. Interestingly, even if TQP uses the same
algorithms on both CPU and GPU, the same query can show
different operator contributions. For example, for Q1 on CPU, most
of the time is spent on computing the unique elements, while on
GPU, most is spent on scatter_add. This is because the quality of
the operator implementations is different for CPU and GPU. Across
queries, on CPU and GPU, the majority of time is also spent on
different operators. On CPU, most queries are bounded by unique
operators, masked_select, and indexing; on GPU, most of the time is
spent on sorting, unique and nonzero. These observations suggest
that: (1) the quality of kernels differs between CPU and GPU, e.g.,
after further investigation, we find that the GPU implementation
of scatter_add is not optimal, and nonzero requires host/device
synchronization [27] (however, we believe that over time the
community will fix such performance issues); and (2) it might be
worth investigating backend-aware tensor algorithms.

Finally, we report the GPU utilization for the same set of queries
in Figure 7. As we can see, each query has different utilization
characteristics. For instance, Q1 contains complex aggregation, and
it spends 87% of the time on kernel execution; conversely, Q6 and
Q14 are simple queries, and most of the time is spent allocating
GPU memory. Finally, Q2 spends a considerable amount of time in
generating the output on CPU.

700M errors occurred when TQP ran Q21 at scale factor 10 on these GPUs.
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6.6 Hand-Optimized Plans

Next, we study whether TQP’s performance can be improved with
a better optimizer able to generate better tensor programs. To
understand this, we hand-optimize the tensor programs for a few
selected queries similarly to what a reasonable optimizer with
knowledge about cardinalities and tensor characteristics would
do, e.g., avoid sorting (or computing unique) over already sorted
(or unique) columns, and select better join implementations. The
results are shown in Table 3, where we report the best baseline for
each setting (CPU 1 and 6 cores, and GPU), and over three execution
modes: interpreted PyTorch (Torch), compiled TorchScript (JIT),
and compiled using TVM. TVM only supports Q6 and Q14.

If we focus on the CPU numbers first, TQP’s performance is
comparable to or even better than that of DuckDB’s, while TQP was
much slower compared to DuckDB both on single- and multi-core
execution when not using the hand-optimized plans. TQP is now
faster than DuckDB for all queries over 1 CPU core, and two queries
over 6 CPU cores. For some queries, TQP is faster than DuckDB by a
large margin, e.g., for Q6, 1-core TVM execution is 6X faster. This is
because TVM uses code generation and operator fusion to minimize
intermediate data materialization across operators. When scaling to
6 cores, TQP scales well only for Q14, while DuckDB scales linearly.
For the other queries, TQP’s query times improve by at most 2Xx.
This again shows the limitations of PyTorch’s scalability on CPU,
which cannot be improved by using better tensor programs.

Finally, on GPU, we see that OmnisciDB has still better
performance for Q9, although TQP’s query time for Q9 on GPU
improves by 4X, when using the hand-optimized plans. This is
because TQP’s aggregate implementation heavily uses sorting,
while OmnisciDB uses hash-based implementations.
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with HUMMINGBIRD. Here, we join the CUSTOMER and ORDERS
tables in TPC-H (scale factor 10), and train a gradient boosting
tree model (with 128 trees with max depths of 8) over a mix of
categorical (C_ORDERSTATUS) and numerical features (C_CUSTKEY,
C_NATIONKEY, C_ACCTBAL, SUM(O_TOTALPRICE)) after we apply
one-hot encoding and feature scaling, respectively. We run a
prediction query using the trained model over the query with
two filter predicates added (C_MKTSEGMENT = ‘BUILDING AND
O_ORDERDATE >= DATE ‘1993-10-01"). Note that this prediction
query mixes ML operators (tree ensemble, one-hot encoding,
scaling, and concatenation) with relational ones (join, aggregation
and filtering). We compare TQP with two baselines: one where
the prediction query is executed over Spark (MLIib [90] is used to
build the model), and one where we use DuckDB for the relational
part and scikit-learn [106] for the ML part®. Since TQP subsumes
HUMMINGBIRD, it is able to compile both the ML and the relational
operators of the query into a unified plan executable on TCRs.
Figure 8 shows the result. For CPU single core, TQP is about 40%
faster than Spark, while DuckDB+scikit-learn is about 7X faster
than TQP. When enabling all cores, Spark and DuckDB scale much
better than TQP, for the reasons described in §6.3. Finally, TQP
is able to exploit GPU acceleration end-to-end, which brings a 9x
improvement of query time compared to the best CPU baseline.

6.8 Overheads

Next, we evaluate the overheads of TQP for both CPU and GPU.
The breakdown of the end-to-end execution with all overheads is
shown in Figure 9. Note that: (1) data conversion is done once and
many databases (e.g., BlazingSQL, OmnisciDB, Spark, SQL Server,
etc.) requires it; (2) TQP pipelines data movement (to the GPU) with
query execution (non-blocking IO), while for this experiment we
explicitly make data movement blocking; (3) the machine in this
experiment uses PCle 3 which is 4X slower than the latest version,

8Note that moving data from DuckDB to scikit-learn is zero-copy since DuckDB can
directly return data in Pandas dataframe format [20].



Table 3: Query execution time (in seconds) on selected TPC-H queries (scale factor 10). TQP Hand-Opt. uses hand-optimized
tensor programs. We use Torch, JIT, and TVM to refer to execution using PyTorch (interpreted), TorchScript (compiled), and
TVM, respectively. Bold numbers highlight the best performance for the specific setup: CPU (1 core), CPU (6 cores), or GPU.

CPU (1 core) CPU (6 cores) GPU
TPC-H Query TQP Hand-Opt. TQP Hand-Opt. TQP Hand-Opt.
Best Baseline Best Baseline Best Baseline
Torch JIT TVM Torch JIT TVM Torch  JIT TVM
Q1 6.54 (DuckDB) 5.97 6.89 N/A 1.1 (DuckDB) 4.68 5.17 N/A 0.17 (OmnisciDB) 0.13 0.13 N/A
Q6 1.5 (DuckDB) 0.87 1.18 0.24 0.25 (DuckDB) 0.66 0.71 0.12 0.02 (OmnisciDB) 0.01 0.01 0.06
Q9 45.11 (DuckDB) 19.34 18.66 N/A 7.75 (DuckDB) 14.59 13.83 N/A 0.14 (OmnisciDB) 0.45 0.44 N/A
Q14 1.7 (DuckDB) 052 049 047 033 (DuckDB) 012 010 016 0.2 (BlazingSQL) 001  0.01  0.30
Spark (1) it into the ONNX format and running it in Chrome using ONNX
DuckDB (1) Runtime (ORT) for WebAssembly (WASM) [96].
3 TQP CPU (1) . .
£  Spak() 6.10 Engineering Effort
= TQDgcgEB ;2;‘. To demonstrate the minimal engineering effort required by TQP
TQP GPU ! to run queries over different hardware, we compare the lines of
o . : 1 20 30 code for a few relational operators (hash and sort-based joins,

Median end-to-end query time (s)
Figure 8: Query time on a query mixing ML prediction and
relational operators. In parenthesis shows the number of
CPU cores. The x-axis is in (symmetric) log scale.

PCle 5; (4) query compilation can be cached, but here we report the
full query compilation time as the sum of the time for the frontend
database to generate the physical plan, and the time for TQP to
generate the final executable tensor program.

If we focus first on the CPU side (Figure 9a), compilation and data
conversion take the majority of the time only for simple queries
(e.g., Q6), while for the other queries, the majority of the time is
spent on the query execution. However, in the GPU case (Figure 9b),
except for Q2 and Q9, the majority of the time is spent on data
operations (conversion and movement) and compilation. However,
in practice, as described above, these overheads are hidden (e.g.,
data movement using pipelining) or are one-time overheads (data
conversion and query compilation). Regarding query compilation,
90% of the time is spent initializing the PyTorch models from the
Spark plans, and we are currently investigating how to speed up
this process. Finally, using TorchScript adds substantial compilation
overheads since queries are traced using input samples.

6.9 Portability

To evaluate whether TQP can run on different hardware and
software backends, we run TPC-H Query 6 with the hand-optimized
plan on: (1) two integrated graphic cards, one from Intel, and one
from AMD; (2) two discrete GPUs from NVIDIA (K80 and V100: the
former a generation before the P100 GPU used for the experiments
in the previous sections; the latter one, one generation after); (3)
a custom ASIC used for NN training and inference (TPU); and (4)
a web browser. We use a scale factor of 1. The results are shown
in Table 4. This experiment proves the versatility of TQP. For the
integrated GPUs, we use TVM to code-generate the query using
Metal [35]. For the two discrete GPUs, we use vanilla PyTorch,

while for the TPU, we use the XLA backend for PyTorch® [114].

Finally, we are able to run the query in the browser by exporting

9Note that PyTorch/XLA does not support all the necessary tensor operations and the
execution fallback to regular CPU for part of the query is not available.
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aggregation) across all evaluated systems. For each relational
operator and each system, we use cloc [51] to count the lines of
source code (excluding comment and blank lines) from the files
containing the algorithmic functionality of the operator. This is
admittedly a subjective process, but we believe the numbers of
lines of code can roughly reflect the engineering effort required to
implement relational operators in each system. Table 5 shows the
results. Compared with the baselines, TQP requires significantly
lower engineering effort: up to 10X less compared to CPU
implementations, and 50x less compared to GPU ones. It is worth
noting that TQP is able to target different hardware with the same
implementation, so the engineering effort required for TQP to scale
over different hardware is constant. The other baseline systems do
not share this property. For instance, to run Spark on GPU (e.g.,
using RAPIDS [12], the same backend of BlazingSQL), we would
have to add the lines of code for the GPU implementation.

7 RELATED WORK

Common representation for relational and ML workloads.
Since the ’90s [98], there have been many works trying to integrate
relational queries with data science and ML workloads [15, 32, 41,
42, 45, 50, 55, 64, 67, 68, 73, 74, 79, 82, 91, 93, 107, 112, 123-125,
128, 133, 141, 143]. To our knowledge, we are the first to propose
executing relational queries over TCRs. Earlier attempts tried to
run a few relational operators on the TPU using TensorFlow [65].
TQP is orthogonal to previous efforts to optimize relational and
tensor algebra (e.g., [67, 141]), and we believe TQP can leverage
them to improve its performance further. An analysis of matrix
query languages can be found in [58]. Here, we focus on TCRs’
tensor interface, which is more flexible than a linear algebra APL
SciDB [119, 132] is a database using arrays as the base
data representation. TensorDB [77] further proposes support for
tensor data and decomposition operations inside databases. SciDB,
TensorDB, and TQP suggest using a format closer to data science
and ML to represent data. However, TQP further exploits TCRs to
run both relational and ML workloads on hardware accelerators.
GPUs and hardware accelerators. Several systems have
explored running relational queries over GPUs [84, 88, 103, 104, 111,
127, 144]. We refer readers to [105] for a recent survey. However,
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Figure 9: End-to-end breakdown (incl. all overheads, and w/o pipelining and caching) for selected queries at scale factor 10.

Table 4: Query time (in milliseconds) of TPC-H Query 6 (scale factor 1) using the hand-optimized plan over different hardware
and software backends. In parenthesis is the TCR used as well as the compilation stack (when applicable).

Intel UHD Graphics 630 ~ AMD Radeon Pro 5300M  NVIDIA K80  NVIDIA V100 TPU Chrome
(TVM on Metal) (TVM on Metal) (PyTorch) (PyTorch) (PyTorch on XLA)  (ORT on WASM)
62 17 1 25 1900

Table 5: Lines of source code for implementing relational
operators, excluding blank lines and comments.

Relational Operator

System
Hash Join  Sort-Based Join Aggregation
TQP (Various HW) 148 182 104 (sort-based)
Spark(CPU) 706 1439 637 (sort-based)
DuckDB (CPU) 1415 877 1466 (hash-based)
BlazingSQL (GPU) 1628 N/A 1389 (hash-based)
OmnisciDB (GPU) 10141 N/A 2416 (hash-based)

the majority of them focus mostly on microbenchmarks, while,
to our knowledge, only RateUpDB can support the full TPC-H
benchmark. TQP is able to run the TPC-H benchmark on both CPU
and GPU, thanks to TCRs’ flexibility to support different hardware
backends. TCUDB [66] suggests using the Tensor Core Unit (TCU)
of GPUs for accelerating relational operators. TCUDB requires an
expensive transformation from tables to matrices and also uses
low-level CUDA kernels, while TQP takes advantage of the high-
level tensor interface of TCRs. GPUs are the default hardware for
running neural network models. However, there has recently been
a rise in custom ASICs [4, 6, 11, 34, 72] purposely built for ML
workloads. With TQP, we propose a solution allowing us to run
relational queries on any hardware supported by TCRs, since many
ASICs [5, 10, 72] provide high-level interfaces directly through
TCRs or are targetable through tensor compilers [46, 83].

Query processing over heterogeneous hardware. Several
recent works have started to explore query execution over
heterogeneous hardware, such as CPU-GPU co-execution [44, 47,
57, 63, 108, 120, 121, 140]. Many of them rely on OpenCL [8] to
target different hardware. However, targeting a common language
(or similarly a generic compiler, e.g., MLIR [83]), requires non-trivial
engineering effort since each device requires proper tuning [108],
algorithms, and data structures (as well as abstractions/dialects
in the MLIR case). Conversely, TQP can natively run on any
hardware supported by TCRs, and uses TCRs’ tensor operation
implementations and compilation stacks. Currently, the user has to
specify which fragment of the query should run on which hardware,
but we are exploring how to automate this and enable co-execution.

A trend arises recently that suggests splitting relational operators
into smaller functions that can be easily composed and efficiently
dispatched over heterogeneous hardware [38, 80, 139]. TQP fits in
this trend, whereby tensor operations are sub-components.
Vectorized execution, query compilation, and columnar
databases. MonetDB/X100 [43] pioneered the vectorized execution
model as well as the columnar data layout [131]. TQP follows a
similar design, where data is stored in a columnar format with
virtual IDs [30], but each column is represented as a tensor. Recent
works, such as HyPer [99] and others [92, 100, 126], have focused on
query compilation. Nevertheless, since (1) there is no clear winner
between query compilation and vectorized execution [75] ; (2) many
industry-grade systems use vectorized execution because it is easier
to debug and profile [40]; and (3) compiled systems start to move
to vectorized execution (e.g., Spark with Photon), we evaluate TQP
against a state-of-the-art vectorized engine, DuckDB [117].

On the ML systems side, TensorFlow initially embraced
a compiled (graph) execution [31], while PyTorch pioneered
interpreted (eager) execution [102]. Compilers [14, 28, 46, 53, 54,
78, 83] and optimization techniques [69-71] for neural networks
are hot topics in the MLSys community. With TQP, we aim to ride
the wave of innovation in this domain. For TQP, interpreted vs.
compiled execution is just another point in the query optimization
space, since TCRs allow to switch between them seamlessly.

8 CONCLUSION

We proposed TQP, the first system able to run relational queries on
TCRs. TQP is able to take advantage of all the innovation poured
into TCRs, as well as to run efficiently on any hardware devices
supported by TCRs. Our experiments showed not only that TQP is
capable of running the full TPC-H benchmark on TCRs, but also
that TQP’s performance is comparable and often superior to that
of specialized CPU and GPU query processing systems.
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