
SCAR — Spectral Clustering Accelerated and Robustified
Ellen Hohma∗

Technical University of Munich
Munich, Germany

ellen.hohma@tum.de

Christian M.M. Frey∗
Christian-Albrecht University of Kiel

Kiel, Germany
cfr@informatik.uni-kiel.de

Anna Beer∗
Aarhus University
Aarhus, Denmark
beer@cs.au.dk

Thomas Seidl
LMU Munich

Munich, Germany
seidl@dbs.ifi.lmu.de

ABSTRACT
Spectral clustering is one of the most advantageous clustering ap-
proaches. However, standard Spectral Clustering is sensitive to
noisy input data and has a high runtime complexity. Tackling one of
these problems often exacerbates the other. As real-world datasets
are often large and compromised by noise, we need to improve
both robustness and runtime at once. Thus, we propose Spectral
Clustering - Accelerated and Robust (SCAR), an accelerated, ro-
bustified spectral clustering method. In an iterative approach, we
achieve robustness by separating the data into two latent compo-
nents: cleansed and noisy data. We accelerate the eigendecompo-
sition – the most time-consuming step – based on the Nyström
method. We compare SCAR to related recent state-of-the-art algo-
rithms in extensive experiments. SCAR surpasses its competitors
in terms of speed and clustering quality on highly noisy data.

PVLDB Reference Format:
Ellen Hohma, Christian M.M. Frey, Anna Beer, and Thomas Seidl. SCAR —
Spectral Clustering Accelerated and Robustified. PVLDB, 15(11): 3031 -
3044, 2022.
doi:10.14778/3551793.3551850

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SpectralClusteringAcceleratedRobust/SCAR.

1 INTRODUCTION
Clustering is a fundamental data mining task needed in virtually
all areas working with data and also serves as an unsupervised pre-
processing step for a plethora of subsequent tasks. One of the most
favorable clustering methods is spectral clustering: it is applicable
to non-numeric datasets, can find clusters of complex shapes and
different densities, and optimizes a mathematically well-defined
problem [52]. However, real-world datasets are challenging for
several reasons: with newly developed data gathering methods
(e.g., in medicine, chemistry, or biology), in recent years datasets
grew in dimensionality as well as in size. The runtime complexity

∗Authors contributed equally to this work.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551850

Figure 1: Our method SCAR vs. state-of-the art related clus-
tering algorithms on the moons dataset with 𝑛𝑜𝑖𝑠𝑒 = 0.15.

of spectral clustering methods is only linear in the number of di-
mensions, as it works on an affinity graph of the data, making it
superior to more traditional clustering methods when working on
high-dimensional data. However, the runtime complexity (for the
naive implementation) of O(𝑛3) w.r.t. the number of data points
is comparably large. Furthermore, real-world data often contains
noise that is neither handled well by standard spectral clustering
methods nor by other clustering methods. Clustering noisy data
is in fact a very challenging task, as Fig. 1 illustrates. It shows a
very noisy version of the well-known synthetic moons dataset as
clustered by diverse algorithms. It may not come as a surprise that
standard Spectral Clustering fails to detect the moons correctly.
But also state-of-the-art algorithms that are designed specifically
to be robust against noise can only handle noise up to a certain
degree and were not able to detect the two clusters correctly. Our
competitors in Fig. 1 (as well as in our experiments in Sec. 5) are
recent clustering algorithms published at high-quality conferences:
RSC [7], DCF [50], and SpectACl [21]. The authors of all methods
performed extensive experiments showing their superiority against
a variety of other clustering methods regarding noise robustness.
RSC and DCF also successfully tackle the efficiency problems of
clustering. Nevertheless, with our newly developed method SCAR
(Spectral Clustering - Accelerated and Robust), we found a way to
even further improve both, clustering quality on highly noisy data
and efficiency on high-dimensional data.

SCAR uses weighted 𝑘NN graphs to capture highly complex
structures in the data implying clusters of non-convex shapes. For a
good segmentation of the graph, normalized cuts have proven to be

3031

https://doi.org/10.14778/3551793.3551850
https://github.com/SpectralClusteringAcceleratedRobust/SCAR
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551850
https://www.acm.org/publications/policies/artifact-review-and-badging-current

desirable [10, 12], suggesting a spectral approach. Based on the con-
cept of RSC [7], we divide the data into a subset containing noise
and a subset containing the relevant information for clustering.
However, RSC involves the frequent calculation of eigendecom-
positions in an iterative approach, which we accelerate with the
Nyström method. With an elaborated combination of synergistic
methods and changes we manage to achieve highly competitive
results regarding the clustering quality and robustness. In exten-
sive and reproducible experiments we examine and compare our
clustering results w.r.t. quality and runtime. SCAR shows the de-
sired behavior for highly noisy datasets, where it outperformed
recent state-of-the-art algorithms in quality, noise robustness, and
runtime. We evaluated diverse types of noise and used well-known
benchmark datasets. Our main contributions are as follows:

• We introduce SCAR, our novel spectral clustering method tack-
ling both, robustness and speed.

• We incorporate the Nyström method to accelerate the eigende-
composition in robust spectral clustering.

• We further enhance quality and stability of clusterings
• We evaluate our method thoroughly, fairly, and reproduciblyand

compare our method to recent state-of-the-art methods on the
established real-world benchmark datasets.

Outline. In Sec. 2 we give an overview on related methods.
In Sec. 3 we explain the basics for our new method. In Sec. 4 we
introduce our new fast and robust spectral clustering method, called
SCAR. In Sec. 5 we evaluate SCAR thoroughly, objectively, and
reproducibly. Sec. 6 concludes this paper.

2 RELATEDWORK
Spectral clustering refers to a set of clustering algorithms that par-
tition a given dataset based on the spectrum of the datapoints’
affinity matrix. They essentially follow three steps [52]: (1) con-
struct a similarity graph G, (2) compute the Laplacian of G and its
eigendecomposition, and (3) cluster its eigenvectors with a standard
clustering method, e.g., 𝑘-Means [36, 37]. Spectral clustering sur-
passes traditional clustering techniques in several aspects: e.g., they
find arbitrarily shaped clusters, are applicable on categorical data,
solve a clearly defined mathematical goal [52], and can handle vary-
ing densities. However, spectral clustering is noise-sensitive [7, 21]
and has a relatively high runtime. In the following, we provide an
overview of related works in the research field.

2.1 Improving Runtime
Most recent advances improving any of the steps of spectral cluster-
ing can be found in [51]. In the following, we focus on approaches
accelerating the most time-intensive step of spectral clustering, the
eigendecomposition. The acceleration is usually achieved with one
of two strategies: iteration or sampling.

Iterative approaches. The probably most common method to
accelerate the computation of eigenvectors and eigenvalues of a
matrix is the power iteration. By iteratively multiplying the matrix
with a randomly initialized vector (or an estimation of the dominant
eigenvector), the eigenvector belonging to the largest eigenvalue is
approximated. Generally, the frequent matrix multiplications are
expensive, and only the dominant eigenvector can be approximated

with the original power method – for spectral clustering, the eigen-
vectors belonging to the smallest eigenvalues are of interest. Note,
that the behavior of convergence of iterative approaches usually
depends on the distribution and gaps between the eigenvalues [51].
There is a wealth of extensions based on the power iteration aimed
at alleviating its downsides for spectral clustering. Using Krylov sub-
spaces allows approximating several eigenvectors at once: E.g., the
Arnoldi iteration [1] orthogonalizes the vectors spanning the Krylov
subspace by applying the Gram-Schmidt process. For Hermitian
matrices like symmetric Laplacians, which are used in the process
of spectral clustering, the Lanczos method has been proposed [29].
The Lanczos method approximates the largest 𝑘 eigenvectors in
𝑂 (|E |𝑘 + |V|𝑘2) for a graph G = (V, E,𝑤) [51]. It is used for spec-
tral clustering in [46]. While the Lanczos method performs well
even for sparse matrices, it is often prone to numerical instability
[9]. The Implicitly Restarted Lanczos Method (IRLM) as used, e.g., in
ARPACK [31], can reduce numerical instability. Further adaptions
involve among others using the inverse matrix to get the smallest
eigenvalues and respective eigenvectors [15]. The Krylov-Schur
algorithm [47] alleviates additional problems emerging with very
large Hermitian or non-Hermitian matrices. As the convergence of
symmetric cases depends on the gap ratio of the eigenvalues [41],
both ends of the spectrum are approximated, e.g., with IRLM-BE.

Sampling-based approaches. Sampling based approaches work
on (1) a subset of the edges in the similarity graph or on (2) a subset
of the nodes: (1) implies a sparser Laplacian than the original one,
while (2) implies a Laplacian of lower dimensionality.

Approach (1) accelerates the eigendecomposition by leveraging
matrix operations that are optimized towards sparse input matrices.
Working on matrices defined by 𝑘NN graphs, choosing a small 𝑘
leads to sparse matrices that still hold relevant information on the
structure of the data. For general graphs, spectral sparsification can
be applied. It approximates the graph Laplacian with a matrix of
same size containing fewer sampled entries. The sampling process
ensures that certain pre-defined properties are respected (cf. [51]).

Approach (2) includes graph coarseningmethods (e.g., [20, 27, 51])
that reduce the original similarity graph to a coarser graph, leading
to an adjacency matrix of significantly lower dimensionality. Com-
puting the eigendecomposition on the lower-dimensional matrix
and refining it afterwards leads to a significant acceleration.

In our approach introduced in Sec. 4, we use the sampling-based
Nyströmmethod, which is an effective method to significantly speed-
up spectral clustering while maintaining good overall eigenvector
accuracy (e.g., [16, 32, 53, 54]). The Nyström method has been
analyzed, replicated and improved throughout multiple studies:
[6], [13], [45], and [56] focus on the improvements of particular
downsides, such as the partial loss of information by sampling land-
mark points. Furthermore, they provide theoretical evaluations and
frameworks on how the quality of the resulting spectral embed-
ding is affected by applying the Nyström approximation. In [43],
the impact of the number of landmarks selected as subsample as
well as the influence on the overall clustering accuracy is inves-
tigated. Thorough studies in [17], [38], and [28] show the impact
of sampling techniques picked for identifying the base subset for
the Nyström extension. A theoretical analysis of the algorithm’s
performance and derivations of error bounds are formulated in [11].
We explain the Nyström method in detail in Sec. 3.2.

3032

2.2 Improving Noise Robustness
As spectral clustering has no inherent noise-handling, its quality
can suffer from diverse types of noise that often occur in real-world
data. In the following, we distinguish between four different notions
of noise that are often mixed up in the literature or not clarified: (1)
additional noise points, (2) jitter, (3) noisy features, and (4) noisy
edges. Even though they are closely interrelated, they can imply
different challenges for (spectral) clustering.

Additional noise points. The probably most common notion of
noise is that there are additional noise points in the dataset. They are
typically uniformly distributed (and iid) and do not belong to any
cluster. E.g., NRSC [35] tackles such noise for spectral clustering by
assigning all noise points to an extra cluster. However, they work
on the fully connected graph and assume that the majority of edges
connected to a noise point has a low weight. AHK [23] also tackles
this kind of noise and simultaneously robustify spectral clustering
regarding the parameter choice by using an aggregated heat kernel.
CAHSM [34] use a hypergraph to compensate for outliers and noise.

Jitter. Adding noise to a dataset can also imply adding a small de-
viation to each point. E.g., noise adjustment for the moons datasets
regulates the deviation from the “perfectly-shaped” moons. A simi-
lar effect can be achieved by data quantization. In [24], error bounds
for spectral clustering on data with jitter, resp., perturbed data are
evaluated. Robustness against this type of noise for spectral meth-
ods is evaluated, e.g., in SpectACL [21], and RSC [7].

Noisy features. Especially in high-dimensional data, we may
encounter noisy features. These refer, for example, to uniformly
distributed dimensions of the data that are irrelevant for clustering
for at least some points. FWKE-SC [26], SSCG [18], [57], and [3]
combine feature weighting with spectral clustering to tackle this
problem (similarly to subspace clustering). As they mainly focus
on the construction of the similarity matrix, they can be combined
with our approach in future work.

Noisy edges. Noise in graphs can also occur as additional edges
in the affinity graph of the data. RSC [7] (cf. Sections 2.3 and 3.3)
focuses on removing edges that connect different clusters, which
are also called corrupted edges. RSEC [49] regards noisy edges in the
context of spectral ensemble clustering. In [4], noise is regarded as
“an additive perturbation to the similarity matrix”, including noisy
edges as well as corrupted weights of existing edges.

In this paper, we focus on robustness w.r.t. noisy edges and jitter.
For the other types of noise, we suggest to filter additional noise
points in a preprocessing step. For noisy features, our approach
can easily be combined with feature weighting approaches that
adapt the initial affinity matrix, as SCAR builds on top of the affinity
matrix. For weighting the importance of features, one can follow
approaches like FWKE-SC [26], using the concept of knowledge
entropy, or apply importance scores for attributes that adapt to
every point individually, like KISS [5].

2.3 Comparative Methods
In our experiments in Sec. 5 we compare our newly developed
method SCAR with standard Spectral Clustering (SC) [40] as well
as high-quality state-of-the-art spectral methods that aim at ro-
bustness and efficiency: Robust Spectral Clustering (RSC) [7] and

SpectACL [21]. Furthermore, we include the very recently intro-
duced method DCF [50] into our analyses. DCF is not a spectral
approach, but also aims at robustness and efficiency.

RSC jointly performs the standard Spectral Clustering and the
decomposition of the adjacency matrix 𝐴. The latter is assumed
to be an additive decomposition of two latent factors, a graph
containing corrupted edges and a graph representing the noise-free
data. As RSC outperforms basic clustering principles like 𝑘-Means
and density-based clusteringmethods on noisy datasets [7], it serves
as a baseline in our evaluation in Sec. 5.

SpectACL combines approaches from spectral clustering and
DBSCAN to solve their major drawbacks regarding noise sensitivity
for minimum cut clustering and varying densities for density-based
clustering [21]. The core idea is to determine clusters with large
average densities while optimizing the density parameters using
the spectrum of the weighted adjacency matrix.

DCF aims at improving peak-finding techniques for density-
based clustering, which determine groups in a dataset based on
their high density as well as distances to clusters of higher density
[50]. The approach applies the peak-finding criterion to determine
cluster cores instead of point modes, which enables the detection
of clusters with varying densities.

3 PRELIMINARIES
In the following we give some preliminary basics for our method
SCAR. In Sec. 3.1 we clarify the notation used throughout our work.
In Sec. 3.2 we explain the Nyström method that we use to accelerate
the eigendecomposition in detail. In Sec. 3.3 we elaborate on the
robustificaton method we incorporate in our method SCAR.

3.1 Notation
Let G = (V, E,𝑤) be an undirected, weighted graph where V
denotes a set of nodes, E denotes a set of edges connecting nodes,
and 𝑤 denotes a weight function on the edges 𝑤 : E → R>0. Its
adjacency matrix 𝐴 ∈ R𝑛×𝑛 is defined by its entries 𝑎𝑖 𝑗 with 𝑎𝑖 𝑗 =

𝑤 (𝑣𝑖 , 𝑣 𝑗) if (𝑣𝑖 , 𝑣 𝑗) ∈ E, else 𝑎𝑖 𝑗 = 0. Let 𝐷 ≔ diag(deg(𝑣1), . . . ,
deg(𝑣𝑛)) ∈ R𝑛×𝑛 be the degreematrix ofG where deg(𝑣𝑖) ≔ |{𝑣 𝑗 ∈
𝑉 | (𝑣𝑖 , 𝑣 𝑗) ∈ E}| is the degree of node 𝑣𝑖 . We define the Laplacian
𝐿 of G as 𝐿 ≔ 𝐷 −𝐴. The Laplacian 𝐿 is symmetric and positive-
semidefinite in R𝑛×𝑛 . Hence, the 𝑛 eigenvalues Λ = [_1, . . . , _𝑛] of
𝐿 are real and positive. The associated eigenvectors are denoted
by 𝐻 = [ℎ1, . . . , ℎ𝑛], resp., the approximated eigenvectors by �̂� .
Furthermore, we denote by X = {𝑥𝑖 }𝑛𝑖=1 the set of 𝑛 input data
samples, where 𝑥𝑖 ∈ R𝑑 is a 𝑑-dimensional feature vector.

3.2 Nyström Method for Eigenvector
Approximation

The Nyströmmethod has shown great promise in existing literature
to speed-up the eigenvector calculation (e.g., [16, 32, 53, 54]). To
accelerate the eigenvector computation, we use only a subsample
of the whole dataset. A matrix𝑀 ∈ R𝑛×𝑛 can be partitioned into:

𝑀 =

[︃
𝑀1 𝑀2𝑇

𝑀2 𝑀3

]︃
, (1)

where 𝑀1 ∈ R𝑚 ×𝑚 represents the affinities between𝑚 sampled
points in the subset, 𝑀2 ∈ R(𝑛 −𝑚) ×𝑚 contains all weights from

3033

the 𝑛 −𝑚 remaining points to the𝑚 subsampled points and𝑀3 ∈
R(𝑛 −𝑚) × (𝑛 −𝑚) captures the remaining affinities between all points
not chosen for the subset. After choosing landmark points for the
approximation, the eigenvectors 𝐻1 of 𝑀1 can be calculated. We
introduce diverse eigendecomposition approaches that can be used
in Sec. 2.1 and compare them empirically in Sec. 5.6.2.

Using the Nyström extension [16], we can extrapolate the eigen-
vectors for all remaining points. Let 𝐻 and Λ be the eigenpairs of
𝑀 , it follows:

𝑀 = 𝐻Λ𝐻𝑇 =

[︃
𝐻1
𝐻2

]︃
Λ

[︃
𝐻1
𝐻2

]︃𝑇
=

[︃
𝐻1Λ𝐻𝑇

1 𝐻1Λ𝐻𝑇
2

𝐻2Λ𝐻𝑇
1 𝐻2Λ𝐻𝑇

2

]︃
(2)

Thus, if 𝐻1 denotes the eigenvectors for the subsampled points
𝑀1, we can deduce 𝐻2, the eigenvectors for all remaining points,
with 𝐻2 = 𝑀2𝐻1Λ−1. Sorting the extrapolated eigenvectors for the
remaining points back into the calculated eigenvectors for points
chosen as subsample yields the approximated eigenvectors �̂� ∈
R𝑛×𝑚 for𝑀 :

�̂� =

[︃
𝐻1

𝑀2𝐻1Λ−1

]︃
(3)

In the last step, we orthogonalize the approximated eigenvectors �̂� .
By using only a subsample of the data, the time complexity can be
reduced from O(𝑛3) to O(𝑛𝑚2 +𝑚3), where usually𝑚 ≪ 𝑛 [33].

3.3 Robustifying Spectral Clustering
In order to robustify spectral clustering, we follow RSC [7]. The
main idea is to separate the input graph with adjacency matrix 𝐴
into two latent subcomponents described by 𝐴𝑔 and 𝐴𝑐 :

𝐴 = 𝐴𝑔 +𝐴𝑐 (4)

𝐴𝑐 reflects the corrupted edges in the graph and 𝐴𝑔 contains only
the noise-free, “good” edges. The partitioning into two segments
can be determined and improved by independently optimizing the
spectral embedding for each subgraph. In practice, it is sufficient
to resolve only one component, since its counterpart can easily be
deduced from the original representation (see Equation 4). In [52],
it has been shown that spectral clustering can be transformed into
a trace minimization problem for 𝐴. Following this idea, in [7], the
authors proved that the solution to 𝐴𝑐 can be attained by solving a
maximization problem for 𝑇𝑟 (𝐻𝑇 𝐿(𝐴𝑐)𝐻), where 𝐿(𝐴𝑐) denotes
the Laplacian of matrix 𝐴𝑐 . The corresponding objective function
for the unnormalized Laplacian (cf. [7]) is defined as:

𝑓 ([𝑎𝑐𝑒]𝑒∈E) :=
∑︂

(𝑣𝑖 ,𝑣𝑗) ∈E
𝑎𝑐𝑖, 𝑗 · ∥ℎ𝑖 − ℎ 𝑗 ∥

2
2 (5)

Further constraints are given by \ and 𝑚. The parameter \ de-
notes the maximum number of global corruptions that are deleted:
|{(𝑣𝑖 , 𝑣 𝑗) |𝑎𝑐𝑖 𝑗 ≠ 0}| ≤ 2 · \ . The parameter 𝑚 implies the min-
imum number of nodes that each node in 𝐴𝑔 is connected to:
|{𝑣 𝑗 |𝑎𝑔𝑖 𝑗 ≠ 0}| ≥ 𝑚 · 𝑑𝑒𝑔(𝑣𝑖) for each node 𝑣𝑖 .

To solve the maximization problem in order to find edges which
should be assigned to𝐴𝑐 , we use a greedy approach that is described
in [30]. The idea is to sort all edges 𝑒 ∈ E in descending order
according to their scores 𝑝𝑒 being defined as:

𝑝𝑒 = 𝑝𝑖 𝑗 = 𝑎𝑖 𝑗 · | |ℎ𝑖 − ℎ 𝑗 | |22 (6)

Figure 2: Overview of our method SCAR. Green boxes imply
steps in our method that are analogue to RSC [7] and orange
implies a significant change or addition.

We iteratively add edges to𝐴𝑐 such that the side constraints defined
by parameters \ and𝑚 are fulfilled. Further details, proofs, and the
reduction to the multidimensional knapsack problem [42] can be
found in [7].

4 SCAR - SPECTRAL CLUSTERING
ACCELERATED AND ROBUST

We propose our new clustering method SCAR (SpectralClustering –
Accelerated and Robustified). SCAR separates the affinity graph of
the data in an iterative approach into two latent components: a clean
graph, which is used for the subsequent clustering, and a graph
containing noisy edges. Likewise to Robust Spectral Clustering
(RSC) [7], it detects noisy edges in each step that are disadvanta-
geous for clustering. Therefore, it reaches overall robustness against
noise compared to the original spectral clustering [40]. SCAR is sig-
nificantly faster than RSC as we accelerate the most time-intensive
step, the eigendecomposition, using the Nyström method [16] ex-
plained in Sec. 3.2. Furthermore, we improve several aspects of RSC
significantly, such that SCAR is not only faster but also achieves
significantly better results in real-world experiments as shown in
Sec. 5. Fig. 2 gives an overview of our method SCAR and highlights
the most important steps that deviate from RSC. In the following,
we describe each step of our method in more detail. Algorithm 1
shows the corresponding pseudocode.

Step 1. We calculate the symmetric, weighted 𝑘NN graph G =

(V, E,𝑤) of the input data X (cf. line 1 in the pseudo-code). Each
data point 𝑥𝑖 ∈ X implies a node 𝑣𝑖 ∈ V , where |X| = |V| = 𝑛, i.e.,
there exists a bijective mapping 𝜙 : X → V . Further, E = {(𝑣𝑖 , 𝑣 𝑗) |
∀𝑣𝑖 , 𝑣 𝑗 ∈ V, 𝑖 ≠ 𝑗 : 𝑣𝑖 ∈ 𝑘𝑁𝑁 (𝑣 𝑗) ∨𝑣 𝑗 ∈ 𝑘𝑁𝑁 (𝑣𝑖)}, and the weight
of edges is defined by the Gaussian similarity function:

𝑤 (𝑣𝑖 , 𝑣 𝑗) = 𝑒𝑥𝑝

(︄
−||𝜙−1 (𝑣𝑖) − 𝜙−1 (𝑣 𝑗) | |2

2𝜎2

)︄
(7)

In our experiments, we use 𝜎 =
√︁
𝑛𝑑/2 per default. 𝑘NN graphs

are suitable to find clusters of arbitrary shapes and varying density.
Thus, when using spectral clustering, they are on most real world
datasets superior to fully connected graphs (FCG), 𝜖-neighborhood
graphs, or Gabriel Graphs [25]. Our evaluation in Sec. 5 supports
these findings. In contrast to RSC [7], we use a weighted 𝑘NN graph
and apply the Gaussian kernel to weight the edges, which gives

3034

more weight to closer points than to points farther away. This
further improves clustering results in general [40], as it offers more
information that can be relevant for clustering.

Step 2. As elaborated in [22], the unnormalized Laplacian is more
suitable than normalized versions to discern between clusters and
outliers resp. noise in the eigenspace, amplifying the difference
between corrupted and clean edges later. Thus, we calculate the
unnormalized graph Laplacian (line 4) as 𝐿 = 𝐷 −𝐴 based on G.

Step 3. We approximate the eigenvalues of 𝐿 with the Nyström
method as described in Sec. 3.2. Following [38], we use an adaptive
sampling approach, where we choose 𝛼 · 𝑛 points with the highest
degrees as landmarks (cf. line 6). As noise points are unlikely to
be nearest neighbors of nodes outside of their own neighborhood
(compare to, e.g., ideas of outlier detection algorithms ODIN [19]
or 𝑘NN-LOF [55]), their corresponding nodes in the 𝑘NN graph
tend to have lower degrees. As we sample the nodes with the high-
est degrees, potential losses regarding the set of edges concern
prevalently the noisy edges, we want to remove anyway. We then
approximate the first 𝑘 eigenvectors on 𝐿1 ∈ R(𝛼𝑛)×(𝛼𝑛) , which is a
small submatrix of 𝐿 ∈ R𝑛×𝑛 (see Equation 1). The resulting matrix
𝐻1˜ ∈ R𝛼𝑛×𝑘 contains the first 𝑘 approximated eigenvectors of 𝐿1.
The sampling of the submatrix is outlined in lines 7-10, whereas
line 11 shows the eigendecomposition. In line 12 the Nyström ex-
tension is carried out. In Sec. 5 we thoroughly investigate several
decomposition methods for computing the eigenpairs of 𝐿1. In the
following we work on �̃� ∈ R𝑛×𝑘 , as obtained by Eq. 3.

Step 4. We check in line 15 of the pseudo-code whether the trace
of �̃�𝑇

𝐿(𝐴𝑔)�̃� has decreased compared to the previous iteration.
The identification and extraction of corrupted edges in the graph is
described in Sec. 3.3 and follows the approach of RSC [7]. We apply
Equation 6 in line 19, i.e., 𝑝𝑖 𝑗 is calculated for all edges (𝑣𝑖 , 𝑣 𝑗) ∈
E. High values for 𝑝𝑖 𝑗 indicate a high dissimilarity between the
embeddings of nodes 𝑣𝑖 and 𝑣 𝑗 , even though the nodes are connected
by an edge. Thus, assigning an edge (𝑣𝑖 , 𝑣 𝑗) with a high value 𝑝𝑖 𝑗
to the noise component 𝐴𝑐 improves the clustering quality as the
edge is disregarded in the subsequent clustering step.

However, to ensure sparsity thresholds, bounds set with \ and𝑚
are respected [7]. The parameter \ prevents eliminating too many
edges required for reasonable clustering results by limiting the
maximum number of overall removable edges. The parameter𝑚
ensures a maximum local sparsity, i.e., each node keeps at least a
portion 𝑚 of its originally connected edges. In our experiments,
we use 𝑚 = 0.5 per default. If updates on the graph separation
still lead to quality improvements, we recalculate 𝐿 and approxi-
mate its eigendecomposition again with the Nyström method. We
alternatingly update 𝐴𝑔 in line 22 and �̃� until the trace cannot be
significantly lowered.

Step 5. As suggested by [7, 11, 16], we orthogonalize and norm
the first 𝑘 resulting approximated eigenvectors row-wise (cf. line
24) which increases clustering quality and stability:

�̄� [𝑖,:] =
�̃� [𝑖,:]

∥�̃� [𝑖,:] ∥2
(8)

Algorithm 1: SCAR Algorithm
Input: Dataset 𝑋 , user input 𝑘 , 𝑛𝑛, 𝛼 , \ ,𝑚
Output: Clustering containing assigned labels

1 𝐴← kNN_graph(𝑋 , 𝑛𝑛);
2 𝐴𝑔 ← 𝐴;
3 for 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4 𝐿 ← Laplacian(𝐴𝑔) ; // see Sec. 3.1

5 /* Nyström method */

6 𝑋𝑙 ← 𝛼 · |𝑋 | landmarks;
7 𝑖 ← indices_of(𝑋𝑙);
8 𝑗 ← indices_of(𝑋\𝑋𝑙);
9 𝐿1 ← 𝐿[𝑖, 𝑖];

10 𝐿2 ← 𝐿[𝑗, 𝑖];
11 𝐻1˜ ,Λ← eigendecomposition(𝐿1);
12 𝐻2˜ ← 𝐿2𝐻1˜ Λ−1 ; // see Equation 3

13 �̃� ← reassemble(𝐻1˜ , 𝐻2˜);
14 𝑡𝑟𝑎𝑐𝑒 ← sum(Λ);
15 if 𝑡𝑟𝑎𝑐𝑒 is minimal then
16 break;
17 end if
18 /* Removing corrupted edges */

19 𝑝𝑖, 𝑗 ← 𝑎𝑖, 𝑗 · ∥ℎ𝑖 − ℎ 𝑗 ∥22 ; // see Equation 6

20 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠 ← edges(argmax(𝑝), \ ,𝑚);
21 𝐴𝑐 ← matrix(𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠);
22 𝐴𝑔 ← 𝐴 −𝐴𝑐 ;
23 end for
24 �̄� ← row-wise_norm(�̃�);
25 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔← 𝑘_means++(rows(�̄�));

Step 6. In the last step (shown in line 25), we cluster the first
𝑘 rows of �̄� (that has the eigenvectors of 𝐴𝑔 as columns) with 𝑘-
Means++ [2]. 𝑘-Means++ improves the selection of initial cluster
centers for 𝑘-Means, leading to an earlier convergence and thus
further speed-up compared to traditional spectral clustering ap-
proaches using 𝑘-Means.

5 EVALUATION
In the following, we examine our method SCAR thoroughly. In
Sec. 5.1 we present our experimental setup. In Sections 5.2 and
5.3 we analyze SCAR’s clustering quality, noise robustness, effi-
ciency and scalability. In Sec. 5.4 we summarize SCAR’s clustering
and speed performance and regard their mutual dependencies. In
Sec. 5.5 we evaluate the improvements of SCAR over RSC and SC.
In Sec. 5.6 we evaluate the influence of various hyperparameters
and design choices. SCAR retained an excellent balance between
speed and quality over all experiments, while we refrained from
hiding experiments that did not deliver desirable results in order to
prevent overoptimism [8].

5.1 Experimental Setup
Datasets. In our evaluation, we use two synthetic datasets and ten
real-world benchmark dataset. Both synthetic datasets, moons and

3035

Table 1: Dataset properties used in the analysis.
dataset n d k noise [%]9 LB-UB [%]10

sy
n. moons 1,000 2 2 15

circles 1,000 2 2 15

re
al

iris 150 4 3 7 5-9
dermatology 366 33 6 9 4-14
banknote 1,372 4 2 2 0-4
pendigits16 1,499 16 2 1 0-2
pendigits146 2,279 16 3 1 0-2
pendigits 7,494 16 10 9 2-13
USPS 11,000 256 10 24 12-33
MNIST-10K 10,000 784 10 24 13-29
MNIST-20K 20,000 784 10 21 11-27
letters 20,000 17 26 46 20-61

circles, are constructed using data generator functions from the
scikit-learn library.

Real world benchmark datasets iris, dermatology, banknote, pendig-
its, and Letter Recognition (letters for short) were obtained from the
UCI- MLR1. MNIST and USPS were obtained from the repository of
the CS NYU 2. Similar to the work of [7], random subsamples were
selected for the MNIST dataset. For the pendigits dataset, specific
subsets pendigits16 and pendigits146 were defined as benchmark
datasets in the literature [7, 23, 35]. For dermatology we omit the
feature about the age of patients as the dataset is incomplete w.r.t
this feature. The data statistics are summarized in Tab. 1.
Competitors. We compare SCAR with standard Spectral Cluster-
ing (SC) [40]3, Robust Spectral Clustering (RSC) [7]4, normalized
SpectACl [21]5, and Density Core Finding (DCF) [50]6.
Implementation Details. SCAR is implemented in Python, build-
ing off of the implementation of RSC [7]6. We additionally use
the libraries scikit-learn, NumPy, Scipy and slepc4py/petsc4py 7.
Experiments were run on an Intel(R) Xeon(R) Silver 4208 CPU @
2.10GHz using 32GB RAM.
Code: available on GitHub 8

Hyperparameter Setting. For the synthetic datasets we use per
default 0.15 for the parameter 𝑛𝑜𝑖𝑠𝑒 that regulates the jitter. Note
that this value is significantly higher than the values applied in,
e.g., RSC [7]. We tune 𝛼 ∈ [0.1, 0.2, . . . , 0.9]. For every dataset, we
fix the parameter \ in all our experiments dataset-specific, where
\ ∈ {20, 30, 200, 500, 1𝑘, 10𝑘, 30𝑘, 60𝑘}. Following the rule-of-thumb
popularized by [14], we used 2

√
𝑛 as an upper bound for 𝑛𝑛 and

tested values in 10 percent steps for all methods, accordingly. For
a fair comparison to the competitor DCF, we also evaluated the
parameter 𝛽 used in their method in the range of [0.1, 0.2, . . . , 0.9]
to obtain best scores for the cluster metric.

1https://archive.ics.uci.edu/ml/index.php (retrieved: Feb 18, 2022)
2https://cs.nyu.edu/~roweis/data.html (retrieved: Feb 25, 2021)
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
(last accessed: Jul 14, 2022)
4https://github.com/abojchevski/rsc(last accessed: Jul 14, 2022)
5https://bitbucket.org/Sibylse/spectacl/src/master/ (last accessed: Jul 14, 2022)
6https://github.com/tobinjo96/DCFcluster (last accessed: Jul 14, 2022)
7https://slepc.upv.es/documentation/ (last accessed: Jul 14, 2022)
8https://github.com/SpectralClusteringAcceleratedRobust/SCAR.git

Figure 3: Summary of NMI obtained with SCAR depending
on 𝑛𝑛 and 𝛼 for all datasets.

5.2 Clustering Quality
Clustering quality is measured using the Normalized Mutual In-
formation (NMI) [48] and Adjusted Rand Index (ARI) scores, which
range from 0 to 1. Higher values imply a better accordance to the
ground truth. Following the suggestion of [44], ARI should be used
when the reference clustering has large equal sized clusters; scores
based on mutual information should be used when the reference
clustering is unbalanced and there exist small clusters. In the fol-
lowing, we run all experiments for 10 trials and report the average
clustering scores per parameter setting if not stated otherwise.

5.2.1 Effectiveness.
In Tab. 2 on the left, we summarize the best NMI and ARI scores
evaluated on each dataset. In order to obtain the best outcomes for
9for synth. datasets noise is added in the sklearn function as standard deviation of
Gaussian noise, for real datasets, noise is measured as ratio of inter-cluster edges vs.
total edges in the 𝑘-Graph for all tested 𝑛𝑛
10LB = noise lower bound, UB = noise upper bound

3036

https://archive.ics.uci.edu/ml/index.php
https://cs.nyu.edu/~roweis/data.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://github.com/abojchevski/rsc
https://bitbucket.org/Sibylse/spectacl/src/master/
https://github.com/tobinjo96/DCFcluster
https://slepc.upv.es/documentation/
https://github.com/SpectralClusteringAcceleratedRobust/SCAR.git

Table 2:Maximum clustering quality reached, measured by normalized mutual information (NMI) scores and adjusted rand index (ARI), as well as minimum runtimes (in
seconds) reached for best NMI scores and overall. Best/Second-best results are bold/underlined. Values regarded closer in the text are marked in red for faster readability.

max NMI ARI min runtime of best NMI (min runtime overall)
dataset SC RSC DCF SpectACl SCAR SC RSC DCF SpectACl SCAR

sy
n. moons 0.43 0.72 0.43 0.72 0.91 0.96 0.88 0.98 0.92 0.96 0.15 (0.11) 0.19 (0.14) 0.14 (0.13) 0.11 (0.08) 0.06 (0.03)

circles 0.00 0.00 0.19 0.08 0.33 0.16 0.79 0.86 0.50 0.57 0.13 (0.11) 0.32 (0.20) 0.09 (0.07) 0.07 (0.06) 0.05 (0.03)

re
al

iris 0.82 0.83 0.81 0.75 0.77 0.75 0.76 0.73 0.84 0.85 0.03 (0.02) 0.04 (0.04) 0.08 (0.06) 0.06 (0.04) 0.03 (0.02)
dermatology 0.93 0.91 0.93 0.92 0.91 0.88 0.88 0.88 0.89 0.89 0.03 (0.03) 0.09 (0.05) 0.09 (0.08) 0.08 (0.08) 0.05 (0.04)
banknote 0.61 0.62 0.61 0.62 0.62 0.62 0.02 0.03 0.86 0.90 0.16 (0.15) 0.35 (0.19) 0.11 (0.09) 0.10 (0.10) 0.12 (0.03)
pendigits16 0.92 0.95 0.90 0.94 0.78 0.76 0.22 0.10 0.90 0.94 0.26 (0.18) 0.37 (0.21) 0.13 (0.12) 0.17 (0.14) 0.13 (0.08)
pendigits146 0.95 0.96 0.96 0.97 0.87 0.86 0.70 0.58 0.95 0.97 0.41 (0.41) 0.87 (0.69) 0.29 (0.26) 0.29 (0.29) 0.27 (0.17)
pendigits 0.81 0.67 0.82 0.67 0.84 0.76 0.74 0.59 0.82 0.76 3.88 (2.94) 8.25 (4.05) 0.96 (0.80) 2.09 (1.73) 2.68 (1.38)
USPS 0.65 0.46 0.68 0.45 0.60 0.31 0.58 0.42 0.63 0.48 22.22 (22.22) 10.33 (9.70) 55.42 (54.89) 4.00 (3.86) 4.59 (3.18)
MNIST-10K 0.67 0.50 0.74 0.55 0.59 0.45 0.62 0.50 0.61 0.44 36.29 (36.29) 10.49 (10.49) 114.03 (111.82) 5.00 (4.91) 7.34 (4.41)
MNIST-20K 0.68 0.51 0.76 0.55 0.62 0.49 0.63 0.49 0.60 0.52 244.87 (244.87) 46.45 (31.39) 444.92 (385.94) 21.18 (21.18) 38.83 (21.18)
letters 0.42 0.16 0.42 0.13 0.56 0.17 0.38 0.12 0.46 0.22 418.02 (62.48) 38.29 (38.29) 8.94 (8.91) 13.88 (12.99) 19.06 (10.84)

Avg. 0.65 0.60 0.68 0.61 0.70 0.59 0.6 0.52 0.74 0.70 60.53 (30.81) 9.67 (7.95) 52.1 (46.93) 3.91 (3.78) 6.10 (3.44)

each dataset and each method, we applied a grid-search over the
respective parameter spaces as outlined in Sec. 5.1. The dependence
of NMI’s on the number of neighbors 𝑛𝑛 can be seen in Fig. 4. We
discuss the runtimes shown in the right part of Tab. 2 – also in
combination with the quality of the clusterings – in Sec. 5.3 and
analyze influence of hyperparameter settings in Sec. 5.6.

SCAR reaches on average the best NMI/ARI scores while those
results were reached on average with the second best runtime of
all tested algorithms. SCARs average runtime is approximately
an order of magnitude faster compared to the original standard
spectral clustering algorithm (SC) and DCF. SCAR always returns
clusterings of solid quality, in contrast to, e.g., SpectACl, which is
not able to find an acceptable clustering for the datasets banknote
or subsets of the pendigits dataset (marked in red in Tab. 2, see
also Fig. 4). Second best values were often reached by SC, which
is, however, not designed to reach fast runtimes. SC’s good results
on our benchmark datasets confirm the high potential of spectral
methods for high-quality clustering results. Further, we observe
that SCAR can handle highly noisy datasets like moons, where SC
as well as RSC could not correctly detect the clusters, reaching
NMIs (ARIs) of only 0.43 (0.72). We regard the sensitivity of all
methods w.r.t. the parameter 𝑛𝑛 in Fig. 4. Where most methods are
rather robust w.r.t. the parameter 𝑛𝑛, their default settings may not
be optimal: in Fig. 1, we applied all algorithms’ default parameter
settings on the moons dataset. Here, none of our competitors could
find the clusters correctly. In contrast, we optimized parameter
settings w.r.t. the NMI/ARI via a grid search for Tab. 2. Furthermore,
we perceived the banknote dataset as an interesting case, as SCAR
significantly surpassed its competitors. SpectACl, e.g., was not able
to produce anymeaningful clustering results over a variety of tested
parameter settings, reaching a maximum NMI (ARI) of 0.02 (0.03).
All other competitors reached NMI/ARI scores around 0.62. The
banknote dataset contains 4-dimensional representations of forged
and authentic banknotes. Its clusters overlap in all dimensions,
making its similarity graph highly noisy. Thus, the advantages of
SCAR’s noise robustness can be seen here, yielding an outstanding
NMI (ARI) of 0.86 (0.90) for our method.

Even though SCAR yields very good results for most datasets,
we still see room to further improve clustering results on high-
dimensional datasets in future work. Especially, performance on
datasets emerging from pixel-data (USPS and MNIST versions)
could benefit from applying feature weighting approaches as out-
lined in Sec. 2. Tab. 2 shows that despite their different strengths,
the clustering metrics do not differ much in how the investigated
methods compare. Thus, only NMI is reported in the following as
the default metric.

5.2.2 Robustness against Noise.
To evaluate SCAR’s robustness against noise, we fix the parame-
ter settings for 𝑛𝑛 and 𝛼 , and only modify the amount of jitter in
the range of [0.0, 0.05, 0.1, . . . , 0.03] on the moons dataset. The left
graph in Fig. 5 shows that SCAR consistently outperforms other
models on the moons dataset for high noise levels (𝑛𝑜𝑖𝑠𝑒 > 0.2).
The NMIs of most comparative methods drop heavily for noise
values over 0.1, resp., 0.2. Qualitative results can also be seen in
Fig. 1, where SCAR is the only method able to correctly discern the
two moons for a comparably high noise level of 𝑛𝑜𝑖𝑠𝑒 = 0.15. The
right graph in Fig. 5 gives all runtimes in seconds. SCAR shows an
almost constant runtime over different levels for 𝑛𝑜𝑖𝑠𝑒 . For RSC we
observe higher runtimes as the eigendecomposition on the whole
Laplacian is computed in each iteration. Notably, DCF also shows
increased runtimes for low noise values due to higher densities
within the clusters. The efficiency of our model evaluated on differ-
ent benchmark datasets is further discussed in the next section.

Similar to [7], we also examine the robustness against noisy
edges: We generated Gaussian distributed clusters (blobs) and ver-
sions of the moons datasets where we added “corrupted” edges to
the associated 𝑘NN graph. I.e., we added edges between nodes of
different clusters using the planted-partition model. Intra-cluster
edges were created with a probability of 30% and we added noise
edges s.t. 10%, resp., 20% of all edges in the 𝑘NN graph were cor-
rupted. We evaluate the precision 𝑝 = |E𝑐 ∩ E𝑟 |/|E𝑐 | and recall
𝑟 = |E𝑐 ∩ E𝑟 |/|E𝑟 |, where E𝑐 is the set of corrupted edges and E𝑟
is the set of edges removed by SCAR. In contrast to [7], we also
regard the effect of removing corrupted edges on the clustering

3037

Figure 4: Comparison of NMI of all methods with their best
parameter settings on all datasets depending on 𝑛𝑛.

quality.Figures 6a and 6b show precision and recall of the detected
corrupted edges, as well as the achieved NMIs of RSC and SCAR for
increasing \ . Even though precision and recall – implying the qual-
ity of detecting corrupted edges – of SCAR’s results are lower than
for RSC, this does not affect the overall clustering quality. Instead,
the constant NMI scores, while increasing \ for both cases (10% and
20% added noise edges), indicate that corrupted edges do not affect
the obtained clustering quality for Gaussian distributed clusters.
Figures 6c and 6d imply that this is different for moons datasets.
Here, SCAR surpasses RSC w.r.t. precision and recall on both noise
settings throughout almost all tested values for \ . In contrast to

Figure 5: NMI scores (left) and runtime in [s] (right) for𝑛𝑜𝑖𝑠𝑒 ∈
[0, . . . , 0.3] in 0.02 steps on moons dataset.

(a) 10% artificial noise edges added to blobs

(b) 20% artificial noise edges added to blobs

(c) 10% artificial noise edges added to moons

(d) 20% artificial noise edges added to moons

Figure 6: Precision and recall (left) and NMI (right) for 10% or
20% artificial noise edges added to blobs (n=1000, k=20) resp.
moons averaged over random_state=[0 − 9].

the Gaussian distributed clusters, for the moons dataset, removing
corrupted edges enables a higher clustering quality: The NMIs of
SCAR are significantly higher than the NMIs for RSC throughout
all tested values for \ . Fig. 6 shows that SCAR surpasses RSC in the

3038

detection of corrupted edges exactly where these corrupted edges
impede a high quality clustering by connecting hard-to-distinguish
clusters.

5.3 Runtime Analysis
In this section, we evaluate our model’s runtime. In Sec. 5.3.1, we
provide a general overview of SCAR’s efficiency compared to state-
of-the-art methods. We perform scalability experiments in Sec. 5.3.2
and regard the complexity in Sec. 5.3.3

5.3.1 Efficiency.
Tab. 2 shows on the right the minimum runtime in seconds for the
trials with the highest NMI scores as well as the minimum runtime
of all tested parameter settings in brackets. We observe that SCAR
yields its best results w.r.t. the NMI almost always as the fastest or
second fastest algorithm. SCAR can generally provide faster results
than standard SC. The speed-up, in particular, increases with larger
datasets. Only on the quite small dermatology dataset, SCAR runs
0.02 seconds longer than SC. The highest speed-up is reached on the
letters dataset, where SCAR is more than 20 times faster than SC,
while simultaneously increasing the NMI by 10%. Using a similar
design and notion of noise as RSC, it is noteworthy that we surpass
RSC w.r.t the runtime on every tested dataset. Note also, that RSC
already accelerates the eigendecomposition by leveraging IRLM.
We reach amaximum acceleration factor of 6.4 in relation to RSC for
the heavily noisy circles dataset, where we simultaneously improve
the clustering quality from an NMI (ARI) of 0.19 (0.08) to 0.50 (0.57).
For further runtime comparisons with RSC and SC, see Sec. 5.5.2.
Even though DCF shows fast runtimes as well as good clustering
results for most datasets, it cannot reach acceptable runtimes on
high-dimensional datasets like USPS or MNIST variations (marked
in red). Whereas experiments on lower-dimensional datasets show
comparable runtimes in the same order of magnitude for all algo-
rithms, DCF needs on these three high-dimensional datasets more
than ten times longer than SCAR. Further investigations on the
dependence of all algorithm’s runtimes can be found in Sec. 5.3.2.
SpectACl shows, similar to SCAR, good runtimes for its best results,
but mostly returns significantly worse clustering results. Especially
SpectACl’s performance on the datasets banknote and the first two
pendigits versions (marked in red) is of surprisingly low quality.

For some parameter settings, algorithms may have significantly
lower runtimes than for others. E.g., for a small number of nearest
neighbors 𝑛𝑛, the respective nearest neighbors graph has less edges,
and thus, most operations performed on it are faster. Analyzing
the values in brackets in Tab. 2, we see the best runtimes over all
tested parameter settings that can be reached for each experiment
and each algorithm. I.e., in contrast to the runtimes regarded in the
last paragraph, where we optimized parameter settings for a high
NMI, we now optimize parameter settings for a low runtime. Also
here, SCAR reaches most often the fastest runtimes. We note, that
even for the most suitable parameter settings, DCF cannot achieve
an acceptable runtime on high-dimensional datasets like USPS and
MNIST variations (marked in red).

We observed that for all datasets, the minimum runtime for the
best NMI results were usually close to the respective minimum
runtime over all tested settings. More precisely, most of them were
at maximum twice as high as the fastest runtime for the respective

Figure 7: NMI scores (left) and runtime in seconds (right). Top:
Moons dataset (noise=0.15) with varying 𝑛. Bottom: Blobs
dataset (n=1000, k=20, random_state=None) with varying 𝑑 .

algorithm. This supports the idea that the model has a stronger
influence on its runtime than the selected parameter setting.

In conclusion, we found that SCAR is stable in its anticipated
clustering quality and yields good results at high speed.

5.3.2 Scalability on Synthetic Datasets.
Fig. 7 shows the scalability of our approach on the moons and blobs
datasets, with a fixed noise of 0.15 for moons and a default cluster
standard deviation of 1.0 for blobs. On the former, we scale the
number of data points in the range [100, . . . , 50𝑘]. On the latter,
we scale the number of features [2, . . . , 50𝑘]. The number of neigh-
bors that are taken into account for the construction of the 𝑘NN
graph is set to 𝑛𝑛 =

√
𝑛 in both experiments, where 𝑛 denotes the

number of data samples. All other parameters are frozen. The left
diagrams show the obtained NMI scores, and the right diagrams
show the elapsed time for all evaluated methods. On the moons
dataset, SCAR’s scalability oupterforms RSC and SC w.r.t. both,
computational time as well as obtained NMI scores for increasing
sample size. For smaller datasets, our approach also shows superior
performance compared to DCF, which cannot be maintained for
increasing the sample-size. However, DCF’s runtimes deteriorate
for higher dimensionalities, as can be seen in the lower part of
Fig. 7 (note the log-scale). SCAR’s runtime stays almost linear
in the number of features. In Fig. 8, DCF’s unfortunate runtime
behavior w.r.t. the dimensionality can also be observed on larger
real-world datasets with higher dimensionality. While DCF yields
low runtimes for large datasets if they are low-dimensional, e.g., for
letters, its runtime tremendously increases on USPS, MNIST-10K
and MNIST-20k.

5.3.3 Complexity Analysis.
Having the same fundamental structure as RSC, we refer for our
complexity analysis on the explanations of [7], showing a runtime
approximately linear in the number of edges. In the following, we
elaborate on the differences between SCAR and RSC that potentially
influence the complexity (see also Fig. 2). In Step (1), we calculate
the weighted 𝑘NN graph in contrast to the unweighted 𝑘NN graph

3039

for RSC and apply a Gaussian kernel on the edge weights. These
changes do not increase the runtime complexity, as all edges of
the 𝑘NN graph are accessed in both approaches. In Step (3), [7]
use the power iteration for the eigendecomposition. We reduce
the runtime by using the Nyström method, see Sec. 3.2. In Step
(5), we normalize the rows of the approximated, cleansed matrix
�̃� ∈ R𝑛×𝑘 , where �̃� contains the first 𝑘 vectors that are needed
for the subsequent clustering step. Usually, we have 𝑘 ≪

√
𝑛, s.t.

the complexity is not increased when working on a 𝑘NN graph
(containing approximately O(𝑛

√
𝑛) edges [39]). Overall, we reach

a similar complexity as RSC, which is approximately linear in the
number of edges, while improving the runtime. Our experiments
in Sec. 5.3 confirm the improved runtime w.r.t. RSC.

5.4 Effectiveness and Efficiency
Fig. 8 summarizes the models’ performances on the various datasets,
where the x-axis shows the runtime and the y-axis shows the clus-
tering scores. Optimal results are located in the upper left reflecting
a high NMI score reached within a short amount of time. We show
only the best runs of all methods to reduce visual clutter, i.e., only
runs that yielded at least 75% of the best NMI score reached by the
respective method are shown as single dots. On the highly noisy
moons dataset, SCAR’s robustness and efficiency dominates the
other methods in terms of both, clustering performance and run-
time. On small real-world datasets (iris, dermatology, banknotes and
the pendigits variations), SCAR is highly competitive with other
state-of-the-art models w.r.t. NMI and runtime. As all tested meth-
ods have runtimes under one second for all smaller datasets, larger
datasets are more expressive for runtime analyses. Thus, we regard
in the following (as well as in Fig. 10) the datasets with more than
5000 points (pendigits, USPS, MNIST versions and letters) when
investigating runtimes. We note that SCAR is comparably fast on
these datasets and reaches low runtimes with a comparably low
variance. For the low-dimensional datasets pendigits and letters,
DCF is even faster than SCAR, but for higher-dimensional datasets
(USPS and MNIST versions) advantages of using any of the newer
spectral clustering approaches become clear, as DCF’s runtime does
not scale with the dimensionality. In summary, Fig. 8 demonstrates
that SCAR nearly always outperforms its competitors in either run-
time, clustering quality, or both and particularly highlights SCAR’s
reliability.

5.5 Improvements over RSC and SC
In the following, we examine the improvements of SCAR over RSC
and the original Spectral Clustering algorithm (SC) in more detail.
Sec. 5.5.1 regards the single components that differentiate SCAR
from RSC as well as their functional interaction. Sec. 5.5.2 regards
runtime improvements over RSC.

5.5.1 Effectiveness Improvements of SCAR over RSC and SC.
Fig. 9 shows NMIs on the highly noisy moons dataset for various
settings for 𝑛𝑛 and different methods: on the left, we compare RSC
with a straight-forward Nyström-accelerated version of RSC and
our method SCAR. On the right, we perform an ablation study w.r.t.
the changes between RSC and SCAR. (We condense the results
by setting 𝛼 to our recommended default value 𝛼 = 0.7). The left
part of the figure shows that a simple speed-up of RSC would lead

Figure 8: Runtimes and NMIs of all experiments that reached
at least 75% of each method’s respective best NMI.

to significantly worse results, whereas SCAR drastically improves
the results of RSC. On the right, we can see that each of SCAR’s
components is chosen meaningfully, leading to an improvement of
quality that is reached by the elaborated combination of concepts
rather than any single adaption. We regarded the reasons for the
individual components in Sec. 4 and explain their impacts and
synergies in the following. Using an unweighted graph can deliver
good results on the moons dataset, if exactly the right number for
𝑛𝑛 is chosen (i.e., such that only very few corrupted edges exist).
However, as seen in the first line of Fig. 9 on the right, this leads to a
strong and unpredictable dependence on guessing a good value for
𝑛𝑛. Weighting the edges also allows for a moremeaningful sampling
of the edges for the Nyström method with the adjusted sampling
method we apply: as corrupted edges connect nodes of different

3040

Figure 9: Ablation study of SCAR’s NMI performance on
moons (avg. over 10 random instantiations) depending on 𝑛𝑛

and for fixed 𝛼 = 0.7. Dark colors imply better NMI scores.

clusters (and distances between clusters are larger than distances
inside clusters) they tend to be longer than non-corrupted edges.
Applying the Gaussian kernel for calculating the edges’ weights,
this leads to smaller degrees of nodes connected by corrupted edges.
Thus, sampling the nodes with higher degrees allows to sort out
corrupted edges (compare with line 3 on the right of Fig. 9). Using
an unnormalized Laplacian further enhances the distinguishability
between corrupted and non-corrupted edges [22] in the eigenspace,
reinforcing the positive effects of our adjusted sampling method
heavily (see line 2 on the right of Fig. 9). Small perturbances in
the data can be compensated by normalizing the rows [16]. That
accounts for jitter and pushes points of a cluster even closer in
eigenspace, which robustifies the adapted sampling step and further
improves the clustering (line 4 on the right of Fig. 9).

5.5.2 Efficiency Improvements over RSC and SC.
Fig. 10 shows SCAR’s substantial runtime accelerations over RSC
depending on their parameter settings on four larger benchmark
datasets (where 𝑛 ≥ 5000, resp., 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 > 1𝑠). In Fig. 8, runtimes
and their respective NMIs are shown for all methods. In particular
for larger datasets, SCAR nearly always outperforms SC and RSC
regarding runtime significantly. A more thorough discussion on the
proper choice of hyperparameters 𝛼 and 𝑛𝑛 is given in Sec. 5.6.1.

5.6 Hyperparameter Tuning
In this section we examine the influence of various parameter set-
tings on our model’s performance. In Sec. 5.6.1, we examine the
portion 𝛼 denoting the number of landmarks chosen for the Nys-
tröm subsample and the number of nearest neighbors 𝑛𝑛 for the
construction of the 𝑘NN graph. In Sec. 5.6.2, we evaluate the perfor-
mance of various decomposition methods on the sampled submatrix
and how the clustering quality and computational time depends on
different configurations. In Sec. 5.6.3, we investigate the influence
of the parameter \ on the models’ performances of SCAR and RSC.

5.6.1 Number of Landmarks and Number of Neighbors.
In Fig. 3, we show the NMI scores for all tested datasets depending
on 𝑛𝑛 and 𝛼 , where darker, resp. lighter, colors reflect higher, resp.
lower, NMI scores. For a more thorough analysis of the impact of
the number of neighbors, we use 2

√
𝑛 as an upper bound for 𝑛𝑛 [14].

We see that the choice for 𝑛𝑛 and 𝛼 has a strong effect on the clus-
tering quality: The quality of smaller datasets depends more heavily

Figure 10: Summary of time ratios SCAR / RSC depending on
𝑛𝑛 and 𝛼 for large real world datasets. Lighter colors imply
better (i.e., faster) results for our method SCAR.

on a proper choice of 𝛼 compared to larger datasets. Our experi-
ments show that a higher amount of landmarks improves clustering
results. Furthermore, the illustration reveals that on larger datasets,
the performance is improved whenever the 𝑘NN graph retains its
sparse nature, i.e., by lowering the amount of 𝑛𝑛. This effect also
heavily improves the efficiency of our proposed method as dis-
cussed in Sec. 5.3.1. On USPS, as well as on the MNIST datasets, we
observe higher peaks for lower values of 𝑛𝑛. On smaller datasets, it
is more likely that the 𝑘NN graph connects samples from distinctive
cluster, i.e., the graph contains misleading information. Comparing
iris and dermatology, we found that for the latter, it is more favor-
able to choose a smaller 𝑛𝑛 to identify the six clusters properly,
whereas on iris, with three clusters, we can choose higher values
without mingling the information of separate clusters. Per default,
we suggest to use values 𝛼 = 0.7 and 𝑛𝑛 =

√
𝑛.

While good clustering results are a prerequisite for useful clus-
tering algorithms, SCAR’s major benefit is its runtime accelera-
tion. Fig. 10 summarizes obtained runtime quotients of SCAR com-
pared to RSC for four large real-world datasets and their depen-
dence on 𝑛𝑛 and 𝛼 . We only display the larger datasets here, as
they require runtimes for RSC ≫ 1𝑠 (see Table 2), and therefore
an acceleration analysis is more meaningful. The values in each
heatmap depict the ratio of runtimes between SCAR and RSC, i.e.,
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (𝑆𝐶𝐴𝑅)/𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (𝑅𝑆𝐶). Consequently, smaller values in-
dicate faster runtimes of SCAR compared to RSC. The effect and
strength of the Nyström method can be observed for all larger
datasets. By sampling only a submatrix in order to approximate
the spectrum as a whole, we observe a performance boost com-
pared to RSC. The impact of the choice of 𝛼 is shown on the y-axis,
whereas the effect of 𝑛𝑛 is shown on the x-axis. The experiments
show that SCAR has significantly lower runtimes than RSC even for
high values of 𝛼 , further supporting our quite high recommended
choice for 𝛼 = 0.7. For larger values of 𝑛𝑛 SCAR’s speed-up be-
comes even clearer: Larger 𝑛𝑛 lead to more edges in the 𝑘NN graph
and therefore more acceleration potential for SCAR over RSC as
the graph is more dense. Fig. 4 indicates that SCAR’s clustering
results are relatively robust against the choice of 𝑛𝑛. Thus, SCAR’s
runtime improvements over RSC do not have a negative effect on
its clustering performance.

3041

5.6.2 Decomposition of Submatrix.
In the following, we evaluate commonly used decomposition meth-
ods on the sampled submatrix of the Nyström Approximation ex-
plained in Sec. 3.2. Fig. 11 shows the highest observed NMI scores
(left) within 10 trials as well as the respective runtimes (right) with a
fixed value of 𝑛𝑛 for each dataset. As the submatrix in the Nyström
method is symmetric, we apply the Implicitly Restarted Lanczos
Method (IRLM) which is based on power iterations and has also
been used in [7] as decomposition heuristic. Additionally, we eval-
uate variants of IRLM with -Shift applying a shift-inversion on the
spectrum to transform the smallest eigenvalues to be the highest,
and -BE for which eigenvalues are approximated from both ends
of the spectrum. For the latter, [41] showed, that approximating
eigenpairs from both ends of the spectrum can speed-up the con-
vergence. We also evaluate a standard QR decomposition, as well as
the Krylov-Schur decomposition as proposed by [47].11 Empirically,
all decomposition methods yielded similar qualitative results w.r.t
the NMI score. Examining the runtimes on smaller datasets, we
observe a slight overhead in the computation of the shifting oper-
ation for IRLM-Shift, as well as in applying a sampling from both
ends of the spectrum. On larger datasets, this effect flattens out and
the Krylov-Schur decomposition that is optimized towards large,
sparse matrices shows a marginal benefit for larger 𝛼 values. In
our experiments we used the standard IRLM as default heuristic for
the computation of the eigenpairs as it showed competitive results
over the full range of the tested datasets.

5.6.3 Influence of Parameter \ .
In Fig. 12, we evaluate the influence of parameter \ on the clus-
tering’s quality and runtimes for SCAR and RSC [7]. As argued in
Sec. 5.6.1, we fix 𝑛𝑛 to 𝑛𝑛 =

√
𝑛. We scale the number of expected

corruptions in the dataset logarithmically: \ ∈ [10, 100, 1𝑘 , 10𝑘].
On the moons dataset, our approach outperforms RSC almost over
the full range of chosen \ whilst drastically reducing the computa-
tional time as shown on the right. Generally, increasing the sparsity
threshold might lead to a clearer separation, however, the cluster-
ing quality suffers for very large values as clean edges might be
attached to the corrupted graph 𝐴𝑐 .

6 CONCLUSION
We introduced SCAR, a novel robust and efficient clustering method.
It elucidates the benefits from Robust Spectral Clustering [7] en-
hanced by the Nyström method for an accelerated computation
of the eigendecomposition. We reduced the sensitivity to noisy
input data as well as the runtime complexity compared to standard
Spectral Clustering significantly. In a thorough experimental study,
we compare SCAR’s clustering quality with state-of-the-art mod-
els showing highly competitive results on real-world benchmark
datasets, as well as its robustness against noise on artificial data. We
evaluated robustness w.r.t. noisy edges in the similarity graph of the
data as well as robustness w.r.t. jitter in the original data, tackling
the two most difficult types of noise for clustering. SCAR consis-
tently yielded low runtimes, in particular it is significantly faster
than RSC and SC, while returning highly competitive clustering
qualities on real-world and synthetic data. SCAR is recommendable
11We use state-of-the-art libraries, where IRLM and its variants are implemented in
ARPACK, QR in LAPACK, and krylov-schur as part of SLEPc/PETSc

(a) synthetic data - moon

(b) real data - Iris

(c) real data - Letter Recognition

Figure 11: Avg. NMI scores (left) and runtimes (right) for
decomposition methods IRLM, IRLM-Shift, IRLM-BE, QR
and krylov-schur on different datasets.

Figure 12: NMI scores (left) and runtime in [s] (right) for
\ ∈ [10, 100, 1𝑘, 10𝑘] on moons dataset (noise=0.15).

when looking for a reliable, fast and robust clustering method on
large and high-dimensional datasets that tend to be noisy.

ACKNOWLEDGMENTS
This work has been partially funded by VILLUM FONDEN, the
Technical University of Munich’s Institute for Ethics in Artificial
Intelligence (IEAI) and the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A. The authors of
this work take full responsibilities for its content.

3042

REFERENCES
[1] Walter Edwin Arnoldi. 1951. The principle of minimized iterations in the solution

of the matrix eigenvalue problem. Quarterly of applied mathematics 9, 1 (1951),
17–29.

[2] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful
seeding. Technical Report. Stanford.

[3] Francis Bach and Michael Jordan. 2004. Learning spectral clustering. Advances
in neural information processing systems 16, 2 (2004), 305–312.

[4] Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh.
2011. Noise thresholds for spectral clustering. Advances in Neural Information
Processing Systems 24 (2011).

[5] Anna Beer, Ekaterina Allerborn, Valentin Hartmann, and Thomas Seidl. 2021.
KISS-A fast kNN-based Importance Score for Subspaces. In EDBT. 391–396.

[6] Serge Belongie, Charless Fowlkes, Fan Chung, and Jitendra Malik. 2002. Spectral
partitioning with indefinite kernels using the Nyström extension. In European
conference on computer vision. Springer, 531–542.

[7] Aleksandar Bojchevski, Yves Matkovic, and Stephan Günnemann. 2017. Robust
Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves La-
tent Embeddings. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 737–746.

[8] Anne-Laure Boulesteix. 2015. Ten simple rules for reducing overoptimistic
reporting in methodological computational research. PLoS Computational Biology
11, 4 (2015), e1004191.

[9] Eamonn Cahill, Alan Irving, Christopher Johnston, James Sexton, Ukqcd Col-
laboration, et al. 2000. Numerical stability of Lanczos methods. Nuclear Physics
B-Proceedings Supplements 83 (2000), 825–827.

[10] Xiaojun Chen, Weijun Hong, Feiping Nie, Dan He, Min Yang, and Joshua Zhexue
Huang. 2018. Spectral clustering of large-scale data by directly solving normal-
ized cut. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1206–1215.

[11] Anna Choromanska, Tony Jebara, Hyungtae Kim, Mahesh Mohan, and Claire
Monteleoni. 2013. Fast Spectral Clustering via the Nyström Method. In Interna-
tional Conference on Algorithmic Learning Theory. Springer, 367–381.

[12] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. 2004. Kernel k-means: spec-
tral clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining. 551–556.

[13] Petros Drineas and Michael W Mahoney. 2005. Approximating a gram matrix for
improved kernel-based learning. In International Conference on Computational
Learning Theory. Springer, 323–337.

[14] Richard O. Duda, Peter E. Hart, and David G. Stork. 2001. Pattern Classification
(2 ed.). Wiley, New York.

[15] Thomas Ericsson and Axel Ruhe. 1980. The spectral transformation Lanczos
method for the numerical solution of large sparse generalized symmetric eigen-
value problems. Math. Comp. 35, 152 (1980), 1251–1268.

[16] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. 2004. Spectral
grouping using the Nyström method. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 2 (2004).

[17] Alex Gittens and Michael Mahoney. 2013. Revisiting the nystrom method for
improved large-scale machine learning. In International Conference on Machine
Learning. PMLR, 567–575.

[18] Stephan Günnemann, Ines Färber, Sebastian Raubach, and Thomas Seidl. 2013.
Spectral subspace clustering for graphs with feature vectors. In 2013 IEEE 13th
International Conference on Data Mining. IEEE, 231–240.

[19] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. 2004. Outlier detection using
k-nearest neighbour graph. In Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., Vol. 3. IEEE, 430–433.

[20] Bruce Hendrickson and Robert W. Leland. 1995. A Multi-Level Algorithm For
Partitioning Graphs. Supercomputing ’95: Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing (CDROM) (1995), 1–14.

[21] Sibylle Hess, Wouter Duivesteijn, Philipp Honysz, and Katharina Morik. 2019.
The SpectACl of nonconvex clustering: a spectral approach to density-based
clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3788–3795.

[22] Desmond J Higham and Milla Kibble. 2004. A unified view of spectral clustering.
University of Strathclyde mathematics research report 2 (2004).

[23] Hao Huang, Shinjae Yoo, Hong Qin, and Dantong Yu. 2011. A robust clus-
tering algorithm based on aggregated heat kernel mapping. In 2011 IEEE 11th
International Conference on Data Mining. IEEE, 270–279.

[24] Ling Huang, Donghui Yan, Nina Taft, and Michael Jordan. 2008. Spectral cluster-
ing with perturbed data. Advances in Neural Information Processing Systems 21
(2008).

[25] Tülin Inkaya. 2016. A Parameter-Free Similarity Graph for Spectral Clustering.
Expert Syst. Appl. 42, 24 (dec 2016), 9489–9498. https://doi.org/10.1016/j.eswa.
2015.07.074

[26] Hongjie Jia, Shifei Ding, Hong Zhu, Fulin Wu, and Lina Bao. 2013. A Feature
Weighted Spectral Clustering Algorithm Based on Knowledge Entropy. J. Softw.
8, 5 (2013), 1101–1108.

[27] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[28] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. 2009. Sampling techniques
for the nystrom method. In Artificial Intelligence and Statistics. 304–311.

[29] Cornelius Lanczos. 1950. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. United States Governm. Press
Office Los Angeles, CA.

[30] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. 2002. Truth revelation
in approximately efficient combinatorial auctions. Journal of the ACM (JACM)
49, 5 (2002), 577–602.

[31] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. 1998. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods. SIAM.

[32] Mu Li, James Tin-Yau Kwok, and Baoliang Lu. 2010. Making large-scale Nyström
approximation possible. In ICML 2010-Proceedings, 27th International Conference
on Machine Learning. 631.

[33] Mu Li, Xiao-Chen Lian, James T Kwok, and Bao-Liang Lu. 2011. Time and space
efficient spectral clustering via column sampling. In CVPR 2011. IEEE, 2297–2304.

[34] Xi Li, Weiming Hu, Chunhua Shen, Anthony Dick, and Zhongfei Zhang. 2014.
Context-Aware Hypergraph Construction for Robust Spectral Clustering. IEEE
Transactions on Knowledge and Data Engineering 26, 10 (2014), 2588–2597. https:
//doi.org/10.1109/TKDE.2013.126

[35] Zhenguo Li, Jianzhuang Liu, Shifeng Chen, and Xiaoou Tang. 2007. Noise robust
spectral clustering. In 2007 IEEE 11th International Conference on Computer Vision.
IEEE, 1–8.

[36] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[37] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[38] Mahesh Mohan and Claire Monteleoni. 2017. Exploiting sparsity to improve the
accuracy of Nyström-based large-scale spectral clustering. In 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE, 9–16.

[39] Prakash Nadkarni. 2016. Chapter 10 - Core Technologies: Data Mining and “Big
Data”. In Clinical Research Computing, Prakash Nadkarni (Ed.). Academic Press,
187–204. https://doi.org/10.1016/B978-0-12-803130-8.00010-5

[40] Andrew Ng, Michael Jordan, and Yair Weiss. 2001. On spectral clustering: Analy-
sis and an algorithm. Advances in neural information processing systems 14 (2001),
849–856.

[41] Beresford N. Parlett. 1998. The Symmetric Eigenvalue Problem. Society for
Industrial and Applied Mathematics, Philadelphia.

[42] Jella Pfeiffer and Franz Rothlauf. 2007. Analysis of greedy heuristics and weight-
coded eas for multidimensional knapsack problems and multi-unit combinatorial
auctions. In Proceedings of the 9th annual Conference on Genetic and Evolutionary
Computation. 1529–1529.

[43] Farhad Pourkamali-Anaraki. 2020. Scalable Spectral Clustering With Nyström
Approximation: Practical and Theoretical Aspects. IEEE Open Journal of Signal
Processing 1 (2020), 242–256.

[44] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016.
Adjusting for chance clustering comparison measures. The Journal of Machine
Learning Research 17, 1 (2016), 4635–4666.

[45] Tomoya Sakai and Atsushi Imiya. 2009. Fast Spectral Clustering with Random
Projection and Sampling. In International Workshop on Machine Learning and
Data Mining in Pattern Recognition. Springer, 372–384.

[46] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence 22, 8 (2000), 888–
905.

[47] G. W. Stewart. 2002. A Krylov-Schur Algorithm for Large Eigenproblems.
SIAM J. Matrix Anal. Appl. 23, 3 (2002), 601–614. https://doi.org/10.1137/
S0895479800371529

[48] Alexander Strehl and Joydeep Ghosh. 2002. Cluster Ensembles – A Knowl-
edge Reuse Framework for Combining Multiple Partitions. Journal on Machine
Learning Research (JMLR) 3 (December 2002), 583–617.

[49] Zhiqiang Tao, Hongfu Liu, Sheng Li, and Yun Fu. 2016. Robust spectral ensem-
ble clustering. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. 367–376.

[50] Joshua Tobin and Mimi Zhang. 2021. DCF: An Efficient and Robust Density-
Based Clustering Method. In 2021 IEEE International Conference on Data Mining
(ICDM). IEEE, 629–638.

[51] Nicolas Tremblay and Andreas Loukas. 2020. Approximating spectral clustering
via sampling: a review. Sampling Techniques for Supervised or Unsupervised Tasks
(2020), 129–183.

[52] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[53] Liang Wang, Christopher Leckie, Kotagiri Ramamohanarao, and James Bezdek.
2009. Approximate Spectral Clustering. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining (Advances in Knowledge Discovery and Data Mining).
Springer Berlin Heidelberg, 134–146.

3043

https://doi.org/10.1016/j.eswa.2015.07.074
https://doi.org/10.1016/j.eswa.2015.07.074
https://doi.org/10.1109/TKDE.2013.126
https://doi.org/10.1109/TKDE.2013.126
https://doi.org/10.1016/B978-0-12-803130-8.00010-5
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1137/S0895479800371529

[54] Christopher Williams and Matthias Seeger. 2001. Using the Nyström method to
speed up kernel machines. In Advances in neural information processing systems.
682–688.

[55] He Xu, Lin Zhang, Peng Li, and Feng Zhu. 2022. Outlier detection algorithm
based on k-nearest neighbors-local outlier factor. Journal of Algorithms & Com-
putational Technology 16 (2022), 17483026221078111. https://doi.org/10.1177/
17483026221078111

[56] Kai Zhang, Liang Lan, Jun Liu, Andreas Rauber, and Fabian Moerchen. 2012.
Inductive kernel low-rank decomposition with priors: A generalized nystrom
method. arXiv preprint arXiv:1206.4619 (2012).

[57] Xiatian Zhu, Chen Change Loy, and Shaogang Gong. 2014. Constructing robust
affinity graphs for spectral clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 1450–1457.

3044

https://doi.org/10.1177/17483026221078111
https://doi.org/10.1177/17483026221078111

