Identifying Similar-Bicliques in Bipartite Graphs

Kai Yao
The University of Sydney
Sydney, Australia
kyao8420@uni.sydney.edu.au

ABSTRACT

Bipartite graphs have been widely used to model the relationship
between entities of different types, where vertices are partitioned
into two disjoint sets/sides. Finding dense subgraphs in a bipartite
graph is of great significance and encompasses many applications.
However, none of the existing dense bipartite subgraph models
consider similarity between vertices from the same side, and as a re-
sult, the identified results may include vertices that are not similar
to each other. In this paper, we formulate the notion of similar-
biclique which is a special kind of biclique where all vertices from
a designated side are similar to each other, and aim to enumerate
all similar-bicliques. The naive approach of first enumerating all
maximal bicliques and then extracting all maximal similar-bicliques
from them is inefficient, as enumerating maximal bicliques is time
consuming. We propose a backtracking algorithm MSBE to directly
enumerate maximal similar-bicliques, and power it by vertex reduc-
tion and optimization techniques. Furthermore, we design a novel
index structure to speed up a time-critical operation of MSBE, as
well as to speed up vertex reduction. Efficient index construction
algorithms are also developed. Extensive experiments on 17 bipar-
tite graphs as well as case studies are conducted to demonstrate the
effectiveness and efficiency of our model and algorithms.

PVLDB Reference Format:

Kai Yao, Lijun Chang, and Jeffrey Xu Yu. Identifying Similar-Bicliques in
Bipartite Graphs. PVLDB, 15(11): 3085 - 3097, 2022.
doi:10.14778/3551793.3551854

1 INTRODUCTION

Bipartite graphs have been widely used in real-world applications
to model relationships between entities of different types, such
as customer-product networks [49], author-paper networks [28]
and user-event networks [14]. A bipartite graph is denoted by
G = (V1, Vg, E), where the vertex set is partitioned into two dis-
joint subsets Vi and Vi which are referred to as the L-side and
R-side vertices of the bipartite graph, respectively; each edge e € E
can only connect vertices from different sides. Finding dense sub-
graphs in a bipartite graph is of great significance and encompasses
many applications, such as community detection [2, 26], anomaly
detection [17, 43], and group recommendation [36, 45].

One classic notion of dense bipartite subgraph is biclique [40],
which requires every pair of vertices from different sides of the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551854

3085

Lijun Chang
The University of Sydney
Sydney, Australia
Lijun.Chang@sydney.edu.au

Jeffrey Xu Yu
The Chinese University of Hong Kong
Hong Kong, China
yu@se.cuhk.edu.hk

Researchers

Machine Learning Database High Performance Computing

Figure 1: Example of researcher-venue bipartite graph

subgraph to be connected by an edge. For example, for the bipartite
graph in Figure 1 which represents researchers publishing in con-
ference venues, the subgraph in the shadowed area is a biclique. In
the literature, many algorithms have been proposed to enumerate
all maximal bicliques [2, 4, 15, 30, 33, 48, 54] and to identify a bi-
clique of the maximum size [36]. However, the biclique model has
a fundamental limitation: vertices in a biclique are not necessar-
ily similar to each other, despite that they share a set of common
neighbors (e.g., vertices on the other side of the biclique). Consider
the six researchers in the biclique in Figure 1, all of which publish
in database conferences. Besides, researchers ry, rp, r3 also publish
in machine learning (ML) conferences, while r4, 15, r¢ publish in
high-performance computing (HPC) conferences. Thus, the two
groups of researchers, {r1,ra, r3} and {ry,rs,r6}, are likely from
different backgrounds and communities, i.e., ML vs. HPC.
Motivated by this, we formulate the notion of similar-biclique by
requiring all vertices from one side of the biclique to be similar to
each other. Our empirical studies show that similar-bicliques can
be detected much more efficiently than bicliques. Thus, identifying
similar-bicliques is useful for the following applications.
¢ Community detection. Similar-biclique satisfies all the
key requirements of community structure for bipartite graphs
[26, 50, 55], and thus can be used to detect communities in
interaction-type bipartite graphs such as user-rate-movie,
customer-buy-product, and author-write-paper. Firstly, be-
ing a biclique, interactions between vertices from the two
sides are intensive. Secondly, by enforcing the similarity
constraint, users in a similar-biclique are similar to each
other, e.g., having similar behaviours or interests.
e Anomaly detection. Similar-biclique can also be used for
anomaly detection, which is a common task in e-commerce
[5, 13, 36]. Here, the transactions of customers purchas-
ing products form a customer-product bipartite graph. To
improve the ranking of certain products, fraudsters may
create fake accounts to purchase the products, i.e., click
farming [10]. These fake accounts and the products they
promote inevitably form a closely connected group, and
meanwhile, these fake accounts will display a high level of
synchronized behavior with each other [22]. Thus, suspi-
cious groups (i.e., both the fraudulent accounts and the prod-
ucts they promote) can be captured by similar-bicliques.

https://doi.org/10.14778/3551793.3551854
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551854

Formally speaking, given a similarity threshold 0 < ¢ < 1 and
a size constraint 7 > 0, a vertex subset C C V; U Vg in a bipartite
graph G = (Vi, Vg, E) is a similar-biclique if (1) C is a biclique (i.e.,
Cr X CRr C E), (2) all vertices of Cy are similar to each other (i.e.,
sim(u,v) > ¢ Yu,v € Cr), and (3) C satisfies the size constraint (i.e.,
|CL| = 7 and |CR| > 7). Here, Cy denotes C NV and CR denotes
C N Vg; sim(u, v) measures the structural similarity between u and
v, which is computed based on their neighbors N(u) and N(v)
and will be formally defined in Section 2; the size constraint 7 is
introduced to avoid generating too small or too skewed results.
Note that, we only apply the similarity constraint to one side of
the vertices (either Vi or Vg as they are interchangeable), since in
applications we are usually only interested in the similarity between
“users”. Nevertheless, the general technical ideas presented in this
paper can also be applied to the variant of similar-biclique that
imposes the similarity constraint on both sides of vertices.

We in this paper aim to enumerate all maximal similar-bicliques
in a bipartite graph. We prove that this problem is #P-complete.
As each (maximal) similar-biclique is contained in a maximal bi-
clique, we could first enumerate all maximal bicliques, then extract
maximal similar-bicliques from maximal bicliques, and finally elim-
inate all similar-bicliques that are either duplicates or not maximal.
However, this approach is inefficient, as enumerating all maximal
bicliques by the state-of-the-art algorithm PMBE [2] is already
time consuming for large graphs. Thus, we propose the MSBE al-
gorithm to directly enumerate maximal similar-bicliques, without
first enumerating maximal bicliques.

MSBE follows the general backtracking framework of the Bron-
Kerbosch algorithm [6] that enumerates all maximal cligues in a
unipartite graph. Our observation is that once the set of L-side
vertices Cr, of a similar-biclique C is determined, its R-side vertices
can be simply obtained as Cr = (\,ec, N(u). Nevertheless, it is
worth pointing out that we cannot ignore Cr during the enumera-
tion process, since (1) the size of Cg will be used for pruning and
(2) both Cr, and Cg are needed for determining the maximality of
the similar-biclique. MSBE iteratively builds up a partial solution
(Cr, CRr), maintains a candidate set Py, that is used to grow Cr, and
maintains an exclusive set Qy that is used for checking the maxi-
mality of (Cr, Cgr). In each recursion, a vertex u € Py is added to
Cr, to grow the solution; after coming back from the recursion, u is
moved from Py to Qy to avoid duplicates. To prune the search space,
we propose the concept of dominating: u € Py dominates v € Py if
sim(u,v) > ¢ and N¢,, (u) 2 Ngg (v), where N, (1) = N(u) N Cg.
We prove that if u dominates v, then we can prune the recursion
of adding v to C; when u is moved from P; to Qr. Furthermore,
according to the definition, each vertex u in a similar-biclique C
must have at least 7 neighbors in C (i.e., [Nc(u)| > 7), and each
L-side vertex u € C;, must have at least 7— 1 vertices that are similar
to it; we call the vertices that are similar to u the similar neighbors
of u, denoted I'(u). Thus, we propose to first prune all vertices that
violate either of these two conditions, in a preprocess referred to
as vertex reduction; our empirical studies show that a large portion
of the input graph is pruned by vertex reduction.

We observe that a time-critical operation, in both vertex reduc-
tion and the recursion of backtracking, is computing I' () which
would take O(yen(u) [N(0)]) time, for a vertex u € V. Note that,
T'(u) is not stored in the graph representation, and it is also not

3086

affordable to store I'(u) (either in main memory or on disk) after
it is computed as this would require a prohibitively large space.
For example, it would take over 400GB on Bibsonomy, one of the
graphs tested in our experiments. In view of this, we propose an
offline-constructed index to speed up the computation of T'(u); note
that, our index can be used to process maximal similar-biclique
enumeration queries with different ¢ and 7 values. This is based on
the fact that for any similarity threshold ¢, I'(u) is always a subset
of @, = Uyen(u) N (), the 2-hop structural neighbors of u. Thus,
we propose to first compute the similarity between u and every ver-
tex of @, in an offline process, and then compress them into a few
segments which are stored in the index. Specifically, each segment
is represented by seg = (Vmin, Vimax, Smax. ¢) Where vpin < Vmax
are two vertices of @y, smax is the largest similarity between u and
vertices of @, that are in the range [Viyin, Vmax|, and ¢ is the number
of vertices of @, that are in [vpyin, Vmax]; here, the comparison be-
tween vertices is based on their ids. To obtain I'(u), we go through
each segment seg of @, that satisfies seg.smax > €, and compute
the similarity between u and each v € [seg.vyin, S€g.vmax]; note
that, segments with smax < ¢ are skipped. Furthermore, we also
use the index to speed up vertex reduction by first pruning vertices
based on upper bounds of I'(u), which can be efficiently obtained
based on the index without computing similarities.
Our main contributions are summarized as follows:

o We formulate the concept of similar-biclique, which can be
used to detect interesting dense subgraphs from a bipartite
graph. To the best of our knowledge, this is the first work
investigating structural similarity between vertices in dense
bipartite subgraph mining.

e We develop a backtracking algorithm MSBE to enumerate
all maximal similar-bicliques in a bipartite graph. Vertex
reduction and optimization techniques are also proposed.

e We design a novel index structure to facilitate the com-
putation of similar neighbors. We propose a two-phase
algorithm for efficient vertex reduction based on the index.

e We propose effective and efficient index construction algo-
rithms by investigating two different strategies.

Extensive empirical studies on 17 real bipartite graphs as well as
case studies are conducted to demonstrate the efficiency of our
algorithms and the effectiveness of our similar-biclique model. Our
algorithm is up to 6 orders of magnitude faster than PMBE.

Organization. Related works are reviewed in below. Section 2 pro-
vides preliminaries including the definition of similar-biclique and
the problem statement. Section 3 introduces a baseline algorithm
and our MSBE algorithm. Section 4 presents our index structure,
index-based algorithms and index construction algorithms. Sec-
tion 5 reports experimental results. Section 6 concludes the paper.

Related Works. We categorize the related works as follows.

(1) Maximal biclique enumeration. The problem of enumerating all

maximal bicliques has been widely studied. The existing studies
can be classified into two categories, depending on whether the
input graph is bipartite or not. When the input graph is bipartite,
the existing algorithms [2, 42, 54] generally enumerate subsets of
vertices from one side, and then the intersection of their neigh-
bors form the other side of the biclique. Besides, frequent item-set

mining techniques have also been utilized to enumerate maximal
bicliques [29, 30, 48, 53], as these two problems are highly related
to each other. The state-of-the-art algorithm for maximal biclique
enumeration over bipartite graphs is PMBE proposed in [2], which
is compared in our experiments. There are also studies that aim at
enumerating all maximal (non-induced) bicliques from a general
graph, i.e., the input graph is not bipartite. For example, it is stud-
ied from a theoretical viewpoint in [15], consensus algorithms are
proposed in [4], and a divide-and-conquer algorithm is proposed
in [33]. However, these algorithms are generally slower than the
algorithms that specifically handle bipartite graphs. Moreover, none
of the existing studies on maximal biclique enumeration take into
consideration the structural similarity between vertices.

(2) Maximal clique enumeration. The problem of enumerating all

maximal cliques in a unipartite graph has also been extensively
studied. The existing algorithms generally follow the backtracking
framework of Bron and Kerbosch [6] with optimization techniques
being proposed in [8, 9, 16, 37, 46]. However, these algorithms
cannot handle bipartite graphs.

(3) Dense bipartite subgraph identification. Besides biclique, other

models have also been proposed for dense bipartite subgraph iden-
tification, such as quasi-biclique [34], k-biplex [52], (a, §)-core [24],
k-bitruss [57], and k-wing [43]. Quasi-biclique and k-biplex relax
the biclique model by allowing each vertex in one side of the result
to miss a certain number of neighbors from the other side. On the
other hand, (a, f)-core requires each vertex from one side to be
connected to a certain number of vertices from the other side, and
k-bitruss and k-wing require each edges to be involved in a certain
number of (2, 2)-bicliques. None of these models consider similarity
between vertices, and our case study in Section 5.2 demonstrates
that similar-biclique outperforms k-biplex and («, ff)-core in anom-
aly detection. Note that, it is also possible to integrate similarity
constraint into these dense bipartite subgraph models, in a similar
way to similar-bicliques. However, this would require thorough
studies, from problem hardness analysis to algorithm design, for
each model. For example, although (&,)-core can be computed in
polynomial time, computing similar-(a,)-cores may require an
exponential time as the number of maximal similar-(a, ff)-cores
could be exponential. Thus, we leave these to our future studies.

(4) Structural vertex similarity. Structural vertex similarity refers to

similarity measures between pairs of vertices that are computed
based on solely the topology of the graph [27]. They are usu-
ally categorized as local-topology based and global-topology based.
For the former, the similarity between two vertices is computed
based on their neighbors, i.e., locally. Examples include Jaccard
similarity [20], cosine similarity [41], Dice’s coefficient [12], hub
depressed/promoted index [35] and Adamic—Adar index [3]. For
the latter, the global structure information is utilized to derive
the similarity between two vertices. Examples include Katz [23],
SimRank [21], C-Rank [51], P-Rank [56], and MatchSim [32]. As
global-topology-based measures usually need to access the entire
graph to compute the similarity, they are computationally more
expensive than the local-topology-based measures. Thus, we adopt
local-topology-based measures in this paper.

3087

2 PRELIMINARY

We consider an unweighted and undirected bipartite graph G =
(V, VR, E), where Vi and VR denote the two disjoint vertex sets
(i.e., L-side vertices and R-side vertices) and E C V;, X Vg denotes
the edge set. Without loss of generality, we assume that vertices
of Vi, take (integer) ids from {1, 2, ..., |VL|}, and vertices of Vg take
ids from {1+ V.|, 2+ |VL|,...,|VR| + |VL|}. For any vertex v € V.
(resp. v € VR), we say it is an L-side vertex (resp. R-side vertex).
For any vertex subset C C Vi U Vg, we use C, and Cg to denote
the subsets of vertices of C that are from Vi and Vg, respectively,
ie,CL =CNVy and Cgr = C N V. We call the set of neighbors of
u in G, denoted Ng(u) = {v | (u,v) € E}, the structural neighbors
of u. Denote dg(u) = |Ng(u)| the structural degree of u. Besides
structural neighbor and structural degree, we will also define similar
neighbor and similar degree based on structural similarity.

Definition 1 (Structural Similarity). Given two vertices u and v in

G, their structural similarity is defined as sim(u, v) = %
The structural similarity sim(u,v) is between 0 and 1. It mea-
sures the Jaccard similarity between the set of structural neighbors
of u and that of v. Given a similarity threshold ¢ > 0, we say u
and v are similar if sim(u, v) > e. The set of vertices that are sim-
ilar to u is called the similar neighbors of u, denoted Iz .(u), i.e.,
Ige(u) = {o € VL UVR | sim(u,0) > e}. Accordingly, denote
0G,¢(u) = [T ¢(u)| the similar degree of u. Note that, as the struc-
tural similarity between vertices from different sides is always 0,
similar neighbors only contain vertices from the same side. For
presentation simplicity, we call structural similarity simply as simi-
larity, and omit the subscripts G and/or ¢ from the notations.

Definition 2 (Similar-Biclique). Given abipartite graph G = (V, Vg, E)

and a similarity threshold ¢ > 0, a vertex subset C C Vp U Vg isa
similar-biclique if
e Cisa biclique, i.e.,Cp X Cr C E, and
e all vertices from the L-side are similar to each other, i.e.,
sim(u,v) > &, Yu,0 € Cr.
We also denote C as (Cr, Cr). A similar-biclique is maximal if it is
not a subset of any larger similar-biclique.

Note that for presentation simplicity, the similarity constraint
is assumed to be considered for the L-side vertices. To apply the
similarity constraint for R-side vertices in applications, we can
simply swap the roles of V; and Vi in G.

(a) A maximal biclique

(b) Two maximal similar-bicliques

Figure 2: Maximal biclique vs. maximal similar-biclique

Example 1. Figure 2(a) shows a bipartite graph G withV, = {vy, . ..,v3}
and Vg = {vg, ...,v7}, in which the subgraph C in the gray area is
a maximal biclique. However, v1 and vy in the L-side of C are not
similar to each other for e = 0.6, since sim(v1,v2) = 0.5. Subgraphs
C1 and Cy as shown in Figure 2(b) are two maximal similar-bicliques,
in each of which all vertices on the L-side are similar to each other.

Problem 1 (Maximal Similar-Biclique Enumeration). Given a bi-
partite graph G = (Vf, Vg, E), a similarity threshold ¢ > 0 and a
size constraint 7 > 0, we study the problem of enumerating all
maximal similar-bicliques C in G that satisfy the size constraint ¢
(ie., |Cr| = r and |CR| = 7).

The size constraint 7 is adopted here to avoid generating too
small or too skewed similar-bicliques (i.e., with very few or no
vertices in one side). For presentation simplicity, we assume the
same size constraint 7 for both sides. Note that, the techniques
that we are going to present in this paper can be straightforwardly
extended to handle different size constraints on the two sides.

Theorem 1. The problem of enumerating all maximal similar-
bicliques is #P-complete.

The proof is omitted and can be found in the full version [1].

Remark about Strctural Similarity. In Definition 1, we use the
Jaccard similarity to measure the structural similarity since it has
been widely used and shown great success in many graph anal-
ysis tasks, such as structural graph clustering [7, 47], link pre-
diction [31, 38], and local graph sparsification [44]. Nevertheless,

other local-topology-based similarity measures as reviwed at the
[N (WNNG (0)|

Vi (u)xdg (o)’

can be easily plugged into our

end of Introduction, such as cosine similarity:

ING (w)NNg (0) |
min{dg (u).dg (v) }’
model and algorithms. We will point out the changes that need to

be made to adopt these measures, when presenting our algorithms.

promoted index:

3 OUR ALGORITHMS

In this section, we propose an MSBE algorithm to enumerate all
maximal similar-bicliques. Before that, we first in Section 3.1 present
a baseline algorithm based on the existing maximal biclique enu-
meration algorithms.

3.1 A Baseline Algorithm

It is easy to observe that maximal similar-bicliques must be con-
tained in maximal bicliques, since every similar-biclique is also a
biclique. Thus, a naive approach is first enumerating all maximal
bicliques by invoking one of the existing maximal biclique enu-
meration algorithms, and then post-process the detected maximal
bicliques to obtain maximal similar-bicliques. Specifically, for each
maximal biclique, we extract maximal similar-bicliques by impos-
ing the similarity constraint on L-side vertices, and then eliminate
all similar-bicliques that are either duplicates or non-maximal. We
omit the details, since our empirical study in Section 5 shows that
enumerating all maximal bicliques by the state-of-the-art algorithm
PMBE [2] is already time consuming for large graphs.

3.2 Our MSBE Algorithm

According to the definition of similar-biclique, if we build a simi-
larity graph G; for Vi, where two vertices of Vi, are connected by
an edge if their similarity is at least ¢, then for every (maximal)
similar-biclique C, its L-side vertices Cy form a clique in Gs. More-
over, once the L-side vertices Cr, of a maximal similar-biclique are
determined, the R-side vertices Cg can be easily obtained as the
set of common neighbors of Cp, i.e., Cr = (,ec, N(u). In view of
this, we propose to adopt the general backtracking framework of

3088

Algorithm 1: MSBE(G = (V,, Vg, E), &, 7)

for each u € Vi U Vg do del(u) = false;
VReduce(G, ¢, 7,del(+));
for each u € V. s.t. del(u) = false do
Cr « {u}; Cr < {v € N(u) | del(0v) = false};
Pr — 0;Qr « 0;
Obtain I'(u);
for each v € I'(u) do
if v > uthen Pp «— PL U {v};
L else O «— Qr U {v};
Enum(CL, Cr, PL,QL);
Procedure Enum(Cr, Cg, Pr, QL)

if ﬁu € PLUQL s.t. N (u) 2 Cg then
L if |CL| > 7 and |Cr| > 7 then output (Cr,CRr) ;

1
2
3
4
5
3
7
8
9

for each u € Py do
Cp—CLu {u};C;z «— CRNN(u);
Obtain T'(u);
P, « PLNT(u); Q] « QL NT(w);
if |C)|+|P}| 2 rand [Cy| > 7 then Enum(C},Cp, P, Q)) ;
Pp— P\ {u}; QL < QLU {u};

the Bron-Kerbosch algorithm [6] to enumerate all maximal similar-
bicliques. However, there are two issues. (1) The similarity graph
Gg is not available in the input. (2) The set of L-side vertices Cr of
a maximal similar-biclique C is not necessarily a maximal clique in
Gs, though Cy is a clique in Gs. This is because, a too large C; may
result in a too small Cp, violating the size constraint 7 on Cg.

We propose techniques to address the above issues, and the
pseudocode of our algorithm is shown in Algorithm 1, denoted
MSBE. We first prune unpromising vertices by invoking VReduce
(Lines 1-2), which will be introduced shortly in Algorithm 2; a ver-
tex u is pruned if del(u) = true. For each remaining vertex u € Vi
with del(u) = false, we enumerate all maximal similar-bicliques
containing u (Lines 3-10). To do so, we iteratively grow a partial
solution (Cr, Cr) where Cy is initialized as {u} (Line 4). Besides
Cr, and Cg, we also maintain Py and Qj, in a similar fashion to the
Bron-Kerbosch algorithm [6]. Specifically, Py, is a set of candidate
vertices that is used to grow Cy, and Qy is a set of previously con-
sidered candidate vertices that is used for checking the maximality
of (Cr, CRr); note that, each vertex of P; U Qr must be similar to all
vertices of Cy. Py and Qy are initialized at Lines 5-9, after which
we invoke the procedure Enum for enumeration (Line 10); to avoid
duplicates, the similar neighbors of u with larger vertex id than u
are put in Py, and those with smaller vertex id are put in Qy .

In Enum, if the current similar-biclique (Cr, Cr) is maximal, we
report it (Lines 11-12); note that (Cr, Cr) is maximal if and only if
there is no vertex u € Py, U Qy such that N(u) 2 Cg. Next, Enum
iteratively adds a vertex of Pr, to Cr, updates the corresponding
CR, Pp, and Qy, and recursively invokes itself to enumerate more
similar-bicliques (Lines 14-17). After processing u € Py, we remove
u from P, and add it to Qy (Line 18).

Vertex Reduction. As a similar-biclique needs to have at least 7
vertices on each side, each vertex u in a similar-biclique C must have
at least 7 structural neighbors in C (i.e., [Nc(u)| = 7). Furthermore,
as all L-side vertices in a similar-biclique C are similar to each other,
each L-side vertex u must have at least 7 — 1 similar neighbors in C
(ie., [Tc(u)| = 7 — 1). As a result, we can exclude all vertices that
violate either of these two conditions from being considered in the

Algorithm 2: VReduce(G = (V, Vg, E), ¢, 7, del(+))

1 foreachu € VL UVg dod(u) « |[N(u)l;

2 for each u € Vi do Obtain I'(u) and set §(u) « |T'(u)];

3 while (Ju € Vi U Vg s.t. del(u) = false and d(u) < 7) or (Ju € V. s.t.
del(u) = false and §(u) < 7 — 1) do

4 for each v € N(u) dod(v) « d(v) — 1;

5 if u € Vi then

6 Obtain I'(u);

7 L for each v € I'(u) do 6(v) «— 8(v) — 1;

8 del(u) = true;

Algorithm 3: SimNei(G = (VL, Vg, E), u, ¢, del(-))
Output: I'(u)
T'(u) « 0;
for each v € V do c(v) « 0;
for each v € N(u) do
| foreach w € N(v) and w # u do c(w) « c(w) +1;

P O

for each v € VI s.t. ¢(v) # 0 and del(v) = false do
L if Wﬁ)_c(v) > ethenT(u) « I'(u) U {v};

return I'(u);

o o«

Ni

enumeration procedure Enum, i.e., mark them as deleted; we call
this process as vertex reduction.

We propose an algorithm VReduce to conduct vertex reduction,
whose pseudocode is shown in Algorithm 2. Firstly, we obtain the
structural degree d(u) for each vertex u € V; U Vg (Line 1), and
obtain the similar degree §(u) for each L-side vertex u € V1 (Line 2).
Then, as long as there is a non-deleted vertex u with d(u) < 7 or a
non-deleted L-side vertex u with §(u) < 7 —1, we mark u as deleted
(Line 8), decrease the structure degree of u’s structural neighbors by
1 (Line 4), and decrease the similar degree of u’s similar neighbors
by 1if u is an L-side vertex (Lines 5-7).

Compute Similar Neighbors I'(¢). One fundamental operation
in both Algorithm 1 and Algorithm 2 is computing I'(u) for an
L-side vertex u; note that I'(u) is not stored with the graph G.
A straightforward method to collect I'(u) is computing sim(u, v)
for each vertex v € V. The time complexity would be O(|E|),
as it needs to visit every edge of G. This is inefficient, by noting
that Algorithm 1 and Algorithm 2 need to compute I'(u) for many
vertices u and for multiple times.

We propose a more efficient algorithm in Algorithm 3, denoted
SimNei. Instead of blindly computing sim(u, v) for each v € Vi, we
only compute sim(u, v) for those v with sim(u,v) > 0. Our main
idea is to first compute the number of common neighbors c(v) be-
tween u and v for each 2-hop structural neighbor v of u (Lines 3-4).
Then, sim(u, v) can be calculated as W (Line 6).! Note
that, in our implementation, to make the time complexity of SimNei
to be independent of |V | which may be large, we only initialize
c(+) once at the beginning of the entire algorithm execution (e.g.,
in MSBE), and after using c(-) at Line 4-6 of Algorithm 3 we reset
those updated c(-) to be 0. In addition, we also collect at Line 4 the
set of vertices with non-zero c(+) into a set S, such that Line 5 as
well as the resetting of ¢(-) can be conducted in O(|S|) time. As a

c(o)

1
The formula should be changed to O

for cosine similarity, and to

W"ﬂd(m for hub promoted index.

3089

result, the time complexity of SimNei is O(X ,en(x) d(v)), which
is lower than O(|E|).

Optimizations for Enum. We further propose two optimization
techniques to speed up the Enum procedure. Recall that, an in-
stance of Enum is represented by (Cr,Cg, Pr,Qr) where Cg =
Nuec;, N(u) and |Cg| 2 7,2 and aims to enumerate all maximal
similar-bicliques C* satisfying C;, € C; € Cr U Py. Firstly, an enu-
meration instance can be terminated once we know that it will not
generate any maximal similar-biclique. That is, by including any
subset of vertices of Py, into Cr, the resulting similar-biclique is not
maximal. This is formulated in the lemma below.

Lemma 1 (Early Termination). If there exists a vertexu € Qp such
that u is similar to all vertices of P;, and N(u) 2 CR, then there is no
maximal similar-biclique C* with C;, c C; € Cr U Py, and thus we
can terminate this enumeration instance.

Proofs of Lemmas 1 and 2 can be found in the full version [1].
Secondly, we can reduce the number of instances generated at
Line 17 of Algorithm 1, based on the concept of dominating set.

Definition 3 (Dominating Set). Given an instance (Cr, Cg, P, Qr)
of Enum, for two distinct vertices u, v € Pp UQr, we say that u dom-
inates v if sim(u,v) > € and N¢, (1) 2 N, (v), where N, (u) =
N(u) N Cr. The dominating set of u, denoted DomSet(u), is the
subset of vertices of Py that are dominated by u, i.e., DomSet(u) =
{v € Pp | sim(u,0) > e A Ncg (1) 2 Neg (v)}

Note that, a vertex does not dominate itself.

Lemma 2. Given an instance (Cr, Cg, Pr, Q1) of Enum and a vertex
u* € Pp U Qy, any maximal similar-biclique C* with Cp, ¢ C] C
Cr U P must contain a vertex of P \DomSet(u*).

Figure 3: Example of domination

Example 2. Consider the instance in Figure 3 where Qr = (. For
e =0.6,01 € Py, is similar to both vy and vs. Moreover, we can see that
Ncg (91) 2 Ncg (v2) and Ncg (v1) 2 Ncg (03). Thus, DomSet (o) =
{v2,v3}, and we know that every maximal similar-biclique C* with
CL c C] € CL U Py, must contain vy since Pp\DomSet(v1) = {01}.

To apply Lemma 2, we revise Line 13 of Algorithm 1 as follows:
we first choose a vertex u* from Pp U Qp before the “for loop”,
and then replace “u € Pp” with “u € Pr\DomSet(u*)” in the “for
loop” statement. This means that we do not generate enumeration
instances, at Line 17 of Algorithm 1, for vertices u € DomSet(u"*).
To maximize the benefit of Lemma 2, u* is chosen as the one that
minimizes |Pp\DomSet(u*)| among all vertices of Py U Qy.

Theorem 2. The time complexity of Algorithm 1isO(|V¢|-|E| 2V,

The proof of Theorem 2 can be found in the full version [1].

2To be more precise, we should exclude from Cg all vertices that are marked as deleted.

Discussions. MSBE is different from both maximal clique enumer-
ation algorithms for unipartite graphs and maximal biclique enu-
meration algoirthms for bipartie graphs, as follows. Firstly, MSBE
needs to compute the similar neighbors for L-side vertices, which
are not required by any of the existing algorithms. Secondly, com-
pared with maximal clique enumeration algorithms, MSBE needs to
consider common structural neighbors Cg of Cy, in addition to com-
mon similar neighbors. Thirdly, compared with the state-of-the-art
algorithm PMBE for maximal biclique enumeration, MSBE needs
to maintain the set Qy, for checking maximality of similar-bicliques.
Forthly, our optimization techniques for Enum are also different.
In MSBE, we need to obtain the similar neighbors I'(-) of an
L-side vertex multiple times, e.g., at Lines 6 and 15 of Algorithm 1
and Lines 2 and 6 of Algorithm 2. We can either invoke SimNei to
compute I'(u) every time when it is needed, or store I'(u) in main
memory after it is computed for the first time and then directly
retrieve it for all subsequent requests. We use MSBE to denote the
algorithm that uses the first strategy, and mat-MSBE the algorithm
that uses the second strategy (here, mat stands for materialization).

4 SPEEDING UP SIMILAR NEIGHBOR
COMPUTATION AND VERTEX REDUCTION

MSBE has the disadvantage of repeatedly computing the similar
neighbors from scratch which is time consuming, while mat-MSBE
may demand an extremely large main memory to store the similar
neighbors. For example, it would take more than 400GB main mem-
ory for the graph bibsonomy used in our experiments even for a
moderate ¢ = 0.5. In this section, we propose an offline-constructed
index to speed up the computation of I'(u) as well as vertex re-
duction. We give an overview of the index structure in Section 4.1,
present our index-based algorithms in Section 4.2, and discuss index
construction and maintenance in Section 4.3.

4.1 Overview of Index Structure

Let @, be the set of 2-hop structural neighbors of u, i.e., &, =
Uven (u) N(0). Firstly, we have the following lemma.

Lemma 3. For any similarity threshold ¢ > 0, the set of similar
neighbors of u is a subset of @y, i.e., [(u) C ®y,.

Proor. The correctness of the lemma directly follows from the
fact that any vertex v ¢ @, U {u} has no common neighbor with u
and thus sim(u,v) = 0. O

Based on Lemma 3, one possible indexing strategy is pre-computing
and storing sim(u, v) for each u € V; U Vg and each v € &,.> How-
ever, the space complexity of this strategy would be O(|Vy |2 +|Vg|%),
which is prohibitively high even for moderate-sized graphs since the
space requirement is essentially the same as the case of mat-MSBE
when ¢ is very small. For example, even for a moderate-sized graph
with 10° vertices, the storage space would be over 2TB.

Instead of storing ®,, and the structural similarities in their raw
format, we summarize them into a few segments.

Definition 4 (Segment). A segment, denoted seg, of ®,, is a four-
tuple (Vmin, Vmaxs Smax, €)> Where vpin < vmax are two vertices of

3Note that, we also need to index ®,, for u € Vg, since in practice the similarity
constraint can be put on either L-side or R-side vertices.

3090

5

1 2 3 4 6 / 8 9
3, : (DGO W @ ©
0.4 0.5 0.2 0.1 0.8 0.7

0.4 0.2 0.1

seg sego Segs

[s J[10]]
[o5][3]

Figure 4: Overview of index structure

N

Algorithm 4: indexedSN(u, ¢, G, I, del(-))

1 T(u) « 0;

2 for each seg € S, s.t. seg.Smax > € do

3 for each v € [seg.viin, S€g.Vmax | do

4 if del(v) = false and 0 # u then

5 L if ub(u,v) > ¢ and sim(u, v) > ¢ then
6

| T «Twu{o}

7 return I'(u);

@y, Smax = MAXyedy, Vinin <U<Vimax sim(u,0), and ¢ = [{o € @, |
Vmin < 0 < Vmax}|. Here, vertex comparison is based on vertex id.

Given a segment seg = (Vmin, Vmax> Smax ¢) of @y, we use V (seg)
to denote {v € @y | Vipin < v < Vmax}. It is immediate from the
definition that ¢ = |V (seg)| and

® Vpin (resp. vmax) is the smallest (resp. largest) vertex id in
V(seg);
® Smax is the largest similarity between u and a vertex of
V(seg), and thus smax provides an upper bound of sim(u, v)
for all v € V(seg).
Thus, we say that seg covers vertices V (seg). A set of segments Sy, =
{segy,....segy} covers @y if Useges, V(seg) = @y. In this paper,
we only consider disjoint segments, i.e., V(seg;) N V(segj) =0
for i # j. Our index structure, denoted 7, covers @, by a set of
segments, for all u € V U V. That is, I consists of S, such that
Sy covers @, for allu € Vi U Vg.

Example 3. Figure 4 shows the 2-hop structural neighbors ®,, of u,
which are sorted in increasing order regarding vertex id. The decimal
below each vertex is the similarity w.r.t. u. ®, is covered by three
segments seg;, seg,, segs. Take seg; as an example, the two numbers
in the first row (i.e, 1 and 3) represent vipin and vmax, and the two
numbers in the second row (i.e., 0.5 and 3) represent smax and c.

4.2 Index-based Algorithms

In this subsection, we present index-based algorithms for similar
neighbor computation and for vertex reduction.

Index-based Similar Neighbor Computation. The pseudocode
of using the index 7 to efficiently obtain the similar neighbors I' (u)
for a vertex u is shown in Algorithm 4, denoted indexedSN. We go
through each segment seg € S, with seg.smax > ¢ (Line 2), and
compute sim(u,v) for each v € [seg.vmin, S€g.Vmax] (Line 3); recall
that (1) seg.smax upper bounds sim(u,v) for each v € V(seg), and
(2) V(seg) is not stored in the index structure 7. As computing
sim(u, v) needs to intersect two sets N(u) and N (v) which is costly,
we propose to first apply a filtering for the pair u and v based on an
upper bound ub(u, v) of sim(u,v) (Line 5); if ub(u,v) < ¢, then we
have sim(u,v) < ub(u,v) < ¢ and thus v ¢ T'(u). For the similarity

min{d(u),d(v)}
max{d(u),d(0)}’
4

in Definition 1, it is easy to verify that sim(u,0) <

we set this as ub(u, v), which can be calculated in constant time.
indexedSN is expected to run faster than SimNei (Algorithm 3) as
the former can skip an entire segment if its smax is smaller than .

Index-based Two-Phase Vertex Reduction. Based on indexedSN,
we can speed up VReduce (Algorithm 2) by invoking indexedSN to
compute I'(u). However, this is still inefficient, as VReduce needs
to compute T'(u) for all u € Vi (see Line 2 of Algorithm 2). We
propose to utilize the index 7 to first obtain an upper bound of the
similar degree for vertex reduction, as proved in the lemma below.

Lemma 4 (Upper Bound of Similar Degree). Let S, be the set of
segments that cover ®,,. Then, the similar degree 5. (u) of u is upper

bounded by Zsegesu - 568 5max 26 SEB-C-

Proor. Thislemma directly follows from the fact that sim(u, v) <
eforallo € UsegeSu :Seg.Smax <& V(seg). o

Consider the part of the index in Figure 4 and suppose ¢ = 0.4.
By scanning S, we obtain an upper bound of u’s similar degree as
6, i.e., seg;.c + segs.c = 6; seg, is omitted since its syay is only 0.2.

Algorithm 5: indexedVR(G, 7, ¢, 7, del(-))

/* Phase-I: vertex reduction based on structural degree and upper bound
of similar degree */
for eachu € Vp UVg dod(u) « |N(u)l;
for each u € Vi do 8(u) « YsegeSy :seg smax>e S€8-C;
while (Ju € Vi U Vg s.t. del(u) = false and d(u) < 7) or (Ju € V. sit.
del(u) = false and 5 (u) < 7 — 1) do
L for each v € N(u) dod(v) « d(v) — 1;

-

N

w

-

del(u) « true;

@

/* Phase-II: vertex reduction based on structural degree and similar
degree */
for each u € Vi U Vg do del2(u) « del(u);
for each u € V. s.t. del(u) = false do
L (8p (u),idx(u)) « progressiveSN(u, €, G, I, del2(-), 7~ 1,1);
while (Ju € Vi U Vg s.t. del(u) = false and d(u) < 7) or (Ju € Vi sit.
del(u) = false and 8, (u) < 7—1) do

® N o

©

10 for each v € N(u) dod(v) « d(v) - 1;
11 if u € Vi then
12 T'(u) « indexedSN(u, ¢, G, 7,del(+));
13 for each v € T'(u) do
14 Sp(v) « 8p(v) - 1;
15 if 65(v) =7—2and d(v) > 7 then
16 (r,idx(0)) «
progressiveSN(v, ¢, G, T, del2(+), 1,idx(v));
17 Sp(v) « 8p(v) +1;
18 | del(u) « true;

Procedure progressiveSN(u, ¢, G, I, del2(-), ¢, b)

/* Let S, be {segl,segz,...,seg‘§u‘} */
19 17« 0;
20 foreachie {b,b+1,..., [Sul} st seg;.Smax > € do

2
2
2
2

=

for each v € [seg;.Vmin, 5€g;.Vmax | do
if del2(v) = false and 0 # u then
if ub(u, v) > ¢ and sim(u, v) > ¢ then
| rer+y

PRI

25 if r > ¢ then return (r,i+1);

26 return (r, S, |+ 1);

S

min{d(u),d(v)}
Vd(u)xd (o)

hub promoted index is 1 and thus not useful.

4The upper bound for cosine similarity is , while the upper bound for

3091

Furthermore, we also observe that the structural degree can be
obtained efficiently. Thus, we propose a two-phase approach for
vertex reduction, which first conducts vertex reduction by using
structural degree and upper bound of similar degree in Phase-I,
and then using structural degree and similar degree in Phase-II.
The pseudocode of our two-phase vertex reduction is shown in
Algorithm 5, denoted indexedVR. In Phase-I, we first obtain the
structural degree d(u) for each u € Vi U Vg (Line 1), and an upper
bound §(u) of the similar degree for each vertex u € V; (Line 2).
Then, as long as there is a non-deleted vertex u € Vi, U Vg satisfying
d(u) < t or a non-deleted vertex u € Vy satisfying 5(u) < 7 — 1
(Line 3), we mark u as deleted and update the structural degree of
its structural neighbors (Lines 4-5); note that, we do not update 5(-)
in Phase-1. In Phase-1II, we first compute a progressive similar degree,
denoted 5p(~), for each non-deleted L-side vertex, by invoking
progressiveSN (Lines 7-8). Here, &p(u) is a lower bound of u’s
similar degree &(u), and it records the number of similar neighbors
that have been computed for u; our computation of 5, (u) ensures
that 8p(u) = 7 — 1 if and only if §(u) > 7 — 1. Then, as long as
there is a non-deleted vertex u € Vi U Vg satisfying d(u) < ror a
non-deleted vertex u € Vy, satisfying §,(u) < 7 — 1, we mark u as
deleted (Line 18) and update the structural degree of its structural
neighbors (Line 10). Furthermore, if u is an L-side vertex, we also
obtain the set I'(u) of similar neighbors of u (Line 12), and update
the progressive similar degree 5 (v) to satisfy the invariant that
dp(v) 2 t—1ifand only if §(v) > 7—1for each v € T'(u) (Lines 13-
17). Note that, in our implementation, we use a queue to maintain
the vertices that satisfy the condition at Line 3 or Line 9; as a result,
we do not need to loop through all non-deleted vertices to find the
unpromising vertices.

In Algorithm 5, for an L-side vertex u, we compute J (u) instead
of §(u). Our main motivation is that for an L-side vertex u satisfying
d(u) > 7, we only need to compute 7 — 1 of its similar neighbors to
certify that it is a promising vertex. That is, we stop the computa-
tion of I'(u) once dp (1) > 7 — 1; however, if some of the computed
similar neighbors of u are later removed (i.e., marked as deleted),
then we need to update 5, (#) by computing more similar neighbors
of u (Lines 15-17 of Algorithm 5). As a result, for vertices with high
similar degrees in the remaining graph (i.e., obtained by removing
all unpromising vertices), we only need to compute a small portion
of their similar neighbors to prevent them from being removed and
thus save unnecessary similar neighbor computations. The pseu-
docode of computing & (u) is shown in Lines 19-26 of Algorithm 5,
denoted progressiveSN. It is invoked only when 6 (u) < 7 — 1 and
there are still unchecked segments of ®,,. In progressiveSN, we
check the segments of S;, one by one (Line 20-24), and stop once
we have found enough similar neighbors for u (Line 25). We record
the index of the first unchecked segment in idx(u) (Line 8).

indexedVR is better than VReduce (Algorithm 2), since (1) Phase-
I of indexedVR is lightweight but very effective at pruning vertices
as demonstrated by our empirical studies, and (2) indexedVR uses
indexedSN and progressiveSN to compute the similar neighbors.

Overall Algorithm. Our index-based MSBE improves upon Al-
gorithm 1 by replacing the invocation to VReduce at Line 2 with
invoking indexedVR for vertex reduction, and invokes indexedSN

to compute I'(u) at Lines 6 and 15. Nevertheless, the time complex-
ity of index-based MSBE remains O(|V;| - |E] - 2|VL|) as proved
in Theorem 2, by noting that the time complexity of indexedSN
remains O(|E|). Despite of having the same time complexity, our
empirical studies in Section 5 show that the index-based approach
can improve the efficiency of MSBE by several orders of magnitude.

4.3 Index Construction and Maintenance

In this subsection, we present two algorithms to construct the index
based on the ideas of largest gap and steady segment, respectively.
Note that, the indexes are constructed offline, and once constructed,
they can be used to process maximal similar-biclique enumeration
queries with different ¢ and 7 values.

Largest Gap (LG) Index. Recall that, our index structure summa-
rizes a subset of vertices of ®, and their similarities to a vertex
u by four numbers seg = (Vmin, Vmax, Smax, €)» Where smax is an
upper bound of the similarity between u and each v € &, such
that vipin < v < vmax. To obtain the similar neighbors of u that
are in the range [Vmin, Vmax|, Wwe need to go through each vertex
0 € [Vmin, Vmax] and test its similarity with u (e.g., see Line 3 of
Algorithm 4) even if v ¢ V(seg). We call a vertex v that is in the
range [Vmin, Vmax| but not in V(seg) a fake vertex.

Intuitively, we should minimize the number of fake vertices when
constructing the index. We call the index built by this strategy the
largest gap (LG) index. We omit the details, since it is outperformed
by our steady segment index as introduced next.

6

%éé@@@cgcc

0.4 0.5 0.4 0.2

—_— —
segy segg segs

NN EYE|
05]+] |

Figure 5: Example of consLG

00

NI

Example 4. Figure 5 shows the three segments constructed by the
largest gap strategy for the same @, as Example 3.

Choosing the number of segments to cover ®,,. It is easy to see that
the more the number of segments, the fewer the number of fake
vertices introduced by the segments. In the extreme case of covering
@, by |®y| segments, there will be no fake vertices introduced.
However, the space complexity would be too high to be practical,
as discussed in Section 4.1. Thus, we set the number of segments
for covering @y, as « - log |, | where « is a user defined parameter,
in viewing that a fixed number for different ®,, will not work as
|®,,| varies a lot across different vertices u.

Steady Segment (SS) Index. The LG index ignores the similarities
(between u and different vertices) in a segment, and thus may result
in a very wide range of similarity values for a segment. This is not
good for indexedSN and progressiveSN, as they need to check all
vertices covered by a segment seg even if there is only one vertex
in seg whose similarity to u is no lower than ¢. Motivated by this,
we aim to construct steady segments such that all similarities in a
segment are close to each other.

3092

Definition 5 (Steady Segment). Given a steady threshold 0 <
Y < 1, a segment seg = (Vmin, Vmax> Smax, ¢) of @y, is steady if
MAXyey (seg) SIM(Y,0) — MiNyey (seq) SIM(4,0) < y.

The first term, max,cy (seg) Sim(u, v), is exactly seg.smax. For
ease of presentation, we denote the second term, mingey (seg) Sim(u, v),
by seg.smin, the smallest similarity value. A segment seg is steady
if seg.smax —seg.Smin < y. The main advantage of a steady segment
is that if seg is steady and satisfies seg.smax > ¢, then it is likely
that many vertices of V(seg) have similarity values to u no lower
than ¢, and thus most of the computation will not be wasted.

Ideally, we would like to find the minimum number of steady
segments to cover ®,. However, the number of required steady
segments could be very large. For example, if the steady threshold
y is very close to 0 and all vertices of ®,, have different similarity
values to u, then the number of required steady segments to cover
@, is |®,|. Thus, we instead construct a fixed number of steady
segments to cover as many vertices of @, as possible, and then
cover the remaining uncovered vertices of ®,, by as few segments
as possible by ignoring the difference between the similarity values.

Given y and k, our problem is to find k steady segments to cover
as many vertices of @, as possible. We first construct, for each
vertex v € &y, a maximal steady segment seg, that starts at v (i.e.
seg,.Vmin = 0), and then select k segments S* from {seg, | v € ¥}
such that |UU€S* V(segv)l is maximized. This is an instance of the
maximum k-coverage problem which is NP-hard [39]. We select
the k segments in a greedy manner. That is, the k segments are
selected one-by-one. Let S be the starting vertices of the currently
selected segments. Then, the next segment to be added to S is
arg maXyeo, |Uu’€ SU{o} V(segv/)’ . As this function is submodular,
the greedy approach achieves an approximation ratio of 1 — % [18].

The pseudocode is shown in Algorithm 6, denoted consSS. For
each vertex u, we first compute its 2-hop structural neighbors @,
and their similarities to u (Line 2), and sort @, in increasing vertex
id order (Line 3). Then, for each v; € ®, we compute the maximal
steady segment seg,, that starts at v;, by iteratively trying to add
the next vertex to the segment (Lines 7-12). Next, we iteratively add
to Sy, the segment of C that covers the largest number of uncovered
vertices of @, (Lines 14-22). Note that, after adding a segment
into Sy, we also need to update the remaining segments of C to be
disjoint from the segments of S;, (Lines 18-22). During this process,
for time efficiency consideration, we do not maintain seg.smax;
instead, we compute seg.smax for each segment seg € S, later
(Line 23). Finally, we create the minimum number of segments to
cover all vertices of @, that are not covered by S;, (Lines 24-25).

o, : o0)olo

0.4 0.5 0.4 0.2 0.1 0.2 0.1 0.8 0.7

%/—/
seg1 seg> segs

(5]
[os][3]]

Figure 6: Example of consSS

Su :

Example 5. Figure 6 shows the three steady segments constructed
for the same @, in Examples 3 and 4, wherey = 0.1.

Algorithm 6: consSS(G = (V1, Vg, E), a, y)

1 foreachu € Vi U Vg do
®,, « SimNei(G,u
Let {01, vz
C 0
fori « 1to|D,|do
Smin <= 15 Smax < 0;
for j « i to|d,| do
if sim(u, ;) < spin then spi; « sim(w, vj);
if sim (1, 0j) > Smax then syay sim(u, v;);
if Smax — Smin > ¥ then
L seg,, < (vi, 0j-1, null, j — i);

break;
C«Cu {segvi I8

1)i
> 2|V [+2|VR]
g, | } be vertices of ®,, in increasing vertex id order;

Sy « 0; k — min{|®y|, a - log |Py|};
while [S,| < kand C # 0 do
seg” ¢ arg maXegec 5€g.C;
Su Sy U {seg*};
for each seg € C do
if seg*.Vmin < s€g.Vmin < seg”.Vmax then
L Remove seg from C
else if seg.vmin < seg*.vmin < seg.Vmax then
Let o be the vertex that immedidately precedes seg*.vmin
in ®,,, change seg.vmay to be v, and update seg.c
L accordingly in C;
for each seg € S, do Compute seg.Smax;
for each maximal consecutive sequence of vertices v;, Vj11, . -
that are not covered by S,, do
| AddtoS, the segment that covers {v;,..

23
24 ., 05 of Oy

25 ~50j};

26 return 7 = {S, |u € VL UVgr};

Similarity Tree. Lines 5-12 of Algorithm 6, which constructs the
initial maximal steady segments for each vertex, has a high time
complexity of O(|®,|?), and may dominate the total running time
of Algorithm 6. In view of this, we build a similarity tree data
structure 7, for each @, to speed up the process. 7y is similar to a
range tree or segment tree [11]. Each tree node ¢t of 7, represents a
range of vertices of ®,, — specifically, the vertices corresponding to
the leaf nodes of the subtree rooted at t — and records two values
t.Smin and t.smax Which are, respectively, the smallest similarity
and the largest similarity among the vertices represented by ¢. An
example similarity tree is shown in Figure 7. t5 represents the
third vertex and the forth vertex, while #3 represents the last four
vertices of ®y,. Let {v1, 02, ..., 3, ‘} be the vertices of ®,, sorted in
increasing id order. We first create one leaf node t for each vertex
v € &, with t.spin = t.Smax = sim(u,v). Then, we construct the
tree layer-by-layer in a bottom-up manner. Let T; be the list of
tree nodes at the current layer. We go through T; by accessing
two tree nodes each time. For each pair of tree nodes ¢ and t’, we
create a new tree node £y, as their parent and put t, into list Tj41; if
there is only one node in the last step, we directly put it into Tj11.
Note that, tp.smin = min{t.syin, t’.Smin} and similarly ¢,.Smax. The
construction finishes when a layer has only one node, which is the
root of the similarity tree. It is easy to see that tree construction
takes O(|®y|) time, as the tree is a complete binary tree.

To compute the maximal steady segment of v, we first traverse
the similarity tree upwards, starting from the leaf node that cor-
responds to v, and then go downwards. During the process, we
maintain sy, and smax, which are initialized by sim(u,v). In the

3093

2

oJojoloJo

0.4 0.2

8
0.1 0.8

0.2 0.1

Figure 7: Similarity tree data structure

upward phase, if the current tree node t is a right child of its par-
ent, then we directly go to its parent. Otherwise, let ¢’ be the
right-sibling of ¢. If max{smax, t’-Smax} — min{smin, ¢’ -Smin} < ¥
which means that we can include all vertices represented by ¢’ into
the segment, then we update sy and smax by min{smin, t’-Smin }
and max{smax, t’-Smax}, respectively, and go to its parent. Oth-
erwise, we go to ¢’ and move into the downward phase. In the
downward phase, let t; be the left child of the current node ¢. If
max{Smax, t;-Smax } — Min{Smin, {-Smin} < ¥, then we update sy,
and smax and go to t’s right child. Otherwise, we go to t’s left child.
Finally, when we arrive at a leaf node, we can decide whether the
corresponding vertex should be included into the segment or not.
It is easy to see that this process takes O(log |®,|) time which is
the height of the similarity tree. Thus, constructing the maximal
steady segment for all vertices of @, takes O(|®y|log |®,|) time.

Example 6. Suppose we are going to construct the maximal steady
segment for the second vertex of ®,, as shown in Figure 7 withy = 0.3.
Initially, syin = Smax = 0.5 and t is the second leaf node. As t is a
right child of its parent t4, we directly go to ty. Now, t4 is a left child
of its parent ty, and t4’s right sibling is t5. As max{Smax. !5.-Smax } —
min{Smin, £5-Smin} = 0.5 — 0.2 = 0.3 < y, we include all vertices
represented by ts (i.e., the third and forth vertices) into the segment,
update spmin to be max{smin, t5.Smin} = 0.2 and smax to be 0.5, and
then go to its parent ty. ty is a left child of its parent and its right sibling
is t3. As max{Smax, 13-Smax} — Min{Smin, £3.Smin} = 0.8 — 0.1 > y,
we go to t3 and move into the downward phase. t3’s left child is te
and max{smax, t6-Smax } — Min{Smin, 6-Smin} = 0.5 — 0.1 > y, we go
to its left child t¢. Similarly, we go to ts’s left child, which is a leaf
node corresponding to the fifth vertex of ®,,. We find that the first
vertex cannot be included into the segment. Thus, the maximal steady
segment consists of three vertices, the second, third, and forth vertices.

Analysis of consSS. For each vertex u € Vi U Vg, Line 2 of Algo-
rithm 6 takes O(X,en(y) d(v)) time, Line 3 as well as Lines 5-12
take O(|®y|log |®y|) time; Lines 5-12 use the similarity tree data
structure as discussed above. The while loop at Line 15 runs for at
most « - log |®,] iterations, and each iteration takes O(|®y|) time.
Lines 23-25 take O(|®,|) time. Thus, the total time complexity of

consSS is O(Sueviuvi (@ Pullog |Pul + Zoen (1) d(v))) time.

Index Maintenance. When the graph changes, e.g., edges are
inserted or deleted, we can easily modify our index structure to
reflect the changes. The main observation is that updates to the
index are localized; suppose a new edge (u,v) is inserted, then only
the S,, for w € &, U ®, U {u, v} will change. We omit the details.

MSBE mat-MSBE LG-MSBE

SS-MSBE =

N

N\
§
N\
\
BC AM

N

zzzzzzZzZ22

Q
jan)
-
ke
o)
7]

N

ez
<&\\\\\\\\\\\\\\

7

WzzzzzzzzzzZzZzA
N NN

wjrrtt?222)
of

zzzzzzzzzZz?z2?222.
NN

%
DI FL

Figure 8: Running time on all graphs (¢ = 0.5, 7 = 3)

Table 1: Statistics of graphs

Abbreviation Graph VL] |VR| |E] Type

YT YouTube 94,238 30, 087 293, 360 Membership
GH GitHub 56,519 120, 867 440, 237 Membership
LX Linux 42,045 337,509 599,858 Post

BS Bibsonomy 767,447 5,794 801,784 Assignment
BC BookCross 105,278 340,523 1,149,739 Rating
AM ActorMovie 127,823 383, 640 1,470,404 | Appearance
wUu WebUni 6,202 200, 148 1,948,004 | Appearance
Cu CiteULike 731,769 153,277 2,338,554 | Assignment
TV TVTropes 64,415 87,678 3,232,134 HasFeature
IM IMDB 303,617 896, 302 3,782,463 | Appearance
AZ Amazon 1,879,572 | 1,162,941 | 4,955,492 Rating

DI Discogs 1,754,823 | 270,771 5,302,276 Affiliation
FL Flickr 395,979 103, 631 8,545,307 | Membership
DB DBLP 1,953,085 | 5,624,219 | 12,282,059 | Authorship
NY NYTimes 299,752 101, 636 69, 679,427 | Appearance
DE Delicious 833,081 | 33,778,221 | 101,798,957 | Interaction
OR Orkut 2,783,196 | 8,730,857 | 327,037,487 | Affiliation

5 EXPERIMENTS

In this section, we evaluate the efficiency of our algorithms as well
as the effectiveness of our similar-biclique model.

Algorithms. We compare the following algorithms.

o PMBE: the state-of-the-art algorithm proposed in [2] for
enumerating all maximal bicliques.
e MSBE: our Algorithm 1 equipped with all the optimizations
in Section 3.2.
o mat-MSBE: the materialized version of MSBE, as discussed
at the end of Section 3.2.
e LG-MSBE and SS-MSBE: our index-based algorithms that
use the largest gap and steady segment index, respectively.
The source code of PMBE is obtained from the authors of [2]. All our
algorithms are implemented in C++ and run in main memory. All
experiments are conducted on a machine with an Intel(R) 3.2GHz
CPU and 64GB main memory running Ubuntu 18.04.5. We set a
timeout of 10 hours for running an algorithm on a graph.

Datasets. We evaluate the algorithms on 17 real bipartite graphs,
all of which are publicly available on KONECT . Statistics of the
graphs are shown in Table 1, where the graphs are listed in increas-
ing order regarding the number of edges.

Query Parameters. A maximal similar-biclique enumeration query
consists of two parameters, € and 7. ¢ is chosen from {0.4, 0.5, 0.6, 0.7,
0.8}, and is set as 0.5 by default. 7 is chosen from {3,4, 5, 6, 7}, and
is set as 3 by default. In addition, we also have parameters « and y
in index construction; we set @ = 1 and y = 0.3 by default.

5.1 Efficiency Evaluations

In this subsection, we evaluate the efficiency of the algorithms.
Note that, we also implemented a version of MSBE without the

Shttp://konect.cc/networks/

MSBE —%— mat-MSBE —— LG-MSBE —- SS-MSBE —&—
1027 T T T T T] 103; T T T T L
EHk—k————— % 3 S S A
3 . f 1 =10 ;A—A\A‘A_A—
E ?S\E'\E'\EI\EJE i
F 4 o 10 F E|
2 0l]z
Z10 EG\S\S\S\@E E oL]
10 E | | I I 1 3 10 g | | | | !
04 05 06 07 08 04 05 06 07 038
€ €

(

=}
- N

3
T
L

Time (Sec)

3
H‘
L

IN
a v
o
<

(c) IM (vary 7) (d) FL (vary 7)
Figure 9: Running time by varying ¢ and 7

optimizations of Enum proposed in Section 3.2; it is omitted from
the experiments since it times out in almost all the testings.

Running time on all graphs. The running time of the five algo-
rithms on all graphs with default ¢ and 7 is illustrated in Figure 8.
We can see that mat-MSBE slightly improves upon MSBE when
it is feasible to store the similar neighbors of all vertices in main
memory. However, mat-MSBE runs out-of-memory on BS, CU,
and DI, as marked by “oom” in Figure 8; for example, the memory
consumption on BS would be over 400GB. Note that the mem-
ory consumption of mat-MSBE mainly depends on the structure,
rather than the size, of the input graph, and thus mat-MSBE does
not run out-of-memory on other larger graphs. Our two index-
based algorithms, LG-MSBE and SS-MSBE, are the fastest and they
outperform the other two algorithms that do not use index by up to
5 orders of magnitude. SS-MSBE is generally faster than LG-MSBE.
Compared with the state-of-the-art maximal biclique enumeration
algorithm PMBE, SS-MSBE is up to 6 orders of magnitude faster;
note that, PMBE also uses 7 to prune the search space. Thus, we
exclude PMBE from our remaining evaluations.

Running time by varying ¢ and 7. The running time of our four
algorithms on IM and FL by varying ¢ and 7 are shown in Fig-
ure 9. We can see that the running time of LG-MSBE and SS-MSBE
decreases when either ¢ or 7 increases. This is because, more ver-
tices will be pruned by indexedVR when either ¢ or 7 increases,
and thus the enumeration process of LG-MSBE and SS-MSBE run
faster. Also, indexedVR runs faster when ¢ or 7 increases, as can
be seen from Figure 10. In contrast, the running time of MSBE and
mat-MSBE is not so sensitive to ¢ or 7, as the dominating part of
these two algorithms is computing similar neighbors for vertices.

Efficiency of indexedVR. In this experiment, we evaluate the ef-
ficiency of indexedVR for our two index structures. Recall that

3094

http://konect.cc/networks/

LG Phase-1 O
T T

Times (Sec)

SS Phase-I
T T

LG Phase-11 B SS Phase-1I m
T T T T

Times (Sec)
S

b

.4 0.5 0.

N
§
N
N
\
\
N
N
N
\

=3

.7 0.8

53

of Vertices
S
%W S

<,

0.4

<
\
\
\
\
N
N
\
N
\

o

.5

V7zzzzZzzZ77727777777772

=3

.6
€

7zzzz77727772777777772

=3

.7

op

(c) IM (# of reduced vertices)

(d) FL (# of reduced vertices)

Figure 10: Efficiency of indexedVR (7 = 3)

Table 2: Index size and construction time

. Largest gap index Steady segment index
Graph | - Size consl_gG (SgecI; Size | consSS (Sec}), cgonsSS* (s) | Size

YT 4.6M 0.7 6.7M 21 1.8 8.3M
GH ™ 1.1 6.6M 90 4.9 6.2M
LX 9.2M 48 31M 9,485 588 50M
BS |12.4M 506 75M 49, 685 6,975 59M
BC 18M 16 27TM 1,200 130 30M
AM 24M 1.5 24M 81 7 20M
WU | 30M 11 15M 656 40 16M
Ccu 36M 1,130 73M 296,094 12,547 103M
TV 50M 13 4.4M 110 14 2.3M
IM 58M 10 56 M 420 28 56 M
AZ 76 M 22 122M 2,220 152 124M
DI 82M 549 132M 45,967 5,187 146 M
FL 132M 106 30M 3,102 235 23M
DB | 18M 29 299M 1,905 177 324M
NY 1.1G 2,623 35M 20,934 4,397 14M
DE 1.5G 3,071 2.3G 129,304 13,435 3.1G
OR 5G 21,874 690M 246, 045 23,872 459M

indexedVR (Algorithm 5) has two phases. Thus, we separately re-

port the results of each phase. The running time on IM and FL are
shown in Figures 10(a) and 10(b). We can see that the two index
structures take almost the same time for the first phase, while the
second phase of SS index-based indexedVR is much faster than

LG index-based. This can partially be explained by the number of

vertices that need to be pruned in the second phase, as reported in
Figures 10(c) and 10(d). We remark that, for a fixed ¢ and 7, the total

Graph Size T SS Size consSS <>
LG Size consLG K- consSS" £+

<
W

T

S

Times (Sec)

Times (Sec)

=)

(a) IM (index size and time)

(b) FL (index size and time)

! L LG-MSBE —&— [" LG-MSBE —&- |
10" SS-MSBE —&— r SS-MSBE —&—
g §10‘; |
4 a 1
= =10F E
10"* L 1 | L | | L L 1 | L |]
0.01 0.1 I 10 100 0.01 0.1 1 10 100
o o
(c) IM (efficiency of MSBE) (d) FL (efficiency of MSBE)
Figure 11: Index performance by varying a
SS'MSBE —&-© — SSIMSBE —&-—
S0l 4 3
4 1St E
P {3]
E E p
HIO | E = i
L L L L L] 10 L L L L L
0.1 03 05 07 09 0.1 03 05 07 09
Y Y
(@) IM (b) FL

Figure 12: Efficiency of SS-MSBE by varying y

The running time of our index construction algorithms consLG,
consSS, and consSS* are reported in the third, fifth, and sixth
columns of Table 2, respectively. consLG runs the fastest due to its
simplicity. Nevertheless, consSS*, which optimizes consSS by the
similarity tree data structure, is only slightly slower than consLG.

Index performance by varying a. In this experiment, we evalu-
ate the effect of « on the index size, index construction time and
efficiency of MSBE. The results are shown in Figure 11. Recall that
a controls the number of segments constructed for @,,. As expected,
the index size and index construction time increase along with the
increasing of @, as shown in Figures 11(a) and 11(b). When « is no
larger than 1, the index size is at most at the same level as the graph
size, but when a reaches 100, the index size can be much larger than
the graph size. As shown in Figures 11(c) and 11(d), the running
time of both LG-MSBE and SS-MSBE decreases when « increases.

number of pruned vertices by different indexes are the same, and
also the same as that pruned by the index-free approach VReduce.
Thus, from the number of vertices that are pruned in Phase-II as
shown in Figure 10, we can conclude that SS index prunes much
more vertices than LG index in Phase-I. For example, for dataset
FL and ¢ = 0.4, SS index prunes 467, 329 vertices in Phase-I and
9,691 vertices in Phase-II, while LG index prunes 449, 195 vertices
in Phase-I and 27, 825 vertices in Phase-II. As the second phase

This is because the more the number of segments, the fewer the
number of fake vertices. To strike a balance between index size and
efficiency of MSBE, we recommend to set @ € [0.1, 10].

Efficiency of SS-MSBE by varying y. In this experiment, we eval-
uate the performance of SS-MSBE for different y values. Note that,
the index size and index construction time of consSS are almost not

dominates the running time, SS index is superior.

Index size and construction time on all graphs. The size of

the two indexes on all graphs are shown in the fourth column and
last column of Table 2. As a comparison, we also report the graph
size in the second column of Table 2. We can see that in most cases,
the sizes of the two indexes are similar to each other and are at
the same level as the graph size, and thus they are affordable to be

stored in main memory.

3095

affected by y; thus we omit these results. This is because consSS
selects a fixed number of steady segments (i.e., a log |®y|) to cover
as many vertices of @, as possible, and then it covers all remaining
uncovered vertices of ®;, by using the fewest number of disjoint
segments. Thus, the total number of segments generated for @, is at
most 2« log |®y, |+ 1, which is independent of y. Figure 12 shows the
running time of SS-MSBE by varying y from 0.1 to 0.9. We can see
that when y is small (e.g., y < 0.3), the performance of SS-MSBE is
not good. The main reason is that when y is small, a steady segment

1 Biclique
e Similar-Biclique

S oo o
SRS

YT GH LX AMWU CU TV IM AZ DI FL DB
Figure 13: Average Jaccard similarity

Ave. Jaccard Similarity

Similar-Biclique —%— Biclique —4— (o, f)-core —5— 1-Biplex ——
E T T T E

E 3 't 1
; I 8. <k E
Zosf 1 Zosp E
Z0.6F 3 Zoef 3
g 1 gk E
204 Zoaf =

E | E|
3 4 5 6 7 05 055 06 065 0.7
T density

(a) Varying 7 (b) Varying injected subgraph density

Figure 14: Case study 1: anomaly detection

will cover fewer vertices due to the tighter constraint. As a result,
more vertices need to be covered by the ordinary segments, which
then results in introducing more fake vertices. Also, when y is large,
the performance of SS-MSBE becomes worse. This is because for
large y (e.g., y = 1), a steady segment is no longer steady and de-
generates to the ordinary segment. This motivates us to introduce
steady segment. We recommend the value of y to be in [0.3,0.5].

5.2 Effectiveness Evaluations

Average Jaccard similarity. We compare the average Jaccard
similarity between L-side vertices in a maximal (similar-)biclique.
Specifically, for each maximal (similar-)biclique C, we compute the
average of the Jaccard similarity between all pairs of vertices from
Cr, and then the average result of all maximal (similar-)bicliques is
reported in Figure 13. We can see that vertices in a similar-biclique
are much more similar to each other than in a biclique.

Case study 1: anomaly detection. We compare similar-biclique
with other dense bipartite subgraph models, biclique, («, f§)-core [24]
and k-biplex [52], on anomaly detection in e-commerce applica-
tions. As mentioned in the Introduction, to improve the ranking of
certain products, e-business owners may employ a set of fraudulent
users to purchase a set of designated products. The fraudsters will
also purchase other honest products trying to look “normal”; this
is called “camouflage” in the literature. We consider a camouflage
attack in the same way as [19] on “Amazon Review Data” (Mag-
azine Subscriptions) 6 which contains 65,546 reviews on 2,316
magazines by 53,617 users, by injecting 100 fraudulent users and
100 fraudulent products with various edge densities. The amount of
camouflage (i.e., edges linking to honest products) added per fraud-

ulent user is equal to the amount of fraudulent edges for that user.
2xprecisionxrecall

precision+recall *
tecting suspicious users and products. We apply the size constraint

7 to all the models, where a = f§ = 7 for the («, f)-core model; for
our similar-biclique model, ¢ is set as 0.2. The results by varying 7
and varying the density of the injected subgraph are shown in Fig-
ure 14. We can see that similar-biclique always achieves the highest
accuracy. This is due to the similarity constraint imposed on users

We adopt F-score, to evaluate the accuracy of de-

Shttps://nijianmo.github.io/amazon/index.html

3096

s [Argentina] /\' [Germany] [America]
5 \
\‘:“ [Puerto Rico] [Belize] \\\ [Sint Maarten] ,’/ MexicoHMorocco]
W I /

\\\\\\ [Trinidad and Tobago’X\ ' A Philippines

W N b

/ = —

Figure 15: Case study 2: similar-bicliques in Unicode (7 = 2)

by similar-biclique, which naturally captures the reality that fraud-
ulent users usually display a high level of synchronized behavior
with each other. In contrast, biclique, 1-biplex, and («, f8)-core all
have a low precision and thus low F-score.

Case study 2: interesting pattern detection on Unicode. We
also conduct a case study on the Unicode dataset [25] to illustrate
the hierarchical structure of similar-bicliques by varying the simi-
larity threshold ¢. Unicode captures the languages that are spoken
in a country. The three similar-bicliques detected for ¢ = 0.7, 0.4,
0.01 are reported in Figure 15, where the entire result corresponds
to £ = 0.01; the similarity constraint is imposed on the countries and
7 = 2. We have the following observations. Firstly, the five countries
in the similar-biclique for ¢ = 0.7 are all located in the Caribbean Sea
Area with English and Spanish being their main language (around
90% population speak English and Spanish). Secondly, more coun-
tries from Latin America, e.g. Argentina and Chile, are included in
the similar-biclique for ¢ = 0.4, and the newly added four countries
speak more diverse languages. For example, in Sint Maarten, besides
English and Spanish, around 8% population speak Virgin Islands
Creole English and 4% population speak Dutch 7. Lastly, when e is
0.01, similar-biclique degenerates to biclique, and more countries
are included, e.g., America and Germany. This demonstrates that
similar-biclique can detect interesting patterns.

6 CONCLUSION

In this paper, we formulated the notion of similar-biclique, and pro-
posed algorithms as well as optimization techniques to enumerate
all similar-bicliques in a bipartite graph. Besides, index structures
are also designed to speed up the computation. Extensive empirical
studies on real bipartite graphs demonstrated the effectiveness of
our similar-biclique model and the efficiency of our algorithms.
Case studies show that the similar-biclique model can be used to
detect anomalies as well as interesting dense subgraph patterns.
Our work initiates the study of integrating similarity constraint into
dense bipartite subgraph mining, by taking the biclique model. For
future studies, it will be interesting to integrate similarity constraint
into other dense bipartite subgraph models, such as quasi-biclique,
k-biplex, (e, p)-core, k-bitruss and k-wing. We believe that our
proposed index structures will also be useful for these extensions.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council Fund-
ings of FT180100256 and DP220103731, and the Research Grants
Council of Hong Kong, China under No. 14203618, No. 14202919
and No. 14205520.

https://www.unicode.org/cldr/cldr-aux/charts/25/summary/root.html

REFERENCES

(1]
(2]

(3]
(4]

(5]

[10]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[25]
[26]
[27]

[28]

[29]

[30]

[n.d.]. full version: https://lijunchang.github.io/pdf/2022-msbe-tr.pdf.

Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal
Biclique Enumeration.. In IJCAL 3558-3564.

Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the web. Social
networks 25, 3 (2003), 211-230.

Gabriela Alexe, Sorin Alexe, Yves Crama, Stephan Foldes, Peter L Hammer, and
Bruno Simeone. 2004. Consensus algorithms for the generation of all maximal
bicliques. Discrete Applied Mathematics 145, 1 (2004), 11-21.

Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem Benatallah, Seyed-
Mehdi-Reza Beheshti, Elisa Bertino, and Norman Foo. 2013. Collusion detection
in online rating systems. In Asia-Pacific Web Conference. Springer, 196-207.
Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16, 9 (1973), 575-577.

Lijun Chang, Wei Li, Lu Qin, Wenjie Zhang, and Shiyu Yang. 2017. pSCAN: Fast
and Exact Structural Graph Clustering. IEEE Trans. Knowl. Data Eng. 29, 2 (2017),
387-401.

Lijun Chang, Jeffrey Xu Yu, and Lu Qin. 2013. Fast Maximal Cliques Enumeration
in Sparse Graphs. Algorithmica 66, 1 (2013), 173-186.

James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms
for maximal clique enumeration with limited memory. In Proc. of KDD’12. 1240—
1248.

Vacha Dave, Saikat Guha, and Yin Zhang. 2013. Viceroi: Catching click-spam
in search ad networks. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. 765-776.

Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008.
Computational geometry: algorithms and applications, 3rd Edition. Springer.
Lee R Dice. 1945. Measures of the amount of ecologic association between
species. Ecology 26, 3 (1945), 297-302.

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient
fault-tolerant group recommendation using alpha-beta-core. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management. 2047-2050.
Radia EL BACHA and Thi Thi Zin. 2018. Ranking of influential users based
on user-tweet bipartite graph. In 2018 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI). IEEE, 97-101.

David Eppstein. 1994. Arboricity and bipartite subgraph listing algorithms.
Information processing letters 51, 4 (1994), 207-211.

David Eppstein, Maarten Loffler, and Darren Strash. 2010. Listing all maximal
cliques in sparse graphs in near-optimal time. In International Symposium on
Algorithms and Computation. Springer, 403-414.

Siva Charan Reddy Gangireddy, Cheng Long, and Tanmoy Chakraborty. 2020.
Unsupervised fake news detection: A graph-based approach. In Proceedings of
the 31st ACM conference on hypertext and social media. 75-83.

Dorit S Hochbaum. 1996. Approximating covering and packing problems: set
cover, vertex cover, independent set, and related problems. In Approximation
algorithms for NP-hard problems. 94-143.

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In
Proc. of KDD'’16.

Paul Jaccard. 1901. Distribution de la flore alpine dans le bassin des Dranses et
dans quelques régions voisines. Bull Soc Vaudoise Sci Nat 37 (1901), 241-272.
Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context
similarity. In Proc. of KDD’02. 538-543.

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shigiang Yang. 2014.
Catchsync: catching synchronized behavior in large directed graphs. In Proc. of
KDD’14. 941-950.

Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39-43.

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.
1999. Trawling the web for emerging cyber-communities. Computer networks
31, 11-16 (1999), 1481-1493

Jérome Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd international conference on world wide web. 1343-1350.

Sune Lehmann, Martin Schwartz, and Lars Kai Hansen. 2008. Biclique communi-
ties. Physical review E 78, 1 (2008), 016108.

Elizabeth A Leicht, Petter Holme, and Mark EJ Newman. 2006. Vertex similarity
in networks. Physical Review E 73, 2 (2006), 026120.

Michael Ley. 2002. The DBLP computer science bibliography: Evolution, re-
search issues, perspectives. In International symposium on string processing and
information retrieval. Springer, 1-10.

Jinyan Li, Haiquan Li, Donny Soh, and Limsoon Wong. 2005. A correspondence
between maximal complete bipartite subgraphs and closed patterns. In European
Conference on Principles of Data Mining and Knowledge Discovery. Springer, 146—
156.

Jinyan Li, Guimei Liu, Haiquan Li, and Limsoon Wong. 2007. Maximal biclique
subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one corre-
spondence and mining algorithms. IEEE Transactions on Knowledge and Data

3097

(31]

[32

(33]

[35

[36

(37]

(38]

[40

[41

[42

[47]

(48

[49]

o
=

[51]

[52

(53]

[54]

(56

(57]

Engineering 19, 12 (2007), 1625-1637.

David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019-1031.

Zhenjiang Lin, Michael R Lyu, and Irwin King. 2012. MatchSim: a novel similarity
measure based on maximum neighborhood matching. Knowledge and information
systems 32, 1 (2012), 141-166.

Guimei Liu, Kelvin Sim, and Jinyan Li. 2006. Efficient mining of large maxi-
mal bicliques. In International Conference on Data Warehousing and Knowledge
Discovery. Springer, 437-448.

Xiaowen Liu, Jinyan Li, and Lusheng Wang. 2008. Quasi-bicliques: Complexity
and binding pairs. In International Computing and Combinatorics Conference.
Springer, 255-264.

Linyuan Lii and Tao Zhou. 2011. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications 390, 6 (2011), 1150-1170.
Bingging Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren
Zhou. 2020. Maximum biclique search at billion scale. Proceedings of the VLDB
Endowment (2020).

Kazuhisa Makino and Takeaki Uno. 2004. New algorithms for enumerating
all maximal cliques. In Scandinavian workshop on algorithm theory. Springer,
260-272.

Victor Martinez, Fernando Berzal, and Juan-Carlos Cubero. 2016. A survey of
link prediction in complex networks. ACM computing surveys (CSUR) 49, 4 (2016),
1-33.

Nimrod Megiddo, Eitan Zemel, and S Louis Hakimi. 1983. The maximum coverage
location problem. SIAM Journal on Algebraic Discrete Methods 4, 2 (1983), 253
261.

René Peeters. 2003. The maximum edge biclique problem is NP-complete. Discrete
Applied Mathematics 131, 3 (2003), 651-654.

Gerard Salton. 1989. Automatic text processing: The transformation, analysis,
and retrieval of. Reading: Addison-Wesley 169 (1989).

Michael J Sanderson, Amy C Driskell, Richard H Ree, Oliver Eulenstein, and
Sasha Langley. 2003. Obtaining maximal concatenated phylogenetic data sets
from large sequence databases. Molecular biology and evolution 20, 7 (2003),
1036-1042.

Ahmet Erdem Sariytice and Ali Pinar. 2018. Peeling bipartite networks for dense
subgraph discovery. In Proc. of WSDM’18. 504-512.

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. 2011. Local graph
sparsification for scalable clustering. In Proc. of SIGMOD’11. 721-732.
Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering
techniques. Advances in artificial intelligence 2009 (2009).

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time
complexity for generating all maximal cliques and computational experiments.
Theoretical computer science 363, 1 (2006), 28—42.

Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel Index-Based
Structural Graph Clustering and Its Approximation. In Proc. of SSGMOD’21. 1851
1864.

Takeaki Uno, Masashi Kiyomi, Hiroki Arimura, et al. 2004. LCM ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In Fimi, Vol. 126.

Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-
based and item-based collaborative filtering approaches by similarity fusion. In
Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. 501-508.

Xiaodong Wang and Jing Liu. 2018. A comparative study of the measures for
evaluating community structure in bipartite networks. Information Sciences 448
(2018), 249-262

Seok-Ho Yoon, Sang-Wook Kim, and Sunju Park. 2016. C-Rank: A link-based
similarity measure for scientific literature databases. Information sciences 326
(2016), 25-40.

Kaiqiang Yu, Cheng Long, P Deepak, and Tanmoy Chakraborty. 2021. On Efficient
Large Maximal Biplex Discovery. IEEE Transactions on Knowledge and Data
Engineering (2021).

Mohammed J Zaki and Ching-Jui Hsiao. 2002. CHARM: An efficient algorithm
for closed itemset mining. In Proceedings of the 2002 SIAM international conference
on data mining. SIAM, 457-473.

Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler,
and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological data types.
BMC bioinformatics 15, 1 (2014), 1-18.

Zhong-Yuan Zhang and Yong-Yeol Ahn. 2015. Community detection in bipartite
networks using weighted symmetric binary matrix factorization. International
Journal of Modern Physics C 26, 09 (2015), 1550096.

Peixiang Zhao, Jiawei Han, and Yizhou Sun. 2009. P-rank: a comprehensive
structural similarity measure over information networks. In Proceedings of the
18th ACM conference on Information and knowledge management. 553-562.
Zhaonian Zou. 2016. Bitruss decomposition of bipartite graphs. In International
Conference on Database Systems for Advanced Applications. Springer, 218-233.

