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ABSTRACT
This paper discusses a new memtable implementation for Apache
Cassandra which is based on tries (also called prefix trees) and
byte-comparable representations of database keys. The implemen-
tation is already in production use in DataStax Enterprise 6.8 and
is currently in the process of being integrated into mainstream
Apache Cassandra as CEP-19. It improves on the legacy solution in
the performance of modification and lookup as well as the size of
the structure for a given amount of data. Crucially for Cassandra (a
database running under the Java Virtual Machine), it also reduces
garbage collection and general memory management complexity
by operating on blocks of fixed size in large preallocated buffers.
We detail the architecture of the solution and demonstrate some of
the performance improvements that we have been able to achieve
with it.
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1 INTRODUCTION
Apache Cassandra [4] is a distributed NoSQL database [13, 30]
whose storage design is a log-structured merge (LSM) tree [24, 27].
Like all LSM tree systems, Cassandra uses an in-memory buffer,
called “memtable”, to place incoming writes according to their
logical order before flushing them to on-disk files (so called SSTables,
for “sorted string tables” as originally called by Google’s BigTable
[3]). The performance of the in-memory buffer determines the peak
write throughput that the database as a whole can achieve, while
the amount of data that can be placed in it is a primary determinant
of the achievable sustained throughput, as larger buffers enable a
lower number of subsequent compaction passes over the data.

Traditionally, the data structures and algorithms that databases
use to order data have been comparison-based. That is, to make
decisions on how to place an item in an indexing structure, this
item’s key is compared to the key of other items. Cassandra is
no exception, and its current memtable implementation uses a
hierarchy of comparison-based data structures to organize data:
a concurrent skip list is used to index database partitions1, and
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1Data in Cassandra is organized in partitions, distributed amongst nodes according to
a hashing function and modified atomically, each containing a sorted set of rows of a
number of columns, where each column is either a single data cell or a collection of
cells.

separate B-Trees are used to index rows within a partition, columns
within a row, and individual cells within a complex column.

From a practical point of view, comparison-based structures have
some inherent inefficiencies that can lead to compromises in per-
formance. Keys can can comprise of multiple components where it
is common for elements to share the same value for all but the last
component, and for comparisons to have to compare an equal prefix
time and again. Keys can be in a multitude of different types, neces-
sitating multi-morphic virtual calls to apply the correct comparison
logic. Making decisions about the branch to continue operating
with usually requires binary search, which is notorious for the un-
predictability of its branching. Keys must be in comparable forms
(e.g. BigDecimal), which can waste space or create a lot of object
churn. Finally, keys must be fully present for a comparison, and
the cache space required to avoid going to main memory for the
most often consulted keys is large. Theoretically, the worst-case
lookup complexity in comparison-based structures is 𝑂 (𝑘 log𝑛)
(for 𝑛 entries and key length 𝑘), which can be improved on if we
know a bit more about the structure of the keys.

Cassandra’s language of implementation is Java, and it uses the
Java Virtual Machine’s garbage collector as the primary memory
management mechanism. Because of this, there are two factors that
are the main consideration when determining the memtable size
limits in Cassandra:

• the overall memory and Java heap size, and
• the efficiency of garbage collection (GC).

The current memtable solution in Cassandra can use off-heap
memory to store the data coming with write requests, but uses only
on-heap memory for the indexing structures necessary to structure
and locate each piece of data (we will call this the “memtable meta-
data”). As a result, with the typical workloads where a row size is
in the low hundreds of bytes, the on-heap footprint of a memtable
dominates.

This has two downsides:

• The memtable size is limited by the heap size. To make use
of pointer compression, this is usually set to under 32 GB of
memory even on large machines, and needs to accommodate
a lot of other transient and non-transient data.

• Garbage collection has to process the memtable metadata.
Since memtables tend to stick around for a while, they are
usually promoted to older GC generations and are only freed
in full GC cycles.

The larger the fraction of the heap that the memtable takes,
the worse the GC complexity becomes, and high GC complexity
causes long stop-the-world pauses which in turn appear in the high
percentile request latencies. Because garbage collection cycles in
Cassandra are costly, one of the less evident side effects of this
problem is an increased pressure on the Cassandra developers,
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regardless of the component of the database they work in, to reduce
or eliminate object allocations, which makes the database code
harder to write and understand, as well as more error-prone.

The considerations above indicate the potential of significant
performance gains to be realized by developing a new memtable
implementation. Our contribution addresses the inefficiency of
comparison-based indexes by using a data structure that utilizes
additional organization imposed on the database keys, and the
garbage collection cost by hiding the internal composition of the
index from the garbage collector.

The additional structure we impose on the database keys is the
requirement to represent them as sequences of bytes that can be
compared by their lexicographic order (called “byte-comparable
representations”). Once this is in place, the comparison logic can
be dramatically simplified, and comparisons can be decided early,
without reading the entirety of each key, when prefixes differ. More
importantly, data structures such as tries can be used to operate on
these representations, which gives prefix compression and greater
lookup and insertion efficiency with 𝑂 (𝑘) worst-case complexity
(for key length 𝑘).

Our solution, contributed to Apache Cassandra in CEP-19 [19]
and included in DataStax Enterprise 6.8, improves Cassandra’s
memtables by using a state-of-the-art implementation of in-memory
tries built to offer:

• Fast lookup and insertion based on the translation of keys
to their byte-comparable representation.

• Sharing of key prefixes to reduce the space needed to store
keys.

• Internal memory management that enables large parts of the
memtable metadata to be stored off-heap or in large on-heap
buffers which are opaque to the garbage collector.

2 BYTE-COMPARABLE REPRESENTATIONS
To be able to use machinery based on byte comparison, we need a
method of translating any key to its byte-comparable representation.
The translation must be such that for any two keys, the result
of lexicographically comparing the unsigned bytes of the byte-
comparable representation is equal to the result of comparing the
keys.

Keys in Cassandra are formed of multiple components of prede-
fined types. We use the type to define a translation that satisfies
several requirements, and combine the translations of the individual
components into a flattened translation of the whole key.

One way to achieve this is to require the following two properties
for the translation𝜓𝑇 of a given type 𝑇 and comparison function
\𝑇 :

(1) Comparison equivalence:
∀𝑥,𝑦 ∈ 𝑇, 𝜗 (𝜓𝑇 (𝑥),𝜓𝑇 (𝑦)) = \𝑇 (𝑥,𝑦)

(2) Prefix-freedom:
∀𝑥,𝑦 ∈ 𝑇,𝜓𝑇 (𝑥) is not a prefix of𝜓𝑇 (𝑦),

where 𝜗 stands for lexicographic comparison on the unsigned bytes
of a sequence.

If we have this and we attach together the bytes of the transla-
tions of a component, we can achieve comparison- equivalence for

the composite type, i.e. the key:

∀𝑥1, 𝑦1 ∈ 𝑇1, 𝑥2, 𝑦2 ∈ 𝑇2, . . . 𝑥𝑛, 𝑦𝑛 ∈ 𝑇𝑛,

𝜗 (⊕𝑖≤𝑛 (𝜓𝑇𝑖 (𝑥𝑖 )), ⊕𝑖≤𝑛 (𝜓𝑇𝑖 (𝑦𝑖 ))) = \𝑇 (𝑥,𝑦)
where ⊕ is the concatenation operator, and \𝑇 (𝑥,𝑦) stands for
lexicographic comparison of the sequences 𝑥𝑖 and 𝑦𝑖 using the
corresponding type 𝑇𝑖 .

The actual translation depends on the type, for example:
• For unsigned fixed-length integers, directly use the big-en-
dian sequence of bytes.

• For signed fixed-length integers, invert the sign bit and use
the sequence as above.

• For IEEE floating point numbers, invert the sign bit, and also
invert all other bits if the number is negative.

• For blobs of varying size, encode all 00s in the blob as 00 01
and terminate the sequence with 00 00.

Cassandra already provides such a translation [11], using a tweaked
variation of the above. Another example of byte ordered translation
is given by Orderly [10].

3 TRIES
A trie (also called prefix tree) [14, 16] is a data structure that de-
scribes a mapping between sequences and associated values. It has
a close relationship with finite state automata and was developed
to encode words in a language. The trie terminology talks about
“characters”, “words” and “alphabet”, which in our application map
to bytes of the byte-comparable representation, the sequence that
encodes it, and the possible values of a byte.

A trie can be defined as a tree graph in which vertices are states,
some of which can be final and contain associated information, and
where edges are labeled with characters. A valid word in the trie
is encoded by a path starting from the root of the trie where each
edge is labeled with the next character of the word, and ending in a
final state which contains the “payload” associated with the word.

Finding the payload associated with a word is a matter of fol-
lowing the edges (also called “transitions”) from the initial state
labeled with the consecutive characters of the word, and retrieving
the payload associated with the state at which we end up. If that is
not a final state, or if at any point in this we did not find a transi-
tion in the trie matching the character, the trie does not have an
association for the word. The complexity of lookup is thus 𝑂 (𝑘)
transitions, where the cost of taking a transition can be taken to be
constant, thus this complexity is theoretically optimal.

When the items stored in a trie are lexicographically ordered
(e.g. byte-comparable), a trie is also an ordered structure. A trie can
be walked in order and it is also possible to efficiently list the items
between two given keys.

From a storage space perspective, one of the main benefits of a
trie as a data structure for storing a map is the fact that it completely
avoids storing redundant prefixes. All words that start with the
same sequence store a representation of that sequence only once. If
prefixes are commonly shared, this can save a great deal of space.

Tries can be used as mutable or immutable structures, both in
memory or on disk. For Cassandra, a mutable in-memory structure
in which we can insert, modify or delete mappings can be used for
memtables, and an immutable on-disk structure can be employed as
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Figure 1: Sample trie mapping several words to themselves.
The paths lead to “final” or “payload” nodes that contain a
copy of the key.

a primary or secondary SSTable index, or fully replacing SSTables.
In this paper we focus on the former application. DataStax’s trie-
indexed SSTable format and storage attached index [9] are examples
of the latter.

4 IMPLEMENTING TRIES
There exist many variations on the concept of a trie and various
implementations, including examples of applications for a database
[23, 31]. Some of the considerations that determine the efficiency
of the structure are:

The size of the character set. It is well known [14] that equiv-
alent tries and automata can be easily built with arbitrarily smaller
or larger character sets. For example, one can use 8 single-bit tran-
sitions in place of byte ones. This can be used to replace wider
tries with deeper ones, with the result of trading time for space
efficiency. A somewhat extreme example is given by the so-called
“succinct tries” [12] which store the structure with extremely low
overhead but require lookup in external structures (constructed
from the succinct representation) to take transitions.

As each transition may require one or more data fetches from
main memory, it is preferable to have fewer, and employ wider
alphabets to use more information in each step. In practice it is
also possible to vary the alphabet size, i.e. to use sub-transitions or
bundle multiple together.

Figure 2: An example of slicing the trie on Figure 1 with
the range “bit”-“thing”. Processing only applies on bound-
ary nodes (root, “t”, “th”, “thi”), where we throw away the
transitions outside the range. Subtries like the ones for “n”
and “o” fall completely between “b” and “t” thus are fully
inside the range and can be processed without any further
restrictions.

The method of storing transition information. The most
straightforward approach is to use a two dimensional array with
nodes in one dimension and characters in the other. Equivalently,
one can have node objects each using an array to store target nodes
per each possible character. We call this the “dense” format. It is
pretty quick in finding and adding information, but requires space
which is proportional to the number of nodes multiplied by the
number of characters. As the latter is not small, this structure is
prohibitively large.

The common alternative is to use an ordered map indexed by
transition in the node object, most efficiently by storing a sorted
array of characters and array of target nodes. We call this the
“sparse” format, and it uses space proportional to the number of
transitions. The downside is that lookup in this structure is slower
(using binary or linear search), and modification is much more
difficult.

A third option is to use a combination of the two: use typed
nodes, where some nodes use dense storage and others sparse,
depending on the number of transitions from the node. In practice,
tries usually tend to form a structure where the nodes closer to the
root have many transitions. As they are most often consulted and
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take up most of the time in aggregate, it makes a lot of sense to
use a dense format for them. On the other hand, the nodes further
from the root usually have fewer transitions and form the bulk of
the nodes in the trie, and for them it makes sense to use the more
compact sparse format.

Usage of multi-byte transitions. A further special case of the
above is a situation where there is a sequence of nodes that have
only one transition, for example as the remainder of a key after
a unique prefix has been determined. It is valuable to be able to
store such sequences compactly, so that a character can take just
one byte and multiple transitions are easier to take. A common
solution to this is to permit “multi-byte transitions”, an approach
often called a “radix tree” or “Patricia trie” [16, 26].

Data locality and cache line packing.Data fetches frommain
memory into the cache usually progress in chunks of at least 32
bytes. If it is possible to pack related information in these chunks,
and avoid extending beyond a cache line size, the cache efficiency
and access complexity can be improved.

Memory management. A straightforward approach is to use
Java objects representing trie nodes. Such nodes can be polymor-
phic, and reference arrays containing transition characters and
children.

This solution has multiple drawbacks: the object overhead for
such objects can be multiple times the data size stored, additional
pointer-chasing hops and memory fetches may be required to fetch
the arrays and, as discussed in the introduction, complex structures
of Java objects with medium-term lifetimes are very difficult to
handle efficiently by a garbage collector.

Concurrent operation. Locking structures are easier to imple-
ment, but to achieve better performance it is often preferable to
use lock-free ones. Complex designs, however, are very hard to
implement with the latter. The single-producer-multiple-consumer
option provides a good middle ground where writes are applied
sequentially, but multiple reads can proceed concurrently with any
write.

The method of presenting the trie structure. In an LSM
tree’s use case, the ability to merge and slice trie content efficiently
is extremely important. If the internal structure of a trie is available
for these operations, they can also benefit from the prefix-sharing
effect as all comparisons between nodes of two tries are effectively
comparisons between all the keys that share the same prefix.

It is natural to present the content of a trie as a tree of nodes
where each node can be queried about its transitions and child
nodes. Transformations such as merging would then create combi-
nation nodes representing the transformed node (e.g. the union of
all source nodes, where each child is also constructed by creating
a union of the relevant children from the sources). Unfortunately
this presentation can create a large amount of intermediate objects,
which can pose a problem for garbage collection or other memory
management.

5 DESIGN OF CASSANDRA’S IN-MEMORY
TRIE

5.1 Layout
One of the main considerations of the design has been the need to
avoid complex structures of objects on the heap. To this end we

opted to allocate large chunks of memory (on- or off-heap byte
buffers as requested by the user) in which we store a trie’s struc-
ture (i.e. the trie’s nodes). This means that we have to perform
our own memory management inside these chunks, and that this
management needs to be as simple as possible.

Considered in combination with the cache line packing point
from the list above, this led to the decision to pack data in 32-byte
“blocks” that form a unit of memory allocation and release in the
buffer. 32 bytes are not enough to store all the data for a node with
many transitions, but this problem can be overcome by breaking
up large nodes into sub-transitions.

Logically, the trie operates on nodes with byte transitions. Inter-
nally, the nodes are laid out in blocks, but there is no 1:1 correspon-
dence between nodes and blocks. There are five different types of
nodes in our tries:

• Split nodes have many children and are laid out using sub-
transitions. The node id points to the top level of the split
node, which contains pointers to four middle blocks corre-
sponding to the different values of the two most significant
bits in the transition byte. Themid-level blocks contain point-
ers to eight bottom blocks corresponding to the next three
bits, and the bottom blocks point to eight children each cor-
responding to the least significant three bits in the transition
byte. Any pointer in this structure can be null (for example,
there can be a null mid block for 01, meaning that this node
has no mapping for any byte between 0x40 and 0x7F), and
the space it takes is between 3 and 37 blocks.

• Sparse nodes have between 2 and 6 transitions and occupy
one block. They list the possible byte values and the child
pointers but, to permit modifications concurrent with reads,
do not store them in order (note: searching within a small
array is usually faster using direct rather than binary search).
For in-order iteration they also maintain an “order word”
which encodes how the children are ordered.

• Chain nodes handle the single-child case. As described under
multi-byte transitions in the previous section, single-child
nodes most often come in sequences; in such blocks we store
sequences of 1 to 28 chain nodes, where the last has an
explicit pointer, and the previous ones implicitly point to the
next.

• Leaf nodes point to content and have no further children.
They do not have corresponding blocks; at this time our tries
map to Java objects which cannot be stored in byte buffers,
thus we also maintain a separate content array and point
directly to an index in it.

• Prefix nodes hold content that is associated with some
prefix, i.e. content that falls on an intermediate node in the
trie rather than a leaf. Prefixes augment a node by placing
the content information either in free space within its block
(e.g. the first 16 bytes of the leading block of a split node)
or by pointing to it from a separate block.

Leaf nodes are themost common, followed by chain and sparse.
Split and prefix nodes are rare, which makes this storage effi-
cient. Also, when we bring a block from main memory, we can
make the most of it by either going deep and following multiple
transitions (chain), by having the width of all the possible children
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(sparse) or the targets of a three-bit choice (split) depending on
the complexity of the state at the node where we are positioned.

To avoid using space inside a crowded block, and to make it
possible to point to specific nodes in chain blocks, we store the
type of node in the node pointer. As we work inside a large byte
buffer, which in Java are limited in size to 2 GB, to identify a 32-byte
block we need the top 27 bits of a positive integer. We use negative
integers to identify leaf nodes, and the last 5 bits of positive ones
to distinguish between split, sparse, prefix, and the exact node
in a chain block.

The properties of the various node types are summarized in
Table 1. Further examples and details can be found in the code’s
bundled documentation [21].

5.2 Traversal
The critical operation that tries in Cassandra need to support is
the ability to iterate the keys and content of a bounded range
from a union of several tries. For this to be efficient, we need a
method of presenting the internal structure of the trie with minimal
intermediate object creation.

To do this we chose a stateful “cursor” paradigm which lists
the nodes of a trie in lexicographic order. That is, if we implicitly
associate each node in the trie with the path that is followed to
reach it from the root, all nodes of the trie will have associated
words, and when we place these in lexicographic order, the step
between any two consecutive ones either appends a new letter, or
truncates the word to a shorter length and appends a new letter. In
the graph this corresponds to either taking the first child transition
of the current node, or (when it does not have children), ascending
to the closest parent that still has any children left, and moving to
its first remaining child.

This is implemented in its most basic version as a single op-
eration, advance, which moves the cursor to the next node in
lexicographic order and returns information about the reached
descend-depth as well as the label of the transition that was taken.
This information is sufficient to recreate all visited keys, because
after each advance the descend-depth specifies which character
in the key needs to be replaced with the returned, as well as the
length of the new path.

Crucially, when two or more cursors are advanced in parallel,
the descend-depth and incoming transition are also sufficient to
determine which one is earlier in iteration order, which in turn
permits efficient implementation of unions and intersections. See
the bundled documentation [22] for further details.

5.3 Modification
Modification in this structure is done by a single writer, but readers
can progress in parallel with a writer. This is permitted by the struc-
ture of the individual node types, where we can add information
without invalidating existing data (for example, to add a new child
to a sparse node we append the new target and transition byte
without moving earlier values and creating invalid intermediate
states).

The mutation process is recursive, where we track the nodes
corresponding to positions in the trie on the way down, and apply

Figure 3: A sample trie with a cursor walk over it. Arrows in
black show the trie structure. The labels inside the nodes are
the pointer values with which the nodes is reached, or the
content which is associated with the leaves. Arrows in blue
show the progress of the cursor in response to advance calls
together with the associated descend depth and incoming
character.

any added information on the way back. While there is no corre-
sponding trie data on the way back, we can create chain nodes by
adding bytes; eventually we reach a node where we have to add a
new child. If the node permits it (e.g. a sparse node with less than
6 children), we do so with a volatile write — any new reader is then
guaranteed to see the new branch, which is already fully prepared.

If the node cannot be expanded (e.g. a chain nodewith a different
transition byte), we copy it, switching to the next wider type and
adding the new child. We then ascend to the parent and remap its
child pointer (with a volatile write as above), but also leave the
original version of the node in place for any reader that may still
be active and positioned on it.
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Table 1: Node types and their properties

leaf chain sparse split prefix

children 0 1 2-6 >6 —
blocks per node 0 1/28 to 1 1 3-37 0 (embedded) /

1 (standalone)
usage leaf node with

content
multiple single-child
transitions

few children many children adds content or meta-
data

typical location
in trie

leaf before leaf in the middle towards the root prefix entries;
boundaries

lookup
complexity

— equality check linear lookup bit manipulation +
pointer hops

—

pointer
offset

negative 00-1B
points to specific node

1E 1C 1F

layout content index
encoded as
∼ pointer

00: trans to 01
...

1A: trans to 1B
1B: trans to child

1C-1F: child pointer

00-03: child pointer 0
04-07: child pointer 1

...
18: trans 0
19: trans 1

...
1E-1F:order word

base-6 encoded

head block
10-13:pointer for 00
14-17:pointer for 01
18-1B:pointer for 10
1C-1F:pointer for 11

mid and tail
00-03:pointer for 000
04-07:pointer for 001

...
1C-1F:pointer for 111

embedded
00-03: content index

04: child ptr offset
05-1F: augmented node

(chain or split)

standalone
00-03: content index

04: 0xFF
05-1B:unused
1C-1F: augmented

node pointer

6 THE TRIE MEMTABLE
The elements above are combined in the TrieMemtable class, which
is the new memtable implementation for Cassandra that users can
switch to via its new memtable API [18].

Currently our solution combines a sharded trie partition map
with the existing mechanisms for storing data inside a partition.
In other words, the only component that we have changed is the
existing skip-list partition map, which we have replaced with sev-
eral tries split by hash ranges. This will not be the ultimate form
that the solution is expected to take, but it already provides some
dramatic advantages.

In the trie memtable we map each partition key to a byte-ordered
representation of its decorated version (i.e. partition key augmented
with a hash token, where order is determined by the hash value
first). This representation forms the path in the trie, and the payload
attached to the end of this path is the partition content.

Unlike other memtables, we do not store the partition key with
the partition content. Instead, we only store it as the trie path. This
improves memory usage and permits the memtable to take full
advantage of the prefix-sharing benefit of tries. The disadvantage
is that the key needs to be translated back on retrieval — however,
this only needs to happen on range queries and memtable flushes,
because point queries (which are most operations in Cassandra)
are already supplied with a copy of the required key.

As our tries cannot be written to concurrently and the memtable
must be able to scale its write performance with added resources,
we cannot use a single trie for the map. Instead, we partition the
hash space for which the node is responsible into equally-sized
ranges and create a separate trie for each range. The number of

such tries (called “shards”) is by default set to be the number of
CPU threads available to the process, and can be adjusted by the
user. Shards are also a mechanism for overcoming the 2GB trie size
limitation, which only applies to individual shards rather than the
whole memtable.

Because normally the database attaches a hash to each key which
should be close to evenly distributed in the hash space, each shard
should receive a close-to-equal part of the writes to the memtable,
and thus the performance of the memtable should normally be close
to optimal.

There are two exceptions to this: non-hashing partitioners, such
as the one used for legacy secondary indexes, and workloads where
writes to a single partition dominate. While at the moment this
means we can’t unqualifiedly recommend using the new memtable
in these scenarios, the improved lookup performance and memory
management may still provide a benefit compared to the legacy
solution. Sharding is further discussed and tested in section 8.1.

In addition to the sharded representation, the memtable also
provides a merged view on the whole memtable that is used for
range queries and flushes. This view is constructed by performing
a union of the per-shard tries as they are created. As each source is
reflected live in the union, this view is always up-to-date with the
full content.

7 PERFORMANCE
We will start with some microbenchmarks, comparing the read and
write speed using the legacy skip-list memtable and the new trie
implementation. We use a JMH microbenchmark called ReadTest-
SmallPartitions that is included in the Cassandra code on a
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Figure 4: Read microbenchmark, lower is better

Figure 5: Write microbenchmark, lower is better

Core i7-6700K machine with 32GB of RAM under Ubuntu 18 and
memtable configured to use up to 8GB of on- and off-heap memory.
The benchmark uses a key-value table (i.e. one that does not have a
clustering key and each row is only identified via its partition key),
fills it with a given number of writes and runs a test of repeatedly
reading batches of partitions from the table. Here we used 10 mil-
lion partitions and batches of 1000 reads, and ran the test both for
the default “heap_buffers” memtable mode (where the stored data is
on the heap in byte buffers), as well as the “offheap_objects” mode
(where the stored data is in directly-allocated off-heap memory)
which is preferable when higher throughput is required.

The results are summarized in Figure 4. The legacy format is
only able to keep up with the trie memtable when it is repeatedly
being asked to return the same partition. In the more interesting
case of random lookup with or without looking for non-existing
content, trie memtables are almost twice as fast.

The time to prepare the run, i.e. to fill in the memtable with the
necessary data, shown in Figure 5, is also dramatically faster with
the new solution regardless of the memory mode.

Figure 6 shows the memtable size after the data is loaded. The
memtable mode has historically only affected where the table’s
inserted data is placed — any indexing structures remain on heap.

Figure 6: Size microbenchmark, lower is better

With the new implementation we can also move the partition index
off heap which can be easily seen in the graph.

For all configurations, including off-heap trie, the on-heap meta-
data dominates the space used. Even so, the new solution is able to
reduce the heap size of the memtable by 20 to 30%. In practical terms
this is reflected in better garbage collection and compaction effi-
ciency. We expect this to improve much further with later additions
to the solution.

Let’s examine how the new memtable behaves with larger-scale
tests. To this end, we used a long-running high-throughput test2
that we use to evaluate the throughput that the database can sus-
tain up to a very large data size. We performed this test both on
the CASSANDRA-17240 branch in Apache Cassandra [17] which
introduces this solution, as well as on DataStax’s “Converged Cas-
sandra” branch [8], which includes additional improvements (no-
tably, improved compaction) that let the implementation perform
to the best of its ability. The tests were carried out using DataStax’s
Fallout [15, 25] deployment, using a single i3.4xlarge instance
as server and 11 i3.xlarge instances as clients sharing one i3-
equivalent node in our lab. The following settings were changed in
cassandra.yaml to avoid some known throughput bottlenecks:
memtable_allocation_type: offheap_objects
memtable_flush_writers: 8
memtable_heap_space: 16384MiB
memtable_offheap_space: 16384MiB
concurrent_reads: 256
concurrent_writes: 256
commitlog_total_space: 51200MiB
commitlog_segment_size: 320MiB
commitlog_compression:

class_name: LZ4Compressor
disk_access_mode: mmap_index_only
file_cache_size: 8192MiB
compaction_throughput: 0MiB/s
concurrent_compactors: 30
key_cache_migrate_during_compaction: false

2The test was performed using the script at https://gist.github.com/blambov/
ce4e22a217d8d62fc959d7e6e24eb77e. This script makes use of DataStax software de-
ployments and hardware, which can be substituted by the open-source Fallout [6] in
combination with NoSQLBench [7] (which is an evolution of the EBDSE module used
in the test, and is compatible with its scripts), run on public cloud (e.g. Amazon’s EC2).
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Figure 7: Throughput test using the CASSANDRA-17240
branch. The graph plots the throughput achieved in the Y
axis against test time in the X axis. Trie in blue, skip list in
orange. Higher values are better.

Figure 8: First hour of throughput test.

The main part of the test is a long-running 90:10 write:read high-
throughput stage that shows the maximum throughput that can
be achieved and sustained in writing over 1 TB of data in 100-byte
partitions. Like the microbenchmarks above, this is also a key-value
test (rows are only identified by a partition key). To be more rep-
resentative of real workloads, this test skews reads quadratically
towards accessing recently-written data. The main factors affecting
the performance of this stage are the performance of the memtable
in accepting writes, serving reads and flushing its content to disk,

Figure 9: Throughput test using the Converged Cassandra
branch. Higher values are better.

as well as, as the test progresses and accumulates data, the effi-
ciency of compaction — if compaction is not able to perform at
the same level as the LSM buffer, SSTables accumulate and reads
become progressively more difficult until they start dominating the
execution time of operations. We can see both effects in Figure 7.

The process finishes in ∼ 19 hrs for the trie memtable (in blue)
and ∼ 33 for the skip-list (in orange), which corresponds to average
throughput of ∼ 145 vs ∼ 85 thousand operations per second (of
which 10% are reads). The throughput starts high for both memta-
bles, and quickly drops as other bottlenecks take over the computa-
tion time. This is most evident for the trie memtable, where we can
see a sharp drop in throughput as compaction is unable to keep up
with the load and allows SSTables to accumulate, eventually (near
the end of the test) slowing down writes to a level that it is able to
maintain. The drop is not as sharp for the legacy solution, which is
both due to every operation taking more time and thus the effect
of accumulation taking longer to appear, as well as the fact that it
starts off closer to the achievable compaction throughput.

Figure 8 is a zoomed view of the first hour of the test which is
less influenced by compaction and clearly demonstrates close to
doubling of Cassandra’s burst performance, as well as flattening of
the curve due to the relieved garbage collection pressure.

As we have previously recognized compaction as a bottleneck,
we have also worked on separate improvements3 which we have
included in our Converged Cassandra open-source branch [8]. With
3Most notably the unified compaction strategy [1] and cursor compaction process [20],
which are yet to be proposed to mainline Cassandra and publicized.
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Figure 10: Latency test at fixed throughput (110k ops/sec),
where 10% of the operations are reads and 90% are writes.
The graph plots 95-percentile latency in the Y axis against
test time in the X axis. Trie in blue, skip list in orange. Lower
values are better.

these improvements in place for both memtable solutions, the same
test shows sustained levels of throughput beyond double of what
is achieved with the legacy memtable, as shown in Figure 9. One
of their effects is that compaction can use more resources and in
effect slow down incoming writes to keep the LSM tree in a proper
state; this can be seen as the periodic dips in the performance graph,
caused by compaction threads operating on multiple compaction
levels in parallel and stealing more time from the mutation threads.
Even in the low points of these dips, the trie memtable outperforms
the skip list over two-fold.

The increased throughput is complemented by lower latencies
at fixed throughput for all latency percentiles, shown in Figures 10
and 11 for 10 and 50% reads respectively4.

We also looked at some stats produced during the execution
of the test to validate some of the effects that the new solution is
expected to bring:

4We only provide latency results with the Converged Cassandra branch, because we
were unable to configure mainline Cassandra in a way that allows compaction to keep
up with the writes. Lagging compaction leads to an SSTable distribution and resulting
latencies that are not stable enough to provide trustworthy information.

Figure 11: Latency test at fixed throughput (110k ops/sec),
where half of the operations are reads. Lower values are bet-
ter.

Metric Trie Skip-list
Memtable switch count 1510 1982
Level-0 SSTable size 812 MiB 611 MiB
Old-gen GC total time 0 s 696 s

Young-gen GC total time 4290 s 10144 s

As expected, the more compact representation and the move-
ment of structure off-heap allows the new memtable to flush less
frequently and produce 30% larger SSTables on Level 0 for the same
memtable memory allocation. The total garbage collection time
is also dramatically reduced. Note that even though the duration
of the test is different with the two memtable implementations, it
performs the same amount of work which makes this a fair com-
parison.

8 ALTERNATIVES CONSIDERED
8.1 Sharding vs. fully concurrent structures
As commodity hardware started to become wider in recent years,
one performance problem with Cassandra that became apparent
was the fact that as the number of cores and hardware threads
available on a node increases, the concurrency overheads imposed
by sharing the skip-list map become significant enough to become
a bottleneck for the performance of the database. Sharding the map,
i.e. splitting it into multiple independent maps each serving a close-
to-equal share of the owned token space as described in section 6,
can overcome this problem and permit much higher concurrency.
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One of the intermediate stages in the development of this solu-
tion, available as part of the introduction of pluggable memtables
to Cassandra 4.1 with CEP-11 [18] and introduced as part of the
thread-per-core architecture of DataStax Enterprise 6.0, was the
sharding of the existing skip-list solution.

Cassandra 4.1 further allows one to choose whether the database
should serialize writes on a shard, i.e. block other threads from
writing while one is executing, or still permit concurrent writes on
the individual shard. In a busy node the former typically permits
higher overall throughput at the expense of a small increase in
write latency, but is not as well suited to skewed workloads or ones
using a non-hashing partitioner.

Our density test was also performed with the two variations
of the sharding skip-list memtable; the results are presented in
Figure 12. Sharding provides a very clear throughput benefit which
is retained throughout the test, and the locking variation, which
(by virtue of blocking threads instead of wasting CPU time and
memory on competing writes) gives compaction more time to work,
is able to maintain much higher throughput throughout the test.

This graph also shows that the trie solution’s achievable insertion
and lookup performance is far higher than the effect of sharding
alone. Towards the end of the test, as more data is accumulated
and performance starts being near completely determined by the
accumulation of SSTables with uncompacted data, the blocking
skip-list is able to perform almost5 at the same level as the trie.

We also ran a variation of the test6 to exercise workload skew,
executed for 1/10 of the duration of the full density test.

On skewed workloads (Figure 13) the blocking solutions are still
better when 1/10 of the writes go to a single partition, lose some
ground when the dominating partition is referenced by every fifth
write, and become pretty bad when every second write is to the
congested partition. In the latter case, the concurrent skip-list is
further benefiting from repeatedly hitting the same path and not
having to create any new mappings to reach levels of throughput
well beyond the ones in the well-distributed case, while the trie
suffers further from7 tracking lock congestion to be able to help
operators identify this problem and possibly switch to an alternative.
In all cases, the trie significantly reduces the garbage collection
workload (Figure 14).

The results indicate that as long as the workload is only mod-
erately skewed, the sharding solutions fare better than the fully
concurrent ones even when they fully block the shard. As expected,
highly skewed workloads are a weakness of the sharding solutions
that block, including the new trie memtable as it stands today.

5This graph plots number of operations per second against test time; as some tests
complete earlier, the performance at a certain density is not represented at the same
horizontal position in the graph for all tests. In particular, even though the trie graph
appears to show lower performance than the blocking skip-list at some instants of
the test (e.g. @60ks), the trie graph at this point in time works with over 1 TB of
accumulated data, while the blocking skip-list one is still at less than 800 GB; the
performance of the skip-list for the same density is represented later (@80ks). Moreover,
the latter graph has had the same amount of time to compact less information and is
thus expected to benefit from better structuring of the data and read performance is
less of a bottleneck.
6Using the script at https://gist.github.com/blambov/
00e8dbff5a97f321d30d0ef992465a08. The most important difference is the in-
troduction of a domination_op that changes a specified fraction of all requests to hit
a specific partition.
7Confirmed by testing a modified version that uses the same lock mechanism as the
blocking skip-list.

Figure 12: Throughput graph including skip-list sharding.
Trie in green, blocking sharded skip-list in orange, concur-
rent sharding skip-list in red, skip-list in blue.

While it is possible to improve the solution’s standing for these
workloads, this would be at the expense of higher complexity for the
ones that are more typical for Cassandra, where data is distributed
among many partitions and no single partition has a double-digit
percentage share of all writes.

We prefer instead to invest effort into decreasing the time a
lock is held by improving the performance of individual writes,
e.g. by replacing the current B-Tree hierarchy with an extension
of the memtable trie, and increasing the efficiency of locking, e.g.
by taking advantage of asynchronous processing or virtual threads
[29]. The legacy skip-list implementation is still available as an
option for those users and use cases that do exhibit high skew.

On the other hand, the skip list partition map, introduced primar-
ily to support concurrent modification, appears not as well suited to
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Figure 13: Average throughput on skewedworkloads, higher
is better. Graphs the average write throughput over 100 GB
of the density workload for increasing levels of skew. The
skew percentage specifies the ratio of writes and reads hit-
ting the exact same partition.

Figure 14: Total garbage collection time for skewed work-
loads, lower is better.

Cassandra’s typical workloads as a single-writer model combined
with sharding.

8.2 B-Trees
B-Trees and their variations are the comparison-based default go-
to structures for databases [28]. Cassandra already implements
in-memory B-Trees, and if we move away from the requirement
to support concurrent writers as the previous section suggests, it
becomes possible to use Cassandra’s B-Tree implementation for the
partition map and thus for all levels of the structural hierarchy of a
memtable. That is, a memtable could be implemented as a sharded
B-Tree to partitions, each being a B-Tree to rows containing a B-
Tree to the columns within the partition and potentially another
B-Tree for the cells inside a complex column.

Converting this implementation to avoid using heap memory for
its blocks is relatively easy if we store the keys as objects on heap or
in a separate memory region: B-Tree nodes have a predetermined
size, and we can either use separate sections for leaf and internal

node store or adjust the key count for leaves to make it match the
size of an inner node.

Storing the key elsewhere has the disadvantage of requiring an
extra pointer-chasing hop to read each key; additionally, the whole
key is usually required to make decisions, which means that the
cache space required to carry out these decisions without referring
to main memory is on the order of the size of the key. While an
inner-node decision in the B-Tree can carry more information than
a trie block advance, it requires much more memory, and a lot more
than a single cache line fetch. As finding the decision point in a
B-Tree node requires ordered keys, modification concurrent with
reads in such structures is only possible if we use a mechanism
similar to the order word of our sparse nodes, used on every access,
which adds further complexity. This combination of factors would
make B-Trees with detached key store much less efficient than a
trie.

On the other hand, storing variable-size keys with the B-Tree
node may improve the fetch time for all keys of the node, but does
not reduce the cache space need and no longer offers a fixed node
size. Managing the tradeoff between reserved size and memory
and cache requirements and the handling of various edge cases
for nodes that can accept insertions is extremely difficult, thus the
most feasible implementation of collocated keys would keep nodes
immutable and copy on every modification. If not reused, old copies
can very quickly dominate the used space and thus this kind of
B-Tree requires a method of collecting and reusing variable-size
nodes, a highly non-trivial undertaking, early in the development
cycle; there are high chances such a mechanism would have worse
consequences than leaving it to the garbage collector.

Conceptually, one can understand the memtable B-Tree hierar-
chy as a 4-level trie with infinite branching on every level. Further-
more, one could easily imagine further segregation in levels along
the components of a key, e.g. a separate level for each component
of a clustering key, necessary in order to avoid repetition of keys
and to some extent mitigate the problem of having to store large
keys for comparisons.

Alternatively, or as a further step, one could also make use of
byte-comparable keys in a B-Tree identifying, for each B-Tree node,
the common prefix and by storing in each key position only the
bytes or bits that are sufficient to decide the direction of a compar-
ison. This approach is known as a “prefix B-Tree” [2] and could
in theory greatly reduce the required space per key, especially the
cache space required to hold the information necessary to make
decisions on a B-Tree node, at the cost of more complicated logic.

We consider what is described in the last paragraphs a complex
attempt of shoehorning a trie into the framework of a B-Tree. Using
a trie directly is more straightforward and drastically simpler.

8.3 ART
The Adaptive Radix Tree (ART) [23] is an existing trie implemen-
tation for database indexes that shares some key ideas with this
work, including the concept of typed nodes, a special treatment
of multi-byte paths, and tagged pointers for recognizing leaves.
We were unable to identify an ART implementation that can offer
concurrent reads, which some of our early thread-per-core deploy-
ments have shown to be very desirable. Another crucial difference
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is this work’s usage of fixed block sizes which facilitates better
cache efficiency as well as the simplified memory management that
has been a key advantage of this work.

Independently, an adaptive radix tree memtable for Cassandra
may soon be available in Intel’s persistent memory solution [5].

8.4 SuRF
Succinct tries [12] are a method of storing tries with what is con-
sidered to be optimal levels of space overhead, which have been
applied to construct an LSM database index called Succinct Range
Filter (SuRF) [31].

Because of the compactness of their representation, succinct tries
are not suitable for mutable structures, and even less so for ones
that should be able to be read concurrently with updates. As demon-
strated by SuRF, their strength is in immutable structures such as
the on-disk SSTables. Appendix A of [31] also describes the mecha-
nism for supporting mutations in combination with SuRF: by using
an LSM tree, including a dynamic trie as a write buffer. In other
words, this work is complementary to SuRF or other immutable
on-disk tries.

It is also worth noting that efficient access in succinct tries re-
quires external structures, which, even as it is theoretically optimal,
is not practically as efficient in a fully in-memory structure because
of the additional search steps, pointer chasing hops and associated
branch prediction and cache inefficiency.

9 FUTUREWORK
This is the initial application of the developed trie infrastructure
for Cassandra. We believe the results it has shown are just a small
part of what can be achieved and are already working on further
development, but nevertheless these results are substantial enough
to be worth sharing in their own right.

The next iterations of the trie memtable should increase the reach
of the trie to lower levels of the data hierarchy. More specifically, at
this point the trie only maps to partitions, while separate B-Trees
are used to index rows within the partitions. It is possible to extend
the map in a way that allows a single trie to reach the level of rows,
include information related to both partitions and rows, and be able
to retrieve rows or trie-backed views of partitions. This should bring
significant further space savings for all workloads, and improve
performance for workloads that utilize clustering keys.

This requires some further development of the trie code and
interfaces, including:

• Improvements on the traversal paradigm to permit descend-
ing to specific children.

• Write atomicity support which enables in-progress readers
to see a consistent view of the partition they operate on.

• Recycling and reuse of blocks.

A more complex issue is the handling of range tombstones, deletion
markers that span sections of the row space within a partition. This
can be done by attaching a parallel tombstone trie to each partition
(or possibly any point in the trie) that contains such a deletion.

Subsequently, it is possible to go further to the lowest level of
the memtable hierarchy, the cell, to completely cover all memtable
indexes within the trie, which in turn would eliminate the on-heap

footprint of memtables, bringing the associated garbage collection
improvements.

Another direction of further development is the question of ap-
plying this paradigm to SSTables, the immutable on-disk structures
that memtables are transformed to on flush. As immutable struc-
tures they offer further optimization opportunities and as on-disk
ones they have different data locality and caching characteristics,
but would also benefit from the advantages of representing the data
in a trie such as smaller footprint, faster lookup and prefix sharing
for storage as well as processing.
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