
Beaconnect: Continuous Web Performance A/B Testing at Scale
Wolfram Wingerath∗
wolle@uni-oldenburg.de

University of Oldenburg, Germany

Benjamin Wollmer∗
benjamin.wollmer@uni-hamburg.de
University of Hamburg, Germany

Markus Bestehorn
bestem@amazon.ch

Amazon Web Services, Switzerland

Stephan Succo
ss@baqend.com
Baqend, Germany

Sophie Ferrlein
sf@baqend.com
Baqend, Germany

Florian Bücklers
fb@baqend.com
Baqend, Germany

Jörn Domnik
jd@baqend.com
Baqend, Germany

Fabian Panse
fabian.panse@uni-hamburg.de

University of Hamburg, Germany

Erik Witt
ew@baqend.com
Baqend, Germany

Anil Sener†
senera@amazon.com

Amazon Web Services, UK

Felix Gessert
fg@baqend.com
Baqend, Germany

Norbert Ritter
norbert.ritter@uni-hamburg.de
University of Hamburg, Germany

ABSTRACT
Content delivery networks (CDNs) are critical forminimizing access
latency in the Web as they efficiently distribute online resources
across the globe. But since CDNs can only be enabled on the scope
of entire websites (and not for individual users or user groups),
the effects of page speed acceleration are often quantified with po-
tentially skewed before-after comparisons rather than statistically
sound A/B tests. We introduce the system Beaconnect for collecting
and analyzingWeb performance data without being subject to these
limitations. Our contributions are threefold. First, Beaconnect is
natively compatible with A/B testing Web performance as it is built
for a custom browser-based acceleration approach and thus does
not rely on traditional CDN technology. Second, we present our con-
tinuous aggregation pipeline that achieves sub-minute end-to-end
latency. Third, we describe and evaluate a scheme for continuous
real-time reporting that is especially efficient for large customers
and processes data from over 100 million monthly users at Baqend.

PVLDB Reference Format:
Wolfram Wingerath, Benjamin Wollmer, Markus Bestehorn, Stephan Succo,
Sophie Ferrlein, Florian Bücklers, Jörn Domnik, Fabian Panse, Erik Witt,
Anil Sener, Felix Gessert, Norbert Ritter. Beaconnect: Continuous Web
Performance A/B Testing at Scale. PVLDB, 15(12): 3425 - 3431, 2022.
doi:10.14778/3554821.3554833

1 INTRODUCTION
While the importance of content delivery networks (CDNs) for
fast page loads is generally undisputed, accurately measuring their
impact is inherently difficult: Since a CDN is integrated as a reverse

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554833

∗Wolfram Wingerath and Benjamin Wollmer contributed equally to this work.
†Author was affiliated with Amazon Web Services, Inc. during contribution period.

proxy via Domain Name System (DNS) rules, it can only be enabled
or disabled for all users of a given website at once and uplift mea-
surements are therefore only possible via before-after comparison.
Even though statistically clean A/B testing is the default in many
other areas of Web optimization (e.g. user interface design [46] or
marketing campaign planning [5]), the best practice for evaluating
page speed is naturally distorted by effects like fluctuating online
activity or different marketing campaigns being active over time.
We argue that skew in uplift measurements can be avoided in the
context of page speed acceleration and therefore present Baqend’s
approach towards achieving and measuring website acceleration.

Baqend’s architecture for content delivery relies on two main
components: While Beaconnect is the pipeline for aggregating and
reporting real-user performance data, it has been developed for use
with Speed Kit [41] as the technology for page speed acceleration.
Speed Kit is a novel technology for website acceleration that uses a
CDN internally, but is controlled through a JavaScript library. In
consequence, its configuration is more flexible than simple DNS
rules pointing to a CDN: Being a browser-based approach, Speed
Kit can be enabled and disabled for individual users and is there-
fore naturally compatible with statistically sound A/B testing. To
quantify website acceleration with Speed Kit, it is enabled for only
a certain share of website visitors (e.g. 50%) while data is collected
from all of them. By collecting data in this fashion, it is possible
to compare measurements from users on the stock website with
measurements from users on the accelerated website – collected
over the same timeframe and under otherwise identical conditions.

A particularly challenging aspect of operating Speed Kit is to
report all relevant metrics accurately while minimizing latency and
processing overhead. Tracking tools like Google Analytics [30] or
Adobe Analytics [6] are unsuitable for this purpose as they rely
on data sampling [28] and incur a processing latency of hours or
even days [29]. Real-user monitoring solutions such as mPulse [8]
or Dynatrace RUM [21] do provide low latency and avoid data
sampling, but would require tight integration into Speed Kit for
sufficient data coverage which is prohibitively complex.

3425

https://doi.org/10.14778/3554821.3554833
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554833

1.1 Contributions & Outline
We developed Beaconnect to capture Web performance with Speed
Kit in realtime and A/B testing it at scale. Our pipeline handles more
than 650 million individual page impressions (PIs) from over 100
million unique users monthly.Wemake the following contributions:

• We discuss related work in Section 2 before explaining
Beaconnect’s unique aptness for A/B testing and deriv-
ing requirements for simultaneously providing offline data
warehouse analytics and real-time reporting in Section 3.

• In Section 4, we present Beaconnect’s aggregation strategy
for continuous real-time reporting with sub-minute latency.

• We finally describe our production system and present ex-
perimental results in Section 5, share developer experiences
in Section 6, and conclude in Section 7.

2 RELATEDWORK
In this section, we provide an overview over related work.

Page Speed & User Satisfaction. E-commerce researchers
have shown that users of websites expect response times of 2 sec-
onds or less [17, 32]. Failure tomeet this standard results in decreased
user satisfaction [13], and potential business loss [44]. To meet this
2-second requirement, websites rely on content delivery networks
(CDN) [35, 36] such as Akamai [1], Fastly [24], Cloudflare [2], or
Amazon Cloudfront [10]: CDNs operate hundreds of endpoints
distributed across the globe and each of these endpoints replicates
website content that originates on the Web servers of the website.
This allows serving content to users with less latency as less net-
work traffic has to travel from the aforementioned Web servers to
the user and instead is delivered by a CDN endpoint close1to the
user. While the use of CDNs is well established, measuring their
achieved performance uplift in skew-free fashion is inherently hard.

Web PerformanceMonitoring. Web performance monitoring
refers to the process of observing the state of Web services or Web
applications over time by employing either external or internal
monitoring or measuring artifacts [20]. The two prevalent ways
to collect performance data are to either generate synthetic data
or to perform real-user monitoring (RUM). Synthetic approaches
[3, 4, 18] use artificially generated Web traffic to simulate website
interactions. While synthetically generated data is easier to produce
at scale, it has the potential of missing important properties of real-
world behavior as it is limited to measuring purely technical metrics
[20]. Business metrics such as conversion rate2 or session duration
therefore cannot be captured by synthetic approaches.

RUM uses data generated by real-user behavior to monitor a
website. There is a large body of work dealing with analytics as
well as data management in RUM: [19] tries to determine failure
probabilities in large systems using end-to-end traces and a hierar-
chical clustering method. Similarly, [7] uses statistical models to
find latency bottlenecks in communication paths and [15, 16] use
data mining to predict performance. In many cases, the analysis
occurs offline or with significant delay in the order of hours or even
days which is an issue particularly in the context of split testing

1CDNs have different algorithms to find the most suitable endpoint. In general, the
endpoint is chosen so that the latency is minimal.
2This is typically the ratio of transactions in a store vs. the number of visitors/sessions.

Figure 1: Beaconnect continuously aggregates data beacons
into page impressions (PIs).

as we show next. Beaconnect implements RUM using data bea-
cons emitted asynchronously by Speed Kit [41] via a light-weight
JavaScript that is executed in the browser of users. Contrary to
the aforementioned approaches, this beacon-based approach also
allows capturing business metrics. Section 3 describes our data col-
lection and Section 4 provides details for near-real-time analytics.

There are also tools like Google Analytics (GA) [30] and mPulse
[8] that can be used to monitor real-user performance. Similarly
to the statistical approaches mentioned above, GA samples data
and thus introduces inaccuracy. Furthermore, the reporting delay
for metrics can be significant depending on the traffic volume that
occurs on a website [29]. Akamai’s mPulse delivers performance
metrics with low latency through a tight integration with the Aka-
mai CDN [1]. However, A/B-testing CDN performance remains
inherently challenging due to the inherent limitations of CDN tech-
nology mentioned in Section 1 and described below.

Web Performance & Split Testing. For feature development
and deployment, A/B testing (also known as split testing) has been
a de-facto standard for more than a decade in e-commerce sites
[23, 33, 34, 38]: Before rolling out a new website feature for all
users, the traffic is split into two groups where one group of the
users gets to use the new feature and the other group keeps using
the status quo. This mechanism allows measuring the effects of
incremental improvements as user behavior with and without it can
be compared side-by-side. For example, it is possible to determine
whether a new functionality on an e-commerce website results
in more sales or whether changing the position of a particular
button increases the likelihood of it being clicked. The underlying
requirement for split testing is that multiple versions of a website
can be delivered to separate sets of randomly chosen users.

Implementing these random sets of users is challenging in the
context of CDNs as they can only be enabled or disabled for all
users. Theoretically, round-robin DNS load-balancing could be used
to create a split test setup in which the domain of a website is associ-
ated with multiple IP addresses, some of which belong to a CDN and
some of which do not. However, such a setup would be extremely
difficult to control due to a number of potential side effects that
are out of the CDN provider’s hands (e.g. skew introduced by DNS
resolvers or caches, mid-session group changes because of expiring
DNS caches, or a wide range of other side effects occurring when a
browser establishes more than one connection to the website). We
are not aware of a single implementation of such a test setup and
consider the chances of generating meaningful results slim at best.

In combination with CDNs, performance-related metrics are
hence only available using a before-after approach, i.e. comparing
performance metrics collected before a change was deployed with
metrics from after the change. This introduces delays and makes it
difficult to correlate measurable changes in performance metrics

3426

with a specific deployment (especially for large e-commerce web-
sites where multiple changes occur on any given day). Beaconnect
avoids this issue as it natively supports A/B testing and reports
non-sampled performance and business metrics in realtime.

3 APPLICATION DOMAIN & REQUIREMENTS
In this section, we provide an overview of data collection in the
browser (Speed Kit) and the required backend processing (Bea-
connect) to derive relevant technical and business insights. We
close the section with a brief discussion of requirements for Bea-
connect’s data aggregation pipeline.

Time Browser Language Test Group First Contentful Paint (FCP)

11:05:04.578 Firefox English Speed Kit 127ms

11:06:48.139 Chrome English Original 958ms

Par�al Page Impressions (PPIs)
Enhanced Data Beacons

1-Min. Time Windows
Intermediate Aggregates (Storage)

11:05
–

11:06

Browser Language Test Group

Firefox English Speed Kit {200ms: 4, 500ms: 2}

Arbitrary Time Windows
Real-Time Repor�ng (Dashboard Queries)

{200ms: 3}

11:05

Browser Language Test Group
First Contentful Paint (FCP)

(Histogram)

Firefox English Speed Kit {200ms: 1, 500ms: 2}

Firefox English Original {600ms: 2, 800ms: 5}

Safari German Original {1100ms: 1}

11:06

Firefox English Speed Kit

Chrome English Speed Kit {400ms: 2}

Opera French Original {700ms: 1, 1300ms: 2}

Safari German Original {600ms: 4, 900ms}

First Contentful Paint (FCP)
(Histogram)

Figure 2: Beaconnect’s continuous aggregation pipeline
writes data summaries to an intermediate storage. Queries
over this intermediate storage can be evaluated efficiently as
they touch fewer records than queries over raw data would.

Split Testing Web Performance With Speed Kit. Contrast-
ing traditional CDNs, Speed Kit [41] is a browser-based technology
that makes split testing straightforward. It is designed as a code plu-
gin for (e-commerce) websites and can be included as a JavaScript
snippet in the website’s HTML. Relying on the Service Worker
Web standard [9], Speed Kit is implemented as a proxy within
the browser that redirects certain browser requests to a specialized
caching infrastructure rather than the (comparatively slower) origin
Web server. On the very first website visit, the browser downloads
and executes Speed Kit like any other third-party library. Speed
Kit’s behavior is then controlled through a configuration that is
retrieved on the very first visit and updated in the background
thereafter. During a split test, Speed Kit chooses one of the test
groups with a probability respecting the configured split and cor-
respondingly either activates the acceleration feature or not. By

collecting data from both test groups, the effects of page speed
acceleration can thus be measured in a statistically clean way.

Data Granularity: Beacons, PIs & Sessions. While page im-
pressions (PIs) seem like the atomic unit to reason about in the
context of Web performance monitoring, data is actually collected
at a finer granularity within the browser. Sending multiple data
beacons for every PI minimizes data loss as information is sent
as early as possible, but also requires connecting all data beacons
to full PIs later on and thereby increases complexity for backend
processing. As illustrated in Figure 1, Speed Kit emits three kinds
of data beacons on multiple occasions throughout the page load.
Static information such as the target URL or the current timestamp
can be sent away as soon the navigation starts (navigation beacon),
whereas values obtained from the browser’s Performance API [45]
cannot be sent until very late in the load process (load beacon),
including the time it took to load the page and the time until the
first or largest contentful paint (FCP and LCP, respectively). Cer-
tain events may even occur long after the page load has completed
and are therefore handled via dedicated and optional transmissions
(event beacons). For example, a user may read the product descrip-
tion first and then put an item into the shopping cart, thus triggering
a new transmission. As another example, JavaScript errors may
occur at any point in time and also need to be reported.

3.0.1 Backend Aggregation: Connecting Beacons. Sending partial
information on PIs obviously avoids data loss through deliberate
delays, but also requires connecting all data beacons to full PIs later
on and thereby increases complexity for backend processing. This
principle of connecting beacons is eponymous to Beaconnect. Data
beacons for the same PI usually occur in relatively short succession
and no new data beacons will be generated once the user has moved
onto the next page. We therefore close aggregation windows for
any given PI or session after 30 minutes of inactivity which achieves
good results in practice and is in line with industry best practices
(e.g. Google Analytics [27]).

Requirements for Analytics & Reporting. There are two use
cases for data aggregation in the context of Web performance moni-
toring and tuning that have largely incompatible requirements. First,
the fully aggregated PIs need to be retained for exploratory analysis
and debugging individual user sessions. This use case requires high
data resolution, but executing queries offline is acceptable. After
all, deep-dive analyses typically revolve around reported issues
and rarely target data from ongoing sessions. Second, though, data
aggregates (i.e. summaries) need to be reported continuously for
effective operations monitoring and validating certain metrics on
new deployments during and immediately after rollout: Contrasting
the analytics use case, real-time reporting thus critically depends
on low latency, but does not require support for arbitrary analy-
ses. This paper is focused on the second use case, i.e. continuous
aggregation that enables efficient real-time reporting. We refer to
[25, 40] for details on our data warehousing approach.

4 REAL-TIME REPORTING EFFICIENCY
Intuitively, all high-level performance metrics can be computed
on top of fully aggregated PIs. However, this approach incurs sig-
nificant delays in reporting due to the 30-minute timeout for the
PI aggregation window and an additional delay for aggregating

3427

session-based data. To minimize the time it takes for data to become
visible after collection, Beaconnect’s continuous real-time summary
aggregation produces output without waiting for the PI timeout.

Partial PIs: Data Beacons + PI & Session Dimensions. The
basic idea is to pre-aggregate the incoming data by different at-
tributes to speed up standard analyses via executing queries over
the intermediate aggregates instead of the raw data. The continuous
aggregation therefore buffers data beacons for every PI only for a
short time until the attributes required for pre-aggregation have
been observed: Once these dimension attributes have been attached
to a beacon, we call this beacon a partial PI to make the distinc-
tion from a raw data beacon explicit. Dimension attributes that
are typically stable are buffered for the entire session (e.g. browser
or test group), while potentially volatile dimension attributes are
buffered on PI-level (e.g. the currently selected language). Once all
dimensions for a PI have been observed, all subsequent beacons of
that PI contribute to intermediate aggregates without any delay.

Histogram Summaries for Performance Timers. As shown
in Figure 2, all partial PIs are collected over a small tumbling win-
dow (e.g. 1 minute) and then aggregated by different dimension
attributes such as browser, language, test group, and others. Al-
though not illustrated, the intermediate aggregates also contain
additional attributes such as the number of observed beacons and
the number of PIs. To avoid storing a great number of raw perfor-
mance timers, metrics such as the first contentful paint (FCP) are
bucketed into histograms. We chose histograms for compressing
raw timer values, because averages and quantiles can be computed
on their basis3. For queries over arbitrary time windows, using the
intermediate aggregates instead of the raw PI data can accelerate
runtime significantly (cf. Section 5). While the intermediate ag-
gregation does incur a certain delay, end-to-end latency is usually
smaller than aggregation window size: For a 1-minute window un-
der constant beacon inflow, for example, a beacon is only delayed
for 30 seconds on average as the actual buffering time depends on
when the beacon arrives and when the aggregation window closes.

5 PRODUCTION DEPLOYMENT & TRAFFIC
As of January 2022, Beaconnect handles over 3 billion data bea-
cons per month, which corresponds to more than 650 million PIs
from over 200 million user sessions and over 100 million unique
users. To avoid load skew, we partition the data by user session IDs
that are randomly generated in the browser. But since most of our
customers are based in northern Europe, the amount of incoming
data still fluctuates heavily throughout the day with a factor of
about 14x between minimum and peak traffic. Scaling up and down
our pipeline without service interruption is therefore required for
efficiency, but also challenging as our aggregation scheme requires
holding every active user session in memory.

Deployment as a Service. Our production system is hosted
as a collection of fully managed services on Amazon Web Services
(AWS) to enable elastic scaling [43]. We chose Flink [26] for exe-
cuting our workload as it is suitable for running with large state
and is a native stream processor, thus delivering better latency

3The bucketing in our production system is more fine-grained than illustrated in Figure
2 as it varies with size of timer values to increase precision for smaller measurements
(1ms-buckets up to 500ms, 10ms-buckets up to 5s, 100ms-buckets up to 60s, and so on).

Small

200k

400k

600k

800k

1M

Medium

2M

4M

6M

8M

10M

Large

20M

40M

60M

80M

100M
PI Distribution Within Each Tenant Segment

Figure 3: A Tukey box plot for the distribution of tenant sizes
measured by themonthly traffic in page impressions. Median
traffic in the Small, Medium, and Large tenant segments is
separated by one order of magnitude each.

than systems such as Spark [47] or Spark Streaming [48] which are
based on processing (micro) batches [42, Ch. 5]. The data beacons
are streamed into an Amazon Kinesis [11] data stream which is
then consumed by our Flink application for further processing. The
first processing step is data cleaning to prepare the beacon data
for downstream aggregation and write off invalid beacons for later
problem analysis. The user agents [14, Sec. 10.15] are then resolved
to human-readable data artifacts which are added as additional at-
tributes such as the device type or browser name. We also monitor
traffic for suspicious behavior to identify bots and scrapers: The as-
sociated user agents are stored in DynamoDB [39], so that the state
required for identifying such synthetic traffic is persistent and inde-
pendent of Flink snapshots. Finally, the cleaned and enriched data
beacons are fed into our dual aggregation pipeline as outlined in
Section 4: The intermediate summary aggregates are ingested into
an Elasticsearch [22] cluster for real-time reporting via Kibana [31]
dashboards, whereas the fully assembled PI data stream is persisted
in S3 [12] block storage for historical data analysis and operational
troubleshooting with our data warehouse built on Presto [37].

Tenants by Traffic: 3 Orders of Magnitude. The amount of
beacon data being collected and processed for real-time reporting
naturally depends on the actual number of user traffic on the spe-
cific tenant’s website. Figure 2 illustrates how our tenants can be
classified into three segments by their respective monthly PIs (just
referred to as PIs throughout the rest of this section): Large with
at least 10M PIs, Medium with 1M to 10M PIs, and Small with less
than 1M PIs4. The Large and Medium segments dominate overall
traffic with a share of 78.5.% and 20.5%, respectively, leaving the
Small segment’s traffic at a mere 1%. Our system design is therefore
streamlined to optimize efficiency for traffic-heavy tenants.

Efficiency vs. Visibility Delay. As described in Section 4, our
data model is designed to make reporting as efficient as possible by
grouping PI data along different dimension attributes over small
timewindows of configurable size. Increasingwindow size naturally
increases the end-to-end processing delay, but also improves the
compression ratio (CR) as shown in Equation 1:

𝐶𝑅 = 1 − |intermediate aggregates|
|PIs| (1)

4We exclude tenants with less than 100k PIs in our analysis as they typically do not
use our real-time reporting service and do not contribute to overall traffic significantly.

3428

2m 8m 32m 2h 8h 1d 5d

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
tio

 (C
R)

Large
Medium
Small

Figure 4: CR by aggregation window size: Increasing window
size also increases efficiency, but gains eventually diminish.

The CR is a pivotal metric for performance in our reporting
scheme, because it directly represents the efficiency of our dash-
boarding queries: With a CR of 70%, for example, a query executed
over the intermediate aggregates touches 70% fewer records than
a query over raw data would. Figure 4 shows the compression ra-
tio (CR) for the three tenant segments under varying aggregation
window sizes from 1minute up to 5 days (logarithmic x-scale). Com-
pared with raw storage, our aggregation scheme with the baseline
1-minute windows provides an efficiency improvement of 37% for
Large and 27% forMedium tenants. In contrast, Small tenants have a
negative baseline efficiency (-6%) and only benefit from a minimum
of 2-minute windows (21%). This is intuitively plausible as the num-
ber of PIs in a given timeframe (denominator in Equation 1) is by
definition larger for traffic-heavy tenants. Inversely, compression
is less efficient for tenants with little traffic per se, simply because
fewer PIs are reported at any given time and therefore fewer PIs are
written into the same bucket per aggregation window. As another
factor for decreased efficiency with Small tenants, data collected
for a single PI can also be assigned to multiple aggregates when its
beacons arrive during the rollover from one intermediate aggregate
to the next: This effect may drag down CR for low-traffic tenants as
it can lead to the creation of multiple aggregates for single PIs when
there are no other PIs falling into the same bucket in a given time
window. However, the amount of intermediate aggregates written
to our database (numerator in Equation 1) depends not only on
the number of PIs and the chosen aggregation window, but also on
the dimension attributes. Adding an additional dimension always
increases the number of intermediate aggregates written per time
interval and thus decreases compression efficiency. The concrete
dimension attributes in our evaluation differ for each tenant as they
depend on the individual requirements.

Across all tenant segments, increasing aggregation window size
can have a dramatic effect on CR especially for small time windows:
For example, choosing 2- instead of 1-minute windows improves CR
by over 31% for Large andMedium tenants and still by 26% for Small
tenants. But efficiency gains eventually diminish with increasing
window size: For example, doubling aggregation windows already
greater than 1 day only leads to CR improvements below 2%, irre-
spective of the tenant’s traffic numbers. While CR approaches 100%
for very large aggregation windows in all segments, traffic-heavy
tenants naturally reach high CR values faster: The average Large
tenant reaches a CR of >80% with a window size of 1 hour, while
typical tenants in the Small segment would have to tolerate delays

upwards of 16 hours to reach the same level of efficiency. This is an
important aspect to consider as window size also corresponds to
the granularity in which data can be queried. Choosing excessively
large aggregation windows is therefore impractical not only due
to a huge visibility delay, but also because it translates to low reso-
lution for data analyses. In other words, you cannot analyze daily
performance in the dashboard with 1-week aggregation windows.

Summary & Discussion. The analysis confirms that our ap-
proach scales well with traffic and offers particularly high efficiency
for the Medium and Large tenants which are responsible for the
majority of overall traffic in production. The CR further depends on
aggregation window size and can be traded off against the time that
data is buffered for aggregation: Better compression thus comes
with a certain visibility delay as data can only be queried after the
current aggregation window has closed. Our aggregation scheme
for real-time reporting is particularly efficient for larger tenants,
because more PIs are compressed into the individual intermediate
aggregates when there is more traffic to begin with.We thus achieve
a good CR for these tenants with 1-minute aggregation windows
already. Although increasing window size beyond this baseline still
enables significant efficiency gains, further increasing window size
(and thus visibility delay) does not provide much benefit when ag-
gregation windows are already large. By processing real-time data
in small aggregation windows first (e.g. 1-minute windows) and
recompressing it later (e.g. by hour or day), a low visibility delay
can be combined with a high CR. However, the incurred processing
overhead should be taken into account here as recompression may
generate substantial load on the storage system.

6 DEVELOPER EXPERIENCES
In this section, we would like to highlight two rather simple yet
pivotal insights we gathered from using Beaconnect in production.

6.1 Alignment With External Tooling is Hard
While Beaconnect is optimized for measuring the effects of page
load acceleration via A/B testing, the reporting stack of most Speed
Kit customers is not. In consequence, the measurements taken with
the customers’ existing monitoring are often skewed between test
groups: When pages load faster, beacons are transmitted earlier
and the chance of beacons getting lost is reduced. But since both
test groups load with different speeds, this effect can distort results
as certain data points (e.g. early bounces) only become visible for
one of the two groups. While accelerating the page load may thus
introduce skew by improving data quality for only one of the two
test groups, the opposite is also true: Accelerating the navigation
from one page to the next can also increase the rate of dropped
data beacons, because it also reduces the time available for data
transmission. This can be an issue, for example, when the actual
data endpoint is hidden behind a chain of redirects as the browser
only resolves redirects from one page until the HTML of the next
page has been fully loaded.

6.2 Continuous Anomaly Detection is Priceless
We have also learned the importance of reliable alerting mecha-
nisms to identify potential issues as early as possible. To minimize
response times on technical incidents and proactively point our

3429

customers towards potential issues with their deployments, we
are currently developing a component for anomaly detection. In
more detail, we are evaluating a prototypical anomaly detection
pipeline in our staging deployment as a third processing path next
to the ones presented in Section 4. In its current form, the prototype
maintains basic metrics like PI or session counters in varying gran-
ularity (minutes, hours, days). These summaries are then fed to and
analyzed by specialized detector agents to uncover and generate
alerts for anomalies such as a sudden increase in bounces, page
reloads, or other data artifacts that may be indications of a potential
deployment issue.

7 CONCLUSION
Split testing is the de facto standard for evaluating incremental
improvements in many areas of Web development. But due to its
incompatibility with traditional content delivery networks (CDNs),
naturally skewed before-after comparisons have become the norm
for measuring the effects of page speed acceleration.

In this paper, we present Beaconnect as a novel approach forWeb
performance monitoring that enables statistically sound A/B tests.
Beaconnect is built for performance monitoring with the Speed Kit
technology and is therefore not constrained by the limitations of
traditional CDN-based approaches. Our stack has been running
in production since 2020 and currently handles over 3 billion data
beacons from 650+ million page impressions (PIs) and 100+ million
unique users per month. Through a dual aggregation scheme that
processes the unsampled performance data, Beaconnect combines
subminute end-to-end latency for continuous real-time reporting
with support for offline data warehouse analytics. By further query-
ing intermediate aggregates rather than raw beacon data, our real-
time reporting approach achieves very high efficiency that can be
traded off against a configurable delay for aggregation. We analyze
real customer traces to quantify the benefits of our approach and
thereby also shed light on the trade-off between query efficiency
on the one side and the tunable visibility delay on the other.

ACKNOWLEDGMENTS
We would like to thank the AWS EMEA Prototyping Labs team as
well as Daniel Zäh for continuously supporting us in both technical
as well as organizational challenges throughout the development
of Beaconnect. We also want to thank Carlos Matos from New York
City, New York for his inspiring 2017 speech that sparked the idea
to name our stack "Beaconnect".

REFERENCES
[1] 2022. Akamai. https://www.akamai.com. (accessed: May 09, 2022).
[2] 2022. Cloudflare. https://www.cloudflare.com/. (accessed: May 09, 2022).
[3] 2022. web.dev. https://web.dev/. (accessed: May 09, 2022).
[4] 2022. WebPageTest. https://www.webpagetest.org/. (accessed: May 09, 2022).
[5] AB Tasty. 2022. The Complete Guide to A/B Testing. https://www.abtasty.com/

ab-testing/. (accessed May 08, 2022).
[6] Adobe. 2022. Adobe Analytics. https://www.adobe.com/de/analytics/adobe-

analytics.html. (accessed May 08, 2022).
[7] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. 2003. Performance Debugging for Distributed Systems
of Black Boxes. ACM SIGOPS Review 37, 5 (2003), 74–89.

[8] Akamai. 2022. mPulse. https://www.akamai.com/uk/en/products/performance/
mpulse-real-user-monitoring.jsp. (accessed: May 09, 2022).

[9] Alex Russell and Jungkee Song and Jake Archibald and Marijn Kruisselbrink.
2019. Service Workers 1: W3C Candidate Recommendation. https://www.w3.
org/TR/service-workers/. (accessed May 08, 2022).

[10] Amazon. 2022. Amazon CloudFront. https://aws.amazon.com/cloudfront/. (ac-
cessed: May 09, 2022).

[11] AWS. 2022. Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/data-
streams/. (2022). (accessed May 08, 2022).

[12] AWS. 2022. Amazon S3. https://aws.amazon.com/s3/. (2022). (accessed May 08,
2022).

[13] Benjamin Wollmer and Wolfram Wingerath. 2020. Mobile Site Speed – The User
Perspective. https://medium.baqend.com/16cd77f9ce25. Baqend Tech Blog (2020).
(accessed May 08, 2022).

[14] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. 1996. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945. RFC Editor. http://www.rfc-editor.org/
rfc/rfc1945.txt (accessed November 22, 2021).

[15] Leszek Borzemski. 2010. The Experimental Design for Data Mining to Discover
Web Performance Issues in a Wide Area Network. Cybernetics and Systems: An
International Journal 41, 1 (2010), 31–45.

[16] Leszek Borzemski, Marta Kliber, and Ziemowit Nowak. 2009. Using Data Min-
ing Algorithms in Web Performance Prediction. Cybernetics and Systems: An
International Journal 40, 2 (2009), 176–187.

[17] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. 2000. Quality is in the Eye of
the Beholder: Meeting Users’ Requirements for Internet Quality of Service. In
ACM SIGCHI. 297–304.

[18] Jin Cao, William S. Cleveland, Yuan Gao, Kevin Jeffay, F. Donelson Smith, and
Michele Weigle. 2004. Stochastic Models for Generating Synthetic HTTP Source
Traffic. In IEEE INFOCOM, Vol. 3. 1546–1557.

[19] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
2002. Pinpoint: Problem Determination in Large, Dynamic Internet Services. In
DSN. 595–604.

[20] Jürgen Cito, Devan Gotowka, Philipp Leitner, Ryan Pelette, Dritan Suljoti, and
Schahram Dustdar. 2015. Identifying Web Performance Degradations Through
Synthetic and Real-User Monitoring. Journal of Web Engineering (2015), 414–442.

[21] Dynatrace. 2022. Dynatrace Real-User Monitoring (RUM). https://www.
dynatrace.com/platform/real-user-monitoring/. (accessed May 08, 2022).

[22] Elasticsearch. 2022. Elasticsearch. https://www.elastic.co/. (2022). (accessed
May 08, 2022).

[23] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch.
2017. The Benefits of Controlled Experimentation at Scale. In SEAA. 18–26.

[24] Fastly. 2022. Fastly. https://www.fastly.com/. (accessed May 08, 2022).
[25] Felix Gessert and Wolfram Wingerath. 2020. Batching was Yesterday! Real-Time

Tracking For 100+ Million Visitors. https://emea-resources.awscloud.com/dach-
events-webinars/batching-was-yesterday-real-time-tracking-for-100-million-
visitors. AWS Webinar (2020). (accessed May 08, 2022).

[26] Ellen Friedman and Kostas Tzoumas. 2016. Introduction to Apache Flink: Stream
Processing for Real Time and Beyond (1st ed.). O’Reilly Media, Inc.

[27] Google. 2021. How a Web Session is Defined in Universal Analytics. https:
//support.google.com/analytics/answer/2731565. (accessed November 11, 2021).

[28] Google. 2022. About Data Sampling. https://support.google.com/analytics/
answer/2637192. (accessed May 08, 2022).

[29] Google. 2022. Data Limits for Universal Analytics Properties. https://support.
google.com/analytics/answer/1070983. (accessed May 08, 2022).

[30] Google. 2022. Google Analytics. https://analytics.google.com. (accessed: May
09, 2022).

[31] Kibana. 2022. Kibana. https://www.elastic.co/kibana. (2022). (accessed May 08,
2022).

[32] Andrew B. King. 2003. Speed up Your Site: Web Site Optimization. New Riders.
[33] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. 2007. Practical Guide to

Controlled Experiments on the Web: Listen to Your Customers, Not to the Hippo.
In ACM SIGKDD. ACM, 959–967.

[34] Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and
A/B Testing. Encyclopedia of Machine Learning and Data Mining 7, 8 (2017),
922–929.

[35] George Pallis and Athena Vakali. 2006. Insight and perspectives for content
delivery networks. Commun. ACM 49, 1 (2006), 101–106.

[36] Al-Mukaddim Khan Pathan and Rajkumar Buyya. 2007. A Taxonomy and Sur-
vey of Content Delivery Networks. Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Technical Report 4 (2007), 70.

[37] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In ICDE. 1802–1813.

[38] Dan Siroker and Pete Koomen. 2013. A/B Testing: The Most Powerful Way to Turn
Clicks Into Customers. John Wiley & Sons.

[39] Swaminathan Sivasubramanian. 2012. Amazon DynamoDB: A Seamlessly Scal-
able Non-Relational Database Service. In SIGMOD. 729–730.

[40] Wolfram Wingerath. 2019. Big Data Analytics With AWS Athena. https://youtu.
be/POUrpC8hqWU. Code Talks (2019). (accessed May 08, 2022).

[41] Wolfram Wingerath, Felix Gessert, Erik Witt, Hannes Kuhlmann, Florian Bück-
lers, Benjamin Wollmer, and Norbert Ritter. 2020. Speed Kit: A Polyglot &
GDPR-Compliant Approach For Caching Personalized Content. In ICDE. 1603–
1608.

3430

https://www.akamai.com
https://www.cloudflare.com/
https://web.dev/
https://www.webpagetest.org/
https://www.abtasty.com/ab-testing/
https://www.abtasty.com/ab-testing/
https://www.adobe.com/de/analytics/adobe-analytics.html
https://www.adobe.com/de/analytics/adobe-analytics.html
https://www.akamai.com/uk/en/products/performance/mpulse-real-user-monitoring.jsp
https://www.akamai.com/uk/en/products/performance/mpulse-real-user-monitoring.jsp
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/s3/
https://medium.baqend.com/16cd77f9ce25
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
https://www.dynatrace.com/platform/real-user-monitoring/
https://www.dynatrace.com/platform/real-user-monitoring/
https://www.elastic.co/
https://www.fastly.com/
https://emea-resources.awscloud.com/dach-events-webinars/batching-was-yesterday-real-time-tracking-for-100-million-visitors
https://emea-resources.awscloud.com/dach-events-webinars/batching-was-yesterday-real-time-tracking-for-100-million-visitors
https://emea-resources.awscloud.com/dach-events-webinars/batching-was-yesterday-real-time-tracking-for-100-million-visitors
https://support.google.com/analytics/answer/2731565
https://support.google.com/analytics/answer/2731565
https://support.google.com/analytics/answer/2637192
https://support.google.com/analytics/answer/2637192
https://support.google.com/analytics/answer/1070983
https://support.google.com/analytics/answer/1070983
https://analytics.google.com
https://www.elastic.co/kibana
https://youtu.be/POUrpC8hqWU
https://youtu.be/POUrpC8hqWU

[42] Wolfram Wingerath, Norbert Ritter, and Felix Gessert. 2019. Real-Time & Stream
Data Management: Push-Based Data in Research & Practice. Springer International
Publishing.

[43] Wolfram Wingerath, Benjamin Wollmer, Markus Bestehorn, Daniel Zaeh,
Florian Bücklers, Jörn Domnik, Anil Sener, Stephan Succo, and Virginia Amberg.
2021. How Baqend Built a Real-Time Web Analytics Platform Using Amazon
Kinesis Data Analytics for Apache Flink. https://aws.amazon.com/de/blogs/big-
data/how-baqend-built-a-real-time-web-analytics-platform-using-amazon-
kinesis-data-analytics-for-apache-flink/. AWS Big Data Blog (2021). (accessed
May 09, 2022).

[44] Wolfram Wingerath and Benjamin Wollmer. 2020. Mobile Site Speed – The
Business Perspective. https://medium.baqend.com/77c5852e2743. Baqend Tech
Blog (2020). (accessed May 08, 2022).

[45] Xiaoqian Wu. 2020. A Primer for Web Performance Timing APIs. https://w3c.
github.io/perf-timing-primer/. W3C Editor’s Draft (2020). (accessed February
25, 2021).

[46] Scott W. H. Young. 2014. Improving Library User Experience with A/B Testing:
Principles and Process. Weave: Journal of Library User Experience 1, 1 (2014).
https://doi.org/10.3998/weave.12535642.0001.101

[47] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In USENIX HotCloud.
10.

[48] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at
Scale. In ACM SOSP. Association for Computing Machinery, 423–438.

3431

https://aws.amazon.com/de/blogs/big-data/how-baqend-built-a-real-time-web-analytics-platform-using-amazon-kinesis-data-analytics-for-apache-flink/
https://aws.amazon.com/de/blogs/big-data/how-baqend-built-a-real-time-web-analytics-platform-using-amazon-kinesis-data-analytics-for-apache-flink/
https://aws.amazon.com/de/blogs/big-data/how-baqend-built-a-real-time-web-analytics-platform-using-amazon-kinesis-data-analytics-for-apache-flink/
https://medium.baqend.com/77c5852e2743
https://w3c.github.io/perf-timing-primer/
https://w3c.github.io/perf-timing-primer/
https://doi.org/10.3998/weave.12535642.0001.101

