
MOCHA: A Tool for Visualizing Impact of Operator Choices in
Query Execution Plans for Database Education
Jess Tan

Nanyang Technological University
Singapore

jess0057@e.ntu.edu.sg

Desmond Yeo
Nanyang Technological University

Singapore
yeok0047@e.ntu.edu.sg

Rachael Neoh
Nanyang Technological University

Singapore
rach0081@e.ntu.edu.sg

Huey-Eng Chua
Nanyang Technological University

Singapore
hechua@ntu.edu.sg

Sourav S Bhowmick
Nanyang Technological University

Singapore
assourav@ntu.edu.sg

ABSTRACT

The database systems course is offered inmanymajor universities. A
key learning goal of learners taking such a course is to understand
how sql queries are processed in an rdbms in practice. To this
end, comprehension of the impact of various physical operators on
the selected query execution plan (qep) of a query is paramount.
Unfortunately, off-the-shelf rdbms typically only expose the qep to
users without revealing information about the impact of alternative
choices of various physical operators on it in a user-friendly manner
to aid learning. In this demonstration, we present a novel system
called mocha that facilitates exploration and visualization of the
impact of alternative physical operator choices on the qep of a given
sql query. mocha accepts an sql query as input, and compares and
visualizes the qep and alternative plans which are selected based
on learner-specified operator preferences. Furthermore, it intuitively
explains why the key operators in a qep are chosen by connecting
them to established knowledge in the literature.

PVLDB Reference Format:

Jess Tan, Desmond Yeo, Rachael Neoh, Huey-Eng Chua, and Sourav S
Bhowmick. MOCHA: A Tool for Visualizing Impact of Operator Choices in
Query Execution Plans for Database Education. PVLDB, 15(12): 3602 - 3605,
2022.
doi:10.14778/3554821.3554854

1 INTRODUCTION

The growing demand for “lifelong learning” coupled with the wide-
spread usage of relational database management systems (rdbms) in
the commercial world and the growth of Data Science as a discipline
have generated increasing demand of database-related courses in
academic institutions. Learners from diverse fields and experiences
aspire to take these courses, even with limited Computer Science
backgrounds [5]. One of the key goals for learners taking a database
course is to understand the execution strategies of sql queries by
an rdbms. Given an sql query, the query engine in an rdbms pro-
duces a query execution plan (qep), which represents the execution

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554854

orders Hash Inner Join 

customer Ha.sh 

Figure 1: Visual tree representation of a qep in PostgreSQL.

strategy of the query. Hence, such an understanding can be gained
by perusing the qeps of corresponding queries.

Major database textbooks (e.g., [3]) introduce general (i.e., not
tied to any specific rdbms) theories and principles associated with
qeps using natural language-based narratives. This allows a learner
to gain a general understanding of query execution strategies. In
particular, these textbooks typically illustrate qeps of sql queries,
their estimated costs, and adverse impact on the cost if alternative
physical operators are chosen (e.g.,merge join instead of hash join).

Most database courses complement text book-based learning
with hands-on interaction with an off-the-shelf rdbms (e.g., Post-
greSQL). These rdbmss are designed primarily for commercial pur-
pose and not for pedagogical support. Consequently, in contrast to
database textbooks, they only reveal the chosen qep of a query in
visual or textual format. Typically, they do not expose the impact
of alternative choices of various physical operators on the qep in a
user-friendly manner to aid learning. Note that such information
is invaluable to learners as it not only facilitates hands-on inquire-
driven learning on the impact of a choice of a physical operator on
the cost of a qep but it also enables them to comprehend why a qep
is chosen by the underlying rdbms. However, an rdbms (e.g., Post-
greSQL) typically demands a learner to manually pose an sql query
with various constraints on the configuration parameters to view the
corresponding qep containing specific physical operators. Further-
more, one has to manually compare the generated plan (referred
to as alternative query plan (aqp)) with the original qep to under-
stand the impact. Notably, an undergrad database course typically
does not introduce these configuration parameters while exposing
syntax and semantics of sql. Consider the following motivating
scenario.

3602

https://doi.org/10.14778/3554821.3554854
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554854


Figure 2: Architecture of mocha.

Example 1.1. Doreen is an undergraduate student who is current-
ly enrolled in a database systems course. She wishes to understand
the execution of an sql query involving a join between the customer
and orders relations on a tpc-h benchmark dataset in PostgreSQL.
The corresponding visual representation of the qep is depicted in
Figure 1. Doreen wonders what will be the impact on the cost if the
hash join is replaced by a merge join or a nested-loop join? Is the
cost of the alternative query plan substantially higher compared to
the qep? In this context, a narrative that explains why the qep is
chosen by connecting its content with knowledge garnered from
database textbooks will greatly benefit her learning.

Clearly, a learner-friendly tool that can facilitate exploration and
visualization of the impact of various physical operators on a qep
can greatly enhance Doreen’s comprehension of the query execu-
tion process. In this demonstration, we present a novel framework
called mocha (iMpact of Operator CHoices visuAlizer) to aid user-
friendly interaction and visualization of the impact of alternative
physical operator choices on a selected qep for a given sql query.
It is built on top of PostgreSQL. Given an sql query and learner-
specified operator preferences (e.g., merge join, index scan), mocha
automatically visualizes the impact of these choices on the selected
qep. This facilitates cost-based and structural comparison of the
impact of different choices to aid learning. Furthermore, it gener-
ates a natural language-based explanation that goes beyond the
conventional least-cost-based explanation to connect established
knowledge related to usage scenarios of different physical operators
that a learner has learnt from textbooks with the operators in a qep.
We demonstrate these features to showcase superior pedagogical
support provided by mocha to database instructors and students.

2 SYSTEM OVERVIEW

Figure 2 shows the architecture of mocha and consists of the fol-
lowing components.

The Visual Interface (gui) Module. The visual interface of
mocha (Figure 3) enables a learner to view information related
to the qep of her input query and impact of alternative physical
operators on it in a user-friendly manner. It consists of eight panels
(𝐶1-𝐶8). The selection of an application-specific dataset (e.g., tpc-h)
and connection settings to the underlying rdbms (i.e., PostgreSQL)
are configured using the 𝐶1 panel. A learner inputs an sql query
in 𝐶2. The 𝐶3 and 𝐶4 panels allow her to specify various physical
operators (e.g., index scan, hash join) whose impact on the query
she is interested to view. On clicking the Query Plan button (𝐶5),
mocha retrieves a set of aqps based on these input operators and
updates 𝐶6, 𝐶7, and 𝐶8 panels. Specifically, 𝐶6 provides a plausible
natural language explanation of why the qep is selected for the

input query by connecting its content with existing knowledge. It
also displays the cost of each aqp for the input query, enabling one
to compare the cost of the qep with these alternatives containing
the learner-specified physical operator(s). The 𝐶7 and 𝐶8 panels
allow one to visualize a query plan as a physical operator tree,
which is an abstract representation of a query plan.

The Alternative Plan Choice Generator Module. To facili-
tate understanding of the query execution process, popular data-
base textbooks typically discuss the impact of alternative choices
of physical operators (e.g., hash join vs merge join operators) on
the estimated cost of a given qep. This enables one to understand
why certain physical operators are chosen for a qep. For example,
three operator trees involving three different join algorithms (e.g.,
nested-loop join, hash join, and sort-merge join) may be compared
to highlight the impact of the choice of a join algorithm on the
query execution cost and subsequently on the selection of a qep
(e.g., Examples 15.4-15.9 in Chapter 15 of [3]). In contrast to such
knowledge garnered from a textbook, it is hard for a learner to ef-

fortlessly explore the impact of alternative operator choices on a qep
using an off-the-shelf rdbms. Typically, these relational systems
only expose the qep of a query to its end users without giving them
user-friendly access to information on the impact of alternative
choices of physical operators.

We refer to a qep whose one or more phyical operators are re-
placed by a set of alternative operators as an alternative query plan

(aqp) or alternative plan for brevity. The Alternative Plan Choice

Generator module is a core component of mocha and is responsible
for retrieving the qep as well as alternative plans involving alterna-
tive operator choices associated with a given sql query in an rdbms
(i.e., PostgreSQL). Specifically, it exploits the planner method config-

uration (details are given in www.postgresql.org/docs/9.2/runtime-
config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS) fea-
ture of PostgreSQL to generate aqps based on a user input. The
configuration parameters (e.g., enable_hashjoin, enable_nestloop) in
this feature provide a way to enforce the query optimizer to choose
a query plan with certain user-specified physical operators. Specifi-
cally, 11 parameters are exposed to a learner in 𝐶3. By default, all
parameters are turned on during query processing. A query request
is sent to PostgreSQL using the default settings to retrieve the qep
of a query.

In order to retrieve aqps, a learner may check a subset of the
configuration parameters based on the physical operators that she
intend to view in these plans. When a check box is selected, the
corresponding parameter is set to “true" (e.g., SET enable_mergejoin

= true) in the query request. Otherwise, it is set to “false” (e.g.,
SET enable_hashjoin = false). mocha supports two modes (selected
using𝐶4) for generating alternative plans, namely, single mode and
multiple mode. In single mode, mocha sends a query request to
PostgreSQL in which the unchecked parameters on 𝐶3 are set to
“false” to generate an aqp containing the operators corresponding
to the checked parameters that are relevant to the processing of
the query. In multiple mode, every checked parameter on 𝐶3 is
either set to “true” or “false” to create all possible combinations
of these parameters. mocha iterates through these combinations
and sends corresponding query requests to PostgreSQL. Note that
mocha only maintains all distinct alternative plans retrieved from
these requests. Furthermore, it limits the number of parameters

3603

www.postgresql.org/docs/9.2/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS
www.postgresql.org/docs/9.2/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS


Figure 3: The visual interface of mocha.

that can be checked (set to 6 by default) to reduce the wait time for
retrieving alternative plans. It is configurable, if required, through
𝐶1. For example, the checked configuration parameters in Figure 3
yield 64 combinations. These query requests, however, generate
only 8 distinct query plans.

The cost of each retrieved plan is displayed at the top of𝐶6 panel.
A learner may use the slider to browse them and compare them
with the cost of the qep.

The Plan Diff Module. Given the physical operator trees of the
qep and an alternative plan, this module identifies the structural
differences between them by extending the DeepDiff Python library
(https://pypi.org/project/deepdiff/). In particular, nodes in an alter-
native query plan that are different from the qep are highlighted
by the Plan Visualizer module (see below). This allows a learner to
quickly view the nodes in an alternative plan that are different from
those in the qep to aid learning. In particular, this module takes
as input query plans (in json format) and cleans them to remove
unnecessary details (e.g., cost) so that the difference computation
is based on the physical operators alone. Furthermore, only rele-
vant operators are compared to this end (e.g., a join operator is not
compared with a scan operator).

The Plan Visualizer Module. This module is responsible for
visualizing the retrieved plans as operator trees in 𝐶7. It takes a
selected plan (through𝐶8) as input and traverses it to retrieve infor-
mation associated with each node (e.g., node type, estimated cost,
relation name, index condition, filter) and creates the corresponding
visual node object. The visual nodes also contain information on
intermediate tables where applicable. This module also invokes the
Plan Diff module to identify the node differences w.r.t the qep and
display them in a color-coded format (red rectangles). Note that 𝐶7
displays one plan at a time.

The qep Explainer Module. Learners often would like to un-
derstand why a qep is selected for a given query that goes beyond
the conventional least-cost reasoning. In particular, they would
like to connect established knowledge related to usage scenarios

of different physical operators that they have learnt in a database
systems course with the selected operators in a qep. The goal of
this module is to construct such plausible explanations. Specifically,
it aims to intuitively explain the reason for the choice of a join
operator (i.e.,merge join, hash join, nested-loop join) and scans (i.e.,
index scan, sequential scan) in a qep. For instance, (a) index scan is
the optimal access path for low selectivity whereas sequential scan
performs better in high selectivity [2]; (b) merge join is preferred if
the join inputs are large and are sorted on their join attributes [1];
(c) nested-loop join is ideal when one join input is small (e.g., fewer
than 10 rows) and the other join input is large and indexed on its
join attributes [1]; (d) hash join is efficient for processing large, un-
sorted and non-indexed inputs compared to other join types [1]. To
this end, we manually extract usage scenarios of different physical
operators from the relevant literature. This is feasible since there is
a small number of physical operators in PostgreSQL. Then a set of
documents containing these usage scenarios is indexed using an
inverted index where each document is associated with a single
physical operator.

The qep Explainer scans the retrieved qep to identify these oper-
ators and retrieves associated predicates and join conditions, if any.
The text explanation is then generated for an operator by utilizing
a rule-based template, the inverted index to retrieve corresponding
usage scenario, and database statistics information (e.g., selectivity).
The generated explanation is displayed in 𝐶6. For example, the
selected qep in Figure 3 uses index scan on the lineitem table as it
is faster due to the high selectivity of the predicate (i.e., l_orderkey
= orders.o_orderkey).

3 RELATED SYSTEMS

Several interesting features of query optimizers have been demon-
strated in major conference venues [4, 8, 9]. However, to the best
of our knowledge, there has been no prior demonstration on the
visualization and exploration of the impact of alternative choices of
different physical operators on a qep to support database education.

3604

https://pypi.org/project/deepdiff/


Figure 4: An alternative query plan (aqp).

Natural language interfaces to relational databases have been
studied for several decades. Given a logically complex English lan-
guage sentence as query input, the goal of majority of these work is
to translate it to sql [6]. The qep Explainer module of mocha com-
plements these efforts by providing a plausible natural language
explanation of a qep. Most germane to this module are recent efforts
in [7, 10, 11] to generate natural language descriptions of qeps to
support database education. In particular, the goal is to describe the
execution steps of a qep in a natural language. [7] also supports a
natural language question answering system that allows a user to
seek answers to a variety of concepts and features associated with
a qep. In contrast, mocha’s qep Explainer module does not focus
on describing the steps in a qep. Instead, it intuitively explains
why the key operators in a qep are chosen by connecting them to
established knowledge in the literature.

4 DEMONSTRATION OVERVIEW

mocha is implemented using Python 3 and PostgreSQL. Our demon-
stration will make use of the tpc-h decision support benchmark
and imdb data set (https://relational.fit.cvut.cz/dataset/IMDb). Users
can pose their own ad-hoc queries on these datasets using mocha.

The goal of our demonstration is to allow the audience to expe-
rience the following interactive features of mocha. A short video

to illustrate the main features of mocha using example use cases is
available at https://youtu.be/jJJ25LH6DLA. mocha is available at
https://howardlee.cn/mocha/.

Single alternative plan visualization. Through the mocha
gui, an audience can input an sql query in 𝐶2 (e.g., Query 4 in tpc-
h), select the configuration parameters of interest in 𝐶3, choose
the single plan in 𝐶4, and click the Query Plan button. This will
trigger mocha to send two query requests to PostgreSQL where
the first request is a query with default parameter settings and
the second request is one with unchecked parameters set to “false”
(e.g., SET enable_indexscan = false; SET enable_hashjoin = false; SET
enable_mergejoin = false;). The former request retrieves the qep (𝑆𝑃 )
whereas the latter request yields an alternative plan (𝐴𝑃1). One
can visualize these plans in 𝐶7. In particular, structural differences
between 𝑆𝑃 and 𝐴𝑃1 are color-coded for easy reference. Lastly, the
total costs of 𝑆𝑃 (170791.86) and𝐴𝑃1 (10000537174.53) are displayed
in 𝐶6 for ease of comparison.

Multiple alternative plans visualization. An audience can
select the multiple mode in 𝐶4 to generate a list of combinations of
the selected parameters to retrieve alternative plans. Upon clicking
of the Query Plan, the query with default parameter settings is first
submitted to PostgreSQL to retrieve the qep. Then, the query with

each parameter combination is submitted in turn to retrieve aqps.
Recall that only distinct plans are maintained inmocha.𝐶6 is updat-
ed accordingly. In the example in Figure 3, the costliest alternative
plan (Figure 4) is 𝐴𝑃1 with the total cost of 20338418921.95. The
main difference between𝐴𝑃1 and 𝑆𝑃 (i.e., qep) is that 𝑆𝑃 performs a
sequential scan on orders whereas in 𝐴𝑃1, index scan is performed
on orders, followed by a sort (can be visualized by invoking the Plan
Diff module). The low selectivity of the predicate on o_orderdate
makes the sequential scan a preferred choice.

Explanation of qep. Lastly, an audience can view the generated
explanation in 𝐶6 of the qep that connects established knowledge
in the literature to the selected operators in the qep. An example is
depicted in Figure 3.

ACKNOWLEDGMENTS

We thank our collaborators Baochao Xu and Hui Li for hosting the
mocha system in Xidian University, China.

REFERENCES

[1] Advanced query tuning concepts. https://docs.microsoft.com/en-us/previous-
versions/sql/sql-server-2008-r2/ms191426(v=sql.105)?redirectedfrom=MSDN,
last accessed on 15th June, 2022.

[2] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, C. Fraser. Smooth scan:
robust access path selection without cardinality estimation. The VLDB Journal,
27(4):521-545, 2018.

[3] H. Garcia-Molina, J. D. Ullman, J. Widom. Database Systems: The Complete Book.
Prentice-Hall, 2002.

[4] J. R. Haritsa. The Picasso Database Query Optimizer Visualizer. Proceedings of
the VLDB Endowment, 3(2), 1517-1520, 2010.

[5] Z. Ives, J. Gehrke, J. Giceva, A. Kumar, R. Pottinger. VLDB Panel Summary: "The
Future of Data(base) Education: Is the Cow Book Dead?". SIGMOD Record, 50(3),
23-26, 2021.

[6] H. Kim, B.-H. So, W.-Shin Han, Hongrae Lee. Natural Language to SQL: Where
Are We Today? Proceedings of the VLDB Endowment, 13(10), 1737-1750, 2020.

[7] S. Liu, S. S. Bhowmick, W. Zhang, S. Wang, W. Huang, S. R. Joty. NEURON: Query
Optimization Meets Natural Language Processing For Augmenting Database
Education. In Proceedings of the 2019 ACM SIGMOD International Conference on

Management of Data, 1953-1956, ACM, 2019.
[8] H. Pirk, O. R. Moll, S. Madden. What Makes a Good Physical plan?: Experiencing

Hardware-Conscious Query Optimization with Candomble. In Proceedings of the

2016 ACM SIGMOD International Conference on Management of Data, 2149-2152,
ACM, 2016.

[9] D. Scheibli, C. Dinse, A. Boehm. QE3D: Interactive Visualization and Exploration
of Complex, Distributed Query Plans. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, 877-881, ACM, 2015.
[10] W. Wang, S. S. Bhowmick, H. Li, S. Joty, S. Liu, P. Chen. Towards Enhancing

Database Education: Natural Language Generation Meets Query Execution Plans.
In Proceedings of the 2021 ACM SIGMOD International Conference on Management

of Data, 1933-1945, ACM, 2021.
[11] P. Chen, H. Li, S. S. Bhowmick, S. R. Joty, W. Wang. LANTERN: Boredom-

conscious Natural Language Description Generation of Query Execution Plans
for Database Education. In Proceedings of the 2022 ACM SIGMOD International

Conference on Management of Data, 2413-2416, ACM, 2022.

3605

https://relational.fit.cvut.cz/dataset/IMDb
https://youtu.be/jJJ25LH6DLA
https://howardlee.cn/mocha/
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms191426(v=sql.105)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms191426(v=sql.105)?redirectedfrom=MSDN

