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ABSTRACT
In recent years, a significant number of question answering (QA)
systems that retrieve answers to natural language questions from
knowledge graphs (KG) have been introduced. However, finding
a benchmark that accurately evaluates the quality of a question
answering system is a difficult task because of (1) the high degree
of variations with respect to the fine-grained properties among
the available benchmarks, (2) the static nature of the available
benchmarks versus the evolving nature of KGs, and (3) the limited
number of KGs targeted by existing benchmarks, which hinders
the usability of QA systems in real deployment over KGs that are
different from those which the QA system was evaluated using.
In this demonstration, we introduce SmartBench, an automatic
benchmark generating system for QA over any KG. The benchmark
generated by SmartBench is guaranteed to cover all the properties of
the natural language questions and queries that were encountered
in the literature as long as the targeted KG includes these properties.
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1 INTRODUCTION
The number of knowledge graphs (KGs) has increased at an un-
precedented rate in recent years [2, 6, 9]. These knowledge graphs
include a wealth of information that can be potentially utilized for
question answering (QA). Finding answers in a KG, on the other
hand, is a difficult task. To articulate questions in a structured for-
mat that can be utilized to identify matches in the KG, the user must
have a thorough understanding of both the KG and a structured
query language. This restriction limits the ability to ask questions
to power users who can compose syntactically and semantically
correct queries that appropriately describe their information needs.
Such power users make up a small percentage of a potentially large
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user base. To address this issue, a wide variety of QA systems have
been developed to help non-expert users to specify their informa-
tion needs in natural language [3].

Several benchmarks were introduced to evaluate QA systems [7,
8]. These benchmarks typically include natural language questions,
answers to these questions from the KG targeted by the benchmark,
and possibly structured queries that can be used to retrieve these
answers. To evaluate a new QA system, its developers must select
a subset from a number of available benchmarks (at least 17 [5]).
Without a quantitative comparison that emphasizes the differences
between these benchmarks, selecting a subset of them to evaluate
a new QA system is motivated primarily by the ease of comparison
to existing systems in the literature rather than by the effective-
ness of a benchmark in evaluating a QA system. In fact, existing
benchmarks differ significantly from each other. In light of [4, 5],
we would like to highlight the following three main issues:
• Variations among benchmarks: Although all benchmarks
target the same problem and sometimes the same KG, there
are high-degree variations with respect to several linguistic
features in the natural language questions , and syntactical and
structural features in the queries. For example, QALD-9 [8]
does not have Whom, Whose, and Topical natural language
questions while LC-QuAD-1 [7] does. Another example is that
QALD-9 has better query shape coverage than LC-QuAD-1 and
has more complex questions that correspond to more complex
query shapes like Cycle and Flower shapes (will be discussed in
Section 2). These variations indeed affect the reported quality
of QA systems to the degree that one QA system can be shown
to be better or worse than other QA systems based only on the
change of the used benchmark [5].
• Targeting a limited number of KGs: The existing bench-
marks target only a handful of KGs with more focus on larger
cross-domain KGs (e.g., DBpedia [1]). Such settings assume that
using such KGs to evaluate QA systems may be an indication
of how well they will perform over smaller or domain-specific
KGs. However, our experiments show that most QA systems
either do not support portability, do not exhibit similar perfor-
mance to the one reported using existing benchmarks, or both.
Indeed, in practical deployments, the targeted KG is a propri-
etary enterprise dataset (e.g., deploying a chat bot to answer
customer/user questions). In such settings, the performance
of existing QA systems that were evaluated using the existing
benchmarks over a different target KG is questionable.
• Staleness: KGs are continuously evolving, while benchmarks
are static by nature. Most of the KGs now have more recent
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Figure 1: SmartBench Architecture.

versions than those that were used to generate/create the bench-
mark. Updating the benchmark answers based on the live KG
will not work if the KG’s evolution touches its ontology or
vocabulary. In fact, we notice such behavior in existing bench-
marks. Some queries no longer retrieve answers because the
ontology of DBpedia has changed. Some other queries in earlier
QALD benchmarks are no longer syntactically correct due to
changes in the standard query language (SPARQL). The invali-
dation of such entries in the benchmarks also invalidates the
aspects of assessments that these questions were intended to
target in the evaluated QA systems.
In this demonstration, we showcase SmartBench1, a benchmark

generating system that addresses the aforementioned issues. Smart-
Bench guarantees that the generated benchmark comprehensively
covers syntactic and structural properties of the targeted KG in
its questions2. SmartBench can be used to generate a benchmark
over any KG as long as the KG includes meaningful labels of its
entities and predicates. Moreover, using an external text corpus,
SmartBench can capture semantically-equivalent utterances that
can be used to ask questions in different ways to better challenge
the QA system.

2 OVERVIEW OF SMARTBENCH
Figure 1 shows the architecture of SmartBench, which has two
main phases: (1) Generating Lexicons, where SmartBench gener-
ates semantically-rich predicates lexicons and (2) Generating Bench-
mark, where SmartBench utilizes the generated lexicons and the
KG to generate the benchmark questions, queries, and answers.

2.1 Generating Lexicons
2.1.1 Predicates Extractor. The Predicates Extractor scans the KG
to extract all its predicates, their labels, their contexts (i.e., the type
of the subject and the type of the object connected by the predicate),
and randomly sample a number of triples for each context. To avoid
noisy contexts (i.e., contexts that have a relatively small number of

1SmartBench is publicly available at https://github.com/aorogat/SmartBench
2More details on these properties can be found in [5]

entities associated with them in comparison to other contexts for
the same predicate), we exclude the least frequent contexts in the
KG. Table 1 shows an example of the output of this step.

2.1.2 Natural Language Pattern Extractor. The output of the Pred-
icates Extractor can be used to generate the predicates lexicons
using the labels of the predicates and entities. However, the output
lexicons will not capture the various ways to describe semantically-
equivalent utterances using natural language. Therefore, Smart-
Bench can optionally utilize an external text corpus to extract all
the sentences in which the (subject, object) pair of each predicate-
context pair appear together. For example, using the triple example
(Braknean, riverMouth, Baltic_Sea) of the predicate-context pair(
riverMouth, (River , Sea)

)
from DBpedia, we could extract the sen-

tence "Braknean eventually flows into the Baltic Sea".
Consequently, SmartBench replaces the subject and the object in the
sentence with [s{S_type}] and [o{O_type}], respectively, to produce
the natural language pattern "[s{River}] eventually flows
into the [o{Sea}]". This natural language pattern can be uti-
lized for all the instances of the (River, Sea) context. The output of
this step is shown in Table 2 .

2.1.3 Predicate Representation Extractor. In practice, the natural
language patterns are not as simple as the one discussed in Sec-
tion 2.1.2. The extracted sentences can be long and can contain
multiple verb and noun phrases, resulting in a difficulty in finding
crisp noun or verb phrases for the given predicate-context pairs.
For example, the pattern "[s{Book}] (also known as girls no
more)[1] is a 1986 fiction novel written by [o{Writer}]"

is extracted by SmartBench for the predicate-context pair
(
author,

(Book ,Writer)
)
. This sentence pattern has two verb phrases such

as "known as" and "written by" and one noun phrase like "a
1986 fiction novel". In SmartBench, we differentiate between
four phrase representations based on the phrase type (Verb Phrase
or Noun Phrase) and the relationship direction (subject-to-object or
object-to-subject). We use

−→
𝑃 𝑁𝑃 ,

−→
𝑃 𝑉𝑃 ,

←−
𝑃 𝑁𝑃 , and

←−
𝑃 𝑉𝑃 to refer to

these phrase representations. We break down long sentences into
verb/noun phrases whose direction is determined by whether the
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subject/object is mentioned first in the sentence. Eventually, we end
up with several phrase candidates for each phrase representation
(
−→
𝑃 𝑁𝑃 ,

−→
𝑃 𝑉𝑃 ,

←−
𝑃 𝑁𝑃 , and

←−
𝑃 𝑉𝑃 ) for each predicate-context pair. We

choose the top candidate based on an embeddings-based ensem-
ble similarity function that takes into account (1) the similarity
between the phrase and the literal of the predicate (e.g., written by
and author), (2), the similarity between the phrase and the type of
the subject (e.g., written by and book), (3) the similarity between
the phrase and the type of the object (e.g., written by and writer),
and (4) the normalized frequency of the phrase tokens in their base
form (e.g., write instead of written by) in all the extracted sentences
for the predicate-context pair. Table 3 shows an example output.

2.2 Generating Benchmark
2.2.1 Selective Seeds Selector. The objective of this step is to select
the entities that will serve as the answers (or subsets of the answers)
to the generated questions, which we refer to as seed entities, or
seeds for short. SmartBench does not randomly choose the seeds.
We rather aim at selecting seeds that have good coverage of the
classes in the KG. However, since we are limited by a user-input
number of questions to generate (user input is discussed in Sec-
tion 2.3), SmartBench selectively picks the entities whose classes
are more common (large number of entities belong to the class).
SmartBench first starts by implementing a widening step approach
to select the classes to target such that more common classes are
selected more frequently, while not forgoing least common classes.
The size of the widening step is a function of the user-input required
number of questions in the benchmark to ensure having a good
representation of classes in the benchmark. For each of the selected
classes, a similar approach is applied to select the seeds such that
the seeds that are connected to more nodes (i.e., more significant
in the KG) are selected more frequently. The output of the selective
seeds selector is the set of entities E starting from which several
subgraphs shapes will be generated. These subgraphs will form the
shape of the query corresponding to a question in the benchmark.

2.2.2 Subgraph Shape Generator. The subgraph shape generator
traverses the KG starting from the seed entities E to extract a set of
subgraphs 𝑆𝐺 of different shapes. SmartBench is guaranteed to ex-
tract subgraphs that span all the different shapes encountered in the
literature [5] as long as they exist in the KG. Some of these shapes
are shown in the top part of Figure 2. Following, we summarize the
shapes generated by SmartBench:
Single-Edge. This is the simplest shape that can be generated,
which is a single triple pattern in the form of (𝑆𝑒𝑒𝑑, 𝑃,𝑂) or (𝑆, 𝑃, 𝑆𝑒𝑒𝑑).
The top part of Figure 2a shows an example of this case.
Chain. The chain shape consists of a series of connected single-
edge shapes in the form (𝑆1, 𝑃1,𝑂1), (𝑂1, 𝑃2,𝑂2) ,..., (𝑂𝑛−1, 𝑃𝑛,𝑂𝑛),
where 𝑆𝑒𝑒𝑑 can either replace 𝑆1 or 𝑂𝑛 . The top part of Figure 2b
shows an example of this case.
Star. The seed is the central node in this shape such that it is the
common node among a set of chains. The top part of Figure 2c
shows an example of this case.
Tree. The tree shape is more complex than the star shape, where it
can be defined recursively as a star of stars. The seed is considered
to be the root of the tree.

Cycle. The cycle is a special case of the chain shape, where the
seed is the first and last node in the chain. That is, (𝑆𝑒𝑒𝑑, 𝑃1,𝑂1),
(𝑂1, 𝑃2,𝑂2) ,..., (𝑂𝑛−1, 𝑃𝑛, 𝑆𝑒𝑒𝑑). The top part of Figure 2d shows
an example of this case.
Flower. The flower shape is a subgraph with a node that is con-
nected to at least one attachment that could have any of the follow-
ing shapes: Single-Edge, Chain, Cycle, and Star.
Set-shapes. The set-shapes consist of two or more unconnected
shapes. This shape is mostly used for comparisons between the
unconnected shapes. For example, the question "Which Company
has employees more than Apple Inc.?" compares between the
number of employees in all companies and number of employees
in Apple Inc., where in the general case, there are no connections
between Apple Inc. and these companies.

2.2.3 Questions Generator. The questions generator utilizes the
output of the predicate representation extractor (Table 3 in Fig-
ure 1) and linguistic heuristics to generate natural language ques-
tions for the single-edge shape subgraphs. The focus on such shape
is derived by the fact that the questions representing all the other
shapes can be incrementally composed of two or more single-edge
utterances using coordinating conjunctions.

We rely on linguistic heuristics to determine the question type,
which depends on the type of the seed. When the seed is of type
Person, we use theWho,Whom, orWhose keywords to ask about the
seed based on selecting (

−→
𝑃 𝑉𝑃 or

−→
𝑃 𝑁𝑃 ),

←−
𝑃 𝑉𝑃 , or

←−
𝑃 𝑁𝑃 , respectively.

When the seed is of type Place, we use theWhere orWhat keywords
to ask about the seed based on selecting

←−
𝑃 𝑉𝑃 or

−→
𝑃 𝑁𝑃 , respectively.

For all other types of entities, theWhat keyword is used. Finally,
How-Adj and When can be used with numbers and dates, respec-
tively. Figure 2a shows an example of a What question using

←−
𝑃 𝑁𝑃

for the predicate-context pair
(
riverMouth, (River , Sea)

)
.

For generating questions for more complex shapes, SmartBench
relies on using coordinating conjunctions and replacing an entity in
the subgraph shape with its single-edge utterance from the output
of the predicate representation extractor. For example, in Figure 2b,
the Baltic sea in the questionWhat is the outflow of the Baltic sea?
is replaced by the noun phrase that is used to generate a question
whose seed is the Baltic sea. Figure 2c shows an example of using
the and coordinating conjunction.

2.3 User Interface
Figure 3 shows the user interface of SmartBench where the user
can input 1 the name and URL of the KG, 2 the text Corpus, and
3 the benchmark parameters.
For 1 , we support all Knowledge Graphs that accept HTTP GET

or POST requests to retrieve the data via SPARQL queries. Smart-
Bench uses the labels of the entities and the predicates in the KG
to construct the questions as illustrated in Section 2. SmartBench
can also optionally utilize a text corpus to capture natural language
variations to represent semantically equivalent utterances. In 2 ,
the users can specify the Text Corpus source. Currently, we sup-
port Wikipedia and Google Search API (to retrieve documents with
mentions of entities of interest). Finally, the users inputs the bench-
mark parameters in 3 . The Maximum Answer Cardinality is used
to exclude questions that have a number of answers that is larger
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𝑅𝑖𝑐ℎ𝑎𝑟𝑑 𝐺𝑒𝑟𝑒 𝐽 𝑢𝑙𝑖𝑎 𝑅𝑜𝑏𝑒𝑟𝑡𝑠

𝐵𝑟𝑎𝑘𝑛𝑒𝑎𝑛 𝑆𝑒𝑒𝑑 𝐵𝑟𝑎𝑘𝑛𝑒𝑎𝑛 ?𝑂 𝑆𝑒𝑒𝑑 𝐹𝑖𝑙𝑚 𝑆𝑒𝑒𝑑 𝐺𝑎𝑟𝑟𝑦 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙 𝑆𝑒𝑒𝑑 𝐴𝑝𝑝𝑙𝑒_𝐼𝑛𝑐

(𝑎) Single-Edge Questions (𝑏) Chain Questions (𝑐 ) Star Questions (𝑑 ) Cycle Questions

𝑟𝑖𝑣𝑒𝑟𝑀𝑜𝑢𝑡ℎ 𝑟𝑖𝑣𝑒𝑟𝑀𝑜𝑢𝑡ℎ 𝑜𝑢𝑡 𝑓 𝑙𝑜𝑤

𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐵𝑦𝑡𝑦𝑝𝑒

𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔 𝐶𝐸𝑂

𝐹𝑜𝑢𝑛𝑑𝑒𝑟

𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑖𝑣𝑒𝑟 𝑚𝑜𝑢𝑡ℎ 𝑜𝑓 𝐵𝑟𝑎𝑘𝑛𝑒𝑎𝑛? 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡 𝑓 𝑙𝑜𝑤 𝑜𝑓 𝑊ℎ𝑖𝑐ℎ 𝑓 𝑖𝑙𝑚𝑠 𝑎𝑟𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐺𝑎𝑟𝑟𝑦 𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙 𝑎𝑛𝑑 𝑊ℎ𝑜 𝑖𝑠 𝑡ℎ𝑒 𝐶𝐸𝑂 𝑎𝑛𝑑

𝑡ℎ𝑒 𝑟𝑖𝑣𝑒𝑟 𝑚𝑜𝑢𝑡ℎ 𝑜𝑓 𝐵𝑟𝑎𝑘𝑛𝑒𝑎𝑛? 𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝐽𝑢𝑙𝑖𝑎 𝑅𝑜𝑏𝑒𝑟𝑡𝑠 𝑎𝑛𝑑 𝑅𝑖𝑐ℎ𝑎𝑟𝑑 𝐺𝑒𝑟𝑒? 𝑓 𝑜𝑢𝑛𝑑𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑙𝑒 𝐼𝑛𝑐?

Figure 2: Question generation based on the subgraph Shape.
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Figure 3: The user interface of SmartBench.
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Figure 4: A sample Question generated by SmartBench over
DBpedia.

than the user’s input. The number of questions specifies how many
questions the user would like to output in the benchmark.

2.4 Use Case of DBpedia
Figure 4 shows a sample output of generating a benchmark that tar-
gets DBpedia. First, SmartBench retrieves a seed entity (i.e., Valence,
Drôme) which is used to generate the subgraph 1 (single-edge).
The subgraph is used to generate the natural language question 2 ,
whose corresponding query is 3 . The properties of the subgraph,
natural language question, and the query are shown in 4 . 5 is the
correct answer retrieved by the query 3 .

Figure 5 shows a comparison that can be viewed in SmartBench
between the benchmark generated by SmartBench, QALD-9, and
LC-QuAD-1 with respect to the percentage of question types in all
the benchmarks. The figure shows that the benchmark generated by
SmartBench covers all the question types, which is not the case for
the other benchmarks. Similar figures that show other comparisons
with more benchmarks with respect to other syntactical (e.g., query
keywords and operators) and structural features (query shapes) can
also be viewed in SmartBench.

Figure 5: The frequency of question types generated over
DBpedia for SmartBench, QALD-9, and LC-QuAD-1.

3 DEMONSTRATION SCENARIO
In this demonstration, the participants will select from a set of KGs
for which SmartBench will generate benchmarks. This set of KGs
span KGs that were previously used in the literature as well as KGs
for which a benchmark was never generated. The participants can
then browse the generated questions and do the following:
• Assess the quality of the automatically-generated natural lan-
guage questions.
• Examine the complexity of the questions and associate this
complexity with the shape of the corresponding queries.
• For the benchmarks generated for the KGs that were previously
targeted in the literature, the participants can compare the
differences in the fine-grained properties of the natural language
questions and queries. It will be apparent that the benchmarks
generated by SmartBench cover more properties.
• SmartBench will be prepackaged with several QA systems such

that these systems are evaluated using the benchmark generated
by SmartBench and other benchmarks from the literature. The
participants will be able to compare the reported quality scores
of the QA systems and observe their high-degree variations.
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