
Demonstrating Quest: AQuery-Driven Framework
to Explain Classification Models on Tabular Data
Nadja Geisler

Technical University of Darmstadt
nadja.geisler@cs.tu-darmstadt.de

Benjamin Hättasch
Technical University of Darmstadt

benjamin.haettasch@cs.tu-
darmstadt.de

Carsten Binnig
Technical University of Darmstadt

DFKI
carsten.binnig@cs.tu-darmstadt.de

ABSTRACT
Machine learning models are everywhere now; but only few of
them are transparent in how they work. To remedy this, local expla-
nations aim to show users how and why learned models produce
a certain output for a given input (data sample). However, most
existing approaches are oriented around images or text data and,
thus, cannot leverage the structure and properties of tabular data.
Therefore, we demonstrate Quest, a new framework for generat-
ing explanations that are a better fit for tabular data. The main
idea is to create explanations in the form of relational predicates
(called queries hereafter) that approximate the behavior of a clas-
sifier around the given sample. For this demo, we use Quest on
different synthetic and real-world tabular data sets and pair it with
a user interface intended to be used during model development by
a data scientist working on classification models.

PVLDB Reference Format:
Nadja Geisler, Benjamin Hättasch, and Carsten Binnig. Demonstrating
Quest: A Query-Driven Framework to Explain Classification Models on
Tabular Data. PVLDB, 15(12): 3722 - 3725, 2022.
doi:10.14778/3554821.3554884

1 INTRODUCTION
Machine learning has shown impressive results, surpassing humans
in many tasks. However, even data scientists are often unable to
explain how or why a result was produced. Yet, this knowledge is
important for improving models during development, but also for
legal compliance, increasing trust, investigating discrimination and
more. Therefore, explainable artificial intelligence (XAI) aims to
provide insight on the inner workings of learned models.

Today, different approaches to XAI exist. Local, model-agnostic
explanations are particularly interesting: in a nutshell, these ap-
proaches try to uncover why a model produced a certain output
given a data sample as input (therefore called local) while not us-
ing any model internals (therefore called model-agnostic). As an
example, think of a learned classifier that is used for monitoring
the operation of a wind turbine, illustrated in Figure 1. For this
scenario, local and model-agnostic explanations could be used to
explain why the learned classifier (independent of its model archi-
tecture) indicates for a given data sample (blue dot) whether the
operation is safe or should be prohibited. However, many of the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554884

Figure 1: Simplified example of how queries can explain
a classifier output determining if the operation of a wind
turbine is safe: The explanation for a given sample is a query
pair (𝑄 and 𝑄) that approximates the classifier in the local
neighborhood around the sample. 𝑄 explains why the model
indicated that the operation was safe, while 𝑄 explains why
not another output was produced by the classifier.

existing approaches for local, model-agnostic explanations target
images. For example, (super-)pixels can be colored according to
how strongly they influence the model output. Similar approaches
can be used for text, where individual tokens are highlighted that
cause a model to produce a certain output (e.g., words in a text that
caused a sentiment model to label it as “angry”). Some approaches
can also be used on tabular data, but they are often too generic for
tabular data and do not leverage the structure and properties of the
data that might be relevant for explanations. For the example above
current approaches might, thus, attribute the output of the classifier
(e.g., operation is safe) only to the importance of attributes (e.g.,
WindSpeed or RainFall). Alternatively, they might give an exam-
ple of different conditions under which another output is produced.
Instead, what we need are more semantically rich explanations.

Contributions. Therefore, in this paper we demonstrate Quest,
a new approach for generating explanations that are a better fit
for tabular data. The main idea of Quest is that explanations are
assembled from relational query predicates (called queries in the
sequel) that approximate the shape of the separation boundary of
a classifier locally. For example, as shown in Figure 1 (left) for the
classifier on the before-mentioned wind turbine data, our approach
could explain why it indicates the operation is safe for the given
data sample by producing the query𝑄 : 10 < WindSpeed < 50 AND
15 < RainFall < 40 (shown as green area in Figure 1). The basic
idea of how Quest creates such query-driven explanations is that
it tries to explain the behavior of a classifier in the local neighbor-
hood of a given input sample by training a surrogate model which
approximates the shape of the classifier. Quest tries to select the

3722

https://doi.org/10.14778/3554821.3554884
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554884


type of surrogate model with the best fit.The local neighborhood is
selected by Quest to maximize the area of the neighborhood (i.e.,
the support of the explanation), while the accuracy of the surrogate
model remains high and complexity of the resulting explanation
low. As shown in Figure 1 (right) Quest can (among other surro-
gate models) use a decision tree with two labels to approximate
the classifier shape in the local neighborhood (dashed border in
Figure 1).

Once the surrogate model is trained, Quest generates a query
pair as an explanation to the user. While 𝑄 represents the explana-
tion for why the classifier produced a certain output,𝑄 provides an
explanation of why not another output was produced. In Figure 1
(left)𝑄 states that the classifier indicates that operation is safe since
the sample was contained in 10 < WindSpeed < 50 AND 15 <

RainFall < 40, while 𝑄 helps the user understand why the clas-
sifier output did not indicate that operation should be prohibited
since the sample was not in 10 < WindSpeed < 100 AND 15<
RainFall < 60 AND WindSpeed >= 50 OR RainFall >= 40.

Currently, Quest supports several basic surrogate models as ex-
plainer templates, including decision tress (as mentioned before) but
also linear models (“diagonal” decision boundaries) and a distance-
based model (“round” neighborhood). The reason why different
explainer templates are supported by Quest is so that it can select
the surrogate model which best approximates the classifier to be
explained in the given neighborhood. Furthermore, Quest is de-
signed as a framework where any new explainer templates used to
generate query pairs for the explanation can be integrated as long
as it can be expressed in queries. This allows Quest to be extended
in future to support different domains, data sets and classifiers.

To summarize, Quest generates local, model-agnostic explana-
tions in the form of queries over tabular data through a new frame-
work approach. These explanations are intuitive and flexible in
shape to explain the behavior of a classifier in a local neighbor-
hood around a given data sample. The framework approach allows
Quest to adapt to the local model behavior and is easily extensible
by adding new surrogate models as explainer templates. To enable
the community to use and extend the framework, the source code
together with the Demo video and further information will be made
available publicly at https://link.tuda.systems/quest once the first
version is finished.

Outline. The remainder of this demo paper is structured as fol-
lows: Section 2 presents some background for explanations on
tabular data. Section 3 then gives an overview of the system and a
demo scenario for the use by data scientists is outlined in Section
4. Section 5 concludes with a summary and potential avenues of
future work.

2 BACKGROUND
In the area of local, model-agnostic explanations that can be used
on tabular data the most well known approaches are probably LIME
[2] and SHAP [1]. Meanwhile, Anchors [3] is most closely related to
our proposed system, since it also generates queries (predicates) as
explanations. However, the queries generated by Anchors are much
simpler, as discussed below. In the following, we first discuss SHAP
and LIME that both explain models based on feature importance.

Template 1 

Instance
1.2 

Instance
1.1 

Template 2 

Template 3 Instance
2.2 

Instance
2.1 

Explanation

X

X X

Pruning

InstantiationInitialization

Selection

Classifier C 

Dataset D 

Sample S

Budget B 
 

Figure 2: Quest Pipeline: As input, Quest takes a trained clas-
sifier𝐶, a data set 𝐷 and a data sample 𝑆 for which the model
behavior is explained. The pipeline is composed of multiple
steps to select instances of explainer templates (i.e., surro-
gate models) that approximate𝐶 for 𝑆 . The instance that best
approximates𝐶 locally produces a query pair as explanation.

Explainers in this category, e.g. LIME and SHAP, provide expla-
nation based on the influence of individual features to the classifier
output. Both are also based on local surrogate models. LIME uses a
weighted linear model as a surrogate that is trained to approximate
the shape of the classifier locally. Based on the weights of the linear
model, tabular LIME then derives the feature importance of the
different attributes of a table. SHAP, on the other hand, is based on
Shapley values: a game theoretic way of quantifying the effect, i.e.,
the importance, of a feature for a specific model output. As they
cannot be computed directly on real-world data, SHAP adapts the
surrogate model approach from LIME to estimate the Shapley val-
ues for each feature in the sample. As a result, for our example, both
SHAP and LIME would produce explanations such as attributing
the output safe to the WindSpeed but they cannot further justify
the output, e.g., by producing queries as Quest is able to.

However, compared to Quest, the resulting queries of anchors
are much more limited. First, queries in anchors can only represent
queries that describe a fixed “rectangular” shape to approximate the
model behavior. For example, in Figure 1 Anchors could actually
produce a query that is very similar to 𝑄 (green area) as generated
by Quest to explain why the model output indicates that the opera-
tion of the wind turbine is safe for the sample. However, depending
on the local model behavior, using rectangular shapes—which are
in fact conjunctive query predicates—will only work well in some
cases while Quest supports a much richer set of queries and shapes
as we will expand on in Section 3. Second, Anchors does not gen-
erate a query 𝑄 for explaining the why not side as Quest can do;
i.e., Anchors does not explain why a model did not produce the
opposite output.

3 SYSTEM OVERVIEW
As discussed before, Quest explains the output of a learned classifier
for one given sample by providing two areas that are defined by
a query pair 𝑄 and 𝑄 as an explanation. In the following, we first
discuss the overall pipeline Quest uses to generate these query pairs.
Afterwards, we explain the different possibilities for the surrogate
model (called explainer templates) that can be used to approximate
the shape of the classification model we want to explain, before we
then discuss the details of how we derive queries as explanations.

3723

https://link.tuda.systems/quest


3.1 Overall Pipeline
Figure 2 summarizes the process of deriving an explanation through
Quest. The process starts with the user providing a data set 𝐷 , a
trained classifier 𝐶 and a data sample 𝑆 to explain. Optionally, an
accuracy threshold and a budget 𝐵 that represents the maximum
number of predicates that can be used in the query pair 𝑄 and 𝑄
together can be provided. This budget describes a measure of the
maximal complexity of the query pair, to ensure it is understandable.
With a higher budget, the query pair may be more complex, but it
can also explain the behavior of the classifier 𝐶 more accurately. In
the following, we discuss the pipeline phases as shown in Figure 2.

In the first step, suitable explainer templates are selected as sur-
rogate models, depending on the schema of the table. Currently,
Quest supports different explainer templates, which we will explain
in Section 3.2. However, not all of them can be used for all data sets,
e.g., a distance-based surrogate model can only be used on numeri-
cal features, not categorical ones. For example, a linear surrogate
model that approximates the decision surface of the given classifier
𝐶 can only be used if the selected features are numerical. During
the instantiation phase, Quest creates one or more instances of
possible explainer templates (i.e., 1.1 - 2.2 in Figure 2), with their hy-
perparameters, that should be used to approximate𝐶 . This includes
the selection of a subset of features for each instance on which the
local neighborhood will be defined. Moreover, for each instance of
an explainer templates an initial local neighborhood around the
sample 𝑆 is defined which is expanded incrementally. For example,
in Figure 1 Quest the explainer template is an instance of decision
tree that is used to approximate 𝐶 in the local neighborhood (i.e.,
around 𝑆). Once a set of instances with different local neighbor-
hoods and surrogate models is created, Quest starts to train the
surrogate models using data from 𝐷 that is included in the selected
local neighborhood of the instance. During this phase, pruning
eliminates instances early, if they do not seem to be promising
candidates. Pruning is based on the size of the neighborhood, com-
plexity of the query and approximation accuracy. The accuracy is
determined by classifying data points from the local neighborhood
with the surrogate model and the classifier 𝐶 and evaluating for
which fraction they agree. We stop expanding the area of the local
neighborhood if the accuracy of the surrogate model is below a
given threshold which the user may influence based on their needs.
This allows us to find a surrogate model that approximates 𝐶 with
high accuracy while maximizing the area of the local neighborhood
(which can be seen as a support for the explanation).

As a last step, the most suitable surrogate model is selected as
explanation and a query pair is generated as a representation. We
select a surrogate model where the accuracy is above a certain
threshold, the complexity within the budget and the area of the
local neighborhood is maximized. For example, if we have two
instances of surrogate models which are above a given accuracy
threshold (which can be adapted by the user), Quest selects the one
with the largest local neighborhood.

3.2 Explainer Templates
Quest provides different surrogate models that can be used as ex-
plainer templates. The idea is that this variety of explainer tem-
plates allows Quest to approximate different shapes of𝐶 in the local

Figure 3: Simplified example explanation using a linear ex-
plainer template. It generates a query pair where 𝑄 states
that petal.width >= petal.height causes the classifier out-
put to indicate that the petal came from an Iris Versicolor.

neighborhood. In the following, we briefly explain the currently
supported explainer templates. Moreover, since Quest is designed
as a framework, new explainer templates can be added. Below, we
explain the requirements for new surrogate models to be added.

As of now, Quest supports three main explainer templates.
The first template is based on decision trees, that can split the

local region recursively into smaller “rectangular” shapes. For ex-
ample, as shown in Figure 1 this allows the generation of a query
pair where 𝑄 represents a query composed of two rectangular
regions (i.e., two different leaves of the decision tree) that are com-
bined in the query through a disjunction. In addition to decision
trees, two other explainer templates are supported: one based on
linear regression, as well as a distance-based class. The second
explainer template approximates the classifier through a linear de-
cision boundary within the neighborhood. This template can be
used for explaining classifiers on numerical features that provide
comparable metrics. For example, as shown in Figure 3 think of a
classifier over a data set of plant petals (similar to the Iris data set)
that uses features such as height and width of the petals to classify
them (i.e., determine the plant based on the features). The linear ex-
plainer could generate a query pair that includes a query 𝑄 for the
explanation which states since petal.width >= petal.height
within the neighborhood, the classifier output indicates that the
petal came from an Iris Versicolor. Finally, the distance-based ex-
plainer class supports classifiers with a “round” shape around the
sample. That way, a query explanation can use similarities accord-
ing to a given distance metric. For example, for the plant data from
before, all petals with similar width-to-height ratio could simply
be listed as an explanation for why the classifier output for a given
sample was produced.

To add a new explainer template to Quest, it needs to fulfill two
conditions: The most important is the ability to express their inner
workings as a query pair. Additionally, explainer templates need to
be able to work within a complexity budget, to ensure that resulting
explanations are understandable.

3.3 Queries as Explanations
Based on an instance of a surrogate model, Quest generates a pair
of relational queries (𝑄 and 𝑄) as explanation.

3724



We have chosen queries as the representation of the explana-
tions for several different reasons. First, relational query predicates
are extremely expressive while still compact and comprehensible
on tabular data. More importantly, using a query pair to explain
the local behavior of classification models has the advantage of
explaining not only why a model produced an outcome, but also
why not.This consideration of query pairs as explanations gives
the user an intuitive way of thinking about the local neighborhood,
supports generalization on the user’s side and keeps the focus on
the data instead of, e.g., the surrogate model or feature importance.
As such, the combination of 𝑄 and 𝑄 ensures an explanation from
both sides of the decision surface. Finally, as mentioned before,
the query generation is restricted by a complexity budget 𝐵 to en-
sure users are able to understand them well. However, this can be
adapted to the target group: Queries can offer much more useful
information about the feature space to data scientists specifically,
than a single set of feature weights. The simplest way of determin-
ing the complexity of queries is the number of predicates, making it
easy to compute and comparable. An extension considers a weight
for each distinct predicate, based on their perceived complexity.
Another way users can think about the query pair is the separation
into which area the explanation generalizes to (i.e., the borders
of the neighborhood) and a decision surface within that. This is
intuitive for data scientists which ensures that they understand
the limitations of the explanation and that the explanation itself is
interpretable.

4 DEMONSTRATION
In our demonstration, we show how a model developer might use
Quest to generate explanations that help them infer some of the
inner workings of a classifier, compare behavior in regions of the
feature space, even across model architectures, and adapt their
search with minimal overhead. For the demonstration, we integrate
Quest into a Jupyter notebook that allows a data scientist to in-
teractively use Quest to create explanations and visualize them.
We provide several data sets including synthetic and real world
data sets, including the adult income data set from the UCI ma-
chine learning repository. In the following, we describe the demo
scenarios we aim to show in more detail.

Basic Scenario. After loading and preprocessing a data set and
training or loading a classifier, the user may specify a data sample
for explanation. The resulting explanation is displayed as a pair of
readable queries. These query pair is stored in a variable for further
use by the data scientist (e.g., to retrieve exemplary data points or
data from the same local neighborhood from a different batch).

For the demo, we restrict ourselves to two-dimensional explana-
tions, with regard to the most relevant features, which allows us to
provide a visualization for the query pair in which the areas cov-
ered by 𝑄/𝑄 are colored appropriately as in Figure 1 and Figure 3.
Additionally, a variety of evaluation metrics is displayed alongside
the query pair: the (normalized) area/coverage of this particular
explanation, the accuracy of the decision surface within the local
neighborhood, and the class balance between 𝑄 and 𝑄 .

Extended Scenario. Because of standardized interfaces in Quest,
it is possible to explain very different classifiers, as long as they can

be specified in a way compatible to scikit-learn’s BaseEstimator
and the ClassifierMixin. Thanks to the nature of Jupyter notebooks,
it is trivial to exchange or add classifiers retroactively.

Furthermore, with an understanding of the internal dataset struc-
ture, users may also specify a custom evaluation metric. This can
optionally influence the selection of the final explanation from the
set of candidates. Quest uses the AUC on the development data set
by default, but e.g., in the case of sparse data, users might want to
calculate this differently, one possibility being newly sampled data
labeled by the learned classifier. The visualization may optionally
be overlaid with a proportional subset of the development data set,
marked in the label assigned by the classifier.

Finally, if a user decides up front to run to create a set of ex-
planations for different samples as well as different classifiers in a
batch, the data scientist may specify all necessary input via a YAML
configuration file. This will allow them to use a base configuration
and vary an arbitrary number of parameters per run.

5 CONCLUSION & FUTUREWORK
In this paper, we demonstrated Quest, a framework for query-
driven explanations on tabular data. We illustrated why queries
make powerful but intuitive representation of local explanations
that adapt accurately to the behavior of a complex learned classifier
surrounding a given data sample. Additionally, we presented a
framework approach to generate these query pairs through a set of
explainer templates, each with its own strengths and weaknesses.
This makes the framework easy to extend by adding explainer
templates. We demonstrated how this framework could be used
interactively by data scientists to develop and compare different
classifiers, even acrossmodel architectures. There are, of course, still
various possibilities for improvement. Aside from implementing
more complex explainer templates, themost interesting opportunity
would result from leveraging the structural information of relational
data, in addition to working on singular tables.

ACKNOWLEDGMENTS
This research and development project is/was funded by the Ger-
man Federal Ministry of Education and Research (BMBF) within the
“The Future of Value Creation – Research on Production, Services
and Work” program (funding number 02L19C150).

Furthermore, we want to thank hessian.AI as well as DFKI Darm-
stadt for their support.

REFERENCES
[1] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., Red Hook, NY, USA, 4765–4774. http://papers.
nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[2] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Francisco, California, USA) (KDD ’16). Association for Computing Machinery,
New York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672.2939778

[3] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artifi-
cial Intelligence Conference and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence (AAAI’18/IAAI’18/EAAI’18). AAAI Press, New Orleans,
Louisiana, USA, Article 187, 9 pages.

3725

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/2939672.2939778

