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ABSTRACT

Persistent memory (PM) based indexing techniques have been pro-
posed to build fast yet persistent indexes that sit on the memory
bus. Over the past decade, numerous techniques have been pro-
posed with various assumptions and different properties (e.g., some
of them were proposed before real PM became available), making
it hard for researchers and practitioners to gain a comprehensive
understanding of the area.

In this tutorial, we give a comprehensive overview of PM index-
ing techniques, covering both range and hash indexes. We contrast
the designs proposed before and after real PM became available,
summarize the common and useful design techniques, and discuss
potential future challenges and opportunities in this area.
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1 INTRODUCTION

Persistent indexes (such as B+-trees and hash tables) are fundamen-
tal data structures in database systems. Traditionally, they have
been built to cope with the characteristics of block devices such as
SSDs and HDDs assuming a two-level storage hierarchy where data
access is done through a buffer manager. Naturally, these traditional
indexes suffer from the low bandwidth and high latency available
of traditional storage devices, limiting overall system performance.

The recent advances in scalable persistent memory (PM) tech-
nologies such as PCM [35], STT-RAM [12] and Intel 3D XPoint [9]
give a promising solution to this problem. PM is a range of de-
vices that combines the best of both DRAM and SSDs, by offering
nanosecond-level latency, high bandwidth and persistence with
byte-addressability, all on the memory bus. Such features poten-
tially allow us to build fast, single-level persistent indexes that
directly operate and persist data on PM without having to use a
DRAM-SSD hierarchy managed by a buffer pool.

Based on this PM vision, devising single-level PM indexes has
become an active line of research and received a lot of attention
from researchers from both data management and systems com-
munities. Researchers started to propose PM indexes even before
real devices were available [2, 4, 5, 13, 22, 29, 31, 34, 36, 37]. Since
the release of Intel Optane Persistent Memory (PMem)—the only
commercially available scalable PM—newer indexes have been pro-
posed [6, 18, 24, 26, 27, 40] to cope with the actual characteristics of
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the device. A main challenge is that PMem, with ∼300ns latency and
up to tens of GB/s of bandwidth, is still slower than DRAM. This led
to the development of various techniques to reduce unnecessary
PM accesses, e.g., by using DRAM and relaxing sortedness of index
nodes. At the same time, programming on PM is a challenging task
by itself. Devising a recoverable PM index requires careful consider-
ation of such issues as guaranteeing persistence, concurrency and
preventing permanent PM leaks. These are new problems that were
not commonly considered by traditional in-memory indexes and
often require different techniques from traditional storage-centric
persistent indexes for performance reasons.

This tutorial provides a comprehensive overview of PM indexing
techniques. We cover both range indexes (such as B+-tree and trie
variants) and hash tables proposed before and after the real PM de-
vices are available to give a complete snapshot of the state of play in
this area. In addition, we discuss important background knowledge
of the PM hardware and software ecosystems for practitioners and
researchers to devise practical solutions. Finally, we discuss future
challenges and opportunities in this area.

Tutorial Overview. We plan for a 1.5-hour session that is split
into five sections. The first section will give an introduction to PM
ecosystems, including PM hardware features and PM’s potential
for data management systems, with a focus on indexing structures.
Section 2 then discusses the necessary background for PM program-
ming in general. Sections 3 and 4 make up the bulk of the tutorial
to give an in-depth look at range indexes and hash indexes for PM,
respectively. Finally, we conclude the tutorial in Section 5 with a
discussion on future challenges and opportunities.

Target Audience. We target a broad range of audience that in-
cludes researchers and practitioners who are interested in exploring
the use of PM-tailored indexing techniques in data management
and storage systems. Given the versatility of indexing structures,
the usefulness of this tutorial can go beyond database systems, to
closely-related areas such as distributed systems and file systems.

We only expect basic background about commonly-used indexes,
in particular B+-trees, tries and hash tables. Other than that, this
tutorial is self-contained to include additional prerequisites such
as PM hardware and PM programming issues for non-experts and
new researchers to get started in this area.

Related Tutorials. To the best of our knowledge, this will be
the first tutorial focused on PM indexing techniques. Several re-
lated tutorials appeared in the past. The most recent one was pre-
sented at VLDB 2021 and focused on extending the lifetime of PM
hardware [17]. Another two tutorials were presented at SIGMOD
2015 [32] and SIGMOD 2019 [3] to discuss PM’s impact on database
systems. But both were based on emulation before real PM became
commercially available. Earlier in VLDB 2016 a tutorial about main-
memory database systems [20] discussed PM-based logging but did
not cover PM indexes. Later, many new techniques based on real
PM have been proposed, which are our main focus.
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RelatedWork from Authors. The authors have worked on the
performance evaluation of representative PM range indexes [11, 23]
on Intel Optane Persistent Memory (PMem), covering some of the
indexes surveyed in this tutorial; part of the tutorial contents will
be based on these prior evaluation results. The authors have also
proposed Dash [26] which adapts extendible/linear hashing for PM,
as well as APEX [25], a high performance learned index for PM.

Different from prior surveys which focused on a few representa-
tive indexes, this tutorial (1) covers a broader range of PM indexes
(including hash tables and learned indexes, rather than only tra-
ditional B+-tree/trie variants in previous work), and (2) aims to
provide the audience a systematic, “panoramic” view of this area
that is infeasible in a regular paper and research talk.

2 TUTORIAL OUTLINE

We begin by introducing the vision of PM: bringing high capac-
ity and persistence to the memory bus, overcoming DRAM’s scal-
ing limits. The combination of byte-addressability and persistence
brings a set of challenges for software, which is discussed as back-
ground information about PM indexes. We then structure the re-
maining tutorial to cover PM indexing techniques based on their
timing: before (“past”) and after (“present”) the real PM devices
became available. We contrast these techniques and discuss their
relevance in today’s PM systems, and finally identify challenges
and opportunities (“future”).

2.1 Persistent Memory Systems

The idea of modern scalable PM appeared over a decade ago in
search for alternatives to DRAM which is hitting scalability limi-
tations [21, 39]. Various materials for manufacturing PM devices
have been discovered, such as STT-RAM [12], memristor [30], phase
change memory (PCM) [35] and Intel 3D XPoint [9]. Regardless
of the materials under the hood, the common goal is to offer near-
DRAM performance and byte-addressability. Coincidentally, these
PM technologies all turned out to be non-volatile, offering also
persistence on the memory bus and therefore potentially enabling
single-level systems that directly operate and persist data on PM,
without the need for additional secondary storage. For database
systems, this indicates that major components, indexes in particular,
can be directly placed in PM to achieve potentially instant recovery
and high performance.

It was not until 2019 did the PM vision come true when Intel
released Optane DC Persistent Memory Module (Optane DCPMM;
currently referred to as Optane PMem) based on 3D XPoint. Today,
Optane PMem remains the only commercially available and de facto
standard PM device. Although DRAM/flash-based NVDIMM [1]
also provides persistence on the memory bus, it can be limited by
DRAM capacity or flash’s low performance. Therefore, almost all
research in this area has been targeting Optane PMem; our tutorial
will therefore focus on PMem when discussing real PM features.

Optane PMem offers much larger capacity than DRAM, with up
to 512 GB per DIMM. It exhibits low latency (∼300ns read latency)
compared to flash memory, but is still 4× higher than that of DRAM;
it also exhibits asymmetric read/write performance with write be-
ing slower. For example, the first generation PMem (DCPMM 100
series) can deliver up to 40GB/s for reads and 10GB/s for writes

under sequential workloads, which could scale down to 7.4GB/s
and 5.3GB/s under random workloads, respectively. The recently
released 200 series offers roughly 30% higher bandwidth thanks to
the availability of more memory channels on the new platform [16].

Optane PMem can operate in the Memory, App Direct or Dual
mode. The Memory mode provides bigger but slower volatile mem-
ory with DRAM as a transparent cache controlled solely by the
hardware. Under the App Direct mode, software can judiciously
use PM and DRAM to store data with persistence. The Dual mode
combines Memory and App Direct modes. Since App Direct pro-
vides persistence, virtually all PM indexes are based on it, which is
also our focus in this tutorial.

2.2 PM Programming

Building software for PM presents several major challenges: guar-
anteeing data persistence, managing PM space, and handling con-
currency and recovery issues.

Persistence. Since PM is attached to the memory bus, it is be-
hind multiple levels of volatile CPU caches. For safe persistence,
the first generation of PMem mandates software to proactively
issue cacheline flush instructions, including CLWB, CLFLUSH, and
CLFLUSHOPT [14]. Among them, CLWB is preferred as it does not
invalidate the cacheline after flushing. Upon flush, the data will
reach the CPU’s write buffer, which is included in the asynchro-
nous DRAM refresh (ADR) domain. The ADR domain is power
failure protected such that upon power failure the data can be
safely drained to PM media. In other words, once data reaches the
ADR domain, it is considered persistent. The latest of PMem plat-
forms (e.g., the 3rd generation “Ice Lake” Xeon Scalable processors
with PMem 200 series) feature extended ADR (eADR) which also
covers CPU caches, virtually removing the need for software to
proactively issue cacheline flushes. To guarantee specific ordering
of writes, applications must also issue SFENCE to prevent stores
from being re-ordered by the CPU, regardless of whether eADR is
in place. Moreover, modern CPUs only guarantee 8-byte atomic
writes. Therefore, atomic writes involving >8 bytes need special
care, e.g., by using durable transactions based on logging [15] or
other multi-word primitives [34].

PM Space Management. To leverage PM’s memory nature,
the application typically maps PM directly to its address space
via the mmap interface to directly access data using load and store
instructions without going through file system interface like POSIX
read and write. However, the virtual address returned by mmap
may not remain the same across reboots, invalidating any virtual
memory pointer values stored in PM (e.g., child pointers stored
in B+-tree inner nodes). A common solution is to keep track of
offsets in PM and generate pointers by adding the offsets to a base
address at runtime. Further, different from DRAM leaks, PM leaks
are permanent, so the allocator must guarantee that a PM block
is atomically allocated to the application, thus no dangling PM
block exists in the system. The allocator should employ a safe PM
ownership transfer protocol to resolve this issue [34].

Concurrency and Recovery. DRAM indexes can be recovered
from storage without worrying about inconsistencies, while PM
indexes need to recover data and program states (e.g., critical sec-
tions), because they are all persisted on PM. For example, a B+-tree
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split may require changing multiple pointers atomically. This could
be done by using locks, which are also persisted on PM. So a crash
then can let the tree hold the lock forever. The software (B+-tree in
this case) then needs additional recovery logic to restore to a pre-
viously consistent state, e.g., by releasing all locks upon recovery.
This is often implemented with the help of some PM programming
libraries, which we describe in more detail later.

Tutorial Coverage.Multiple research PM libraries have been
proposed to resolve the aforementioned issues [8, 33, 34]. In practice,
the Persistent Memory Development Kit (PMDK) [15] is the de
facto standard. Although our focus is PM indexing, we provide an
overview of these PM programming tools for non-experts and new
researchers to get familiar with PM programming.

2.3 PM Range Indexes

PM range indexes adapt their in-memory counterparts (B+-trees,
tries and hybrids) with additional designs to reduce PM accesses
(thus better performance) and guarantee correct recovery. Depend-
ing on the time they appeared, in the tutorial we categorize them as
“pre-Optane era” and “Optane era” proposals. In addition, we will
also summarize the key techniques used in terms of index architec-
ture, their node structure, concurrency and other feature support
(variable-length keys, PM management and NUMA-awareness).

Pre-Optane Era. Before real PM appeared on the market, re-
searchers had been using DRAM to emulate PM, by injecting ad-
ditional delays. Among the various assumptions, some turned out
to be not true (e.g., bandwidth profile). But several predictions and
designs were validated later on real PM, especially the fundamen-
tal principle of reducing PM accesses and avoiding unnecessary
cacheline flushes and fences to improve performance. Almost all
the indexes were proposed with reduced PM accesses as a central
goal [2, 4, 5, 13, 22, 29, 31, 37]. For B+-tree variants, since their inner
nodes are just for guiding search traffic, and are reconstructible, pro-
posals like FPTree and NV-Tree relax the consistency requirements
for inner nodes by placing them in DRAM or dropping flushes and
fences, at the cost of instant recovery because the DRAM content
has to be rebuilt upon recovery. Excessive PM accesses can also be
introduced by sorting nodes, thus unsorted nodes become popular
(e.g., FPTree, NV-Tree and BzTree). FPTree also uses fingerprinting
to avoid unnecessary existence checks, reducing PM accesses. In
terms of concurrency, PM indexes tend to adopt optimistic over
pessimistic approaches. FPTree uses hardware transactional mem-
ory (HTM) on its inner nodes to reduce traversal costs, and uses
locking on leaf nodes to avoid HTM aborts caused by cacheline
flushes in the leaf nodes. BzTree uses lock-free multi-word compare-
and-swap [34] that can atomically modify multiple 8-byte words.

In the pre-Optane era, almost all proposals focused on the easier
integer keys without much consideration of variable-length keys
(other than storing pointers to keys), which must be supported for
real workloads. Due to the limitations of emulation based research,
important issues such as PM space management/allocation and
NUMA effect were generally not considered, either.

Optane Era. After Optane PMem became available in 2019,
multiple new PM range indexes have been proposed. They inherited
a lot of designs from pre-Optane proposals but also came with their
own new designs to cope with real PM’s properties. The hybrid

PM-DRAM architecture is common with more aggressive use of
DRAM. For example, DPTree [40] and 𝜇Tree [6] place entire trees in
DRAM to gainmore performance at the cost of longer recovery time,
more complex programming, and higher DRAM space use. Further,
these new indexes started to adapt more than B+-trees. For example,
PACTree [18] and ROART [27] are based on tries, but they stick with
the PM-only design, potentially yielding suboptimal performance
but keeping instant recovery. Updatable learned indexes [19] such
as ALEX [10] are also adapted for PM. Amajor challenge is their use
of bigger nodes (which is an advantage of learned indexes) turned
out to be suboptimal on PM due to high-cost structural modification
and insert operations. APEX [25] applies a series of PM indexing
techniques to ALEX to mitigate such impact, among other issues.
Fingerprinting, unsorted (leaf) nodes, and selective consistency for
metadata are still popular and further optimized. For example, node
alignment of 256 bytes can reduce unnecessary PMem accesses;
LB+-Tree uses SIMD instructions to compare up to 64 fingerprints
in one instruction; ROART embeds a two-byte fingerprint inside
pointers to key-value pairs, reducing pointer chasing at the leaf
level; LB+-Tree and DPTree both use extra metadata per leaf node
to avoid logging (thus reducing PM writes).

Notably, variable-length keys, PM allocator and NUMA effect
still lack enough attention. Only trie-based ROART and PACTree
natively support variable-length keys; the others continue to use
pointers to keys in the pre-Optane fashion. Most new PM indexes
use PMDK to manage PM (e.g., to avoid permanent leaks), but many
indexes need to tailor their allocators for better performance. Finally,
only PACTree mitigates NUMA effect (with important tradeoffs).

2.4 PM Hash Tables

The exploration of PM hash tables also started before any real PM
device was available.

Pre-Optane Era. Level hashing [41] is one of the early write-
optimized static hash tables. It proposes a two-level scheme to
bound the search cost while reducing PM writes. CCEH [28] adapts
extendible hashing to reduce PM accesses by fixing bucket sizes to
one cacheline. It also introduces a segment layer the directory and
buckets, to reduce the size of the directory so that a record can be
found by accessing at most two cachelines. The downside is splits
can be triggered early (at the coarse-grained segment level), lead-
ing to high PM allocation cost and low space efficiency. SOFT [42]
reduces PM flushes by avoiding persisting pointers, but it still has
volatile nodes that are chained in DRAM to allow fast access. Be-
cause the size of each volatile node becomes irregular to accom-
modate the pointers, a single cacheline now loads one and a half
volatile nodes, causing more cache misses. SOFT’s DRAM+PM ar-
chitecture can cause long recovery time, as structural information is
not persisted and needs to be reconstructed in DRAM,which defeats
one of the purposes of using PM indexes (i.e., instant recovery).

Similar to PM range indexes, most pre-Optane hash tables fo-
cused on reducing PMwrites and simple 8-byte keys. Most solutions
are also single-threaded without concurrency.

Optane Era. Based on PMem, Clevel [7] designs a lock-free
scheme for level hashing [41]. However, its search and delete op-
erations incur extra PM reads, which should also be reduced for
performance. Dash [26] optimizes for both PM reads and writes by
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adopting fingerprinting from PM range indexes, to avoid unneces-
sary bucket probing. It also proposes a load balancing strategy that
can postpone segment splits to increase space efficiency.

3 CHALLENGES AND OPPORTUNITIES

This section partially bases on our recent work [11] which identifies
new challenges and opportunities for PM indexes, especially on
providing full functionality while maintaining high performance.
We also highlight opportunities in learned PM indexes and hash
tables. We will also discuss the challenges associated with adopt-
ing such new indexes in practice, due to cost and programming
complexity reasons. We also show an interesting finding that PM
indexes perform very similarly to DRAM-optimized indexes in a
pure DRAM environment. This hints the performance and design
of future PM and DRAM indexes may in fact converge, simplifying
system design and integration. Finally, we will discuss the poten-
tial impact of eADR, which as we mentioned earlier potentially
invalidates the need to proactively flush cache lines. Some recent
work [38] has started to exploit it, but it remains to be seen howwell
the previous design will hold and how future PM-based systems
should be designed to fully leverage it.
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