Unified Data Analytics: State-of-the-art and Open Problems

Zoi Kaoudi
Technische Universitit Berlin
Berlin, Germany
zoi.kaoudi@tu-berlin.de

ABSTRACT

There is an urgent need for unifying data analytics as more and more
application tasks become more complex: Nowadays, it is normal to
see tasks performing data preparation, analytical processing, and
machine learning operations in a single pipeline. Despite this need,
achieving this is still a dreadful process where developers have to
get familiar with many data processing platforms and write ad hoc
scripts for integrating them. This tutorial is motivated by this need
from both academia and industry. We will discuss the importance
of unifying data processing as well as the current efforts to achieve
it. In particular, we will introduce a classification of the different
cases where an application needs or benefits from data analytics
unification and discuss the challenges in each case. Along with this
classification, we will also present current efforts known up to date
that aim at unifying data processing, such as Apache Beam and
Apache Wayang, and emphasize their differences. We will conclude
with open problems and their challenges.

PVLDB Reference Format:

Zoi Kaoudi and Jorge-Arnulfo Quiané-Ruiz. Unified Data Analytics:
State-of-the-art and Open Problems. PVLDB, 15(12): 3778 - 3781, 2022.
doi:10.14778/3554821.3554898

1 INTRODUCTION

Over the last decade, we have embarked on an endless race to
develop specialized data processing platforms (platforms for short)
with the goal of enabling users to extract value out of their big data
assets [43]. Just under the umbrella of NoSQL, there are reportedly
over 200 different platforms!. Although each of these platforms
excels in different aspects in the design space, users typically end
up running their data analytics on suboptimal platforms. This is
because choosing the right platform among the myriad of big data
platforms is simply a daunting task.

Furthermore, data analytics are moving beyond the limits of a
single platform, which makes the task of choosing and integrating
the right platforms much more difficult. There are plentiful appli-
cations requiring several platforms to perform data analytics. For
example, (i) IBM reported that North York hospital needs to process
50 diverse datasets, which are on a dozen different internal plat-
forms [26], (ii) oil & gas companies need to process large amounts
of data they produce everyday [25], e.g., a single oil company can
produce more than 1.5TB of diverse (structured and unstructured)
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554898

!http://db-engines.com

3778

Jorge-Arnulfo Quiané-Ruiz
Technische Universitit Berlin
Berlin, Germany
jorge.quiane@tu-berlin.de

data per day [13], and (iii) airlines need to analyze large datasets,
which are produced by different departments and reside on multi-
ple data sources, to produce global reports for decision makers [1].
These are few examples of applications that use or can exploit the
use of a diversity of platforms for effectiveness or efficiency.

Thus, there is a clear need for unifying data analytics. Such a
need can stem from a very simple task, such as k-means clustering,
to a very complex data analytical pipeline, e.g., one that includes
data cleaning, preparation, feature extraction, and model training.
Unfortunately, achieving data analytics unification is quite challeng-
ing, because applications are typically tied to one single platform.
The common practice is to develop several specialized analytic ap-
plications on top of different platforms and write ad-hoc programs
(or scripts) to glue them all together. This is not only a tedious
and costly task, but it also requires knowing the intricacies of the
different platforms to achieve high efficiency and scalability. The re-
search community has recently recognized the need for a systematic
solution that enables data analytics unification [8, 19, 20, 27, 37, 42].
The holy grail is to allow users to express the logics of their appli-
cation while an intermediate system decides on which platforms
to execute each incoming query with the goal of minimizing its
cost (e.g., runtime or monetary cost). There have been many re-
search efforts towards this goal, from wrappers and polystores to
cross-platform systems [10, 16, 20-22, 28, 36, 41]. Specifically, the
recently introduced task of federated learning [2, 5, 14], falls into
the category of unifying data analytics.

Tutorial’s Goal, Length & Outline. The goal of this tutorial
is threefold: (i) First, to introduce the different use cases where
unifying data analytics is necessary, (ii) present and classify the
state-of-the-art in unifying data analytics, ranging from federated
databases and polystores to federated learning, and (iii) make a call
for arms by presenting the challenges and open problems in this
domain. This will be a 1.5 hours tutorial, which we structure as
follows:

(1) Introduction (10min): We will start with the motivation be-
hind using unified analytics nowadays and introduce the necessary
background.

(2) Use cases (20 min): We will introduce a classification for the
different cases where an application needs unifying data analytics.
We will show that, surprisingly, most of us have required more than
once support for this unification even without noticing it.

(3) Unified data analytics (45 min): We will then discuss the
challenges for providing data processing unification. We will present
current approaches and algorithms that enable data processing uni-
fication. Especially, we will discuss their benefits and limitations.
(4) Challenges and Opportunities (15 min): At the end of the
tutorial, we will highlight the research challenges and open prob-
lems where the database community needs to focus on.


https://doi.org/10.14778/3554821.3554898
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554898
http://db-engines.com

Unified Data Analytics (for a single query)

Single-Platform Multi-Platform

Apache Wayang
Apache Beam
Tensorflow Federated (TFF)

Polystore Mandatory Opportunistic
SystemML
HadoopDB
Apache Wayan, Apache Wayan,
PySyft P vang Apache Wayang » vang

Musketeer
—lres

Apache Drill
PrestoDB
Estocada
FedML

Flower

Figure 1: Taxonomy of modern data analytics and current
unified analytics systems.

Related tutorials. A small part on the use cases has been pre-
sented in ICDE 2018 [31]. However, the ICDE tutorial put emphasis
only on the use cases and challenges of cross-platform data pro-
cessing. In this tutorial, we will provide a complete overview of
unifying analytics, discuss the relationship with federated learning,
and present the state-of-the-art efforts that did not exist back in
2018. For example, we will introduce efforts on federated learning
which is part of unified analytics. A tutorial on federated learn-
ing has been recently presented in NeurIPS 2020 [29]. However,
that tutorial focused mostly on cross-device federated learning,
and in particular federated optimization and differential privacy. In
contrast, we will show the relationship of unifying analytics and
federated learning from a data management or system perspective.
We believe looking at federated learning (and unified analytics in
general) from a system perspective will be of high interest to the
database community.

Targeted audience and required background. The tutorial tar-
gets researchers, developers, and system architects who are keen to
know: (i) how they can benefit by combining multiple systems into
a single unification layer; (ii) which solutions offer such a unifica-
tion layer for today’s applications; and (iii) how to speed-up their
multi-system applications in an easy and systematic manner. The
tutorial requires the audience some familiarity with basic database,
big data management, and ML concepts.

2 USE CASES

In the first part of the tutorial, we will go through the different use
cases where an application requires or benefits from unifying data
analytics via the taxonomy shown in Figure 1. In this figure, we
illustrate the different approaches for answering a single query. We
will showcase these use cases with real data processing examples.
In the space of unified data analytics systems, we first identify two
cases: An entire query is run in one platform but can be ported to
different platforms or a single query can be split into parts which
are executed on different platforms. Specifically, we identify four
different cases: platform-independence (single platform), opportunis-
tic cross-platform, mandatory cross-platform, and polystore (multiple
platforms). In addition, we will contrast with parallel, distributed,

3779

and federated database systems, such as Garlic[18, 39] and Inter-
base [17], in order to highlight its uniqueness.

e Platform-independence (single platform): applications may require
to switch platforms for two main reasons. First, as new and more effi-
cient platforms become available, developers need to re-implement
existing applications on top of faster platforms. For example, Ca-
pacitor [38] is the Google Colossus counterpart of Parquet in HDFS.
Similarly, SparkSQL is the Spark counterpart of Hive in Hadoop.
Second, for different applications, a different platform may be the
most efficient one. For instance, running a specific query on a big
data platform for very large datasets is often more beneficial than
running it on a single-node platform, such as a DBMS. In con-
trast, for smaller datasets, running the same query on a single-node
DBMS might be much faster due to little overhead costs. In fact,
several applications in companies and organizations leverage two
different processing platforms, such as the machine learning system
of IBM [15].

o Opportunistic cross-platform: applications might benefit from us-
ing multiple platforms throughout a single query. For instance,
efficiently supporting hybrid workloads (OLTP and OLAP) might
require storing a subset of attributes from a relation as a small
table (row layout) and the rest attributes individually (column lay-
out) [11]. Another example of this case is that users can run a gradi-
ent descent algorithm, such as SGD, on top of Spark relatively fast.
However, mixing the SGD Spark execution with a standalone Java
program significantly increases performance [32]. Currently, de-
velopers must spot such opportunities for improving performance
and write ad-hoc programs or scripts to move data and integrate
different platforms.

e Mandatory cross-platform: applications need to go beyond the
functionalities offered by the platform on which the data is stored.
This is because there is no platform that can fit all the data ana-
lytics spectrum (following the one-size-does-not-all dictum). This
leads to complex ad-hoc ETL processes of moving data out of the
place it resides and importing it into the system that can perform
the processing. Imagine for example that a dataset is stored on a
relational database and a user needs to perform a clustering query.
Doing so inside the relational database might simply be disastrous
in terms of performance. Thus, the user needs to move the data
out of the relational database. For example, she might move the
data to HDFS in order to use Spark, which is known to be efficient
for iterative queries. A similar situation occurs in complex data
analytics applications with disparate subqueries. As an example,
an application might extract a graph from a text corpus to perform
subsequent graph analytics on. This might require using both a text
and a graph analytics system. The required integration of platforms
is tedious, repetitive, and particularly error-prone.

e Polystore: applications might require to use multiple platforms
because the input data is stored on multiple data sources (data lakes)
and hence a query must be divided accordingly. Datasets in data
lakes reside natively on their format and hence on different storage
platforms, such as DBMSs, document stores, key-value stores, and
pure file systems. Polyglot persistence [40] is another example of
using multiple data stores in the same application. Oil & gas [13, 25],
health care [26], airline [1] industries, and business intelligence [41]
are just few examples of such scenarios.



3 UNIFIED DATA ANALYTICS

In the main part of the tutorial, we will discuss some of the main
challenges to be addressed to achieve efficient unified data analytics.
After the challenges, we will discuss the different current efforts
that have been done to support unified data analytics along different
dimensions.

e Query model and architecture. One of the core problems to
achieve a unified data processing layer is definitely the query model
and architecture. The goal is to provide a general query process-
ing model that is able to connect with underlying platforms of
different data models. We will discuss different types of data mod-
els followed by Apache Beam [3] and Apache Wayang (formely
known as Rheem) [4, 10]. In addition, we distinguish between two
main types of current systems: (i) providing an internal processing
engine (e.g., Apache Drill [6], prestoDB [7], ESTOCADA [12]) or
(ii) utilizing only the underlying platforms (e.g., Apache Beam [3],
Apache Wayang [10]) for query processing.

e Automatic platform selection. One of the challenges towards
automatically achieving unified data processing is deciding on
which platform(s) an incoming task should be executed. This can
be achieved through query optimization with the goal of improving
performance without the user’s intervention. Although it seems
like a traditional query optimization problem, the search space
grows not only with the number of physical operators but also with
the number of available platforms. In addition, a crucial piece in a
cost-based optimizer is an accurate cost model. However, one typi-
cally has little control over the platforms in a cross-platform setting
which makes cost modeling a big challenge. We will discuss a num-
ber of systems that provide different techniques to cross-platform
optimization, such as Ires [20], Musketeer [22], Myria [44], and
Wayang [30, 34]. These optimizers follow different methodologies,
namely rule-based, cost-based and ML-based.

e Cross-platform data movement and transformation. Mov-
ing data across different platforms is a crucial aspect in unifying
data processing. There is an inherent trade-off between choosing the
most efficient execution platform and minimizing/optimizing inter-
platform data movement. A large overhead of inter-platform data
movement would defeat the purpose of using multiple platforms
for data processing. Current efforts follow two orthogonal direc-
tions. While Wayang aims at minimizing data movement costs [35],
Weld [37] and PipeGen [23] propose different techniques on how
to optimize data movement. In addition, different platforms may
support different data formats and types. For example, moving data
from a batch processing platform to a graph processing system
requires transforming the data to the right format so that the graph
system can ingest the data. The challenge is how to perform such
transformations in an automatic and efficient way.

o Extensibility. Unifying data processing systems should be de-
signed to be extended to new platforms and operators. This is crucial
as existing data processing systems get updated with new function-
alities and new data processing systems become available. To this
extend, Apache Wayang allows developers to plug new platforms
and operators by creating new execution operators, their mappings
to Wayang operators, and the appropriate communication channels.
For example, Wayang comes with a custom made inequality join
operator [33], Then, the optimizer will automatically take these

3780

mappings and channels into account without requiring any code
changes from the developer [34].

e Federated learning. The increased complexity of modern data
analytics pipelines also stems from the diverse data sources and
storage engines that the data reside. This had led to the recently
introduced federated learning: Instead of bringing the datasets in
one centralized place to perform the model training, local mod-
els are trained on the storage engines that the date reside and a
server node gathers and aggregates the local models. Most federated
learning systems, such as TensorFlow Federated [2], Syft/Grid [45],
FATE [5] are based on such a client-server architecture. All of
them support either a single ML backend engine or a couple of ML
engines (Syft). In contrast, Flower [14] allows for arbitrary commu-
nication patterns. It separates the code for workers and aggregators
and supports any ML backend as long as a user implements the
required interfaces. FedML [24] allows users to define the low-level
communication behavior for each individual participant to realize
arbitrary communication topologies.

4 PRESENTERS

Zoi Kaoudi is a Senior Researcher in the DIMA team of the Techni-
cal University of Berlin. She has previously worked as a Scientist
in the Qatar Computing Research Institute (QCRI) of the Hamad
Bin Khalifa University in Qatar, in IMIS-Athena Research Center
as a research associate and Inria as a postdoctoral researcher. She
received her PhD from the National and Kapodistrian University of
Athens in 2011. Her research interests lie in the intersection of ma-
chine learning systems, data management and knowledge graphs.
She is currently Associate Editor of SSIGMOD 2022 and has been the
proceedings chair of EDBT 2019, co-chair of the TKDE poster track
co-located with ICDE 2018, and co-organizer of the MLDAS 2019
held in Qatar. She has previously presented tutorials at ICDE 2013,
SIGMOD 2014, and ICDE 2018. She has co-authored articles in both
database and ML communities and served as member of Program
Committee for several international database conferences. She has
recently received the best demonstration award at ICDE 2022 for her
work on "Training data generation for ML-based query optimiza-
tion". Personal webpage: https://www.user.tu-berlin.de/zkaoudi/

Jorge-Arnulfo Quiane-Ruiz is the head of the Big Data Systems re-
search group at the Berlin Institute for the Foundations of Learning
and Data (BIFOLD) and a Principal Researcher at DIMA (TU Berlin).
Earlier in his career, he was a Senior Scientist at the Qatar Com-
puting Research Institute (QCRI) and a Postdoctoral Researcher at
Saarland University. He obtained his PhD in computer science from
INRIA (Nantes University). His current research is in the broad
area of big data: mainly in federated data analytics, scalable data
infrastructures, and distributed query processing. He has previ-
ously presented tutorials at VLDB 2012 and ICDE 2018 and has
received an Excellent Presentation Award at VLDB 2014. He has
published numerous research papers on data management and
novel system architectures, and served as PC member for several
international database conferences. He has recently been honoured
with the ACM SIGMOD Research Highlights Award and the Best
Paper Award at ICDE 2021 for his work on “Efficient Control Flow
in Dataflow Systems” as well as the best demonstration award at
ICDE 2022. He holds five patents in core database areas and on
machine learning. He is a senior PC member of EDBT’23 and has


https://www.user.tu-berlin.de/zkaoudi/

been associate editor of PVLDB 2021 and DASFAA’19. Personal
webpage: https://www.user.tu-berlin.de/quiane/

Note: The presenters have several works on unifying data analyt-
ics [8, 9, 27, 28, 30, 31, 34, 35] and are the core designers as well as
PPMC members of Apache Wayang (Incubating) 2.

ACKNOWLEDGMENTS

This project has been supported by the German Ministry for Edu-
cation and Research as BIFOLD — “Berlin Insti- tute for the Foun-
dations of Learning and Data” (01IS18025A and 01IS18037A).

REFERENCES

2019. Fortune magazine.
industry/.

2019. TensorFlow Federated. https://www.tensorflow.org/federated.

2021. Apache Beam. https://beam.apache.org.

2021. Apache Wayang (incubating). https://wayang.apache.org/.

2021. FATE (Federated Al Technology Enabler). https://github.com/Federated Al/
FATE.

2022. Apache Drill. https://drill.apache.org.

2022. PrestoDB Project. https://prestodb.io.

Divy Agrawal et al. 2016. Road to Freedom in Big Data Analytics. In EDBT.
479-484.

Divy Agrawal, Lamine Ba, Laure Berti-Equille, Sanjay Chawla, Ahmed Elma-
garmid, Hossam Hammady, Yasser Idris, Zoi Kaoudi, Zuhair Khayyat, Sebastian
Kruse, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang,
and Mohammed]. Zaki. 2016. Rheem: Enabling Multi-Platform Task Execution.
In SIGMOD. 2069-2072.

Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed K. Elmagarmid,
Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad
Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, Saravanan Thiru-
muruganathan, and Anis Troudi. 2018. RHEEM: Enabling Cross-Platform Data
Processing - May The Big Data Be With You! -. Proc. VLDB Endow. 11, 11 (2018),
1414-1427.

Mohammed Al-Kateb, Paul Sinclair, Grace Au, and Carrie Ballinger. 2016. Hybrid
Row-Column Partitioning in Teradata. PVLDB 9, 13 (2016), 1353-1364.

Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu, and Stamatis
Zampetakis. 2019. Towards Scalable Hybrid Stores: Constraint-Based Rewriting
to the Rescue. In SIGMOD. 1660-1677.

Abdelkader Baaziz and Luc Quoniam. 2014. How to use Big Data technologies to
optimize operations in Upstream Petroleum Industry. In 215/ World Petroleum
Congress.

Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and
Nicholas D. Lane. 2020. Flower: A Friendly Federated Learning Research Frame-
work. CoRR abs/2007.14390 (2020). arXiv:2007.14390 https://arxiv.org/abs/2007.
14390

Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss,
Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. 2016. SystemML: Declarative
Machine Learning on Spark. PVLDB 9, 13 (2016), 1425-1436.

Francesca Bugiotti, Damian Bursztyn, Alin Deutsch, Ioana Ileana, and Ioana
Manolescu. 2015. Invisible Glue: Scalable Self-Tuning Multi-Stores. In CIDR.
Omran A. Bukhres et al. 1993. InterBase: An Execution Environment for Hetero-
geneous Software Systems. IEEE Computer 26, 8 (1993), 57-69.

Michael J. Carey et al. 1995. Towards Heterogeneous Multimedia Information
Systems: The Garlic Approach. In RIDE-DOM. 124-131.

Jens Dittrich and Alekh Jindal. 2011. Towards a One-Size-Fits-All Database
Architecture. In CIDR.

Katerina Doka, Nikolaos Papailiou, Victor Giannakouris, Dimitrios Tsoumakos,
and Nectarios Koziris. 2016. Mix 'n’ match multi-engine analytics. In IEEE BigData.
194-203.

http://fortune.com/2014/06/19/big-data-airline-

[10]

[11

[12

[16]
]
[18]
]

[17

[19

[20

3781

Zhttps://github.com/apache/incubator-wayan,

[21] Jennie Duggan et al. 2015. The BigDAWG polystore system. ACM SIGMOD
Record 44, 2 (2015), 11-16.

[22] Tonel Gog et al. 2015. Musketeer: all for one, one for all in data processing systems.
In EuroSys. 2:1-2:16.

[23] Brandon Haynes, Alvin Cheung, and Magdalena Balazinska. 2016. PipeGen: Data
Pipe Generator for Hybrid Analytics. In SoCC. 470-483.

[24] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman

Avestimehr. 2020. FedML: A Research iibrary and Benchmark for Federated
Machine Learning. CoRR abs/2007.13518 (2020).

Adam Hems, Adil Soofi, and Ernie Perez. 2014. How innovative oil and gas
companies are using big data to outmaneuver the competition. Microsoft White
Paper, http://goo.gl/2Bn0xq.

IBM. 2017. Data-driven healthcare organizations use big data analytics for big
gains. White paper, http://goo.gl/AFIHpk.

Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, and Jens Dittrich. 2013. WWHow!
Freeing Data Storage from Cages. In CIDR.

Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, and Samuel Madden. 2013. Cartilage:
Adding Flexibility to the Hadoop Skeleton. In SIGMOD. 1057-1060.

Peter Kairouz, Brendan McMahan, and Virginia Smith. 2020. Federated Learning
and Analytics: Industry Meets Academia. In NeurIPS (tutorial).

Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Bertty Contreras-Rojas, Rodrigo Pardo-
Meza, Anis Troudi, and Sanjay Chawla. 2020. ML-based Cross-Platform Query
Optimization. In ICDE. 1489-1500.

Zoi Kaoudi and Jorge-Arnulfo Quiané-Ruiz. 2018. Cross-Platform Data Process-
ing: Use Cases and Challenges. In ICDE (tutorial).

Zoi Kaoudi, Jorge-Arnulfo Quiane-Ruiz, Saravanan Thurumuruganathan, Sanjay
Chawla, and Divy Agrawal. 2017. A Cost-based Optimizer for Gradient Descent
Optimization. In SIGMOD.

Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2015. Lightning Fast
and Space Efficient Inequality Joins. PVLDB 8, 13 (2015), 2074-2085.

Sebastian Kruse, Zoi Kaoudi, Bertty Contreras-Rojas, Sanjay Chawla, Felix Nau-
mann, and Jorge-Arnulfo Quiané-Ruiz. 2020. RHEEMix in the data jungle: a
cost-based optimizer for cross-platform systems. VLDB . 29, 6 (2020), 1287-1310.
https://doi.org/10.1007/s00778-020-00612-x

Sebastian Kruse, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Sanjay Chawla, Felix
Naumann, and Bertty Contreras-Rojas. 2019. Optimizing Cross-platform Data
Movement. In ICDE.

Harold Lim, Yuzhang Han, and Shivnath Babu. 2013. How to Fit when No One
Size Fits. In CIDR.

Shoumik Palkar, James J. Thomas, Anil Shanbhag, Malte Schwarzkopt, Saman P.
Amarasinghe, and Matei Zaharia. 2017. A Common Runtime for High Perfor-
mance Data Analysis. In CIDR.

Mosha Pasumansky. April 26, 2016. Inside Capacitor, BigQuery’s Next-Generation
Columnar Storage Format. Google Cloud Platform.

Mary Tork Roth and Peter M. Schwarz. 1997. Don’t Scrap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources. In VLDB. 266-275.

Pramod J. Sadalage and Martin Fowler. 2012. NoSQL distilled: A brief guide to the
emerging world of polyglot persistence. Addison-Wesley Professional.

Alkis Simitsis, Kevin Wilkinson, Malu Castellanos, and Umeshwar Dayal. 2012.
Optimizing Analytic Data Flows for Multiple Execution Engines. In SIGMOD.
829-840.

Michael Stonebraker. July 13, 2015. The Case for Polystores. ACM SIGMOD
Blog.

Michael Stonebraker and Ugur Cetintemel. 2005. “One Size Fits All": An Idea
Whose Time Has Come and Gone (Abstract). In ICDE.

Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin, Brandon
Haynes, Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan Maas, Parmita Mehta,
Dominik Moritz, Brandon Myers, Jennifer Ortiz, Dan Suciu, Andrew Whitaker,
and Shengliang Xu. 2017. The Myria Big Data Management and Analytics System
and Cloud Services. In CIDR.

A. Ziller, A. Trask, A. Lopardo, et al. 2021. PySyft: A Library for Easy Federated
Learning. In Federated Learning Systems: Towards Next-Generation AL 111-139.

[25]

[26]
[27]
(28]
[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]
(39]
[40]

[41]

[42]
[43]

[44]

[45]


https://www.user.tu-berlin.de/quiane/
http://fortune.com/2014/06/19/big-data-airline-industry/
http://fortune.com/2014/06/19/big-data-airline-industry/
https://www.tensorflow.org/federated
https://beam.apache.org
https://wayang.apache.org/
https: //github.com/FederatedAI/FATE
https: //github.com/FederatedAI/FATE
https://drill.apache.org
https://prestodb.io
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://github.com/apache/incubator-wayang
http://goo.gl/2Bn0xq
http://goo.gl/AFIHpk
https://doi.org/10.1007/s00778-020-00612-x

