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ABSTRACT
Nearest neighbor search (NNS) has a wide range of applications in

information retrieval, computer vision, machine learning, databases,

and other areas. Existing state-of-the-art algorithm for nearest

neighbor search, Hierarchical Navigable Small World Networks

(HNSW), is unable to scale to large datasets of 100M records in

high dimensions. In this paper, we propose LANNS, an end-to-

end platform for Approximate Nearest Neighbor Search, which

scales for web-scale datasets. Library for Large Scale Approximate

Nearest Neighbor Search (LANNS) is deployed in multiple produc-

tion systems for identifying top-K (100 ≤ k ≤ 200) approximate

nearest neighbors with a latency of a few milliseconds per query,

high throughput of ∼2.5k Queries Per Second (QPS) on a single

node, on large (e.g., ∼ 180M data points) high dimensional (50-2048

dimensional) datasets.
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1 INTRODUCTION
Nearest-neighbor search (NNS) is an effective technique for infor-

mation retrieval and several machine learning applications. Despite

its simplicity and wide-ranging utility, efficiently building and serv-

ing k-nearest neighbor data structures to web-scale has remained a

challenge. In this paper, we describe LANNS (Large Scale Approxi-

mate Nearest Neighbor Search), a system designed and deployed in

a web-scale environment at LinkedIn. LANNS has been deployed

in a production environment for identifying top-K (with k ranging

from 100-200) approximate nearest neighbors with very low latency

(few milliseconds per query), very high throughput (roughly 2.5K

Queries Per Second (QPS) on a single node), on large (e.g., 180M

data points) high dimensional (e.g., 128, 256, or 2048 dimensional)

data sets.
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Broadly, nearest neighbor search approaches fall into four cate-

gories. They can be tree-based[6, 9, 21, 25], product quantization-

based[11, 12, 16, 17], Locality Sensitive Hashing (LSH) based[1, 2, 5,

13, 29], or graph-based[10, 14, 19, 20]. Most of the scalable methods

return approximate nearest neighbors (i.e., miss out on some of the

k-nearest neighbors in the results) in order to speed up the search.

The recall, measured as the fraction of true 𝑘-nearest neighbors

returned in a result set of size 𝑘 , is generally traded off for the query

latency or throughput. Figure 1[4], shows such a compromise be-

tween various state of the art algorithms (Annoy[25], BallTree[7],

Faiss-IVF[15, 16], FLANN[24], Hierarchical Navigable Small World

(HNSW) graph[20], KGraph[10], PANNG[14], PyNNDescent[22]

and SWGraph [19]) on the SIFT1M dataset. It is evident from Fig-

ure 1, and other offline benchmarks conducted by us, that HNSW

tends to outperform competitors considering QPS vs recall tradeoff.

We have used HNSW as the core approximate nearest neighbor

(ANN) algorithm. However, LANNS has been built to be extensible

to support other ANN algorithms with a bounded drop in recall.

Despite the favorable performance characteristics and popularity

of HNSW[20], building the HNSW data structure does not scale

well for production system with large, high dimensional datasets.

For example, building the HNSW index on a real dataset of size

2.7𝑀 with 256 dimensions takes about 2 hours 20 minutes on a

single machine. At LinkedIn, we often have to serve 𝑘-NN queries

on datasets containing 100M-500M records with dimensionality

of 50-2048. This renders the default single-machine HNSW index

build methods impractical. Furthermore, beyond a certain index

size, procurement and maintenance cost of high memory servers

also increases compared to commodity hardware. It is therefore

necessary to be able to split up the dataset into multiple shards.

In this paper, we present LANNS, our end-to-end platform cur-

rently in production at LinkedIn, which enables web-scale nearest

neighbor search in a variety of applications. As part of LANNS, we

propose a two-level data partitioning strategy that allows us to scale

the HNSW algorithm to web-scale datasets at index build time, as

well as for online serving. We show that using this parallel building

of separate HNSW indices, one for each data partition, and flexible

data segmentation, we achieve fast index build and online serving.

Our proposed data segmentation techniques also bound the drop

in recall as compared to the HNSW algorithm. These segmentation

techniques have theoretical guarantees on the recall as a function

of the tuneable partitioning parameters that are on similar lines

as [9]. We demonstrate the empirical performance of our proposed

strategy on two open-source and four real-world datasets.
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Figure 1: Recall v/s QPS on SIFT1M. Left: 10 nearest neighbors,
Right: 100 nearest neighbors

1.1 Our Contributions
Our contributions in this paper are as follows:

(1) We propose a two-level data partitioning strategy that al-

lows us to scale HNSW indexing to web-scale datasets.

(2) We propose a flexible data segmentation framework within

each partition which allows further scaling. We propose

two segmentation strategies with guarantees for a bounded

drop in recall as a function of data size.

(3) We show, through extensive benchmarking, that for a ma-

jority of queries, high recall is achieved while querying

only one or a few segments, and our partitioning and seg-

mentation framework performs and scales well.

(4) We demonstrate the performance of our end-to-end sys-

tem on various open-source and real datasets and show its

favorable scalability properties.

The paper is organized as follows. We discuss related work in

Section 2. In Section 3, we motivate two-level data partitioning,

followed by the partitioning strategies. In Section 4, we describe

the Spark framework for LANNS. In Section 5, we present our ex-

periments on open source and real datasets, with a brief discussion

on design choices. We present our online framework in Section 6,

and conclude and discuss future work in Section 7.

2 RELATEDWORK
In this section, we will discuss techniques and algorithms used for

nearest neighbor search, as well as some works similar to LANNS.

Locality Sensitive Hashing (LSH)[13] – LSH is a hashing

based technique where points are assigned to buckets such that,

with high probability, similar points are found within the same

bucket, while points far from each other are likely to be in different

buckets. Variants of LSH can be data dependent[1, 2, 5, 29] or data

independent. This method builds the index in linear time and has

good theoretical guarantees of sub-linear query time, however, for

adversarial data, this algorithm might run as slow as a linear scan.

Tree-based methods[9, 21, 25] – These tree based methods

build one or a set of trees by recursively splitting the dataset. In

[25], a set of trees are built where each tree is constructed by picking

two points at random and splitting the dataset using a hyperplane

separating the two points. In [21] the authors propose Approximate

Principal Direction Trees, which recursively splits the data points

using approximate eigenvectors. They claim that the method re-

duces average diameter at the same rate as PCA Trees [28] with

lower runtime. In [9], a tree is built by randomly partitioning the

data using random hyperplanes. They also propose spills, i.e., route

data points or queries to multiple partitions based on their distance

to the splitting hyperplane. These algorithms give low recall when

queries are near the boundaries of splitting hyperplanes.

Product Quantization (PQ)[11, 12, 16, 17] – PQ is a compres-

sion based ANN search method. The main motivation behind PQ

is to compress the space into a product of lower dimension spaces

and to quantize each of these subspaces separately. The dataset is

split into multiple smaller, tall datasets based on their dimensions,

and each of these sub-datasets are clustered into 𝑘 clusters. One

advantage is the compression of datasets, which results in signif-

icant speedup. However, in this approach as well, exact nearest

neighbors might lie in other clusters.

Sparsest Cut and Eigenvectors[27] – Sparsest cut aims to

partition the vertices of a graph in a way that the weights of the

edges cut during this partitioning are as small as possible. This is

typically done by using the Laplacian of the adjacency matrix of the

graph and using the second smallest eigenvector of the same. [27]

shows that using the second smallest eigenvector of the Laplacian

has some proven theoretical guarantees.

Hierarchical Navigable Small World(HNSW)[20] – A graph-

based technique built on the idea of Small Worlds (SW). Suppose

you build a hierarchy of SW graphs that separate links according

to their lengths. At earlier stages of the search, you traverse long

edges and zoom into a local minima for the query, and at later

stages, you search the neighborhood of the local minima to find

the nearest neighbors to the query. This method has the benefit

of tuning parameters to adjust the accuracy v/s speed trade-off,

and the space v/s speed trade-off. It has a polylogarithmic time

complexity and is highly competitive on real-world datasets[4].

However, the HNSW indexing is not scalable for large datasets in

production. We extend this work to scale to large datasets with

an implementation in Apache Spark[30] and employing various

techniques motivated by Random Projection Trees[9], Approximate

Principal Direction Trees[21] and Sparsest Cuts[27].

Another related work, SONG[31] leverages GPUs to scale NNS.

It might not always be feasible to provison GPUs for all practical

use cases. With LANNS, we propose leveraging a shared Spark

cluster for NNS. Another type of ANNS is where there is a trade-off

between RAM and the query time or QPS[3, 26]. This may not be

suitable for time sensitive (e.g., search) applications or use cases,

where a decrease in QPS could cause a loss in trust of the users.

3 TWO-LEVEL PARTITIONING
In many real use cases, we often require the algorithm to scale to

datasets of size 100M-500M. The state-of-the-art, HNSW algorithm,

takes about 2 hours 20 minutes to index a dataset of 2.7M records.

This becomes infeasible in real-world scenarios. Often these indices

are used in production systems that do not have the capacity to

support such large datasets.

We propose a horizontal, two-level partitioning of the data such

that each partition represents a subset of the dataset. We attain

acceptable indexing times by building a separate HNSW index

within each partition, and we host one, or a few, partitions on each

online server node. The two-levels of partitioning, sharding and
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segmentation, are two different dimensions that help in solving

two aspects of the scaling problem.

3.1 Sharding
Sharding, our first level of partitioning, is necessary for a very large

dataset where the memory requirements for keeping the entire

dataset is large and cannot be accommodated in a single node. For

example, a dataset with 50M records in a 500-dimensional space

would require approximately 93G storage. In addition to this 93G,

we also need to consider the memory requirements of building a

graph. Assuming that the total storage required would be about

128G, an index of this size would not fit in a production node

with a standard memory configuration of 64G. Building customized

production nodes with higher memory is not feasible since the cost

per GB increases super-linearly with total machine memory due

to the higher cost of compatible components, higher failure rates,

etc. Thus, we propose our first level of partitioning as sharding.
When a point is inserted, it is hashed to one particular shard using

the key of the data point. This partitioning does not exploit any

locality information and each query is routed to all shards of the
LANNS index. The response is generated by merging all shard level

candidates and picking the topK best candidates.

Sharding allows us to scale horizontally by partitioning the

dataset. Each shard is hosted on a separate server node, which in

turn enables us to keep the memory requirement of a single server

node under control, and allows us to use standard configuration

server nodes with 64G memory.

Let us consider a use case where the server node has enough

memory but the indexing time is unacceptable. In such scenarios,

with only one level of partitioning, we would create more shards.

There is additional merge cost involved at the master/broker or

the system which makes calls to the shards. Higher the number

of shards, higher is the merge cost. The master, a system with low

memory of 2G-4G, would need to merge the results from these

shards and give the final topK responses. Considering the build

time, one may use a large number of shards which could mean an in-

creased merge cost, and possibly higher memory for use cases with

a large number of shards. Having large number of shards also comes

with an additional undesirable operational cost of maintaining a

large number of systems in production, and increased hardware

footprint in terms of the cluster (collection of server nodes) size.

3.2 Segmentation
Segmentation, our second level of partitioning aims at reducing the

disadvantages of sharding. Each shard is further split into smaller

partitions called segments. This segmentation can be done using

same techniques as sharding, or smarter segmentation techniques

that allow queries to be routed to one or only a few segments.

Routing to a single segment during query retrieval may have a neg-

ative impact on the topK recall, but smarter segmentation strategies

can be employed to keep this impact bounded. We propose two

"smarter" segmentation strategies learnt using the indexing data in

Section 3.3. Employing these same techniques in sharding becomes

complicated as the online service employs an external broker in

front of the shards, which are not co-located.

Another added advantage of segmentation is that segmentation

provides the same scalability as sharding for offline ingestion
1
,

which is useful for cases where the dataset is small enough to fit

into a single server node, but it is large enough to render the HNSW

indexing time unacceptable. This helps to avoid setting up a multi-

sharded setup till the time the dataset becomes large enough. For

a large dataset, this also enables us to keep the number of shards

under control. Each partition, i.e., each segment is built separately

and in parallel. Thus, segmentation does not hamper the scalability

of indexing. Since multiple segments are hosted within the same

server node, it also reduces the online hardware footprint.

As mentioned earlier, routing to one or a few segments can

cause a drop in the recall. We propose segmentation techniques

that bounds this drop in the recall. Another point to note is that

in cases where a query is routed to multiple segments, there is an

additional merge cost. For our online serving systems, this merge

happens within the shard and does not require additional network

I/O to send results from each shard to the broker node.

3.3 Segmentation Strategies
In this section, we describe three types of segmenters, the Random

Segmenter (RS), Random Hyperplane Segmenter (RH), and Approx-

imate Principal Direction Hyperplane Segmenters (APD). RS is a

data-independent segmenter, whereas RH and APD segmenters are

data-dependent.

3.3.1 Random Segmenter (RS). In this particular segmenter, no

type of learning from data is required. At indexing time, for each

document, it randomly selects a segment where it should be routed.

Since this type of segmenter has no guarantees about the locality

of the data, a query vector would be routed to all segments.

3.3.2 Random Hyperplane Segmenters(RH). Random Hyperplane

Segmenters, motivated by Randomized Projection Trees[9], builds

a short tree of hyperplanes. The motivation behind this work is

the following– if two points are similar, they would be close in the

space, and it is highly unlikely that a randomly chosen hyperplane

would split the two. However, if two points are far, there would be

a high probability that the two points would be split. This enforces

a sense of locality. With high probability, points similar to each

other would lie in the same partition. We exploit this intuition to

design our segmenters as– at each internal node of our segmenter,

we first generate a random hyperplane from the unit sphere and

project all points on this generated hyperplane. We then perform a

median split based on these projected values.

However, with a low probability, this method faces the problem

of missing nearest neighbors that lie across the boundary in the

other partition. We employ the method of “virtual“ spill, where

we maintain a left and right boundary around the splitting point.

When a query point arrives and it lies within these left and right

boundaries, we route the queries to both partitions.
2

We briefly describe the insertion and querying process and state

the theoretical bounds provided in [9] which are directly applicable

to RH segmenter. Let the dataset be represented by a matrix D of

1
It is worthwhile to note that indexing is done offline for online serving as well.

2
Note that instead of using a virtual spill, we can also perform data side spill during

ingestion, where data points lying within the left and right boundaries are routed to

both partitions.
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(a) Virtual Spill when
query point (Q) is near
the splitting hyper-
plane (b) Probability of failure with increasing

depth

Figure 2: Spills and failure probability of Segmentation

size 𝑛 × 𝑑 , where 𝑛 is the number of points and 𝑑 is the number

of dimensions, and 𝛼 be the amount of spill. Let 𝑥 .ℎ refer to the

projection of 𝑥 on ℎ, and 𝑈 denote the 𝑛 dimensional vector of

projections,𝑈 = D .ℎ. For insertion of a point 𝑥 , if 𝑥 .ℎ < 𝑚𝑒𝑑𝑖𝑎𝑛(𝑈 )
route to the left partition, else route to the right. For query of a

point 𝑞, let 𝑙 = 0.5 − 𝛼 fractile point in 𝑈 , and 𝑟 = 0.5 + 𝛼 fractile

point in𝑈 . If 𝑞.ℎ < 𝑙 , route to the left, if 𝑞.ℎ > 𝑟 , route to the right,

else route to both sides. .

Definition 3.1. For query𝑞, data points𝑥1, . . . 𝑥𝑛 , let𝑥 (1) , . . . , 𝑥 (𝑛)
denote the reordering of points by increasing distance from 𝑞. Let

us consider the potential function for the 𝑘-NN.

Φ𝑘,𝑚 (𝑞, 𝑥1, . . . 𝑥𝑛) =
1

𝑚

𝑛∑︁
𝑖=𝑘+1

∑𝑘
𝑗=1 | |𝑞 − 𝑥 ( 𝑗) | |/𝑘
| |𝑞 − 𝑥 (𝑖) | |

(1)

Theorem 3.2. From [9], Suppose we build a tree on data points
𝑥1, . . . 𝑥𝑛 of depth L, with 𝛼 spill. If this tree is used to find the
nearest neighbors of query 𝑞, then the probability that it fails to
return 𝑥 (1) , . . . , 𝑥 (𝑘) is

𝑘

𝛼

L∑︁
𝑖=0

Φ(𝑘,(0.5+𝛼)𝑖𝑛) (𝑞, 𝑥1, . . . , 𝑥𝑛) (2)

As we increase the depth of the tree, the number of hyperplanes

used also increases. As more hyperplanes are used, there is a higher

probability of two close points being separated by the segmentation

algorithm. In Figure 2b, we approximate the probability that our

segmentation algorithm fails to return 𝑥 (1).
For the ease of demonstration, let 𝑛 = 10000. As we use more

levels, there is a higher probability of missing out on the exact

nearest neighbor. Note that, in practice, we only a few levels of

segmentation with about 1-8 segments per shard. Inside each of

the leaves, we build an HNSW graph which is known to give high

recall[4].

3.3.3 Approximate Principal DirectionHyperplane Segmenters(APD).
Approximate Principal Hyperplane Segmenters, are motivated by

Approximate Principal Directions[21] and Spectral Clustering[27].

Since we would like to minimize the number of queries being routed

to multiple segments, we propose using a spectral clustering instead

of random hyperplanes. To speed up the process, we also make use

a core principle from APD Trees[21]– with a few steps of the power

iteration, one can get reasonably close to the eigenvector.

Let the dataset be denoted by D of dimensions 𝑛 × 𝑑 . Let 𝐴𝑛×𝑛
denote the adjacency matrix of a similarity graph, 𝐺 constructed

on D. Let 𝐷 be the degree matrix of 𝐴 such that 𝐷𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 , and

𝐶 = 𝐷−1/2𝐴𝐷−1/2
. It is well-known that the largest eigenvalue of

𝐶 is 1, and the second-largest eigenvalue and the corresponding

eigenvector approximate the sparsest cut [27]. However, for large

datasets, it is difficult to compute to the matrices𝐴 and𝐶 since they

are of the order 𝑂 (𝑛 × 𝑛). Along with these restrictions, we also

have the added requirement of having a “queryable“ hyperplane

which not only partitions the data, but allows us to route a new

point (query) to the right partition.

To make this method work in practice, we assume 𝐴 = DD𝑇

and D is almost regular, which allows us to apply the Cheeger

inequality described above. The second-largest eigenvector of 𝐴

can be found using the second largest left singular vector of D.

Since D = 𝑈 Σ𝑉𝑇 where 𝑈 and 𝑉 are the left and right singular

vectors, we approximate the right singular vectors, as 𝑈 = D .𝑉 .

Thus, we use ℎ which is the second-largest right singular vectors

of D, and let 𝑢 = D .ℎ.

This method also has the drawback of near points being across

the splitting hyperplane. Again, we employ methods of spill, in-

sertion, and querying as described in Section 3.3.2. Note that the

theoretical guarantees from Section 3.3.2 are also applicable to the

APD Segmenters. This bound is loose since APD is a data-dependent

partitioning technique which boosts the performance in practice.

Consider a LANNS system which leverages these strategies, and

Theorem 3.2, we can state the following.

Corollary 3.3. Suppose we build a tree of depth L, with 𝛼 spill,
and the leaves of this tree are segments of the LANNS index. Let
method A be used to perform an ANN-search within each segment.
If for a query 𝑞, A fails to return 𝑥 (1) , . . . , 𝑥 (𝑘) with probability 𝑝𝐴 ,
then LANNS fails to return 𝑥 (1) , . . . , 𝑥 (𝑘) with probability

𝑘𝑝𝐴

𝛼

L∑︁
𝑖=0

Φ(𝑘,(0.5+𝛼)𝑖𝑛) (𝑞, 𝑥1, . . . , 𝑥𝑛) (3)

4 OFFLINE FRAMEWORK
In this section, we describe the various components of LANNS. We

propose pre-learning our learnable segmenters and feeding them

as input to the indexing algorithm. The indexing algorithm stores

the index on HDFS which can be fed into the querying algorithm,

or can be exported to an online serving system (see Section 6).

4.1 Learning a Segmenter
Since the data distribution in our shards is uniform, we propose

to pre-learn a segmenter and employ the same segmenter across

all shards. This has a two-fold advantage– (i) avoiding unneces-

sary computations to learn a segmenter for each shard on the fly;

(ii) storing segmenters for each shard in the offline system. Since

the segmenter is shared, only one copy is stored. Given the input

dataset, we subsample the dataset uniformly at random. This sam-

pled dataset, say, D, is fed to the segmenter learning algorithm,

which is one of RH or APD. These techniques learn a tree of separat-

ing hyperplanes. At each internal node of this tree, a hyperplane is

generated using RH or APD, that is used to further split the dataset

into two partitions. For the APD Segmenter, we use the Spark Ma-

chine Learning library[23] implementation for distributed Singular

Value Decomposition. Once this tree of hyperplanes is learnt, we

853



store the tree consisting of the hyperplane, the split points, and the

left and right boundaries for each of the internal nodes. This learnt

segmenter is fed to the ingestion algorithm.

4.2 Indexing
In Figure 3a, we show the process of scaling indexing for web-

scale datasets. Along with the input dataset, we optionally input

a pre-learnt segmenter that is loaded within each Spark executor

and is used to generate the two-level partitioning. This pre-learnt

segmenter is shared across shards. Each document is tagged with a

shardID and one or more segmentIDs. The partition tagged dataset

is repartitioned based on segmentID and shardIDs. One particular

(shard, segment) pair is loaded in an executor and the HNSW Index

is built on this subset. The HNSW Index is built inside an executor

and hence, all HNSW indexing can happen in parallel. The serialized

index inside each executor is stored in the HDFS from the executor

itself and the associated metadata and segmenter information is

coupled with the index and written from the driver.

4.3 Querying
For our offline use cases, it is of utmost importance to scale not only

to big datasets but also to big query sets. To scale our query process,

we make use of partitioned query sets. We demonstrate our process

of querying with our two-level partitioned index in Figure 3b. We

take a large query set and partition them into smaller batches, which

are written to the HDFS. We also read the metadata of the index and

prepare a ‘SearchExecutorContext‘ which informs each executor

of which segment of which shard, and which query partition to

load within it. This SearchExecutorContext is sent to the executors,

the respective HNSW Indices and query partitions are loaded inside

the executor. Partial search occurs inside each of these executors.

The partial results go through a two-level merging as follows– in

the first level, partial results are returned to the driver along with

the shard and segmentIDs they come from. These partial results are

repartitioned on the basis of the queryID and the shardID to perform

a segment level merging to obtain shard results. The shard results

are repartitioned again based on the queryID for the final merge.

This is analogous to how merging would occur in an online system,

where segment results would first get merged within the server

node containing the shard. These merged shard level responses are

further merged within the searcher master/broker node.

4.3.1 Preventing Time-Out Errors. Spark occasionally suffers from

time-out errors which could prove to be catastrophic in some large-

scale systems. Since a spark cluster is shared among many users

and applications, there is heavy load in the cluster, and some nodes

which are freed up while waiting for other tasks to finish. These get

allocated to other applications, and “die“ Consider a scenario where

you have 100 (query, shard, segment)-partitions, and only 8 execu-

tors. After the partitioned search, before segment-level merging is

triggered, some executors die and become unreachable. In these

scenarios, the results become unavailable and search for those parti-

tions is restarted. While waiting for these recomputed results, some

other executors may die, and so on. This leads to cascading failures

which may cause catastrophic damages for applications. This is

what we refer to as “time-out“ errors. In order to prevent such

scenarios from happening, we write partial results to a temporary

path on the HDFS. After searching and the first phase of merging,

the results are written to a temporary path on the HDFS and are

loaded from the temporary path for further processing. As soon as

our two-level merging finishes, this temporary directory is cleaned.

This works well since Spark ensures that for write operations, as

soon as an executor finishes processing its task, instead of waiting

for other executors to finish execution, it can write to the HDFS.

This is in contrast to the repartitioning where the executor keeps

the results and waits for all tasks of the stage to finish executing.

4.3.2 Per shard TopK. Some recommender systems require search-

ing for a very large number of nearest neighbors, of the order of

1000s, with further post-processing to prune candidates. Sending

the same "k" or "topK" to each shard can prove to be wasteful since

each shard would then return topK responses. These topK responses

would use up network I/O bandwidth and also increase the merge

cost at the searcher or broker. In order to avoid such cases, we

employ a "perShardTopK", which uses the Normal Approximation

Interval[8] to reduce the number of nearest neighbors fetched from

each randomly partitioned shard. Let 𝑆 be the number of shards,

and 𝑝 be the confidence (or topK.confidence), and 𝑠 ′ = 1

𝑆
, and 𝑐𝐼 =

𝑠 ′+ 𝑓 (𝑝)∗
√︃
𝑠′ (1−𝑠′)
𝑡𝑜𝑝𝐾

then, 𝑝𝑒𝑟𝑆ℎ𝑎𝑟𝑑𝑇𝑜𝑝𝐾 =𝑚𝑖𝑛(𝑡𝑜𝑝𝐾, ⌈𝑐𝐼 ∗𝑡𝑜𝑝𝐾⌉),
where 𝑓 (𝑝) is the (1 − 𝑝/2) quantile of the standard normal distri-

bution (the probit).

Note that since hyperplane based segmenters may query only

a few segments, it is undesirable to apply the concept of a "per

segment topK". Employing a per segment topK could lead to fewer

than topK results as the final output. Thus, we do not optimize the

topK for segments, instead we propagate the shard level perShard-

TopK to the associated segments. In the online system, querying

using the perShardTopK at the segment level does not hamper the

network I/O drastically. The merging occurs within a node and only

a final perShardTopK are sent over the network. While c-ANNS[18]

may also be applied to reduce the number of results, this may not be

desirable in all use cases. Some applications may need to generate

candidates when the query point is very far from all indexed data

(i.e., recommendations for new or inactive users).

5 EXPERIMENTS
5.1 Open Source Evaluation
For our evaluations on open-source data, we use two datasets– (i)

SIFT1M, the SIFT1M dataset with the indexing dataset of 1𝑀 records

and a query set of 10𝑘 records. Each of these has dimension,𝑑 = 128,

and (ii) GIST1M, the GIST1M dataset with the indexing dataset of 1𝑀

records and query set of 1𝑘 records. Each of these have dimension,

𝑑 = 960. For both these datasets, we consider 𝑡𝑜𝑝𝐾 = 100 near-

est neighbors with the distance function to be Euclidean Distance.

For both, SIFT1M and GIST1M, we compare our performance with

the HNSW algorithm. We build (𝑛,𝑚)-partitioned indices, where 𝑛

is the number of shards and𝑚 is the number of segments, using

Random Segmenters (RS), Random Hyperplane Segmenters (RH),

and APD Segmenters (APD). For the SIFT1M dataset, we experi-

ment with (1, 8)-partitioned and (2, 4)-partitioned indices. For the

GIST1M dataset, we limit ourselves to (1, 8)-partitioned indices. For

all experiments, 𝛼 = 0.15, i.e., we route about 30% queries to both

partitions at any level. We set the 𝑡𝑜𝑝𝐾.𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0.95 to limit

854



(a) Indexing multi-million datasets (b) Querying with large query sets on multi-million datasets

Figure 3: Indexing and Querying within LANNS

the number of results obtained from each shard. For all experiments,

the building times, query times, and recall are averaged over 5 runs.

5.1.1 Results. In Tables 1,2 and 3, we present the Recall, Build

Times and Query Times comparisons with the HNSW algorithm for

SIFT1M and GIST1M datasets. For Build and Query Times, we vary

the number of executors for our LANNS indices. For both datasets,

we observe a ∼ 4.5 × −5× speed-up in build time using 2 executors,

and a ∼ 10 × −11× speed-up in build time using 8 executors. For

the RS segmenter, we see comparable query times with respect to

HNSW and 2 executors. However, we see a speedup of 2 × −2.5×
when we increase the number of executors to 8. This comes with

comparable recall. With RH segmenter for both datasets, we see

a significant drop of about ∼ 15% in recall for (1, 8)-partitioning,
and this comes with a speed up of ∼ 2 × −2.5× on the query time

using 2 executors, and ∼ 3 × −4× using 8 executors. For the APD

segmenter, for SIFT1M, we observe a loss of 2% in recall with a

(1, 8)-partitioning and a 1% drop (2, 4)-partitioning. For GIST1M,
we observe 7% loss in recall with the (1, 8)-partitioning. However,
for both datasets, the (1, 8)-partitioning this comes with a ∼ 2×−3×
speedup in query time with 2 executors and ∼ 5× speedup in query

time with 8 executors.It is worthwhile to note that while both

datasets contain 1M points, GIST1M has a lower recall with APD.

This can be attributed to the difference in dimensionality, SIFT1M is
in 128 dimensions while GIST1M is in 960 dimensions. Theorem 3.2

and Theorem 3.3 also indicates that higher dimensionality and a

deeper segmentation tree leads to a higher loss in recall.

Build times do not change across (1, 8)-partitioning and the

(2, 4)-partitioning and across segmenters. This is because we pre-

learn the segmenters and feed them to the ingestion setup. While

RS doesn’t require any pre-learning, for the SIFT1M dataset, RH

segmenter takes 2.1 minutes and 1.8 minutes for (1, 8)-partitioning
and (2, 4)-partitioning respectively on a subsample of 250k data

points, and APD segmenter takes 3 minutes and 2.6 minutes for

(1, 8)-partitioning and (2, 4)-partitioning respectively on a subsam-

ple of 250k data points. For the GIST1M dataset, RH segmenter

takes 6.3 minutes on a subsample of 250k data points, and APD

segmenter takes 18 minutes on a subsample of 250k data points.

For all segmenter learning on GIST1M, we use 30 executors.

5.2 Real-World Datasets
We use four large-scale datasets for real-world use cases:

(1) Groups Search: Groups is a dataset of ∼ 2.7M groups on

LinkedIn. Each group is embedded in a 256-dimensional

space. We evaluate the offline performance on 10k queries.

(2) People YouMay Know: (PYMK) is a database of 100M users of

the platform. Each record is an embedding in 50 dimensions.

We evaluate the offline recall performance on a subset of

1M queries, and offline query latency on 372M queries.

(3) People Search: (People) is a database of 180M users of

the LinkedIn platform, represented as an embedding in

50 dimensions. This use case leverages LANNS for people

search. We evaluate the offline performance on 20k queries.

(4) Near-Duplicates: (NearDupe) consists of embeddings of im-

ages posted on the LinkedIn feed. The training set has 148k

records in 2048 dimensions with a query set of 500k records.

Groups, People and NearDupe use-cases were first tested using

our offline platform and then onboarded to the online platform (See

Section 6). PYMK use case, one of our biggest use-cases employs our

offline platform for an in-production system.

We first provide benchmarking results on the Groups dataset. We

evaluate the following alternatives– (i) Physical Spill: A data point

close to the splitting plane is routed to both children or segments,

(ii) Virtual Spill: A query close to the splitting plane is routed to both

children or segments. The physical spill uses data side duplication

and uses a higher memory footprint as compared to the virtual spill.

However, the Queries per Second (QPS) in case of a physical spill

is slightly higher than the virtual spill since the query is routed to

only one segment in case of a physical spill. The results with both

types of spill are presented in Table 4. For both of these, we see

that the recall values are comparable with only a slight difference

in the QPS values. For virtual spills, since queries are being routed

to multiple segments, the number of unique queries that can be
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Table 1: Recall for SIFT1M and GIST1M datasets. R@k refers to Recall at topK = k. Method suffix (𝑛,𝑚) refers to (𝑛,𝑚)-partitioning.

SIFT1M GIST1M
Method R@1 R@5 R@10 R@15 R@50 R@100 R@1 R@5 R@10 R@15 R@50 R@100
HNSW 0.991 0.996 0.997 0.998 0.998 0.998 0.994 0.995 0.995 0.995 0.993 0.989

RS(1,8) 0.979 0.986 0.986 0.986 0.98 0.98 0.995 0.998 0.999 0.999 0.999 0.999
RH(1,8) 0.841 0.818 0.804 0.798 0.776 0.762 0.872 0.858 0.851 0.843 0.827 0.812

APD(1,8) 0.977 0.977 0.975 0.973 0.966 0.961 0.931 0.919 0.912 0.91 0.908 0.905

RS(2,4) 0.989 0.994 0.995 0.995 0.996 0.996 - - - - - -

RH(2,4) 0.916 0.913 0.906 0.903 0.892 0.885 - - - - - -

APD(2,4) 0.989 0.995 0.994 0.994 0.992 0.991 - - - - - -

Table 2: Build times for SIFT1M and GIST1M datasets with vary-
ing number of executors (E). Time is in minutes for total 1𝑀
data points.

SIFT1M GIST1M
E HNSW RS RH APD HNSW RS RH APD
2 40 8.2 8.1 8.4 577 132 128 140

4 - 6.6 6.8 6.3 - 96 108 106

8 - 4.3 4.4 4.1 - 48 54 52
Table 3: Query times for SIFT1M and GIST1M dataset with vary-
ing number of executors (E). Time is in milliseconds per
query for total 10𝑘 query points for SIFT1M and 1𝑘 query
points for GIST1M.

SIFT1M GIST1M
(1,8)- (2,4)- (1,8)-

HN partitioning partitioning HN partitioning
E SW RS RH APD RS RH APD SW RS RH APD
2 50 58 21 16 49 46 44 336 330 156 144

4 - 46 16 12 38 25 25 - 222 132 108

8 - 25 13 10 33 17 17 - 132 96 66

served is lower, leading to slight degradation in the QPS. Since

LANNS indices are used in production systems, it is undesirable

to have a high memory footprint. Employing physical spills for

large datasets such as PYMK would increase the memory footprint

by 30% ( 30M records), which increases the number of server nodes

required. Thus, we use virtual spill with 𝛼 = 0.15.

In Table 5, we present our building and querying times
34

for

our real-world datasets. We include the improvements in the build

time for the dataset mentioned in the Introduction. For the Groups
dataset, a (2,2)-partitioned index reduces build time to 38 minutes.

For People and the PYMK use cases, owing to the large size of the

data, it is infeasible to compare with HNSW. For the NearDupe

use cases, we essentially use the HNSW index with distributed

querying. We present results on real datasets with the parameters

reflecting the optimal trade-off for our in-production services. We

also present our recall evaluations in Table 6. For each dataset,

we obtain a high recall of over 95%, evaluated on query sets of

3
Note that these times are inclusive of the times required for requesting a cluster and

assigning executors.

4
The building and querying time presented here are averaged over 5 runs.

Table 4: Recall on Groups dataset with (1,m)-partitioning
using APD Segmentation. R@k refers to the recall for k-
nearest neighbors,m refers to the number of segments

Physical Spill Virtual Spill
m Spill R@15 QPS R@15 QPS
1 0% 0.9458 863.29 0.9458 863.29
4 10% 0.8400 2619.02 0.8526 2186.93

4 20% 0.8861 2432.23 0.8853 2010.44

4 30% 0.9268 2392.42 0.9272 1984.21
8 30% 0.9105 2710.24 0.9112 2573
16 30% 0.8836 2797.42 0.892 2985.34

Table 5: Build and Query Times for Real-World datsets. dim
refers to dimensions,𝑛 to number of Shards, and𝑚 to number
of Segments.

Indexing Querying
Dataset n m dim Size Time Size Time
PYMK 20 1 50 100M 480m 370M 10h

People 32 1 50 180M 520m 20k 10m

NearDupe 1 1 2048 148k 80m 500k 5m

Groups 1 1 256 2.7M 133m 20k 7m

Groups 2 2 256 2.7M 38m 20k 3m

Table 6: Recall for Real-World datasets. dim refers to dimen-
sions, and R@K refers to the Recall at topK = K.

Dataset n dim Index Size Query Size K R@K
People 32 50 180M 20k 50 97%

PYMK 20 50 100M 1M 100 95%

NearDupe 1 2048 148k 0.5M 100 97%

Groups 1 256 2.7M 20k 100 96.9%

reasonable sizes. For large datasets, we employ an in-house Spark

implementation of distributed brute-force search.

5.3 Choice of Parameters
As demonstrated in Table 1, for both open source datasets, we

observe that the RH segmenter has a significant loss in the recall

as compared to the APD segmenter, with comparable query time.

This comes with a trade-off on the time to learn a segmenter. RH

might be a good fit for certain time sensitive applications with

highly dynamic datasets where a trade-off between indexing time
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and recall is acceptable. For use cases where the dataset is not very

dynamic, APD allows a better trade-off with respect to indexing

time and recall. Other factors to consider in these scenarios is the

(𝑛,𝑚) configuration. While the spark indexing time is the same for

(1, 8) and (2, 4), the choice can depend on a large number of factors.

The 𝑛 = 1 case requires only one node in the online setup, whereas,

the 𝑛 = 2 case would require two nodes and a broker node to merge

the results. The query times for both cases would vary as well. For

the 𝑛 = 2 case, each query would perform ANN on two shards, and

for 𝑛 = 1, it would be on one shard, and recall loss for𝑚 = 4 v/s

𝑚 = 8 varies with the dimensionality. Another interesting trade-off

could be the physical v/s virtual spill. For cases where there are

enough resources to allow for a physical spill, but the application

is highly time sensitive and requires high parallelization of the

queries, one may decide to use physical spill described in [9], and

in Table 4. In this case, each query would be routed to only one

segment, and queries which are routed to different segments can be

served in parallel. In cases where data duplication across segments

is not tolerable, virtual spill gives similar results with a small drop

in QPS. For any use case, the choice would be dependent not only

on the nature of the use case, the indexing time, query time, and

recall quality but also on the dimensionality, the cost budget and

available resources.

6 ONLINE SERVING

Figure 4: Online Service Architecture

Throughout the paper, we discuss the offline implementations

evaluations of our proposed method for scaling HNSW builds. In

this section, we will discuss our online service architecture, as

shown in Figure 4. To enable nearest neighbor search capability

in an online environment, we build the index offline on our Spark

cluster and ship the serialized HNSW index (as Avro datasets) to

online searcher nodes. The serialized index consists of the graph

index, the embeddings (vectors) and additional metadata (like the

segmenter, distance function used during index build, etc). The

searcher nodes, when starting up, deserialize the index to native

Java data-structures optimized for online serving using persisted

metadata with minimal additional configuration. This ensures that

the platform doesn’t allow accidental differences in algorithm con-

figuration between offline build and online serving. The majority of

storage needed in the online node comes from the vector represen-

tations of entities in the index, the index itself is quite small. Fast

lookup access to the embeddings for a document is critical for low

latency online serving as most of the search time is spent on doing

<query, document> distance comparisons. The difference in the

online architecture is that each shard is hosted on a different node.

The first stage of the two-step merging, i.e., the shard level merging,

happens on the node where the shard is hosted (called a "searcher"),

and the final merge happens at the broker or client. The broker is

also responsible for calculating and passing the 𝑝𝑒𝑟𝑆ℎ𝑎𝑟𝑑𝑇𝑜𝑝𝐾 to

each shard. We also built additional constructs to support use cases

hosting different indices in the same searcher for online A/B tests

between different embedding representations of the documents. For

one of our large use cases with 180M documents and embeddings

of dimension 128, we benchmarked the online searcher to achieve

a 2.5K QPS at a p99 latency of 20ms.
Our production systems make use of both, online and offline

approaches. Some use cases perform nearest neighbor search of-

fline, using Spark, at a fixed cadence and send the results to online

services for further processing. Three in-production use cases are

hosted online with each shard hosted on a separate searcher node.

Offline v/s Online Serving – For applications with very large

datasets and fixed query sets (for example, connections of members

of a social network), we suggest offline search and sending results

to online services. For very large datasets, the number of shards

could be high and require several dedicated host machines, whereas,

in offline mode, the processing is done once and a cluster could

be shared with various applications. Thus, if the use case is not

latency sensitive, or if precomputation of nearest neighbors or

recommedations is feasible, it is preferred to use the offline service.

Much of the cost of offline processing can be delegated to the offline

grid infrastructure. However, this cannot be done for applications

where the query set is dynamic and the results are required instantly.

For cases such as a search application or nearline spam detection,

the offline service would have delays and an unacceptable latency

and the online service is the only option.

7 CONCLUSION
In this work, we propose LANNS, an end-to-end platform for Ap-

proximate Nearest Neighbor Search. We enable scaling HNSW to

web-scale datasets through a two-level partitioning scheme us-

ing the Spark framework. We demonstrate the excellent empirical

performance on LinkedIn’s production use-cases, and through ex-

tensive offline evaluations on various datasets. We demonstrate our

scalable and highly competitive performance. We also briefly dis-

cuss the design choices and the trade-off between using an offline

pipeline or an online, deployable service.

As future work, our approach of using segments can be explored

for other purposes as well. For example, for context-based searches,

we can build a segment per context and perform search in one or a

few segments based on the contexts selected at query time.
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