
Scalable Robust Graph Embedding with Spark
Chi Thang Duong

EPFL
thang.duong@ep.ch

Trung Dung Hoang
EPFL

trung-dung.hoang@ep.ch

Hongzhi Yin
The University of Queensland

h.yin1@uq.edu.au

Matthias Weidlich
Humboldt-Universität zu Berlin
matthias.weidlich@hu-berlin.de

Quoc Viet Hung Nguyen
Grith University

quocviethung.nguyen@grith.edu.au

Karl Aberer
EPFL

karl.aberer@ep.ch

ABSTRACT
Graph embedding aims at learning a vector-based representation of
vertices that incorporates the structure of the graph. This represen-
tation then enables inference of graph properties. Existing graph
embedding techniques, however, do not scale well to large graphs.
While several techniques to scale graph embedding using compute
clusters have been proposed, they require continuous communica-
tion between the compute nodes and cannot handle node failure.
We therefore propose a framework for scalable and robust graph
embedding based on the MapReduce model, which can distribute
any existing embedding technique. Our method splits a graph into
subgraphs to learn their embeddings in isolation and subsequently
reconciles the embedding spaces derived for the subgraphs. We
realize this idea through a novel distributed graph decomposition
algorithm. In addition, we show how to implement our framework
in Spark to enable ecient learning of eective embeddings. Ex-
perimental results illustrate that our approach scales well, while
largely maintaining the embedding quality.

PVLDB Reference Format:
Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich,
Quoc Viet Hung Nguyen, and Karl Aberer. Scalable Robust Graph
Embedding with Spark. PVLDB, 15(4): 914-922, 2022.
doi:10.14778/3503585.3503599

1 INTRODUCTION
Graphs represent relations between entities in complex systems,
such as social networks or information networks. To enable infer-
ence on graphs, a graph embedding may be learned. It comprises
vertex embeddings, each being a vector-based representation of a
vertex that incorporates its relations with other vertices [10]. In-
ference tasks, such as vertex classication and link prediction, can
then be based on the vertex embeddings rather than the original
graph. Various techniques to learn a graph embedding have been
proposed [10, 11, 25]. Yet, aiming at high embedding quality at
the expense of computational eciency, they often do not scale
to extremely large graphs with billions of nodes and trillions of
edges [16]. Embedding a graph of such size may take weeks, which
renders it practically infeasible, and has a large memory footprint.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503599

Keeping a graph with two billion nodes in main memory requires
1TB RAM [16], which exceeds the capacity of commodity servers.

Existing techniques for distributed graph embedding require
continuous communication between the nodes of a compute cluster
for model or gradient synchronisation [16, 34]. For instance, in
DGL [34], each compute node handles a separate subgraph. Yet,
all nodes share the same embedding model, which requires syn-
chronization: Each node needs to send gradient updates learned
from its subgraph to all other compute nodes. As a result, these
synchronous approaches suer from large communication costs.
In addition, they are highly susceptible to communication loss or
node failure. Upon failure of a compute node, all other nodes need
to restart from their latest checkpoint. This leads to longer training
times and the need for manual intervention in case of failures.

Against this background, in this paper, we propose a framework
for scalable and robust graph embedding that is agnostic to the
underlying technique to construct the embeddings. Our idea is to
ground the construction of graph embeddings in the MapReduce
model. That is, a graph is split into subgraphs, so that an embedding
is learned from each subgraph on a separate compute node (map
phase). Without a need for synchronisation between the nodes
during this computation, any specic technique to construct em-
beddings is improved in terms of scalability and robustness. As
learning is done independently and each compute node considers
solely a subset of vertices, the results are vectors in dierent em-
bedding spaces, though. Hence, reconciliation of these spaces is
needed to obtain a meaningful graph embedding (reduce phase).

Realising the above vision is challenging, since graph partition-
ing is an NP-hard problem, which we need to solve in a distributed
manner to handle extremely large graphs. In addition, the obtained
subgraphs must share vertices, referred to as landmarks, to enable
reconciliation of embedding spaces. This constraint calls for a new
distributed graph decomposition algorithm that carefully chooses
the landmarks and considers them in the partitioning process.

In the remainder, we rst dene the problem of distributed graph
embedding and outline our general approach (§2). We then present
the details of our framework, making the following contributions:

MapReduce-based graph embedding (§3): Our framework includes
a map phase, in which each node embeds a subgraph, and a reduce
phase to reconcile the embedding spaces. As such, we learn the
map and reduce functions instead of dening them upfront.

Scalable graph decomposition (§4): To facilitate MapReduce-based
graph embedding, we propose a scalable graph decomposition al-
gorithm that incorporates landmarks. The algorithm follows the
vertex-centric programming model, which enables distributed com-
putation of graph algorithms.

914



Implementation in Spark (§5): We show how to implement our
framework in Spark [33], focusing on data locality, communica-
tion optimisation, and GPU integration. The choice of Spark is
motivated by its computational model, as Spark workers can work
independently on each subgraph before merging the results. Also,
Spark provides communication and error handling, which helps
in training large graphs as the cost of restarting in case of errors
during training is extremely high. We also introduce an iterative
renement process to improve the embedding quality.

Comprehensive evaluation experiments with real-world data of
billion-scale graphs illustrate the eectiveness and eciency of our
approach (§6). We show that our graph embedding framework is at
least 2⇥ faster than existing approaches, reduces communication
cost by at least an order of magnitude, and still achieves better
embedding quality than existing techniques. We close the paper
with a review of related work (§7) and conclusions (§8).

2 PROBLEM AND APPROACH
2.1 Problem statement
Let G = (V , E) be an undirected graph with vertices V and edges
E ✓ [V ]2. A graph embedding technique aims to learn a mapping
fΘ : V ! Rd from verticesV to an embedding in a low-dimensional
space (d ⌧ |V |), such that ‘similar’ vertices are mapped to close
vertex embeddings [10].

To learn embeddings for large graphs, we consider a cluster of n
compute nodes. Given a graph and an embedding technique, the
problem of distributed graph embedding is to leverage then compute
nodes for the ecient construction of the graph embedding. Here,
eciency is largely determined by the communication cost between
the compute nodes, which shall be minimized.

2.2 Approach
Our approach to distributed graph embedding works in several
rounds. In each round, as shown in Figure 1, the graph is decom-
posed into n subgraphs, so that the construction of embeddings
can be distributed among n compute nodes. However, as the vertex
embeddings are created independently, they belong to dierent
spaces. To tackle this problem, embeddings from dierent spaces
are reconciled based on vertices that are shared among the sub-
graphs, called landmarks. To obtain embeddings of high quality,
the above computation is performed in several rounds, in which
the models obtained in the previous round are used for further
renement in the next round.

Our approach can be formulated in the MapReduce model [4].
The construction of embeddings is akin to the map function, since
a subgraph is mapped to several vertex embeddings. The recon-
ciliation of embedding spaces denotes a reduce phase, in which
a single reconciled embedding is derived. Following this model,
our framework can be implemented in state-of-the-art engines for
distributed data processing, as demonstrated later with Spark [33].

We note that the decomposition of the original graph into sub-
graphs is a crucial part of our approach. However, there is an ex-
ponential number of possible decompositions of a graph into n
partially overlapping subgraphs, and each split has dierent con-
sequences for the quality of the nal embedding. To be able to
decompose the graph in a distributed manner and chose suitable

landmarks, we design a landmark-aware decomposition algorithm
based on the vertex-centric programming model [19]. Our algo-
rithm is based on the Label Propagation Algorithm (LPA) [21], in
which we control the condition upon which a vertex may migrate
from one partition to another.

3 MAPREDUCE-BASED EMBEDDING
To formulate distributed graph embedding in theMapReduce model,
we discuss the map (§3.1) and reduce (§3.2) functions.

3.1 Learned Map Function
In our framework, the map function takes a subgraphS and returns
its vertex embeddings F , i.e., it is the function fΘ : V ! Rd that a
graph embedding technique aims to learn. Hence, unlike traditional
map functions in MapReduce, our map function is not dened
upfront. Rather, we dene the structure of the function to construct
embeddings and rely on a learning framework such as Pytorch [24]
to estimate its parameters by minimising a loss function. Then, each
mapper learn its own function fΘ based on the input subgraph and
additional information, such as vertex features.

There are two approaches to construct graph embeddings and,
hence, two ways to dene the structure of the respective function:
shallow graph embedding techniques and graph neural networks.
Shallow graph embedding. Here, the function fΘ is just a map-
ping from the vertices to the embeddings, i.e., the vertex embed-
dings are learned directly. Hence, the parameters of function fΘ are
the vertex embeddings. That is, the function is dened as fΘ : u 7! u,
where {u | 8 u 2 V } = Θ are the parameters that we need to learn.
In other words, the vertex embeddings are the model itself.
Graph neural network (GNN). GNN is a deep embedding model,
where the nal vertex embeddings are obtained by applying sev-
eral transformation functions consecutively on the vertex features.
Put it dierently, function fΘ is a composition of several trans-
formation functions, such that each parametrised transformation
function maps from one vertex embedding to another one. The
initial embeddings are given directly by the vertex features.
Learning the parameters. The parameters of the functions to
construct embeddings are learned by minimising a loss function.
The loss function represents the objective that shall be captured by
the vertex embeddings. There are two common types of loss func-
tions: supervised and unsupervised. With a supervised function,
vertices are labelled and the embeddings shall be able to predict
these labels. In the unsupervised setting, vertices do not carry labels
and the vertex embeddings shall capture the structure of the graph.

3.2 Landmark-based Reduce Function
Learned reduce function. The reduce function takes two em-
beddings F1, F0 as input and returns a reconciled embedding F .
Our idea is to reconcile embedding spaces based on landmarks. A
landmark will be associated with dierent embeddings in dierent
embedding spaces, even though it relates to the same entity, i.e.,
the same vertex in the original graph. Hence, landmarks tell us how
to convert an embedding space into another one.

We realize this idea by learning a mapping function h(F1) that
takes a source embedding space as input and returns a mapped

915



In
pu

t s
pl

its

RDD RDD

Gr
ap

h 
pa

rt
iti

on
s &

 F
ea

tu
re

s RDD

Ve
rt

ex
 e

m
be

dd
in

gs

RDD

Re
co

nc
ile

d 
ve

rte
x e

m
be

dd
in

gs

Node 1
Node 2

Graph 
decomposition

Embed

:

:

:

:

Reconcile

+

:

:

:

:

…

…

“Rotate”…

…

EmbeddingLandmark vertex Embedding space

Figure 1: One round of computation in our framework on two compute nodes (yellow: operations; blue: input/output data).

space, such that the embeddings of the landmarks are close in F0.
We call the embedding space F0 the anchor space. This approach
is inspired by techniques for network alignment [20]. However,
there is an important dierence: In network alignment, the vertex
correspondences are pre-specied and used as input to train the
model. In our setting, the landmarks can be chosen explicitly, which
we later exploit with a dedicated selection strategy. The mapping
function can be linear or a multilayer perceptron [28]. In any case,
our objective is captured by the following loss function:

L(h, F1, F0, L) =
’
 2L

| |h(zi , )  z0, | |F (1)

where | |.| |F is the Frobenius norm, L is the set of landmarks, and
zi , is the embedding of landmark  in F1. Since it was shown
that a linear function is sucient to obtain a good mapping [1, 15],
we dene the mapping function as h(F1) = F1 ⇥W whereW 2
Rd⇥d and d is the embedding dimensionality. The above equation
is rewritten in its matrix form, if we denote the embedding matrices
of the landmark nodes of F1 and F0 as H1 and H0:

L(H1,H0,W ) = | |H1W H0 | |F (2)

Also, a better mapping is obtained when enforcing orthogonal-
ity onW [15]. Under this constraint, the mapping matrixW that
minimises Eq. 1 is found using singular value decomposition (SVD).
Let UΣVT = H0HT

1 be the SVD of the matrix H0HT
1 . Then,W

is computed asW = UV
T . The matrixW can be computed as

discussed above since this is its closed form solution. In the general
case, it can be found by minimzing the function in Eq. 2.

While we focus on mapping the landmarks, the learned mapping
function is applicable to the whole embedding space. LetW1 be the
mapping matrix from H1 to H0. Then, the reconciled embedding
space of F1 is F1W1. Combined with F0, we obtain the reconciled
embedding space [F0, F1W1] where [ . , . ] is the concatenation
operator. As such, the reduce function is given as:

r (F0, F1) = [F0, F1W1] (3)

Reduction order. To support the parallel execution of reducers,
the reduce function needs to be commutative and associative. In our
case, these properties ensure that the order in which we reconcile
the embedding spaces does not aect the nal embeddings.

First, the reduce function learned as in Eq. 3 is commutative.
While the order of reducing would return either [F0, F1W1] or
[F0W0, F1], both results have the same meaning, as the relative
positions of the embeddings are the same, i.e., one space can be

obtained from the other under a rotation. The above embedding
spaces are similar as [F0, F1W1] = [F0W 11 , F1] = [F0W0, F1] since
W0 =W 11 . The latter is derived from the fact that in Eq. 2, depend-
ing on the order of application, we obtain eitherW1 orW0.

However, our reduce function is not guaranteed to be associative.
For r (r (F0, F1), F2) to be equal to r (F2, r (F0, F1)), [F01, F2W2] needs
to be equal to [F01W01, F2] orW01 = W

1
2 . This is only true, if

the space F2 shares the same landmarks with both F1 and F0. Put
dierently, for the reduce function to be associative, all embedding
spaces need to share the same landmarks.

From the above observation, we conclude that subgraphs shall
share a common set of landmarks.

4 SCALABLE GRAPH DECOMPOSITION
This section introduces our approach to graph decomposition. We
rst propose an algorithm based on message-passing (§4.1). We
then dene two decomposition strategies used by our approach,
landmark-aware (§4.2) and complement graph partitioning (Eq. 4.2).

4.1 General Approach
Requirements.While graph decomposition is a well-studied prob-
lem, there are several requirements that pertain to our setting:
(1) The decomposition shall be able to handle large graphs and

operate in a distributed setting. Centralised algorithms, such as
METIS [13], can handle large graphs, but have a large memory
footprint and, hence, are not applicable for commodity clusters.

(2) The decomposition shall support constraints on the size of
the subgraphs, which may be chosen based on the memory
available on compute nodes to optimize resources utilisation
and to prevent stragglers. If nodes have the same amount of
memory, the subgraph size is nnl

k + nl , where n is the graph
size, nl is the landmark subgraph size, and k is the number of
nodes.

(3) Subgraphs shall share the same set of connected, important
landmarks to support reconciliation of embedding spaces. Here,
a high connectivity ensures meaningful landmark embeddings.

(4) Subgraphs shall have little overlap apart from the landmarks,
as such boundary edges may be ignored, which could lower the
embedding quality.

Vertex-centric computational model. The above requirements
suggest to adopt message-passing as a computational model for the
ecient and robust realization of distributed graph algorithms [19,

916



21]. The model supports distribution, as there is no order of local
operations as part of a so-called superstep, while all communication
happens between these supersteps.

In each superstep, a user-dened function for each vertex is
executed [19]. The model permits three types of operations that a
vertex can perform. First, a vertex may read messages it received in
the previous superstep. Second, a vertexmay sendmessages to other
vertices (usually its neighbours) that they will receive in the next
superstep. Third, a vertex may change its internal state and modify
its outgoing edges if necessary. Based on these three operations,
various graph algorithms can be implemented, e.g., Pagerank [19].

Label propagation algorithm.Most algorithms using the vertex-
centric computational model are instances of the Label Propagation
Algorithm (LPA) [19, 21], illustrated in Alg. 1. LPA rst assigns
labels to vertices randomly (line 1). Then, it iteratively improves
the results by reassigning vertex labels (lines 2-10). A vertex  will
take the label l , if it is the most compatible one according to a
compatibility function, comp(, l). Algorithms based on LPA dier
in how they measure the compatibility between a vertex and a
label. Moreover, each vertex can then choose to ‘migrate’ from
one label to another one based on information obtained from its
neighbours or itself from previous iterations (lines 11-12). After the
migration, depending on the function comp, statistics are derived
to support the evaluation of function comp (line 14). For instance,
if comp involves constraints on subgraph sizes, the statistics would
include the measured sizes. While both the compatibility scoring
and migration are implemented as vertex-centric programs, for
readability, we present LPA as an iterative algorithm.

Next, we show how LPA is instantiated in our setting to design
an algorithm for landmark-aware graph decomposition.

A two-step approach. A solution to landmark-aware graph de-
composition would be an algorithm based on n-way graph parti-
tioning [14]. It would decompose a graph into n subgraphs at the
same time, such that all subgraphs satisfy the above constraints.
Yet, nding such a decomposition is dicult, as even in the simplest
case of balanced graph partitioning, the problem is NP-hard [6].

We therefore propose a heuristic algorithm that works in two
steps, each tackling a subset of the constraints. In the rst step, we
focus on constructing the connected landmark graph of vertices
of high importance. In the second step, we aim to construct the
complement graphs that satisfy the constraints on subgraph sizes
and crossing edges. The algorithm is illustrated in Alg. 2.

Vertex program

Vertex program

We rst measure the importance of each vertex in the graph
based on a centrality score (line 1). Next, we decompose the graph
into the landmark graph and a complement graph using the LPA
with the compatibility function introduced later in Eq. 4 (line 2).

After obtaining the landmark graph, we continue to split the
complement graph following the same procedure (line 3). We use
a dierent compatibility function for this step, as later introduced
in Eq. 5. For both steps, we need to enforce the size constraints on
the subgraphs. Hence, in the LPA, the aforementioned statistics
(line 14 of Alg. 1) include the subgraph sizes. Finally, after splitting
the complement graph into subgraphs, we merge each of them with
the landmark graph to obtain the nal decomposition (line 4).

Algorithm 1: Label propagation algorithm
input :Graph G = (V , E); label set L = {l1, . . . , ln }; compatibility function comp,

termination condition Ω.
output :n subgraphs S1, S2, . . . , Sn induced by the vertex labelling.

// Label initialisation - Vertex program
1 for  2 V do label() init_label();
2 while not Ω do // Label propagation

3 for  2 V do
4 best_label  {};
5 best_score 1;

// Compute compatibility score
6 for l 2 L do
7 if comp( , l ) > best_score then
8 best_label() l ;
9 best_score comp( , l );

10

11 for  2 V do // Vertex migration
12 label() migrate(label(), best_label())
13

// Statistics to support comp calculation
14 compute_statistics(G, label);
15 return S1, S2, · · · , Sn where Si = { 2 V ^ label() = li };

Algorithm 2: Landmark-aware graph decomposition
input :Graph G = (V , E); number of subgraphs k ; number of landmarksm; maximal

subgraph sizes {n1, . . . , nk }.
output :k subgraphs S1, . . . , Sk ; landmark graph L.

// Computing vertex centrality
1   centrality(G);

// Landmark-Complement graph bi-partition

2 L, S  LPA(G, {lL , lL }, Eq . 4);
// Complement graph partition

3 S1, · · · , Sk  LPA(S , {l1, · · · , lk }, Eq . 5);
4 for i 2 [1, k ] do Si  S i + L ;

5 return S1, . . . , Sn , L;

4.2 Landmark-aware Partitioning
Next, we provide details on the rst step of our approach, i.e., the
instantiation of LPA to construct a connected landmark graph of a
specic size that contains important vertices. This requires us to
dene a compatibility function that takes into account the graph
size, its connectedness, and vertex importance. We rst discuss how
to incorporate the importance of vertices.

Importance-based compatibility.While there are several ways
to measure vertex importance, we focus on the computation of
vertex centrality in a distributed manner. This limits our options
to either the degree centrality or eigenvector centrality, of which
PageRank is a particular instance. Note that some popular central-
ity measures are not applicable in our context due to the implied
computational overhead. For instance, the betweenness measure
requires computing all pairs shortest paths, which is intractable for
large graphs.

Let  be the function that measures the importance of each
vertex. We dene the compatibility between a vertex and a label as:
d(, l) = 1l=0

⇣
 ()
m
 1

⌘
where m is a parameter which signies

the smallest level importance we can tolerate. Here, the landmark
graph is assumed to have label 0. The larger a vertex importance
 (), the more likely it is compatible with the landmark graph.

917



Size penalty. Strictly enforcing the size constraint on the landmark
graph can lead to slow convergence and instability. In practice, by
allowing for a small dierence [21], the algorithm can converge
faster. To this end, we dene a penalty score for each partition as a
soft constraint to incorporate in the compatibility function.

Let nl be the desired size of the partition having label l . We write
C(l) = cnl for the maximum capacity of the partition with label l ,
where c > 1 is a slack parameter. That is, we allow the partition
with label l to exceed its size nl by a factor of c . Let c(l) be the
number of vertices of partition l at an iteration. We dene the size-
based penalty as: s(l) = c(l )

C(l ) . When the partition size is close to
its capacity, the penalty is high. For two-way partitioning such as
considered in this step, we need to dene two penalty functions
based on the landmark graph sizem and the complement graph size
|V |m. As this formulation is not limited to 2-way partitioning, we
can apply the same strategy to n-way partitioning by integrating
several size penalties as above to the compatibility function. This
is useful for our next step of partitioning the complement graph.

Finally, we can dene the compatibility score as follows:

comp(, l) =
’

u 2N ()
1label(u)=l (1d(, l)  2s(l)) (4)

where N () is the set of neighbours of vertex  . Here, the summa-
tion condition ensures that the landmark graph is connected as the
more landmarks a vertex is connected to, the more compatible it is
to the landmark graph. Furthermore, 1, 2 are hyperparameters to
balance the size penalty and importance-based compatibility.

Complement Graph Partitioning. The aforementioned require-
ments request that subgraphs from the complement graph shall
have particular sizes and the splits of the complement graph shall
minimise the number of edges between subgraphs. For the for-
mer conditions, we rely on the size penalty as dened above. As
for the latter, we aim to maximise the edge locality. A vertex is
more compatible with a label that is shared the most of its neigh-
bours, captured as: a(, l) = Õ

u 2N () 1label(u),l Combining the
above functions, we obtain the following compatibility function for
complement graph partitioning:

comp(, l) = d(, l)  s(l). (5)

By applying this function as part of LPA, we split the complement
graph into non-overlapping partitions. The subgraphs can then be
combined with the landmarks to obtain the required subgraphs.

5 IMPLEMENTATION & OPTIMISATION
Having introduced our graph embedding framework, we discuss
how it is implemented in Spark [33].

Data storage.Our implementation handles graphs, vertex features,
and vertex embeddings, using a Distributed File System (DFS), the
main memory, and the local le system (LFS) of a compute node.
Spark manages data using Resilient Distributed Datasets (RDDs),
multisets of data elements kept in main memory. Data on stored on
a DFS and in an RDD can be accessed by all machines, in contrast
to data stored on the LFS. Accessing data on the LFS does not incur
communication cost. Also, LFS has generally bigger capacity than
RDDs, which are limited by the available main memory. Note that

DataFrames and RDDs can be used interchangeably in Spark, with
largely the same performance.

Storing a graph: Initially, the input graph is stored on the DFS
to provide access for all compute nodes. The graph is then split
randomly where each random subgraph is stored as an RDD, as
hinted at already in Figure 1. The actual graph decomposition can
then operate on these RDDs, while the subgraphs obtained by the
decomposition algorithm are stored on the LFS of compute nodes.
This leverages data locality as a mapper can directly access the
partition without communicating with other nodes. As a storage
format for the DFS and the LFS, we rely on edge lists, i.e., les in
which each line represents a node and its neighbours.

Storing vertex features and embeddings: Vertex features and em-
beddings are stored similarly, i.e., each line in a le represents a
vertex and its features or its embeddings. As using a GNN as an
embedding technique requires both vertex features and the sub-
graph for training, we co-locate them together at a compute node
to reduce communication cost. The vertex embeddings obtained
after the map phase and each reduce phase are stored as RDDs.
Training with GPU. Our implementation supports the use of
GPUs to speed up the training process. To this end, elements of
an RDD are piped from Spark to an Automatic Dierentiation
Framework (ADF) that supports graph learning using Pytorch-
Geometric [7]. As the training is based on the graph and the vertex
features, we would need to pass these information, stored in RDDs,
to an ADF. However, sending large subgraphs would be inecient,
so that we store only the path to a subgraph and its vertex features
in an RDD. Then, the ADF reads them directly from the DFS. After
training, the results are piped back to Spark and stored as RDDs.

Note that the overhead of combining Spark with an ADF is small.
First, all communication happens locally on the same worker in-
stance. Second, there is no inter-process communication between
Pytorch and Spark during training. Hence, the overhead is only the
initial I/O, where Pytorch reads subgraphs and vertex features, and
the nal I/O, where Spark reads the output from Pytorch. Since Py-
torch reads the subgraphs and features directly from the LFS, the ini-
tial I/O overhead is small. Third, there is no preprocessing involved
as the subgraphs, vertex features, and embeddings are stored in data
formats that are natively supported by Pytorch-Geometric [7]. In
our experiments, we have observed the total overhead to be around
30s for a graph of 1M nodes.
Fault tolerance. Spark can recover from node failure by recon-
structing the input data from the stored data linage. However, if
node failure occurs while the data is being processed, all the pro-
cessed information is lost. While this problem is inherent to the
design of Spark, we are able to alleviate this problem by checkpoint-
ing the processed data. At specic epochs of the training process,
we save the embedding model to the DFS. When a node restarts
computation after a failure, training continues from the last check-
point by loading the model from the DFS. We adopt checkpointing
for the map phase, as it incurs high runtimes.
Lazy Reconciliation. After learning the mapping matrixW in the
reduction step (see §3.2), we can reconcile the embedding spaces
F0 and F1 immediately based on Eq. 3. The reconciled embedding
space can then be stored for further reduction step, if needed. Yet,
each reduction step requires inter-node communication to transfer

918



all the vertex embeddings from the nodes at which they are stored
to the node evaluating the reduce function. However, we note that
to learn the mapping matrix W , in Eq. 2, only the embeddings
of the landmarks are needed. Hence, to reduce communication
cost, at each reduction step, we only need to fetch the embeddings
of the landmarks for reconciliation. Only afterwards, when the
reduction step nishes, we apply the stored mapping matrices to
reconcile also the non-landmark vertices. This optimisation reduces
the communication cost signicantly, with only minor overhead
caused by the need to store the mapping matrices.

Iterative Renement. To further improve the embedding quality,
our implementation iteratively renes the constructed embeddings.
Our idea is to incorporate the embeddings learned in one round
also in the subsequent round. Once a round has completed, we store
the learned models in a model bank (on the DFS). In the next round,
the models from this model bank are used as additional input in
the learning process. The intuition is that the vertex embeddings
constructed in a round should inherit the results from the previous
rounds. Also, to maintain continuity, the models obtained in one
round should not be vastly dierent from those of previous rounds.
Depending on the graph embedding model, we propose dierent
ways to leverage model bank to improve the embedding quality.

For shallow graph embedding models, the vertex embeddings cor-
respond to the learned model. In the rst round, the model bank is
initialised with random vertex embeddings. Then, in each round,
we initialise the vertex embeddings using those in the model bank.
After each round, the model bank is updated with the newly con-
structed embeddings. Hence, unlike a traditional setup that would
adopt random initialisation, our learning process takes advantage
of the results from previous rounds.

For graph neural networks, the models of previous rounds in the
model bank are further rened with dierent subgraphs. Speci-
cally, the model f (k )(Si , Fi ) obtained at the k-th round by training
on subgraph Si and vertex features Fi will be trained on another
subgraph Sj with vertex features Fj : f (k+1) = f (k)(Sj , Fj ).

6 EXPERIMENTS
This section reports on an experimental evaluation of our approach.
We rst outline the setup (§6.1). Then, we evaluate dierent com-
ponents of our framework (§6.2) before turning to the end-to-end
performance of our approach (§6.3).

6.1 Experimental Setup

Datasets.We rely on ve real-world standard benchmark datasets,
see Table 1. Flickr and Youtube are social networks with a medium
number of nodes but a large number of edges [30]. Arxiv [17]
and Papers [12] are two bibliographic networks connecting papers,
while Products [12] is a network of Amazon products linked by
customer purchases. Vertices of Products and Papers are attributed.

Baselines.We compare against DGL [34] and PBG [16], which are
two frameworks for distributed graph embedding. While DGL is
a general-purpose approach that can be used for any embedding
technique, PBG is a scalable shallow embedding model. Both ap-
proaches are similar to our approach as they involve partitioning
the original graph to scale out the learning process.

Also, we compare our landmark-aware decomposition against
graph partitioning with Spinner [21] and DGL [34]. Spinner is
a distributed graph partitioning algorithm based on Pregel [19],
which can be seen as an extension of the LPA. DGL uses a centralised
approach that rst abstracts the graph for partitioning and then
renes the coarse-grained partitions to obtain the result.

Measures. To measure the embedding quality, we train a linear
classier using the embeddings as features. We then evaluate the
classier on a test set and measure its accuracy to obtain a metric for
the embedding quality. Eciency is measured by the communication
cost, the data volume transferred per epoch of the training process,
the training time per epoch which is the total training time divided
by the number of epochs, and the speedup, the training time per
epoch normalised by the number of compute nodes used.

Conguration. Unless stated otherwise, we use the following hy-
perparameters. We split the graph into 5 equal partitions with a
landmark subgraph of size 0.01%. Due to the high cost of these ex-
periments, we do not perform hyperparameter tuning and use the
suggested default values. For node2vec, we use 10 walks per node
with a walk length of 10, batch size 2000, embedding size 128, and
learning rate 0.01. For GraphSAGE, we use 2 layers of GNN with 10
and 5 neighbours, respectively, a hidden size of 128, a dropout after
the rst layer with probability 0.5, batch size 2000, embedding size
128, and learning rate 0.03. We train these algorithms for 5 epochs
and report the test accuracy of the last model. We use an AWS
cluster of p2.xlarge instances (4 VCPU, 61GB RAM, 1 VGPU) except
for experiments involving PBG. In these cases, we use m5a.4xlarge
instances, as PBG cannot leverage a GPU. For experiments with the
Papers dataset, we use an m5a.12xlarge cluster (48 VCPU, 192 GB
memory) due to DGL’s memory requirements.

6.2 Component-wise Evaluation

Eectiveness of Graph Decomposition. We rst explore the
eectiveness of our landmark-aware graph decomposition. The
landmark graph size is set as 0.1% of the original graph and we
measure the vertex importance by their degree. The quality of the
decomposition is assessed by the average degree of the landmark
nodes and the normalised number of edge cuts. A good partition
shall have a large average degree and a few edge cuts.

Table 2 shows that our approach outperforms the baselines sig-
nicantly on both metrics, over all datasets. For instance, on the
Arxiv dataset, our approach returns a landmark graph with an
average degree twice that of Spinner and 6 times that of DGL. In ad-
dition, our approach has a signicantly lower number of edge cuts
in comparison with the baselines. We also observe that only our
technique, which follows a distributed approach, is able to handle
billion-scale graphs, such as the Papers dataset.

Eects of Reconciliation.We compare the quality of vertex em-
beddings obtained with and without reconciliation based on accu-
racy. The results shown in Figure 4-A conrm that the reconciled
embedding space has higher accuracy than the non-reconciled one
across all datasets. For instance, on the Arxiv dataset, the accuracy
of the non-reconciled embedding space is only 0.35 while after
reconciliation, the accuracy is 0.47.

919



Table 1: Statistics of datasets

|V| |E| #features

Flickr 80,513 5,899,882 n/a
Arxiv 169,343 1,166,243 128
Youtube 495,957 1,936,748 n/a
Products 2,449,029 61,859,140 100
Papers 111,059,956 3,231,371,744 128

Table 2: Eectiveness of graph decomposition

Average degree Normalised #edge cuts

Spinner DGL Ours Spinner DGL Ours

Arxiv 674 211 1214 3.89 1.08 0.52
Products 2323 213 3331 35.23 3.77 1.92
Youtube 464 11 7822 0.46 0.203 0.09
Flickr 2383 292 2487 1.595 0.95 0.73
Papers 906 N/A 1784 9.52 N/A 11.6

Eects of landmark selection strategy. Next, we analyse the
role of landmark by comparing of two landmark selection strate-
gies: random and our proposed degree-based selection. We also
measure the quality by comparing the accuracy of the resulting
vertex embeddings. Figure 4-B shows that having important land-
marks is key in improving the quality of vertex embeddings. The
improvement is consistent across all datasets with the highest is
0.2 on Products.

Figure 2: Subgraph size Figure 3: Dist. vs. Single.

Eects of landmark subgraph size. In this experiment, we vary
the size of the landmark subgraph from 32 to 2048 to analyse the
eect on the embedding quality. Figure 2 shows that the accuracy
tends to increase as we increase the subgraph size. However, the
rate of increase is small for sizes larger than 128. In general, using
more landmarks enables better reconciliation of embedding spaces,
which leads to an improvement of the embedding quality. However,
increasing the number of landmarks has a diminishing return.

6.3 End-to-end Evaluation
Having evaluated the individual parts of our solution, we turn to
its end-to-end performance in comparison to other techniques.
Comparative analysis. Table 3 compares the performance of our
approach with state-of-the-art techniques. For the Papers dataset,
we rely on m5a.12xlarge instances and evaluate it in a supervised
setting. For fair comparison, no GPU is used as PBG cannot use it.

Our approach leads to better or comparable accuracy of the con-
structed embeddings, while outperforming the baseline techniques
in communication cost and training time. This is expected as the
only communication in our framework is from the compute nodes
to the DFS during the reduction phase. In contrast, both DGL and

Table 3: Comparative analysis

Time (s) Accuracy Communication (GB)

PBG DGL Ours PBG DGL Ours PBG DGL Ours

Arxiv 76 29 22 0.31 0.36 0.49 0.04 0.05 0.006
Products 649 2081 361 0.39 0.55 0.64 0.64 4.44 0.08
Youtube 312 136 107 0.13 0.21 0.201 0.6 0.14 0.04
Flickr 56 30 19 0.15 0.17 0.17 0.03 0.27 0.003
Papers N/A 3764 717 N/A 0.435 0.478 N/A 5.324 0.022

PBG require continuous communication between compute nodes
during training. This communication overhead also implies higher
training times per epoch. On datasets with vertex features such
as Papers, our approach is better than DGL in terms of accuracy
even when the same graph embedding algorithm is used. As our
approach splits the graph and performs graph embedding indepen-
dently, it can be considered as an ensemble of independent models,
which is usually better than a single model. As each model may
access only the subgraph, but not the full graph, training relies
more on vertex features. Hence, our method performs better on
graphs with vertex features. For featureless graphs, such as Flickr
or Youtube, our approach achieves comparable accuracy with DGL.
Distributed vs. Single machine. To understand the trade-o be-
tween performance and scalability, we measure the dierence in
accuracy between our distributed version and a single machine
setup. We use the node2vec embedding model (10 walks of length
5, batch size 2000, learning rate 0.01). Using this model, only the
Flickr, Arxiv, Youtube and Products datasets t in main memory,
with sizes 4.2GB, 3.9GB, 7.1GB, and 24GB, respectively. Figure 3
shows that the dierence in accuracy is very small, less than 0.05 in
absolute terms, across all datasets. While the dierence increases
with the level of parallelism, even with 8 partitions, the drop in
accuracy is only 0.048 in comparison to a centralized version.
Scalability. Next, we analyse the scalability of our approach in
terms of the speedup, as we increase the number of partitions (and
thus compute nodes). Figure 5 shows the speedup as the relative
improvement of training time using the setup with two partitions
as the reference. The speedup of our approach increases with more
partitions and is consistently higher than the one observed for the
baseline techniques. For instance, with eight partitions and the
Products dataset, our speedup is 3.8, whereas DGL and PBG achieve
0.9 and 1.1, respectively. For small datasets, using more compute
nodes actually increases training times for PBG due to the increase
in I/O and communication overhead. Figure 5 also shows that our
approach maintains stable communication costs as the number of
partitions increases. For instance, on the Products dataset, there is
an 26% increase in communication, as the number of node increases
from two to eight, compared to 56% for DGL and 143% for PBG. For
the Papers dataset, we achieve a speedup of 3.9 with 8 partitions
and a low communication cost of around 34MB.
Robustness. We measure the recovery cost, i.e., the time required
to get back to the same state before the node failure. This time
includes the time to load the data to the compute nodes. PBG is ex-
cluded in this experiment due to the diculty in measuring the data
loading time, as PBG uses partial data loading. We simulate node
failure by terminating the training process of a node at dierent
training rounds. Figure 6 conrms the robustness of our approach,

920



Figure 4: Reconciliation. Figure 5: Scalability

Figure 6: Robustness. Figure 7: Renement.

illustrating that recovery costs are lower than those observed for
DGL. The reason is that DGL requires restarting the whole training
process, since, even though it supports model checkpointing, all
compute nodes need to be restarted before training can
Eects of Iterative Renement. Finally, we analyse the eects of
our optimisation based on iterative renement on the quality of the
embeddings. We increase the number of rounds from one to three
for each dataset, expecting an increased embedding quality. This is
conrmed in Figure 7. However, the improvement is largest initially,
reaching a plateau after two rounds. For instance, for the Products
dataset, accuracy increases from 0.57 to 0.59, when going from one
to two rounds, while another round leads to a minor improvement
of 0.01. This phenomenon is consistent on all datasets including
the Papers dataset. While we omit the results for training time and
communication cost due to space constraint, these measures turned
out to increase linearly with the number of rounds.

7 RELATEDWORK
Existing technique to learn graph embeddings dier in how they
map a vertex into an embedding space, and in the structural prop-
erties that shall be retained. To embed a vertex, one may em-
ploy shallow or deep encoders [10], or matrix factorisation. Tech-
niques that use shallow encoders, such as [9, 23, 25, 26, 29], con-
sider vertices as words and random walks as sentences, which
allows them to use neural word embedding techniques, such as
word2vec [22] to construct word/vertex embeddings. Deep encoder
approaches [2, 5, 8, 31], such as GraphSAGE [11] or SGN [32], in-
corporate the neighbourhood of a vertex to generate its embedding.
As a consequence, both vertex features and the graph structure may
be captured.

Approaches to scale graph embedding techniques to large graphs
are classied as centralised or distributed. Centralised approaches,
e.g., SIGN [27], Cluster-GCN [3], SGN [32], MILE [18], rely on
‘simpler’ models to achieve scalability. For instance, the embedding
models of SGN [32] and SIGN [27] consist of several layers of matrix
multiplication on the vertex features and graph adjacency matrix.

MILE [18] rst abstracts the graph into a smaller one to perform the
embedding. As centralised approaches use only a single machine,
they are inherently limited by the machine’s capacity.

Distributed approaches leverage a cluster of compute nodes.
They are complementary in the sense that they may rely on cen-
tralised techniques for graph embedding on each individual com-
pute node. To date, there are two distributed graph embedding
frameworks, PBG [16] and DGL [34]. PBG is tailored to scale shal-
low embedding techniques that use negative sampling. It has been
proposed for compute nodes with shared storage that also com-
municate during training. DGL aims to scale any GNN embedding
technique by synchronising the model across compute nodes dur-
ing training. Each node is responsible for one partition of the graph.
Gradient updates obtained from one compute node are then trans-
ferred to all other nodes for global model synchronisation.

As our work, both PBG and DGL strive for scaling embedding
techniques by distributing computation across compute nodes. Yet,
there are several dierences. First, our focus is on a shared-nothing
infrastructure, as commonly encountered in compute clusters. Both
DGL and PBG require continuous communication between nodes,
which slows down the training process. Second, PBG performs
random partitioning of the graph. DGL proposes a centralised ap-
proach to graph partitioning, which cannot handle extremely large
graphs that exceed a single node’s capacity. Our approach includes
a distributed algorithm for graph decomposition. Third, DGL and
PBG are susceptible to node failure, even though the probability
of node failure increases with the cluster size. Our approach en-
ables a fault tolerant implementation, due to the reduced inter-node
communication and the presented checkpointing approach.

8 CONCLUSION
To achieve scalable and robust graph embedding, we proposed a
distributed learning process based on the MapReduce model, which
can distribute any existing embedding technique. In essence, in
the map phase, we learn vertex embeddings for subgraphs, while
the reduce phase reconciles the obtained embedding spaces. For
the reconciliation to work, we introduced a distributed graph de-
composition algorithm based on a vertex-centric computational
model. We also presented an implementation of the approach in
Spark. Experiments with several real-world datasets conrm the
eciency, scalability, and robustness of our approach.

ACKNOWLEDGMENTS
This work was supported by ARC Discovery Early Career Re-
searcher Award (Grant No. DE200101465).

921



REFERENCES
[1] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilin-

gual mappings of word embeddings while preserving monolingual invariance. In
ACL. 2289–2294.

[2] HongyunCai, VincentWZheng, and Kevin Chang. 2018. A comprehensive survey
of graph embedding: problems, techniques and applications. TKDE (2018).

[3] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Ecient Algorithm for Training Deep and Large Graph
Convolutional Networks. In KDD. 257–266.

[4] Jerey Dean and Sanjay Ghemawat. 2008. MapReduce: simplied data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[5] Michaël Deerrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering. In NIPS.
3837–3845.

[6] Andreas Emil Feldmann and Luca Foschini. 2015. Balanced partitions of trees
and applications. Algorithmica 71, 2 (2015), 354–376.

[7] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. NeuralMessage Passing for QuantumChemistry. In ICML. 1263–1272.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[10] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. IEEE Data Engineering Bulletin (2017).

[11] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS. 1024–1034.

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NIPS.

[13] George Karypis and Vipin Kumar. 1995. METIS–unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

[14] George Karypis and Vipin Kumar. 1998. A software package for partitioning
unstructured graphs, partitioning meshes, and computing ll-reducing orderings
of sparse matrices. University of Minnesota, Department of Computer Science and
Engineering, Army HPC Research Center, Minneapolis, MN (1998).

[15] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. 2018. Word translation without parallel data. In ICLR.

[16] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale Graph
Embedding System. In MLSys.

[17] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densication and shrinking diameters. TKDD 1, 1 (2007), 2–es.

[18] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2018. Mile: Amulti-
level framework for scalable graph embedding. arXiv preprint arXiv:1802.09612
(2018).

[19] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale

graph processing. In SIGMOD. 135–146.
[20] Tong Man, Huawei Shen, Shenghua Liu, Xiaolong Jin, and Xueqi Cheng. 2016.

Predict Anchor Links across Social Networks via an Embedding Approach. In
IJCAI. 1823–1829.

[21] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos Siganos.
2017. Spinner: Scalable graph partitioning in the cloud. In ICDE. 1083–1094.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jerey Dean. 2013. Ecient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[23] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD. ACM, 1105–1114.
https://doi.org/10.1145/2939672.2939751

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In NIPS. 8024–8035.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In KDD. 701–710.

[26] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. In WSDM. 459–467.

[27] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[28] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley, and Bruce W
Suter. 1990. The multilayer perceptron as an approximation to a Bayes optimal
discriminant function. IEEE Transactions on Neural Networks 1, 4 (1990), 296–298.

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[30] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In
KDD. 817–826.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[32] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML,
Vol. 97. 6861–6871.

[33] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: a unied engine for big data processing. Commun. ACM 59, 11 (2016),
56–65.

[34] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. arXiv preprint arXiv:2010.05337
(2020).

922


