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ABSTRACT
Synthesizing data using declarative formalisms has been persua-

sively advocated in contemporary data generation frameworks.

In particular, they specify operator output volumes through row-

cardinality constraints. However, thus far, adherence to these volu-

metric constraints has been limited to the Filter and Join operators.

A critical deficiency is the lack of support for the Projection opera-

tor, which is at the core of basic SQL constructs such as Distinct,

Union and Group By. The technical challenge here is that cardinality

unions in multi-dimensional space, and not mere summations, need

to be captured in the generation process. Further, dependencies

across different data subspaces need to be taken into account.

We address the above lacuna by presenting PiGen, a dynamic

data generator that incorporates Projection cardinality constraints

in its ambit. The design is based on a projection subspace division

strategy that supports the expression of constraints using opti-

mized linear programming formulations. Further, techniques of

symmetric refinement and workload decomposition are introduced

to handle constraints across different projection subspaces. Finally,

PiGen supports dynamic generation, where data is generated on-

demand during query processing, making it amenable to Big Data

environments. A detailed evaluation on workloads derived from

real-world and synthetic benchmarks demonstrates that PiGen can

accurately and efficiently model Projection outcomes, representing

an essential step forward in customized database generation.
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1 INTRODUCTION
Synthetic databases are required in a variety of use-cases, rang-

ing from testing and tuning of database engines and applications

to system benchmarking. In the past decade, several frameworks

(e.g. [8, 14, 18, 23]) have advocated data synthesis using a set of car-

dinality constraints. In particular, a cardinality constraint dictates
that the output of a given relational expression over the generated
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database should feature a specified number of rows. For SPJ query

formulations, the canonical constraint representation is:

|𝜋A(𝜎𝑓 (𝑇1 ⊲⊳ 𝑇2 ⊲⊳ ... ⊲⊳ 𝑇𝑁 ))|= 𝑘

where 𝑓 represents the filter predicates applied on the inner join of a
group of tables𝑇1, ...𝑇𝑁 in the database; A represents the projection-
attribute-set, i.e. the set of attributes on which the projection is

applied; and 𝑘 is a count representing the output row-cardinality

of the relational expression. The provenance of these constraints

could be either from construction of what-if scenarios, or based
on information sourced from an actual client installation – for in-

stance, Annotated Query Plans [11]. Further, the constraints could

be parameterized wrt predicate constants [18, 19], or more com-

monly in industrial practice, strict, where even these constants are

prespecified [8, 23].

Generating synthetic data that adheres to a collection of strict

cardinality constraints was first proposed in the pioneering work

of DataSynth [8, 9]. This initial effort was later extended in Hy-
dra [23, 24] to incorporate dynamism and scale in the generation

process. The key idea in these frameworks is to express the input

constraints using a linear feasibility program (LP), and then use the

LP solution to construct the synthetic database. While these prior

frameworks accurately and efficiently handle an important class of

cardinality constraints, a critical lacuna is support for the projection
operator. In this paper, we investigate the explicit incorporation of

Projection into the data generation framework.

1.1 Incorporating Projections
Our motivation for modeling Projection stems from its core ap-

pearance in the Distinct, Group By, and Union SQL constructs

– as a case in point, among the 22 queries in the TPC-H bench-

mark [5], as many as 16 feature the projection operation. Further,

projection-compliant databases can be beneficial to database ven-

dors in a variety of use-cases as listed in [21] (and verified with

industry experts in a recent Dagstuhl Seminar [1]). Among these,

a particularly compelling use-case is in the context of engine up-

grades, where a critical requirement is to synthesize data that can

mimic client environments for regression testing. This facility en-

ables: (a) Catching optimizer bugs such as a change in query plan

leading to performance degradation, or incorrect query rewriting

leading to erroneous query results; (b) Performance evaluation of

operators in the query execution pipeline. For instance, a thorough

assessment of a new memory manager’s ability to handle native

projection-based operators (e.g. hash aggregate, sort) is predicated

on accurate modeling of projection cardinalities; and (c) Given an

operator of interest, evaluating its impact on the performance of

downstream operations. For instance, in the 16 projection-featuring

queries of TPC-H, 12 require a sort operation immediately follow-

ing projection. Further, in 4 queries, the projection output serves as
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an intermediate staging for subsequent filter/join operations. In all

these cases, the projection output cardinality affects the behavior

of the downstream operations.

Apart from regression testing, another common use-case arises

in the context of system benchmarking, when evaluating competing

database platforms for hosting an application.

Our focus here is on the duplicate-eliminating version of pro-

jection where only the distinct rows are retained in the projected

output (the alternative duplicate-preserving option does not alter

the filter output’s row-cardinality, and is therefore trivially han-

dled by the existing frameworks). Additionally, since projection is

a unary operator, we present the ideas using a single-table environ-

ment. To handle multi-relation environments, we can take recourse

to the methodology of [8, 23], where denormalized relations are

constructed as an intermediate step in the solution process.

1.2 Projection-inclusive Constraint (PIC)
To represent a projection-inclusive cardinality constraint 𝑐 on a

table T , we use the quadruple c : ⟨f,A, l, k⟩, as a shorthand notation.
Here, 𝑓 represents the filter predicate applied onT ,A represents the

projection attribute-set (PAS), 𝑙 signifies the row-cardinality of the

filtered table, and 𝑘 represents the row-cardinality after projection

on this filtered table.

As as sample instance, consider the following set of PICs on a

generated table Purchases (𝑃𝐼𝐷 , 𝑄𝑡𝑦, 𝐴𝑚𝑡 , 𝑌𝑒𝑎𝑟 ):

𝑐1 : ⟨𝑓1, 𝐴𝑚𝑡, 500,555⟩ | 𝑓1 = (𝑄𝑡𝑦 < 20) ∧ (1100 ≤ 𝐴𝑚𝑡 < 2500)

𝑐2 : ⟨𝑓2, 𝐴𝑚𝑡, 1000,333⟩ | 𝑓2 = (𝑄𝑡𝑦 ≥ 20) ∧ (500 ≤ 𝐴𝑚𝑡 < 3000)

𝑐3 : ⟨𝑓3, 𝑄𝑡𝑦, 3000,999⟩ | 𝑓3 = (𝑄𝑡𝑦 ≥ 10)

Here, PIC 𝑐1 denotes that applying the 𝑓1 predicate on Purchases

should produce 500 rows in the output, which is further reduced to

5 rows after projecting on the 𝐴𝑚𝑡 column; the other PICs can be

interpreted analogously.

1.3 Technical Challenges
There are two primary challenges to modeling PICs within the

table generation process, related to handling dependencies within

and across the data subspaces identified by these constraints, as

described below.

Intra-Projection Subspace Dependencies. Consider the projection
subspace spanned by a set of attributes A. Dealing with projection

requires computing union of groups of tuples. For example, for

two tuples/group of tuples 𝑏1 and 𝑏2, the direct expression for

computing projection along A is:

|𝜋A(𝑏1 ∪ 𝑏2)|
However, even if 𝑏1 and 𝑏2 are disjoint in the original table, their

projections ontoAmay overlap. Therefore, to handle PICs, explicitly
computing the cardinality of the union of a group of tuples post-

projection is required. Using the fact that projection distributes

over union [26], we can rewrite the above expression as:

|𝜋A(𝑏1) ∪ 𝜋A(𝑏2)|
but even here the union does not translate to a simple summation.

For instance, consider the following two sample rows from the

Purchases table:

𝑢 : (𝑃𝐼𝐷 = 10001, 𝐴𝑚𝑡 = 1500, 𝑄𝑡𝑦 = 3, 𝑌𝑒𝑎𝑟 = 2020), and

𝑣 : (𝑃𝐼𝐷 = 10002, 𝐴𝑚𝑡 = 1500, 𝑄𝑡𝑦 = 16, 𝑌𝑒𝑎𝑟 = 2021).

Both rows satisfy the filter 𝑓1, but the union of their projections

along 𝐴𝑚𝑡 yields a single outcome – namely, 𝐴𝑚𝑡 = 1500.

Inter-Projection Subspace Dependencies. When a set of tuples 𝑏 is

subjected to multiple projections, the data generation for projection

subspaces may be interdependent. Given a pair of PASs A1 and A2,
sourced from two PICs, we have the inclusion property:

𝜋A1∪A2
(𝑏) ⊆ 𝜋A1

(𝑏) × 𝜋A2
(𝑏)

For instance, consider a group of tuples 𝑏, from the table 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠 ,

satisfying the following disjunctive filter condition:

𝑏 = {𝑡 ∈ 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠 | (𝑡 .𝑄𝑡𝑦 ≥ 20 ∧ 𝑡 .𝐴𝑚𝑡 ≥ 3000) ∨
(10 ≤ 𝑡 .𝑄𝑡𝑦 < 20 ∧ 𝑡 .𝐴𝑚𝑡 ≥ 2500)}

Here, a tuple with 𝐴𝑚𝑡 = 2700 and 𝑄𝑡𝑦 = 25 can belong to both

𝜋𝐴𝑚𝑡 (𝑏) and 𝜋𝑄𝑡𝑦 (𝑏), but lies outside 𝑏’s boundary.

Moreover, A1 and A2 may themselves intersect. Therefore, in

general, expressing a set of PICs with an LP, while ensuring a phys-

ically constructible solution, is often infeasible – this is because the

set of constructible solutions does not form a convex polytope [16].

Hence, alternative methods are needed to address this issue.

1.4 Our Contributions
We present here PiGen, a data generator that addresses the above
challenges and extends the current scope of data generation to

include projection in its ambit. The key design principles are: (a)

Projection Subspace Division, which divides each projection subspace
into regions that allow modeling the unions, thereby ensuring

that the intra-subspace dependencies are resolved; and (b) Isolating
Projections, for independent processing of each projection subspace,

thereby tackling the inter-projection subspace challenge.

Additionally, PiGen leverages the concept of dynamic regenera-
tion [23], and constructs an Enriched Table Summary, that ensures
data can be generated on-demand during query processing while

satisfying the input PICs. Therefore, no materialized table is re-

quired in the entire testing pipeline. Further, the time and space

overheads incurred in constructing the summary is independent

of the size of the table to be constructed and, in our evaluations,

requires only a few 100 KBs of storage.

A detailed evaluation on multiple workloads of PICs, covering

both real-world datasets (IMDB, Census), and synthetic benchmarks

(TPC-DS) has been conducted. The results demonstrates that PiGen

accurately and efficiently models Projection outcomes. As a case

in point, for a workload of PICs, comprising over a hundred PICs

in total, PiGen generated data that satisfied all the PICs, with per-
fect accuracy. Moreover, the entire summary production pipeline

completed within viable time and space overheads.

Organization. The remainder of the paper is organized as follows:

The prior literature is reviewed in Section 2. The problem frame-

work is discussed in Section 3. Further, the key design principles

of PiGen are introduced in Section 4, and then described in detail

in Sections 5 through 8. The end-to-end implementation pipeline

is presented in Section 9, while the experimental evaluation is re-

ported in Section 10. Finally, our conclusions and future research

avenues are summarized in Section 11.
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2 RELATEDWORK
Over the past three decades, a variety of novel approaches have

been proposed for synthetic database generation. The initial efforts

(e.g. [13, 15]) focused on generating databases using standard math-

ematical distributions. Subsequently, data generation techniques

that incorporated the notion of constraints were proposed – for

instance, adherence to a given set of metadata statistics was ad-

dressed in [7, 20, 25]. In more recent times, generation techniques

driven by constraints on query outputs have been analyzed. A par-

ticularly potent effort in this class was RQP [10], which receives a

query and a result as input, and returns a minimal database instance

that produces the same result for the query. An alternative fine-

grained constraint formulation is to specify the row-cardinalities

of the individual operator outputs, and the techniques advocated in

[8, 11, 14, 18, 19, 22, 23] fall in this category. They can be classified

into two groups based on the nature of constraints. In the first

group, parameterized constraints form the input in QAGen [11],

MyBenchmark [19] and TouchStone [18]. That is, the predicate
constants are variables. From these constraints, these techniques

generate a synthetic database and predicate instantiations, such

that applying the instantiated constraints on the synthetic data

produces the desired number of rows.

On the other hand, a stricter notion of fixed constraints was

considered in [8, 14, 22, 23], where the predicate constants are

prespecified in the input. This strict model helps to generate data

that is (a) more directly representative of the source environment,

and as a consequence (b) more robust to future queries outside of

the original workload. However, while constraints with filter and

join operators have been handled satisfactorily, support for the

projection operator has been minimal, restricted to a few extreme

cases. For instance, DataSynth [8] proposed a projection generator

that catered to single-column tables. Here, due to the single-column

restriction, there are by definition no intra/inter projection subspace

dependencies. In contrast, in PiGen, we consider a general class of

strict PICs, requiring us to explicitly address these challenges.

Complementary to these database studies, the mathematical

literature includes work such as [12, 16, 27] that study conditions

for ensuring feasibility of a given set of projection constraints.

However, they do not adequately address our requirements, as

discussed in detail in Section 9 (PiGen deployment).

3 PROBLEM FRAMEWORK
In this section, we summarize the basic problem statement, and the

underlying assumptions of our PiGen solution.

Statement. Given an input table schema 𝑆 and a workloadW of

strict PICs on 𝑆 , the objective of data generation is to construct a

table T , such that it conforms to 𝑆 and satisfiesW.

Assumptions. We assume that each PIC inW is of the form de-

scribed in the Introduction, and that it is strict (i.e., with prespecified

predicate constants). Further, for ease of presentation, we assume

thatW is collectively feasible, that is, there exists at least one legal
database instance satisfying all the constraints – the infeasibility

scenario is deferred to Section 9. Finally, for brevity, we present the

ideas using tables with continuous numeric columns; the extension

to other data types is straightforward.

Output. Given 𝑆 and W, PiGen outputs a collection of table

summaries. Each summary 𝑠(T ) can be used to deterministically

produce the associated table T . The tables produced are such that:

(a) all of them conform to 𝑆 , and (b) each input PIC inW is satisfied

by at least one of them.

Notations. The main acronyms and key notations used in the

rest of the paper are summarized in Tables 1 and 2, respectively.

Table 1: Acronyms

Acronym Meaning
PAS Projection Attribute Set

PIC Projection-inclusive Cardinality Constraint

FB Filter Block

RB Refined Block

PRB Projected Refined Block

CPB Constituent Projection Block

PSD Projection Subspace Division

Table 2: Notations

(a) Input Related (b) Output Table Related
Symbol Meaning Symbol Meaning

𝑆 Table Schema T Output Table

𝑓 Filter predicate 𝑠(T) Summary of T
A A PAS U attribute-set in T
𝑙 Output row cardinality D Data space of T

of a filtered table DA Data subspace

𝑘 Output row cardinality spanned by A

after projecting on a

PAS (c) Block Related
𝑐 A PIC ⟨𝑓 ,A, 𝑙, 𝑘 ⟩ Symbol Meaning
W Input PICs workload 𝑏 An FB

C A compatible R Set of all RBs

PICs workload 𝑟 An RB

𝑟 PRB wrt 𝑟

(d) Relation Related and some PAS

Symbol Meaning R
A

Set of PRBs for A

𝑀 A relation btw C , R 𝑝 A CPB

(Definition 5.2) PA Set of CPBs for A

𝐿A A relation btw PA , R
A

𝑥𝑟 variable for |𝑟 |
(Definition 6.1) 𝑦𝑝 variable for |𝑝 |

4 DESIGN PRINCIPLES
In this section we overview the core PiGen design principles, with

the Purchases table of the Introduction used as the running exam-

ple to explain their impact. Subsequently, in Sections 5 through 8,

each principle is described in detail. To set the stage, here are some

basic definitions underlying our work.

Definition 4.1. A block is a bag of points (i.e. tuples) in the data

space D of the synthetic table T .

Definition 4.2. A projection block is a subset of points from DA,

where DA represents the data subspace of the synthetic table T
spanned by a given PAS A.
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4.1 Region Partitioning
To model the filter predicates associated with W, the data space

D is logically partitioned into a set of blocks. Each block satisfies

the condition that every data point in it satisfies the same subset of

filter predicates.

The row cardinality of each block is represented using a variable

in the LP. The resultant system is usually highly under-determined

and therefore, to reduce the complexity of solving it, we leverage

the region partitioning technique from [23], which partitions the

data space into the minimum number of blocks.

Figure 1: Region Partitioning

Here, for a tuple 𝑡 ∈ D, and a PIC 𝑐 ∈ W, let 𝑐(𝑡 ) denote the

indicator, set to 1 if 𝑡 satisfies the filter predicate associated with 𝑐 ,

0 otherwise. Now, a pair of tuples 𝑡1 and 𝑡2 are said to be related by

𝑅W, if 𝑐(𝑡1) = 𝑐(𝑡2), for all 𝑐 ∈ W. 𝑅W is an equivalence relation, and

the region partitioning algorithm returns the quotient set of D by

𝑅W. That is, the data points from the same equivalence class (wrt

𝑅W) form a block. Each resultant block is referred to as a filter-block
(FB). The algorithm outputs the domain of each FB, which forms

its logical condition. The domain of an FB 𝑏 is denoted as 𝐷(𝑏).

To make the above concrete, consider the three filter predicates,

𝑓1, 𝑓2, 𝑓3 on Purchases. For simplicity, Figure 1 shows only the 2D

data space comprising the 𝑄𝑡𝑦 and 𝐴𝑚𝑡 attributes since no condi-

tions exist on the other attributes. In this figure, the filter predicates

are represented using regions delineated with colored solid-line

boundaries. When region partitioning is applied on this scenario,

it produces the four disjoint FBs: 𝑏1, 𝑏2, 𝑏3, 𝑏4, whose domains are

depicted with dashed-line boundaries.

4.2 Isolating Projections
To circumvent inter-projection subspace dependencies, we “isolate”

the projections. Specifically, a symmetric refinement strategy is

executed to refine each FB into a set of disjoint blocks, called refined-
blocks (RBs). The refinement is executed such that each resultant

RB exhibits translation symmetry along each applicable projection

subspace. That is, for each domain point of an RB 𝑟 along a particular

PAS, the projection of the domain of 𝑟 along the remaining attributes

is identical.

For instance, consider FB 𝑏4 in Figure 1. Clearly, it is asymmetric

along the PAS 𝑄𝑡𝑦 – specifically, compare the spatial layout in the

range 10 ≤ 𝑄𝑡𝑦 < 20 with that in 𝑄𝑡𝑦 ≥ 20. After refinement, this

block breaks into 𝑟4𝑎 and 𝑟
4𝑏 as shown in Figure 2(a) – it is easy

to see that 𝑟4𝑎 and 𝑟
4𝑏 are symmetric. (The other FBs (𝑏1, 𝑏2, 𝑏3)

happen to be already symmetric, and are shown as 𝑟1, 𝑟2 and 𝑟3,

respectively, in Figure 2(a)). This refinement allows for the values

Figure 2: Symmetric Refinement and PSD

along different projection subspaces to be generated independently.

That is, 𝐷(𝑟 ) = 𝐷(𝜋𝐴𝑚𝑡 (𝑟 )) × 𝐷(𝜋𝑄𝑡𝑦 (𝑟 )), for each RB 𝑟 .

The above refinement, however, does not scale when the pro-

jections applied on an FB are along partially overlapping PASs, i.e.

when different PASs share some attribute(s). Therefore, to eliminate

such situations, we resort to decomposing the workload into non-

overlapping sub-workloads using a vertex coloring-based strategy.

As a consequence, for each such sub-workload, a separate summary

is produced at the conclusion of the LP solution process.

4.3 Projection Subspace Division
To deal with intra-projection subspace dependencies, the domain of

each PAS is logically divided into a set of projection blocks, called

constituent-projection-blocks (CPBs). This construction ensures that

each projection cardinality is expressible as a summation over the

cardinalities of these CPBs. Further, we ensure that the minimum

number of CPBs is produced, aiding in efficient LP formulations.

For our example scenario, PiGen divides the data subspace associ-

ated with the𝐴𝑚𝑡 dimension into 4 CPBs: 𝑝𝐴𝑚𝑡
1

, 𝑝𝐴𝑚𝑡
2

, 𝑝𝐴𝑚𝑡
3

, 𝑝𝐴𝑚𝑡
4

,

and the 𝑄𝑡𝑦 dimension subspace into 6 CPBs: 𝑝
𝑄𝑡𝑦

1
, 𝑝

𝑄𝑡𝑦

2
, ..., 𝑝

𝑄𝑡𝑦

6
,

as shown in Figure 2(a). Each CPB has a semantic meaning associ-

ated with it. For example, 𝑝𝐴𝑚𝑡
1

semantically represents the 𝐴𝑚𝑡

values present in both 𝑟1 and 𝑟2. Further, the CPBs need not be mu-

tually disjoint, as in the case of 𝑝𝐴𝑚𝑡
3

and 𝑝𝐴𝑚𝑡
4

. Finally, Figure 2(a)

also shows the unique tuples enumerated by the sample output

table shown in Figure 2(b), and the CPB (s) to which each of these

tuples belongs.

4.4 Constraints Formulation
The LP solving procedure is constructed using variables repre-

senting the row cardinalities of RBs and CPBs. For instance, if 𝑥𝑖

represents the cardinality of RB 𝑟𝑖 , and 𝑦
𝐴𝑚𝑡
𝑗

and 𝑦
𝑄𝑡𝑦

𝑘
represent
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the cardinalities of CPBs 𝑝𝐴𝑚𝑡
𝑗

and 𝑝
𝑄𝑡𝑦

𝑘
, respectively, then PICs

are expressed by linear equations as follows:

𝑐1 : 𝑥1 + 𝑥2 = 500, 𝑦𝐴𝑚𝑡
1

+ 𝑦𝐴𝑚𝑡
2

+ 𝑦𝐴𝑚𝑡
3

= 5

𝑐2 : 𝑥3 = 1000, 𝑦𝐴𝑚𝑡
4

= 3

𝑐3 : 𝑥2 + 𝑥3 + 𝑥4𝑎 + 𝑥
4𝑏 = 3000,

𝑦
𝑄𝑡𝑦

1
+ 𝑦

𝑄𝑡𝑦

2
+ 𝑦

𝑄𝑡𝑦

3
+ 𝑦

𝑄𝑡𝑦

4
+ 𝑦

𝑄𝑡𝑦

5
+ 𝑦

𝑄𝑡𝑦

6
= 9

Finally, additional sanity constraints are added to the LP to ensure

data constructibility. For example, the distinct row-cardinality of the

projection of an RB is upper-bounded by the RB’s native cardinality.

4.5 Enriched Database Summary
To construct the final summary, the domain of each PAS is divided

into a set of intervals and then the CPBs are assigned these intervals.

A sample summary for the Purchases table is shown in Figure 3,

after incorporating an additional attribute 𝑌𝑒𝑎𝑟 to illustrate a multi-

dimensional projection.

Each segment of the summary corresponds to a populated RB.

Specifically, the figure shows the tabulation for the 𝑟1, 𝑟3 and 𝑟4𝑏
RBs. Each tabulation comprises of a column for each PAS acting on

the RB, and an additional last column indicating the total number

of tuples present in the RB. In each PAS column, the information

for generating data of the associated projection subspace is present.

Specifically, we maintain the intervals in the projection subspace

along with their distinct counts. As a case in point, the first tabula-

tion, corresponding to 𝑟1, is interpreted as “generate 500 tuples, such

that there are 5 distinct values of 𝐴𝑚𝑡 in the interval [1100,2500),
and 20 distinct value pairs of {𝑄𝑡𝑦,𝑌𝑒𝑎𝑟 } of which 12 are from the

2D interval [1,10), [1990,2000), and the remaining 8 from the

2D interval [1,10), [2010,2020).”

Figure 3: PiGen Table Summary

For attributes that do not feature in any projection subspace,

no associated distinct cardinality is maintained – an example is

𝑌𝑒𝑎𝑟 in 𝑟3. Lastly, the primary-key column (𝑃𝐼𝐷 in the example)

is omitted from the summary and is assumed to be a sequence of

distinct natural numbers during on-demand tuple generation.

In the following sections, we present the internal details of each of

the aforementioned concepts.

5 ISOLATING PROJECTIONS
To facilitate independent processing of projection sub-spaces, we

refine the FBs so that the resultant blocks become symmetric. The

symmetry is formally defined as follows:

Definition 5.1. A block 𝑟 in the data space of a U-dimensional

table T is symmetric along a PAS A iff

𝐷(𝑟 ) = 𝐷(𝜋A(𝑟 )) × 𝐷(𝜋U\A(𝑟 ))

where 𝐷(.) returns the domain of the input block.

Likewise 𝑟 is symmetric along PASs A1,A2, ...,A𝛼 iff

𝐷(𝑟 ) = 𝐷(𝜋A1
(𝑟 )) × 𝐷(𝜋A2

(𝑟 )) × ...
× 𝐷(𝜋A𝛼 (𝑟 )) × 𝐷(𝜋U\(A1∪A2∪...∪A𝛼 )(𝑟 ))

The Cartesian product implies that for a symmetric block, the

data can be independently generated for each PAS considered. There-
fore, Symmetric Refinement module refines each FB into a set

of symmetric blocks along the PASs acting on it. Hence, post-

refinement, the different projection spaces can be processed in-

dependently. The refinement algorithm is discussed in Section 5.1.

Impact of Overlapping Projection Subspaces. When partially over-

lapping PASs, say A1 and A2, are applied on an FB 𝑏, symmetric

refinement becomes computationally challenging. This is because

A1,A2 have to be made conditionally independent for 𝑏, requiring

refinement such that each resulting block is symmetric along A1
and A2 for each domain point in 𝐷(A1 ∩ A2). This is easily done

by enumeration for small cardinality domains, but does not scale

in general. Hence, in PiGen we bypass such overlapping projec-

tion operations by ensuring, as described in Section 5.2, that the

input workload is initially itself decomposed such that there are no

projection subspace overlaps in the resulting sub-workloads.

5.1 Symmetric Refinement
The refinement for each FB is done independently. Given an FB 𝑏

and its associated PASs, this module refines 𝑏 into a group of RBs,

such that each RB is symmetric along the input PASs.

Let us first understand the refinement procedure along a single

PASA. Here, given 𝑏 andA, the refinement is carried out as follows:

(1) Let I be the subset of all interval-combinations in 𝐷(A) that
are present in 𝑏. The interval boundaries along an attribute

are computed using the constants that appear in the filter

predicates of the input PICs. For some interval-combination

I ∈ I, let 𝑏I denote the part of 𝑏 whose projection along

A is I.
(2) For each interval combination I ∈ I, the projection of 𝑏I

along U \ A is computed, and denoted as 𝜋 (𝑏I ).
(3) A hashmap 𝐻 is created with keys as 𝜋 (𝑏I ) and value as

I. Hence, the parts of 𝑏 where the projection of 𝑏 along

U \ A do not alter with changing values of A are clubbed

together into a single hash entry. This construction provides

independence between A and the U \ A subspaces.

(4) Each entry 𝑒 in 𝐻 corresponds to an RB, constructed by

taking the region stored as key in 𝑒 for the U \ A attribute-

set, and a union of regions stored as value in 𝑒 for the A
attribute-set.

Interestingly, the above refinement strategy also ensures that the

number of resultant blocks is kept to a minimum, as proved in [21].

Extension to Multiple PAS. We now move on to the multiple PAS

scenario. Let there be 𝛼 PASs (A1,A2, ...,A𝛼 ) applicable on 𝑏 across

all PICs. This implies that there are 𝛼 + 1 projection subspaces –
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𝜋A1
(𝑏), 𝜋A2

(𝑏), ..., 𝜋A𝛼 (𝑏), and 𝜋U\(A1∪A2∪...∪A𝛼 )(𝑏). It is easy to see

that the block becomes symmetric when refined along any 𝛼 of

these 𝛼 + 1 subspaces.

The refinement is done iteratively, where the output of refine-

ment along one subspace is fed into the next in the sequence. Since

any sequence among the chosen 𝛼 subspaces results in a symmet-

ric block, there are a total of

(𝛼+1
𝛼

)
𝛼! ways to do the refinement.

The specific choice that we make from this large set of options is

important because it has an impact on the number of variables in

the LP, and hence the computational complexity and scalability of

the solution procedure. In particular, the number of CPBs created

depends on the geometry of the RBs, and usually more overlaps

of RBs along a PAS results in more CPBs. More precisely, if we

refine a block along a subspace, the overlaps in that space remain

unaffected, but the overlaps along the remaining subspaces may

increase. Therefore, to minimize this collateral impact, we adopt

the following greedy heuristic in PiGen: The subspace having the

maximum FB overlaps with 𝑏 is chosen as the next subspace to be

refined in the iterative sequence.

Mapping RBs to PICs. The set of RBs, denoted by R, are connected
with the set of PICs using the following relation:

Definition 5.2. An RB 𝑟 ∈ R is related by relation 𝑀 to a PIC 𝑐

containing filter predicate 𝑓 , iff 𝐷(𝑟 ) satisfies 𝑓 . That is,

𝑟𝑀𝑐 ⇔ 𝑡 satisfies 𝑓 ,∀𝑡 ∈ 𝐷(𝑟 )

For a PIC 𝑐 , the associated filter predicate’s output cardinality 𝑙

can be expressed as the union of a group of RBs related to 𝑐 by𝑀 ,

as follows:

|
⋃

𝑟 :𝑟𝑀𝑐

𝑟 | =
∑︁
𝑟 :𝑟𝑀𝑐

|𝑟 |= 𝑙

Since all the RBs are mutually disjoint, the union could be replaced

with summation in the above equation.

5.2 Workload Decomposition
As discussed previously, symmetric refinement is performed when

distinct PASs applicable on an FB are non-overlapping. This holds

true when, for each domain point 𝑡 , the distinct PASs across various

PICs that are applicable on 𝑡 , are mutually disjoint. For any given

collection of sets (PASs) to be mutually disjoint, it is equivalent

to say that they are pairwise disjoint. This leads us to defining the

concept of an intersecting pair of PICs.

Definition 5.3. A pair of PICs (𝑐1 : ⟨𝑓1,A1, 𝑙1, 𝑘1⟩, 𝑐2 :

⟨𝑓2,A2, 𝑙2, 𝑘2⟩) intersect iff:
• their PASs partially intersect, i.e.,

A1 ∩ A2 ̸= ∅,A1 ̸= A2, and
• 𝑓1 and 𝑓2 overlap, i.e., there exists a point 𝑡 in the domain

space of T such that 𝑡 satisfies 𝑓1 and 𝑓2.

For example, consider the following pair of constraints, 𝑐4 and 𝑐5,

on the Purchases table:

𝑐4 :⟨𝐴𝑚𝑡 ≤ 2500 ∧ 𝑌𝑒𝑎𝑟 ≥ 1990, (𝑄𝑡𝑦,𝑌𝑒𝑎𝑟 ), 500, 20⟩
𝑐5 :⟨𝑄𝑡𝑦 ≥ 20 ∧ 𝑌𝑒𝑎𝑟 ≤ 2020, (𝐴𝑚𝑡,𝑌𝑒𝑎𝑟 ), 2000, 6⟩

We see that the filters in the two constraints overlap, and the

corresponding PASs also partially intersect.

In the Workload Decomposition module, the input workload is

split such that there are no intersecting pairs of PICs in the resulting

sub-workloads. We refer to a workload with no intersecting pairs

as a compatible workload, and denote it using C.
Given an original workload W, the set of intersecting pairs

𝐼𝑃 is computed first. Subsequently, we construct compatible sub-

workloadsC1,C2, ..,C𝑛 that cover the entire workload. Additionally,

we aim towards minimizing 𝑛, i.e. the number of sub-workloads.

This minimization is desirable to facilitate common platform for

workload performance evaluation. Since the minimization is NP-
complete (reduction from vertex coloring), we adopt a heuristic

based on greedy vertex coloring. The algorithm iterates over the

PICs, and in each iteration, the PIC 𝑐 with minimum intersections in

𝐼𝑃 is picked and assigned to a compatible sub-workload C𝑖 . If multi-

ple compatible options are available, an assignment that minimizes

the skew in the sub-workload sizes is made. On the other hand, if

no such assignment is possible, a new sub-workload is constructed,

and initialized with 𝑐 .

In the worst case, the above algorithm can create one sub-

workload per query. However, it is our experience that in practice,

a small number of sub-workloads is usually sufficient. Further, we

hasten to add that even if the worst case materializes, the overheads

incurred would be marginal as only a single small summarized table

is stored per sub-workload.

6 PROJECTION SUBSPACE DIVISION
We now turn our attention to handling intra-projection subspace

dependencies. The projection output cardinality with respect to a

PIC 𝑐 can be expressed using the relation𝑀 as follows:

|
⋃

𝑟 :𝑟𝑀𝑐

𝜋A(𝑟 )| = 𝑘

We use the shorthand 𝑟 to represent the projection of an RB 𝑟 on A,
i.e. 𝑟 = 𝜋A(𝑟 ), and this projection block is referred to as a projected-

refined-block (PRB). The set of all PRBs for a PAS A is shown as R
A
.

Further, for brevity, we overload the same relation𝑀 to establish an

association between PRB 𝑟 and a constraint 𝑐 . That is, 𝑟𝑀𝑐 ⇔ 𝑟𝑀𝑐 .

Hence we can rewrite the above equation as:

|
⋃

𝑟 :𝑟𝑀𝑐

𝑟 | = 𝑘

The union here cannot be replaced with summation because unlike

RBs, the PRBs need not be disjoint. Therefore, to be able to express

the constraint as a linear equation, the projection subspace DA

needs to be divided into a set of CPBs. The set of CPBs correspond-

ing to a PAS A is denoted using PA. Each element 𝑝 ∈ PA logically

represents a subset of DA. Further, a relation 𝐿A is provided that

connects the elements of PA with elements of R
A
. We first define

the notion of what constitutes a valid division, and then go on to

presenting an algorithm that provides the (unique) optimal division.

6.1 Valid Division
A valid division is defined as follows:

Definition 6.1. Given C,R
A
and 𝑀 , a division (PA, 𝐿A) with re-

spect to a projection data subspace DA is called a valid division if it

satisfies the following two conditions:
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Condition 1. Each PRB 𝑟 ∈ RA is expressible as a union of a group

of elements from PA, determined by relation 𝐿A:

𝑟 =
⋃

𝑝 :𝑝𝐿A𝑟

𝑝, ∀ 𝑟 ∈ RA

Condition 2. All elements in PA that are related to a constraint

𝑐 ∈ C through the composite relation

𝑀 ◦ 𝐿A = {(𝑝, 𝑐)|∃𝑟 ∈ RA : 𝑟𝑀𝑐 ∧ 𝑝𝐿A𝑟 }
(i.e., all elements of the set {𝑝 : (𝑝, 𝑐) ∈ 𝑀 ◦ 𝐿A}), should be
mutually disjoint for all 𝑐 ∈ C.

Condition 1 is needed to associate a PRB with its constituent

CPBs. This is required during data generation in order to populate

appropriate RBs based on the cardinalities of CPBs obtained from

the LP solution. Condition 2 enforces that each constraint is com-

prised of disjoint constituent CPBs, thereby enabling expression of

the constraints as linear equations.

For ease of presentation, we drop A, which can be assumed

implicitly, from the superscript in the rest of this section.

6.2 Optimal Division
The number of CPBs in P determine the number of variables in

the LP. Therefore, reducing the size of P helps in reducing the

LP complexity, providing workload scalability and computational

efficiency. Hence, we define an optimal division as a valid division

that has the minimum number of CPBs.

Definition 6.2. A valid division (P, 𝐿) is called an optimal division

iff there does not exist any other valid division (P′, 𝐿′) such that

|P′ |< |P|. We represent the optimal division by (P∗, 𝐿∗).

Each element 𝑝 of P maps to a collection of sets from R using 𝐿.

Let R(𝑝) represent the set of PRBs that are related to 𝑝 through 𝐿.

Therefore, as a first step towards identifying the optimal division, let

us characterize how CPBs interact with PRBs as follows: Consider a

vector 𝑣𝑝 corresponding to each CPB 𝑝 in P. The vector is of length

𝑚, where each element is associated with an element of R. Further,
the element associated with 𝑟 ∈ R is denoted by 𝑣𝑝 (𝑟 ). Specifically,

element 𝑣𝑝 (𝑟 ) is set to 1 iff 𝑝𝐿𝑟 . For such cases, 𝑝 ⊆ 𝑟 . Next, the

elements in 𝑣𝑝 corresponding to the sets R(𝑝 ′) \R(𝑝) for all 𝑝 ′ such
that (𝑝, 𝑐), (𝑝 ′, 𝑐) ∈ 𝑀 ◦ 𝐿 for some 𝑐 ∈ C, are represented as 0,

denoting the absence of values from these sets (using Condition 2).

The remaining elements of 𝑣𝑝 are set as ‘×’ denoting a don’t care
state, i.e. 𝑝 and 𝑟 may or may not have an intersection. Finally, 𝑝

can be expressed in terms of 𝑣𝑝 as:

𝑝 =

⋂
𝑟 :𝑣𝑝 (𝑟 )=1

𝑟 \
⋃

𝑟 ′:𝑣𝑝 (𝑟
′
)=0

𝑟 ′ (1)

Let the set of vectors corresponding to the elements in P∗ be
denoted asV∗ – the algorithm for computing this set is given below.

Opt-PSD Algorithm. We begin our computation of the projection

subspace division by creating a Division Graph. In this graph, a

vertex is created corresponding to each element of R. Then, an edge

is added between vertices corresponding to 𝑟1 and 𝑟2 if there exists a

constraint 𝑐 such that 𝑟1𝑀𝑐 and 𝑟2𝑀𝑐 , (i.e. both PRBs are related to

a common constraint 𝑐), and the domains of 𝑟1 and 𝑟2 intersect. The

Algorithm 1: Optimal Projection Subspace Division

Input: Division Graph𝐺

Output: Optimal Vectors-set V∗

1 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 ← ∅;
2 for 𝑟 in R do
3 𝑣𝑖𝑛𝑖𝑡 ← {×}𝑚, 𝑣𝑖𝑛𝑖𝑡 (𝑟 )← 1;

4 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 ← {𝑣𝑖𝑛𝑖𝑡 };
5 while 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 ̸= ∅ do
6 𝑣 ← 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 .𝑝𝑜𝑝();

7 𝑝𝑖𝑣𝑜𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑔𝑒𝑡𝑃𝑖𝑣𝑜𝑡 (𝐺, 𝑣);

8 if 𝑝𝑖𝑣𝑜𝑡 exists then
9 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 ← 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 ∪ 𝑆𝑝𝑙𝑖𝑡 (𝑣, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠);

10 else
11 V∗ ← V∗ ∪ {𝑣 };

12 return V∗;

resultant graph𝐺 is given as input to Algorithm 1, which returns the

set of vectorsV∗ in the output. Leveraging the vectors, the contents

of the CPBs are computed using Equation 1. Then, the 𝐿∗ relation
is populated with the expression: (𝑝, 𝑟 ) ∈ 𝐿∗, if 𝑣𝑝 (𝑟 ) = 1, 𝑣𝑝 ∈ V∗.
The rest of the algorithm proceeds as follows:

Firstly, we iterate over the vertices of 𝐺 . In the iteration for a

PRB 𝑟 , a vector is initialized with ‘×’ for all the positions except
that corresponding to 𝑟 , which is set to 1 (Line 3 of Algorithm 1).

These initial vectors are recursively further split in the while loop

(Line 5), using a running list of vectors called 𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 .

Secondly, in each iteration of the while loop, an element 𝑣 from

𝑡𝑜𝐵𝑒𝑆𝑝𝑙𝑖𝑡 is popped and split using a 𝑝𝑖𝑣𝑜𝑡 vertex; the resultant

elements are re-inserted in the list. A pivot PRB is distinguished

as one which is included in 𝑣 and co-occurs in a constraint 𝑐 with

another PRB (target) whose current assignment in the vector is

×. To select the 𝑝𝑖𝑣𝑜𝑡 vertex in 𝐺 , the 𝑔𝑒𝑡𝑃𝑖𝑣𝑜𝑡 function is used,

which makes the choice based on the following conditions: (a)

𝑣(𝑝𝑖𝑣𝑜𝑡 ) = 1, and (b) there exists a PRB 𝑟 such that there is an edge

between the vertices corresponding to 𝑝𝑖𝑣𝑜𝑡 and 𝑟 . Further, the

value for 𝑟 in the vector 𝑣 is ×.
Finally, the collection of all PRBs that satisfy condition (b) is

denoted as the 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 set corresponding to 𝑝𝑖𝑣𝑜𝑡 , and is returned

by the 𝑔𝑒𝑡𝑃𝑖𝑣𝑜𝑡 function. Now, 𝑣 is split using the 𝑆𝑝𝑙𝑖𝑡 function

(detailed in [21]), which computes a powerset enumeration of the

vector positions corresponding to PRBs in 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 .

We have also incorporated optimizations to Algorithm 1 to pre-

vent redundant computations. Due to space limitations, these op-

timizations, along with the algorithm’s proof of correctness and

optimality, are deferred to [21].

7 CONSTRAINTS FORMULATION
LP formulation requires constraints that capture the PICs while

ensuring that the solution corresponds to a physically constructible

database. In a valid division, each PRB is covered by a set of CPBs

and all CPBs related to a same PIC are mutually disjoint. As a

consequence, a constraint 𝑐 ⟨𝑓 ,A, 𝑙, 𝑘⟩ can now be expressed as a

summation of cardinalities of CPBs related to c through𝑀 ◦ 𝐿A:
|𝜋A(𝜎𝑓 (T)) |=

∑︁
𝑝 :(𝑝,𝑐)∈𝑀◦𝐿A

|𝑝 | (2)
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Further, since each 𝑟 ∈ RA is related to at least one 𝑐 ∈ C
through𝑀 ◦ 𝐿A, the CPBs associated with 𝑟 ∈ RA through 𝐿A are

also disjoint. Hence, the cardinality of 𝑟 ∈ RA can be represented

as a summation of the cardinalities of related CPBs:

|𝑟 |=
∑︁

𝑝 :𝑝𝐿A𝑟

|𝑝 | (3)

The LP construction uses the above facts while constructing con-

straints. Specifically, two types of LP variables are constructed – 𝑥𝑟

and 𝑦𝑝 , denoting |𝑟 | (𝑟 ∈ R) and |𝑝 | (𝑝 ∈ PA), respectively.
Given this framework, there are two classes of constraints, Ex-

plicit Constraints and Sanity Constraints, that constitute the input
to the LP and are discussed in the remainder of this section.

7.1 Explicit Constraints
These are the LP constraints that are directly derived from the

PICs. Specifically, for each PIC, 𝑐 : ⟨𝑓 ,A, 𝑙, 𝑘⟩, the following pair of

constraints is added for Filter and Projection Output:

(a) Filter Output (b) Projection Output (from Equation 2)∑︁
𝑟 :𝑟𝑀𝑐

𝑥𝑟 = 𝑙

∑︁
𝑝 :(𝑝,𝑐)∈𝑀◦𝐿A

𝑦𝑝 = 𝑘

7.2 Sanity Constraints
These are the additional constraints necessary and sufficient to

ensure that the LP solution can be used for constructing a physical

database instance. Here, there are three types of constraints:

Type 1: These constraints ensure that the row cardinality for each

RB and CPB are non-negative in the LP solution. That is,

𝑥𝑟 ≥ 0, ∀𝑟 ∈ R, and 𝑦𝑝 ≥ 0, ∀𝑝 ∈ PA, for all PAS A

Type 2: These constraints ensure the row cardinality for each RB

is ≥ the number of distinct tuples along each applicable

PAS for it. Using Equation 3, these constraints, for each RB

𝑟 and each of its associated PAS A, are expressed as:∑︁
𝑝 :𝑝𝐿A𝑟

𝑦𝑝 ≤ 𝑥𝑟

Type 3: Even after satisfying the above sanity constraints, the

total number of tuples for an RB may be positive while the

number of distinct tuples along some projection subspace

remains 0. This possibility is prevented by the following

constraint for each RB 𝑟 and each associated PAS A:

𝑥𝑟 ≤ |T |
∑︁

𝑝 :𝑝𝐿A𝑟

𝑦𝑝

In the above, 𝑟 = 𝜋A(𝑟 ) and |T | is the cardinality of T ,
which is an upperbound on 𝑥𝑟 . We assume that |T | is given
as an input PIC with no filter predicate.

8 DATA GENERATION
The table summary compactly stores information needed for gen-

erating the associated tuples. In this section, we first discuss how

the summary is constructed and then the tuple generation process.

8.1 Summary Construction
Each projection subspace is dealt with independently thanks to the

projection isolation techniques. Consider the projection subspace

corresponding to PASA – here, the first step is to assign an interval

to each CPB 𝑝 ∈ PA. A challenge in this assignment is that the

domains of different CPBs may intersect. For instance, the domains

of CPBs 𝑝
𝑄𝑡𝑦

2
and 𝑝

𝑄𝑡𝑦

6
intersect in Purchases. However, since

CPBs related to a common projection constraint should not inter-

sect, we assign disjoint intervals to these CPBs to ensure Condition

2. Hence, 𝑝
𝑄𝑡𝑦

2
and 𝑝

𝑄𝑡𝑦

6
are allocated disjoint intervals for PAS

𝑄𝑡𝑦 as (𝑝
𝑄𝑡𝑦

2
, 𝑐3), (𝑝

𝑄𝑡𝑦

6
, 𝑐3) ∈ 𝑀 ◦ 𝐿𝑄𝑡𝑦

. On the other hand, in the

case of PAS 𝐴𝑚𝑡 , 𝑝𝐴𝑚𝑡
2

and 𝑝𝐴𝑚𝑡
4

are not related to any 𝑐 in C, and
therefore their data generation intervals can overlap.

As per above, a feasible interval assignment for Purchases is:

𝑝𝐴𝑚𝑡
2

← [1100, 2500) 𝑝
𝑄𝑡𝑦

2
← [20, 25)

𝑝𝐴𝑚𝑡
4

← [500, 3000) 𝑝
𝑄𝑡𝑦

6
← [25, 40)

The summary is maintained RB-wise, with the template structure

shown in Figure 4. We see here that all the CPBs associated with the

block, along with their distinct tuple cardinalities, are represented

in the summary. Using 𝛼 to denote the total number of associated

PASs, an RB can be represented in 𝛼 + 1 components, with each

component associated with a PAS having a distinct row-cardinality.

For the attribute-set on which no projection is applied for the RB,

shown as A𝑙𝑒 𝑓 𝑡 , the domain of the projection block is kept as is

and no distinct tuple count is maintained. Lastly, each RB has an

associated total cardinality. A populated instance of the template,

and its interpretation, was discussed earlier in Section 4.5.

A1 A2 ... A𝛼 A𝑙𝑒 𝑓 𝑡
RB

Card.

𝐶𝑃𝐵1: card., 𝐶𝑃𝐵1: card., ... 𝐶𝑃𝐵1: card.,

𝑃𝐵𝐶𝑃𝐵2: card., 𝐶𝑃𝐵2: card., ... 𝐶𝑃𝐵2: card.,

... ... ... ...

Figure 4: Sample RB in Summary

8.2 Tuple Generation
Using the information in the summary, the tuples of the table are

instantiated. Specifically, the algorithm iterates over each RB and

generates the number of rows specified in the associated total cardi-

nality value. For an RB and an associated PASA, each CPB is picked

and the corresponding partial tuples are generated. This gives a

collection of partial tuples for A which may be less than the total

cardinality. To make up the shortfall without altering the number

of distinct values, we repeat the generated partial tuples until the

total cardinality is reached. For the A𝑙𝑒 𝑓 𝑡 component, which only

has a single interval, any partial-tuple within its boundaries can

be picked for repetition. Finally, partial-tuples across all projection

spaces of the RB are concatenated to construct its output tuples.

Inter-Block Dependencies. We have to ensure that the partial-

tuples associated with a CPB are identical for each of the associated

RBs. To do so, we employ a deterministic algorithm that takes an

interval and a cardinality as input, and produces a series of distinct

points, equal to the cardinality, from the interval – this series is

used in all the associated RBs. As a case in point, for the sample

summary in Figure 3, the partial tuples generated for the CPB with

interval [20, 25) and distinct row cardinality 5 are identical in both

𝑟3 and 𝑟4𝑏 .
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9 PIGEN DEPLOYMENT
The end-to-end data generation pipeline starts with a workloadW
of PICs over a tableT serving as the pipeline input. ThenWorkload
Decomposition splitsW into a set of compatible sub-workloads.

Subsequently, the rest of the pipeline, comprising of LP Formula-

tion and Data Generation, is executed independently for each of

these sub-workloads. The LP Formulation for a sub-workload C
begins with Region Partitioning followed by Symmetric Re-
finement algorithm. This gives the set of RBs. For each PAS across

all PICs, the PRBs are computed using the RBs. These PRBs and

C are then used by the Projection Subspace Division module

to construct the set of CPBs. Next, at the Constraints Formula-
tion stage, an LP is constructed using variables representing the

cardinalities of RBs and CPBs. This construction is then given as

the input to the LP Solver. From the solution produced by the LP

solver, a comprehensive table summary is constructed using the

Summary Construction module. This summary is used by the

Tuple Generation module to synthesize the data. It can generate

tuples on-demand during query processing, thereby eschewing the

need for data materialization. Alternatively, if the user desires a ma-

terialized database instance, it can be generated from the summary

and stored persistently.

Finally, PiGen leverages the graphical model-based table de-

composition techniques proposed in [8] to construct the table in a

piece-meal fashion and then stitch these constituent pieces together.

Each sub-table consists of a subset of attributes determined by the

attributes that co-appear in the PICs, thereby further reducing the

LP complexity.

Having presented the mechanics of PiGen, we now take a step

back and critique the approach on relevant aspects.

9.1 Workload Feasibility
Feasibility of a set of PICs implies that the PICs can be accurately

satisfied by a single database instance. This notion can be classified

into the following two scenarios:

Intra-PIC Feasibility. This form of feasibility deals with PICs at

an individual level. Specifically, a PIC 𝑐 : ⟨𝑓 ,A, 𝑙, 𝑘⟩ is feasible iff:
0 < 𝑘 ≤ 𝑙 ≤ |T | or 𝑙 = 𝑘 = 0 (4)

We prove this in the full version of the paper [21].

Inter-PIC Feasibility. This is a stronger form of feasibility, where

in addition to PICs being individually feasible, they are also required

to be mutually compatible. For instance, consider the additional

constraint, 𝑐6, on the Purchases table:

𝑐6 : ⟨𝐴𝑚𝑡 ≤ 2000 ∧ 𝑌𝑒𝑎𝑟 ≥ 2000, 𝑄𝑡𝑦, 400, 25⟩
We observe here that 𝑐4 and 𝑐6 cannot be satisfied together. Specif-

ically, 𝑐6 requires 25 distinct 𝑄𝑡𝑦 values for the range 𝐴𝑚𝑡 ≤
2000 ∧ 𝑌𝑒𝑎𝑟 ≥ 2000, while 𝑐4 requires that the number of dis-

tinct (𝑄𝑡𝑦,𝑌𝑒𝑎𝑟 ) pairs is 20 for a larger covering range, constituting

an impossible situation.

Defining a set of necessary and sufficient conditions that en-

sure solution feasibility for various types of input constraints has

been looked at in the database literature. For instance, [17] deals

with schematic constraints on the participation cardinalities for

the relationships between entities in the ER model, and provides

necessary and sufficient conditions to determine whether database

instances exist such that all entities and relationships are popu-

lated. However, giving a similar holistic solution in the statistical
query-based constraints space, is still an open problem, although

restricted versions have been attempted. Specifically, feasibility of

projection cardinality constraints has been discussed in [12, 16, 27].

A class of constraints, called BT inequalities, were proposed in

[12], which capture the necessary conditions to be satisfied by the

projection output cardinalities. However, this constraint set is not

sufficient, making it still possible that no actual database can satisfy

these values. Subsequently, another class of constraints, called NC
(non-uniform cover) inequalities, was proposed in [27]. While this

constraint set creates sufficient conditions for database construc-

tion, the limitation is that satisfiability of these conditions is not

guaranteed. Further, the feasibility space does not exhibit a convex

behaviour, making it inexpressible as a set of linear constraints [16].

9.2 Solution Guarantees
We discuss the solution guarantees for feasible and infeasible work-

loads separately below.

Feasible Workload. The input workload feasibility is true by def-

inition when the PICs have been derived from an existing setup.

In such scenarios, PiGen ensures, thanks to the explicit LP con-

straints, that the generated data satisfies the PICs with 100% ac-

curacy. Further, the sanity constraints ensure the LP solution is

always constructible. This leads us to the following lemma:

Lemma 9.1. For a feasible and compatible set of PICs, PiGen always
produces an instance of the table that satisfies all the constraints.

Given an initially feasible workload, workload-decomposition

can always produce sub-workloads that are both feasible and com-

patible. Therefore, for any initially feasible workload, the data pro-

duced by PiGen can cover all the input constraints. We formally

prove Lemma 9.1 in Appendix A.

Infeasible Workload. Intra-PIC feasibility check can be trivially

verified at the pre-processing stage by checking the adherence of

constraints to Condition 4. However, if the input has inter-PIC

infeasibility, the following two possibilities may arise: (a) It may so

happen that Workload Decomposition, while resolving intersection

PICs, may as a collateral benefit, also produce feasible sub-workloads.
For example, by partitioning the workload {𝑐4, 𝑐5, 𝑐6} into {𝑐4} and
{𝑐5, 𝑐6}, the resulting sub-workloads become non-intersecting as

well as feasible. In this scenario, PiGen produces one table for each

sub-workload (using Lemma 9.1). (b) Alternatively, in case this

beneficial effect of decomposition does not happen, then the LP

constraints (discussed in Section 7) themselves become infeasible.

Hence, the LP solver eventually flags this infeasibility. We have

explicitly verified this to be the case for the Z3 solver with a few

deliberately created infeasible constraint sets.

9.3 Solution Complexity
Computationally, the bottleneck of the pipeline lies in the LP solver.

The LP complexity is primarily governed by the number of CPBs

created, which is determined by the overlaps between the blocks

intra-projection subspaces. The extent of overlaps is reflected by
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the outdegree of vertices in the Division Graph𝐺(𝑉 , 𝐸) introduced

in Section 6. For adversarial cases, the number of CPBs can be as

high as the number of connected induced subgraphs of 𝐺 , which

can go up to 2
|𝑉 |

[21]. Further, |𝑉 | itself is O(2 |W | ). However, these
worst-case exponential scenarios are relatively rare in practice, and

our experience is that the count is usually well within the solver’s

computational limits. We quantitatively assess this aspect in our

experimental evaluation (Section 10).

Further, for infeasible workloads, the only additional overheads

incurred are the checks for intra-PIC feasibility. This verification

takes constant time for an input PIC.

Lastly, the decision version of the general data generation prob-

lem is NEXP-complete, as shown in [8].

9.4 Limitations and Extensibility
While PiGen takes a substantive step towards addressing the pri-

mary challenges of projection modeling, there are some practical

limitations wrt its current coverage and scope, as described next.

Multiple Summaries. We would ideally like to produce a single

summary instance that satisfies all the PICs. However, PiGen may

have to produce multiple summaries, and hence multiple databases,

to cater to constraint workloads that feature overlapping projection

spaces. From a practical perspective, this multiplicity does not

impose a substantive overhead due to the minuscule size of each

summary. Further, PiGen attempts to reduce the number of sub-

workloads to the minimum required to ensure compatibility.

Workload Scale. PiGen currently handles workloads of reason-

able complexity as showcased in our experiments. However, for

more complex scenarios, a promising recourse is to introduce ap-
proximation, where volumetric accuracy is marginally compromised

to achieve solution tractability. For example, a plausible heuristic

could be to not create all the CPBs in one go, but to create them

greedily until the error limit is reached. Being a highly underde-

termined system, there always exist a sparse solution to the LP –

therefore, this iterative process is expected to converge quickly.

Incremental Workloads. Currently the entire constraint workload
is assumed to be given as the input. An alternative scenario is

where the constraints are incrementally provided. This may appear

problematic since PiGen does not allow modifying the solution to

satisfy additional constraints. However, its data-scale-free summary

creation permits rebuilding the solution from scratch cheaply.

10 EXPERIMENTS
In this section, we evaluate the empirical performance of a Java-

based implementation of PiGen. The popular Z3 solver [6] is in-

voked by the tool to compute the solutions for the LP formulations.

Our experiments cover the accuracy, time and space overheads

and scalability aspects of PiGen, and are conducted using the Post-

greSQL v9.6 engine [3] on a vanilla HP Z440 workstation.

Workload Construction. In presenting the experimental results,

we initially focus on fully compatible workloads. Subsequently, in

Section 10.5, we discuss the corresponding performance for work-

loads featuring intersection. A variety of real world and synthetic

benchmarks were used in designing the workloads. For represen-

tative large fact tables from each of the benchmarks, a workload

of compatible PICs was derived by executing a set of queries. The

denormalized versions of these tables were considered for construct-

ing PICs. The details of the compatible workloads are as follows:

TPC-DS Suite: This suite comprises of four workloads, corre-

sponding to the four TPC-DS tables [4] subject to the maxi-

mum number of projection operations in the benchmark –

namely, store_sales (SS), catalog_sales (CS),web_sales

(WS), and inventory (INV).

Census Workload: Here, the Census dataset framework used in

[14] is extended to additionally feature projections apart

from the extant filter cardinality constraints. In particular, a

single workload was constructed on the persons (P ) table.

IMDB Suite: This suite is designed from the JOB [2] benchmark

based on the IMDB dataset. It comprises of three workloads,

corresponding to the three tables subject to the maximum

projection operations – namely, movie_keyword (MK),

cast_info (CI), and movie_companies (MC).

The complexity of these various workloads is quantitatively char-

acterized in Table 3. Note that they feature a substantial degree of

both inter-projection complexity (up to 10 projection subspaces and

6 dimension subspaces) and intra-projection complexity (maximum

degree of the Division Graph vertices goes as high as 72).

Table 3: Workload Complexity

Dataset Table # # PAS Length Vertex Degree
PICs PASs Avg. Max. Avg. Max.

TPC-DS

SS 16 8 1.4 5 3.95 10

CS 15 10 2.2 5 4.74 15

WS 16 8 2 6 5.7 16

INV 6 3 1.5 4 0.92 4

Census P 220 3 1.67 2 1.33 72

IMDB

MK 16 4 1.25 2 5.68 14

CI 14 3 2.67 3 3.7 17

MC 19 4 1.5 2 3.75 15

Baselines. We compare PiGen against the DataSynth and Hy-
dra frameworks which both support strict cardinality constraints.

For DataSynth, projection constraints need to be restricted to sin-

gle attribute tables, whereas in Hydra, only the filter constraints

are considered in the generation process. We deliberately omit the

evaluation of systems dealing with parameterized cardinality con-

straints such as Touchstone [18] and MyBenchmark [19]). This is

due to the organic differences, highlighted in Section 2 between

their problem framework and ours, which render quantitative com-

parisons to be infructuous.

10.1 Constraint Accuracy
When PiGen was run on the aforementioned workloads, the gen-

erated data satisfied all the constraints with 100% accuracy. To
appreciate the complexity present in these successfully modeled

constraints, we present a representative sample constraint applied

on the denormalized relation of store_sales from TPC-DS below:
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c : ⟨f,A, 31921358, 15061⟩
f : 𝑑_𝑦𝑒𝑎𝑟 = 2002 ∧
(𝑖_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ (‘Jewelry’,‘Women’) ∧ 𝑖_𝑐𝑙𝑎𝑠𝑠 ∈ (‘mens watch’,‘dresses’)) ∨
(𝑖_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ (‘Men’,‘Sports’) ∧ 𝑖_𝑐𝑙𝑎𝑠𝑠 ∈ (‘sports-apparel’,‘sailing’)) and
A : {𝑖_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑖_𝑏𝑟𝑎𝑛𝑑, 𝑠_𝑠𝑡𝑜𝑟𝑒_𝑛𝑎𝑚𝑒, 𝑠_𝑐𝑜𝑚𝑝𝑎𝑛𝑦_𝑛𝑎𝑚𝑒,𝑑_𝑚𝑜𝑦 }.

Note that there are several attributes in the projection set, and both

conjunctive and disjunctive predicates in the filter condition.

When the same experiments were carried out with Hydra, we

found that typically over 90% of the constraints had a relative error

of greater than 90%. Turning our attention to DataSynth, we also

generated a customized workload from the TPC-DS benchmark,

comprising of only single attribute projection and filter constraints

to suit DataSynth’s restricted environment. Even for this simplified

scenario, we found several cases, where the LP solution obtained

from DataSynth was inconstructible. An example illustration show-

casing this fundamental problem is available in [21].

Due to this clear inability of both DataSynth and Hydra to pro-

duce data that satisfies projection-compliant constraints, we restrict

our attention to PiGen in the rest of this section.

10.2 Generated Data
We now show a concrete example of how the data generated by

PiGen satisfies the input PICs. Consider the following PIC from the

Census workload on the Persons table:

⟨18 ≤ 𝐴𝑔𝑒 ≤ 85 ∧ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 = ‘Spouse’

∧ 𝑃𝑈𝑀𝐴 = 822, (𝐴𝑔𝑒, 𝑆𝑒𝑥), 205, 4⟩
A snippet of the generated table is shown in Table 4. Here, the first

four rows in the (𝐴𝑔𝑒, 𝑆𝑒𝑥) columns are repeated in round-robin

fashion, while the remaining attributes have a fixed constant value,

for producing the first 205 rows. Then, the subsequent rows (206th

row onwards) in the table are assigned values that do not satisfy

the above constraint.

Table 4: Sample Rows produced for persons Table

Age Sex Relationship PUMA Tenure
18 M Spouse 822 Rented

25 F Spouse 822 Rented

36 M ... ... . . .

68 M ... ... . . .

Repeated in Round Robin Spouse 822 Rented

(Row # 206) 76 F Parent 100 Owned

... ... ... ... ...

10.3 Time and Space Overheads
We now turn our attention to PiGen’s computational and resource

overheads. The summary construction times and sizes for various

tables across workloads are reported in Table 5. We see here that

the construction times range from a couple of seconds to a few tens

of minutes. From a deployment perspective, these times appear

acceptable since database generation is usually an offline activity.

Moreover, the summary sizes are minuscule, within a few 100 KBs.

Drilling down into the summary production time, which is typi-

cally in the order of a few minutes, we find that virtually all of it is

Table 5: Overheads

Table Summary
Time Size

SS 21 min 58 kB

CS 32 min 117 kB

WS 15 min 64 kB

INV 2 s 13 kB

MK 2 min 15.5 kB

CI 41 s 13.6 kB

MC 3.6 min 27.7 kB

P 30 min 416 kB

Table 6: Block Profiles

Table Cardinality of
FBs RBs CPBs

SS 74 88 132662

CS 139 141 165936

WS 119 132 73929

INV 11 16 41

MK 30 32 30083

CI 278 301 14386

MC 187 203 42835

P 1193 1529 7170

consumed in the LP solving stage. In fact, the collective time spent

by the other stages was usually less than ten seconds. These results
highlight the need for minimizing the number of LP variables, since

the solving time is largely predicated on this number. To obtain a

quantitative understanding, we report the sizes of the intermediate

results at various pipeline stages in Table 6 – specifically, the table

shows the number of FBs, RBs, and CPBs created by PiGen. We

see here that there is a huge jump in the number of regions from

the initial FB to the final CPBs, testifying that the workloads have

considerable overlaps among their constituent PICs, representing

“tough-nut” scenarios wrt projection. An exception to this observa-

tion is the persons table from Census dataset, where even though

the maximum degree for a vertex in the Division graph was 72

(Table 3), the overlaps between PICs are limited as also indicated

by the average degree which is less than 2.

We also evaluated the time taken to flag infeasibility by PiGen

for the cases where the input workload itself has infeasible PICs.

In our experience, this situation was usually caught within a few

minutes. As a case in point, on adding an infeasible constraint to the

220 PICs set for CENSUS data, the error was flagged in 3 minutes.

The table summaries can be used to either dynamically generate

tuples during query processing, or produce materialized instances.

Representative generation times are reported in Table 7, and we

see that even a huge table such as SS, with close to 3 billion records,

is generated within just a few minutes.

Table 7: Tuple Generation Time

Table # Rows
Tuple Gen.

Time Table # Rows
Tuple Gen.

Time
SS 2.9 bn 4 min WS 0.72 bn 8 seconds

CS 1.4 bn 1.5 min INV 0.78 bn 9 seconds

10.4 Scalability Profile
Data Scale. The time and space overheads incurred to produce

table summaries are intrinsically data-scale-free, i.e., they do not

depend on the generated size. We explicitly verified this property

by running PiGen over 10 GB, 100 GB and 1 TB versions of TPC-DS.

Workload Scale. The time and space requirements with increas-

ing number of PICs is shown in Figures 5(a) and 5(b), respectively,

for the Census workload. The figures highlight that the memory

consumption is relatively stable and manageable (few GB) across
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Figure 5: (a) Execution Time (b) Memory Usage

the spectrum, but that time scalability can be a limitation for work-

loads beyond a certain complexity (Figure 5(a) is on a log scale).

10.5 Workload Decomposition
We now turn our attention to intersecting workloads, which require

the pre-processing step of workload decomposition. To model this

scenario, we added intersecting PICs to the TPC-DS workload suite,

with the final workloads having the following PIC distributions: SS

(52 PICs), CS (28 PICs), WS (29 PICs), and INV (8 PICs).

We evaluated PiGen for these four tables and the results are

shown in Table 8. We observe that despite using an approximate

vertex coloring algorithm, the partitioning led to at most 6 sub-

workloads for ensuring internal compatibility. Interestingly, the

aggregate summary generation times are extremely small, complet-

ing in just a few seconds, and much lower than the corresponding

numbers for the TPC-DS compatible suite in Table 5. At first glance,

this might appear surprising given that the intersecting version

is more complex in nature – the reason is that due to workload

decomposition, an array of databases is produced with low indi-

vidual production complexity, whereas a single unified database is

produced for the compatible case. From a deployment perspective,

it is preferable to generate the smallest number of databases, and

therefore we would always strive to minimize the decomposition.

Finally, we also verified the quality of the approximation algo-

rithm for decomposition. That is, how far is the obtained number

of sub-workloads from the actual minimum count. To assess this,

we implemented the exponential algorithm that computes the true

minimum number of sub-workloads and in the cases where this

exhaustive algorithm could be evaluated, we found that the approx-

imation algorithm returned the same count as the optimal.

Table 8: Workload Decomposition

Table
Sub-Workload

Sizes
Aggregate

Summary Time
Aggregate

Summary Size
SS 13,11,8,7,7,6 14 s 135 kB

CS 14,5,5,4 12 s 69 kB

WS 12,10,7 7 s 58 kB

INV 6,2 3 s 16 kB

11 CONCLUSIONS
Synthetic data generation from a set of cardinality constraints has

been strongly advocated in the contemporary database testing lit-

erature. PiGen expands the scope of the supported constraints to

include, for the first time, the general Projection operator. The pri-

mary challenges in this effort were tackling dependencies within a

projection subspace and across different projection subspaces. By

using a combination of workload decomposition and symmetric

refinement, dependencies across various projection subspaces were

handled. Within a projection subspace, union was converted to

summation via division of the space. Further, an optimal division

strategy was presented to construct efficient LP formulations of

the constraints. The experimental evaluation on real-world and

synthetic benchmarks indicated that PiGen successfully produces

generation summaries with viable time and space overheads.

Currently, PiGen deems any exact solution to the LP as satis-

factory for database generation. This choice could be materially

improved in two ways: 1) By using approximation algorithms that

sacrifice constraint accuracy to a limited extent to achieve bet-

ter workload scalability; and 2) By preferentially directing the LP

solver towards solutions with reduced sparsity so as to improve the

robustness of the generated database to future unseen queries.

A PROOF OF LEMMA 9.1
We briefly discuss the proof for Lemma 9.1, which is split into two

parts: (a) The LP constructed for a feasible compatible workload C
is always satisfiable; (b) Given any LP solution, data can be always

be constructed from it, and this data will satisfy C.

Part (a): Given workload feasibility, there exists at least one

instance𝑇 of the table that satisfies C. Further, due to compatibility,

C is modeled in a single LP. Say 𝑇 does not satisfy this LP. This

implies 𝑇 does not satisfy at least one of the Explicit or Sanity

constraints. If 𝑇 violates an Explicit constraint, then it does not

satisfy at least one input PIC. This is because each input PIC is

modeled using two Explicit constraints that ensure the data satisfies

the PIC. Further, there cannot be a physical table that violates

any Sanity constraint due to its inherent nature. Hence, 𝑇 satisfies

all the Sanity constraints as well. Therefore, by contradiction, we

can conclude that 𝑇 satisfies the LP – in fact, the LP gives the

necessary conditions for data generation adhering to the workload.

This implies that for feasible workloads, the LP is satisfiable.

Part (b): For a particular PAS A, the Sanity constraints ensure

that for each populated RB, the total tuple count in the RB is at least

the number of distinct rows along A, and the distinct row count is

positive. Hence, the data along each projection subspace is gener-

ated easily. Further, since RB is symmetric in nature, data across

its different projection subspaces can be generated independently

and concatenated. Therefore, any LP solution is sufficient for data
generation. Since, each PIC is modelled in the LP using the Explicit

constraints, the generated data is compliant with C.
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