
PetPS: Supporting Huge Embedding Models
with Persistent Memory

Minhui Xie
Youyou Lu∗

Tsinghua University
xmh19@mails.tsinghua.edu.cn
luyouyou@tsinghua.edu.cn

Qing Wang
Yangyang Feng
Tsinghua University
{q-wang18,fyy21}@
mails.tsinghua.edu.cn

Jiaqiang Liu
Kai Ren
Kuaishou

liujiaqiang@kuaishou.com
kair@alumni.cmu.edu

Jiwu Shu
Tsinghua University

shujw@tsinghua.edu.cn

ABSTRACT

Embedding models are effective for learning high-dimensional
sparse data. Traditionally, they are deployed in DRAM parame-
ter servers (PS) for online inference access. However, the ever-
increasing model capacity makes this practice suffer from both
high storage costs and long recovery time. Rapidly developing Per-
sistent Memory (PM) offers new opportunities to PSs owing to its
large capacity at low costs, as well as its persistence, while the
application of PM also faces two challenges including high read
latency and heavy CPU burden. To provide a low-cost but still high-
performance parameter service for online inferences, we introduce
PetPS, the first production-deployed PM parameter server. (1) To
escape with high PM latency, PetPS introduces a PM hash index
tailored for embedding model workloads, to minimize PM access.
(2) To alleviate the CPU burden, PetPS offloads parameter gath-
ering to NICs, to avoid CPU stalls when accessing parameters on
PM and thus improve CPU efficiency. Our evaluation shows that
PetPS can boost throughput by 1.3− 1.7× compared to PSs that use
state-of-the-art PM hash indexes, or get 2.9−5.5× latency reduction
with the same throughput. Since 2020, PetPS has been deployed in
Kuaishou, one world-leading short video company, and successfully
reduced TCO by 30% without performance degradation.

PVLDB Reference Format:

Minhui Xie, Youyou Lu, Qing Wang, Yangyang Feng, Jiaqiang Liu, Kai Ren,
Jiwu Shu. PetPS: Supporting Huge Embedding Models with Persistent
Memory . PVLDB, 16(5): 1013 - 1022, 2023.
doi:10.14778/3579075.3579077

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/thustorage/PetPS.

1 INTRODUCTION

Recently, embedding models have shown the superiority of learning
on high-dimensional input data (such as user IDs, item IDs and user-
item interactions). These models leverage the embedding technique,
which projects the raw feature IDs into low-dimensional vectors, to

∗Youyou Lu is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579077

capture the underlying semantic meanings. Such vector representa-
tions are then fed into various DNNs [16, 24, 31, 39, 48, 54–56] to
predict user behaviors. Embedding models are widely used in high-
revenue business scenarios such as search, recommendation and
advertising. Specifically, in datacenters of giant Internet companies,
embedding models take up to 80% of all AI inference cycles [25].

Due to the ever-growing corpus size of high-dimensional fea-
tures and the wide use of the Feature Cross technique [16], the
capacity of productional embedding models [32] has exploded un-
precedentedly, from the scale of 1 billion (Google, 2016) to over 12
trillion (Meta, 2022), increasing for over four orders of magnitude.
This rapid growth in parameters brings better model accuracy [52],
but commensurately puts forward higher requirements for memory
capacity. The common practice is storing these huge models in
the DRAM of parameter servers (PS) [19, 30] to enable real-time
access to parameters for inference. Unfortunately, huge embedding
models make this practice suffer from two downsides. First, such
practice imposes high storage costs, not only because DRAM is an
expensive medium, but also because DRAM accounts for almost
half of the total system power consumption [23]. At Kuaishou, one
world-leading company in the short video area, there are thou-
sands of dedicated servers in the datacenters for storing various
embedding models, causing high capital expenditures and operat-
ing expenses. Second, after a PS outage, reloading parameters into
the DRAM takes considerable recovery time, which may violate
the service-level agreement (SLA) of online inferences.

Rapidly developing Persistent Memory (PM), also termed as Non-
Volatile Memory, provides new opportunities for parameter servers.
First, PM is byte-addressable like DRAM but can offer 8× memory
capacity than DRAM at a lower cost. Second, it provides data
persistence and can deliver quicker recovery and less downtime.

However, despite these attractive benefits, building parameter
servers on PM still faces two challenges.
• High PM read latency: PM endures 3× higher latency than DRAM.
If not managed well, the high latency could be fully exposed to
applications and cause a decline in inference performance.

• Heavy CPU burden: By embracing PM, the number of parameters
stored on a single PS becomes 8× larger than that with DRAM,
which means we have to serve more parameter requests on a
slower media, but with the same CPU resources. This makes the
CPU a performance bottleneck for parameter servers on PM.
This paper focuses on building parameter servers of huge em-

bedding models with PM, to provide a low-cost but still high-
performance parameter service for online inferences. Specifically,
we present the first production-deployed PM parameter server
called PetPS (Persistent Embedding Table Parameter Server).

1013

https://doi.org/10.14778/3579075.3579077
https://github.com/thustorage/PetPS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579077
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PetPS follows the process flow of conventional PSs: 1) Index-
ing, responsible for identifying the sizes and memory addresses of
requested parameters, and 2) Gathering, which gathers (serializes)
these parameters together to reply to clients. Our key contribution
is the PM-suited design and implementation of these two steps
to effectively tackle the aforementioned challenges, based on our
analysis of real-world model service workloads.

For indexing, we propose PetHash, a highly-optimized PM hash
index that greatly reduces PM access. Its key design principle is to
minimize PM reads, by embracing the unique workload character-
istics of embedding models. First, the parameter capacity of PSs is
usually stable, which eliminates rehashing. Different from existing
PM hash indexes [33, 37, 57] that use multi-level structures to trade
multiple reads for cheap rehashing, PetHash uses a single-level
structure to locate one bucket with only one PM read. Second, the
access distribution of parameters is skewed. For hot parameters,
PetHash leverages hotness-aware placement to avoid probing the
hash index and thus provides fast access to them. Third, a request
contains the query of hundreds of parameters. PetHash appropri-
ately prefetches possible locations to be visited to further hide the
high read latency of PM.

For gathering, we find that over 29% CPU cycles are spent on
gathering due to the high read latency of PM. To improve CPU
efficiency, PetPS introduces NIC Gathering, which offloads CPU’s
gathering operations to NIC. Specifically, we notice that modern
NICs have the scatter-gather direct memory access (DMA) func-
tionality, which can be re-purposed for gathering parameters on
PM. With this design, the CPU is freed from waiting for slow PM
when reading parameters. Such reduction in CPU stalls directly
translates to performance improvements. Despite these benefits,
the introduction of NIC Gathering may cause parameter inconsis-
tency if there are concurrent writes to parameters being DMAed.
We use a combination of the copy-on-write mechanism and our
proposed epoch-list-based space reclamation scheme to carefully
protect parameters under DMA.

Evaluation with real-world service trace shows that: PetPS out-
performs PSs using state-of-the-art PM hash indexes by up to 1.7×
(from 1.3×) in throughput, or achieves up to 5.5× (from 2.9×) la-
tency reduction with the same throughput. PetPS can also deliver
comparable or even better latency and only 12% throughput degra-
dation to the in-house DRAM PS of Kuaishou.

Since 2020, PetPS has been deployed in the production video
recommendation services of Kuaishou. It successfully reduced the
total cost of ownership (TCO) by 30% without affecting the original
service performance.

Overall, this paper makes the following contributions:
• We give a workload analysis of real-world huge embedding model
services (§2.3) and identify two key challenges that arise when
PM meets huge embedding models (§2.4).

• Guided by our analysis, we build the first production-deployed
PM parameter server, PetPS, featured with PetHash (§3.2), a PM
hash index tailored for the embedding model workloads, and NIC
Gathering (§3.3), a mechanism which retrofits the DMA engine
on NICs for gathering parameters.

• We perform evaluation with production workloads that validates
the effectiveness and efficiency of PetPS (§4).

PS
Shard	2

Inference	Server

PS
Shard	N

Inference	
Server

MLP

…

…

ID	Type	Features

MLP

Emb
	Table	0

Emb
	Table	1

Emb
	Table	M

…

Pooling

Labels

(a) (b)

IDs Embs

PS
Shard	1

MLP
Pull	needed
embeddings

Pooling

LabelsID	Inputs

Model	
updates	

Model
Parallel

Data
Parallel

Figure 1: (a) Typical architecture of embedding models. We
omit non-ID type features (i.e., continuous features) for simplicity.
(b) Production serving system for huge embedding models.

Embedding vectors are sharded to PSs, whereas MLP is replicated to
each inference server’s GPU memory. The inference server requests
PSs for needed embedding vectors.

2 BACKGROUND & MOTIVATION

2.1 Persistent Memory

Rapidly developing Persistent Memory (PM) acts as a new tier
between DRAM and SSD in today’s storage hierarchy. It provides
a large capacity at low costs with both DRAM-comparable access
performance and SSD-like persistence (i.e., data will be retained
when the system is shut down). PM is byte-addressable, and can be
accessed by the CPU directly with load/store instructions.

Intel Optane DC Persistent Memory [8] (DCPMM) is the first
and currently the only commercially-available PM product. This
paper builds PS on DCPMM, but we only rely on its PM-common
features (byte addressability, low latency, high capacity at low costs,
persistence); hence, our PS can still work on future PM (such as CXL
attached storage device [3]). The key obstacle for PM-enabled PS
is PM’s high read latency, which, without suitable system designs,
could greatly drag down the performance of the inference service.

2.2 Embedding Models

Embedding models [16, 24, 31, 39, 48, 54–56] are a dominating
type of deep learning models widely used in the core businesses
of Internet companies such as recommendation systems and ad-
vertisements. Unlike traditional deep learning scenarios like com-
puter vision or natural language processing, the input features
of these core businesses contain a large number of ID-type fea-
tures (e.g., user ID, video ID). These ID-type features are extremely
high-dimensional and sparse, and cannot be directly learned by the
neural network. To solve this problem, embedding models usually
follow the Embedding-MLP architecture [26], which leverages the
embedding technique to bridge the gap between ID-type features
and neural network. Specifically, the model contains multiple em-
bedding tables, each of which maps feature IDs of one specific ID
type into low-dimensional vectors (called embedding vectors, or
embeddings for short). Usually, the dimension of embeddings is
between 16 and 256.

1014

Pull(R)
Push(W)

N
or

m
al

iz
ed

 T
pu

t

(a) Read-intensive

0

2

4

6

8

Time
0:00 12:00 24:00

mem	u-l
#	of	IDs#

of
 ID

s
(B

ill
io

n)

(b) Stable loads

M
em

 U
til (%

)

3.2

3.3

3.4

0

50

100

Time
0:00 12:00 24:00

P
D

F

(c) Batched
 reads

0

0.04

0.08

of IDs per infer
0 20k

0

0.5

1.0

Latency (m
s)

Gathering
Indexing

Le
ve

l
C

le
ve

l
C

C
E

H
D

as
h

M
ops/s

C
P

U
 U

til
. (

%
)

CPU	u-l
throughput

Network
Bound

50

0

50

100

20

40

60

of client threads
0 100

(d) (e)

Figure 2: (a-c) Characteristics of one embedding model service in production. (a) normalized throughput of read/write requests,
(b) daily loads and memory utilization of PS, (c) PDF of feature ID count per inference request. (d-e) Motivation. (d) Throughput and CPU
utilization of PS. (e) CPU time breakdown of PS.

Fig. 1a shows the inference process of embedding models. ID-
type features are first mapped to embeddings by looking up embed-
ding tables. Then these embeddings are pooled (e.g., sum or average
pooling), and finally fed into MLP to get the final label.

Modern embedding models demand a large number of param-
eters for embeddings. This is resulted by the combination of the
large-scale cardinality in ID-type features and the wide utilization
of feature cross technique (i.e., cartesian product) [16]. For example,
the billion-scale video ID feature introduces an embedding table
with trillions of parameters, while the feature cross of the user
ID feature and video ID feature generates a new ID type, which
leads to a much gigantic embedding table. As a result, embeddings
usually account for over 99.9% of parameters in one embedding
model [25, 32, 41]. With the increase in the number of IDs and
more ID-type features introduced by model engineers, embedding
models are racing to a scale of trillion parameters [32].

2.3 Huge Embedding Model Serving at Kuaishou

To serve with such giant embedding models, our serving system
follows a disaggregated parameter server schema [49] (Fig. 1b).
Specifically, there are two groups of servers: inference servers for
the computation of neural networks with GPUs, and PSs for shard-
ing the storage of giant models [19, 30]. Since MLP is usually small
(a few hundred MBs), a common practice is to cache it on the GPU
memory of inference servers, while store all embeddings on PSs.
When receiving an inference task, the inference servers first acquire
the corresponding embeddings of feature IDs from the PSs, and
then continue to perform the forwarding of neural networks. PSs
process requests with indexing and gathering, as stated in §1.

At Kuaishou, there are nearly one thousand models of various
kinds, running on thousands of dedicated PS servers. Since infer-
ence is latency-sensitive, traditional PSs store parameters in DRAM
to enable real-time access for inference servers [42, 49]. However,
they have two drawbacks. First, the DRAM capacity required for
storing huge embedding models introduces high CapEx and OpEx.
Second, when PS outages, it needs to pull the complete model from
the backend storage system. The several minutes of recovery time
may violate the SLA of online inferences, affecting user experience.

This paper focuses on storing embeddings1 on PS with PM, to
enjoy its DRAM-like performance, persistence and high capacity at

1In the rest of paper, we use the term parameter and embedding interchangeably, since
all parameters stored on PS are embeddings.

low costs. To better understand the characteristics of PS, we collect
the accessing trace of one major video recommendation service
at Kuaishou; see Fig. 2(a-c). The embedding model in this service
achieves a scale of a trillion parameters. We draw three insights
that are useful for the design of PetPS as follows:
• Extremely-intensive reads. Most operations (∼98%) in PSs are
read-only, with non-frequent writes (∼2%) for model freshness.

• Stable loads. The parameter capacity and memory usage of PSs
are stable. Although models continuously accept new coming
IDs, we commonly eliminate old embeddings for accommodating
new embeddings. As a result, the total loads keep stable.

• Batched IDs in one read request. A model inference request
usually involves up to thousands of IDs. They are split into mul-
tiple read requests that are sent to PSs. In our setting, the batch
size of IDs in one request is 500.

2.4 Motivation

To understand the basic performance and bottlenecks of PM-enabled
PSs, we build a PS system using existing PMhash indexes and profile
it. The index’s keys are feature IDs and the values are the corre-
sponding embeddings. The PS is exposed to clients via an RPC
interface. We investigate four PM indexes, including Level [57],
Clevel [15], CCEH [37], and Dash [33]. We use a machine with
6 DCPMMs as the PS and keep sending Pull requests to it. Each
request contains 500 IDs, where IDs follow the Zipfian distribution
(𝛼 = 0.99).
CPU is the primary throughput bottleneck. Fig. 2d shows the
throughput (in Mops/s, each parameter access is considered as an
operation) and CPU utilization of PS with increasing client thread
counts. We only show the result of Dash since other indexes share
similar results. At the peak throughput, the system gets a 100%
utilization of all 72 CPU cores, but only 46% of the available NIC
bandwidth. Because the PM random read bandwidth (36 GB/s) is
much higher than the NIC bandwidth (25 GB/s), we conclude that
the CPU is exhausted and becomes the throughput bottleneck. The
underlying reason is that, the CPU is stalled fetching the slow PM
inefficiently, due to the inherent random access pattern of PS.
Most CPU time is spent on indexing, but non-negligible time

on gathering. Fig. 2e further decomposes the CPU time of PS.
First, across different PM hash indexes, over 84% of the CPU time
is consumed on indexing. Thus, avoiding even one PM read per
query in index can result in a significant latency reduction (e.g., the

1015

PᴇᴛHash Mem	Pool
PM

Inference	Server

ID1ID0 ID2DRAM

NIC

Request	Pool

Emb0:	<ptr0,	size0>
Emb1:	<ptr1,	size1>
Emb2:	<ptr2,	size2>

Emb2Emb1Emb0

Indexing

NIC	Gathering

Pull

Pull

 DMA Engine

Inference	Server

PᴇᴛPS

1

2

Core	1 Core	2

Figure 3: PetPS architecture.

end-to-end latency can be reduced by 150 µs theoretically when the
batch size is 500 and PM read latency is 300 ns). Second, aside from
indexing, the CPUs of PSs spend up to 29% of time on gathering
embeddings. We attribute it to the large batch size for gathering
and the slow read latency of PM.

3 DESIGN & IMPLEMENTATION

3.1 PetPS Architecture

PetPS is a PM-enabled parameter server that enjoys PM’s instant
recovery and low storage costs. PetPS supports two interfaces:
Pull (IDs) for getting the corresponding parameters of a batch of
IDs (used by inference servers), and Push (IDs, embeddings) for
updating a batch of parameters (used for model updates). Both
interfaces are exposed via RPC.

PetPS follows the run-to-completion paradigm [43]. Each CPU
thread of PSs undertakes the entire RPC lifetime, from receiving the
request to sending the response back. Clients (inference servers)
split all feature IDs of an inference task into a series of requests
(empirically 500 IDs per request) to gain the concurrency benefits
of multiple threads in PSs.

Fig. 3 illustrates the architecture of PetPS. It includes the fol-
lowing two key components: 1) PetHash, a persistent hash table
highly optimized for parameter servers. Its keys are feature IDs,
while the values point to the corresponding positions (e.g., memory
addresses) of embeddings. 2) NIC Gathering, a mechanism that
retrofits the DMA engine on NIC for gathering parameters and
replying them back to clients. In addition, PetPS contains a slab-
based memory allocator, Memory Pool, which manages the PM
space for storing embeddings.

Fig. 3 also shows the workflow of a Pull request. Upon receiving a
Pull request from an inference server, PetPS first looks up PetHash
to get the addresses of parameters in Memory Pool, and then lever-
ages the NIC Gathering mechanism to gather the parameters from
Memory Pool and reply them to the inference server.

Next, we will introduce each of the key components in PetPS.

3.2 PetHash

Many prior PM hash indexes [15, 33, 37, 51, 57] commonly adopt
the multi-level structure for ease of rehashing but pay the cost
of multiple PM reads. For example, a state-of-the-art hash table,
Dash [33], requires multiple pointer-chasing operations to locate

PᴇᴛHash:
Bucket:	 Slot Slot Slot…Header

Header:	 Slot:	OverflowVersionFP
1Byte4Byte14Byte

EMBptrSizeID
48bit16bit64bit

Read/Write

Hotness-aware
placement

Client

hotness	info

Migra@on
	thread

hot kv

home bucket

Figure 4: The structure of PetHash.

one KV pair (directory → segment → bucket → KV pair). On
the other hand, the key design principle of PetHash is to reduce
the number of PM reads for most indexing operations to one, by
embracing the unique workload characteristics in PSs.

Single-level structure. As our PSs have a stable capacity (§2.3),
PetHash chooses the single-level structure of classic hash tables to
reduce the read cost. The most obvious benefit is that we can locate
a bucket directly by its bucket number, with only one PM read.

Fig. 4 shows the structure of PetHash. PetHash contains a single
level of buckets. The bucket size is configurable, and is set to 256
bytes in PetPS, which is exactly the internal block size of PM. Bor-
rowing the idea of a high-performance DRAM hash table, F14 [6],
we do not choose chaining to resolve conflicts (due to the memory
under-utilization in chained buckets), but use the open-address
method. Each KV pair has a corresponding bucket (called home
bucket) determined by the key’s hash value. The KV pair is pre-
ferred to be placed in its home bucket, but it can also be displaced
to other buckets when the home bucket is full.

Each bucket contains the following fields of metadata. A 14-byte
fingerprint [38] enables fast intra-bucket search. A 4-byte version
enables bucket-level write lock and lock-free search like Dash [33].
A 1-byte overflow counter indicates the number of KVswhich should
be placed in this bucket, but are displaced to other buckets since
this one is full.

For insert operations, PetHash first locates the home bucket. If
there are free slots, PetHash inserts the KV pair to it directly. If
not, a displacement occurs. We probe the backward buckets with
linear probing until we find an available one and insert to it. The
probing step is set according to the hash of keys to avoid continuous
full buckets. During the probing, the overflow counters of probed
buckets are increased atomically to record this displacement.

For search/delete/update operations, PetHash probes buckets
until the key is found, or it encounters a bucket whose overflow
counter is 0, which means that the key does not exist in the hash ta-
ble. Then it performs search/delete/update operations in the bucket.
For delete operations, PetHash also needs to decrease the overflow
counters in the probing path.

Note that the probing paths are expected to be short, if we set
the hash table size appropriately. Theoretically, with a load factor
of 0.8, over 99.99% of KVs can be found within three probes, and the
mathematical expectation of probing count is 1.05. In practice, since
the inference model is a replication of the training model, we can
then empirically predetermine the hash table size, by considering
the performance-and-space tradeoff.

Hotness-aware placement. Hotness-aware placement is de-
signed based on the skew access pattern we often observe in real-
world embedding models. The core idea is trying to place hot KV

1016

pairs in their own home buckets, so that they can be found with
only one PM read (in line with our design principle). Tracking the
hotness of KV pairs should not cause interference to the service
of PSs. Thus, instead of PSs, PetPS makes clients responsible for
identifying hot sets because PSs’ CPUs are precious while clients
usually have spare CPU resources. Periodically (e.g., every 10 s),
one client generates its hot sets by sampling and sends them to
the corresponding PSs as the final hot set. Note that even only one
client’s hotness statistics are sufficiently accurate since all clients
share a similar distribution of key accesses.

PetPS uses a dedicatedmigration thread to move hot keys. Upon
receiving the new hot set, PetPS invokes the migration thread,
which checks whether each hot key is in its own home bucket.
If not, the migration thread first inserts the hot KV to its home
bucket, in which case a cold victim may be migrated for making
room (recursively), and then deletes it from the original bucket.

Prefetching. A Pull request often carries hundreds of keys, and
all these keys are sequentially queried by one service thread of
PS. This batched manner gives the opportunity of prefetching to
accelerate the last mile of “one PM read principle”. Before indexing
the current key, PetPS initiates a prefetching instruction for the
home bucket of the next key. With a high probability, the PM
accesses for the indexing of the next key can be fully satisfied by
the CPU cache. In this way, indexing and PM fetching are pipelined,
and we can hide the latency of most PM reads in PetHash.

3.3 NIC Gathering

After indexing, the next step of PS is to gather the parameters
based on the lookup results of the index, and send them back to
the client. The conventional way of gathering by CPU wastes CPU
cycles due to massive high-latency PM reads of parameters. PetPS
proposesNICGathering, based on the observation that modern NICs
already have the capability of scatter-gather DMA, which can be
re-purposed for performing gathering embeddings. Fig. 5 compares
the conventional CPU Gathering and PetPS’s NIC Gathering.

In this subsection, we first briefly introduce the scatter-gather
DMA on NIC, and then present how PetPS tames it for gathering
embeddings. Since DMA is performed asynchronously by hardware,
any concurrent updates or memory deallocation to the embeddings
being DMA-ed may cause data inconsistency; we show how PetPS
avoids such inconsistency and ensures correctness.

A primer on scatter-gather DMA on NIC. The lightweight
DMA engines of modern NICs can perform zero-copy data scat-
tering and gathering at low runtime costs. In this paper, we focus
on the gathering operation. The programming interface is a de-
scriptor list provided by user-space networking libraries such as
Intel DPDK [5] and libibverbs [10]. Each descriptor includes the
source address of a memory block along with its size. The software
submits a list of descriptors to the NIC’s DMA engine to initiate
DMAs, and the DMA engine coalesces the memory blocks specified
in the descriptor list together for network transmission. Scatter-
gather DMA was originally designed for optimizing MPI collective
communication to eliminate the additional copy of many large data
blocks in the HPC scenario [22]. PetPS retrofits it for gathering
embeddings without making modifications to the hardware.

Naive:	CPU	Gathering

saved
CPU time

NIC
Client

PM

Indexing Gathering Indexing

Indexing

DRAM
		NIC	fetches	
from	DRAM

PᴇᴛPS:	NIC	Gathering

NIC

PM

DRAM 				CPU	issues	an	SG-DMA	request	
NIC	directly	

fetches	from	PM

(a) Naive

(b) PᴇᴛPS

Req	0 Req	1

Req	0

Indexing

Req	1

Client

		CPU	copies	
sequenDally

Gathering

SG-DMA descriptor list

embeddings

CP
U
	3
m
el
in
e

1 2

1
2

Figure 5: Comparison between conventional CPU Gathering

and PetPS’s NIC Gathering. The red dashed line illustrates what
the CPU does in both gathering schemes.

Offloading embedding gathering to the NIC. To leverage
the DMA engine for transferring embeddings with different sizes
and dealing with missing embeddings, PetPS provides a compacted
DMA-capablemessage layout. Eachmessage contains two fields: the
header and the payload. The header includes the number of missing
embeddings and their feature IDs, while the payload compacts all
the requested embeddings that are available in this PS.

If there are 𝑛 embeddings in the payload field, assembling a
message in PetPS will require 1 + 𝑛 DMAs. One is for fetching the
message header, which is initialized in a pre-allocated page-locked
DRAM buffer. The other DMAs read 𝑛 embeddings directly from
PM. Leveraging the doorbell batchingmechanism [28], PetPS needs
notifying the NIC for only once to launch all these DMAs.

We also use domain-specific knowledge to optimize the metadata
size of the message layout. This is particularly useful for reduc-
ing network traffic when transferring small embeddings (like low-
dimensional embeddings or quantized embeddings). First, instead
of explicitly concatenating each feature ID and its corresponding
embedding like conventional PSs [30], we organize embeddings in
order of feature IDs in the client’s request, which implies the map-
ping information between IDs and embeddings. This can save the
space of a feature ID (usually 8 bytes) for each embedding. Second,
the message layout does not include the sizes of each embedding.
This is because features of the same type share the same embedding
size. We can maintain a type-to-size mapping table (with dozens of
entries) and get the corresponding embedding size easily by looking
up it with a specific feature type.

Protecting embeddings being gathered by DMA. Since DMA
is done asynchronously by the NIC, PetPS must ensure two invari-
ants during the DMA process: (i) the original embeddings must not
be modified, and (ii) their memory must not be freed. Otherwise,
partially-updated or wrong embeddings may be sent to the client.

1017

Req	0:	Pull(k0)

when e2 < min epoch lists

e1=Global	
Epoch

add	e1	to	
epoch	list

remove	e1	
from	epoch	list

issue	

SG-DMA

when DMA of Req 0 completes

allocate	&	

write	v0’

update	index	

<k0,	v0’>

reJre	v0	to	

Memory	Pool		

e2=Global	
Epoch

Req	1:	Push(k0,	v0->v0’)

Figure 6: How the copy-on-write mechanism and our epoch-

list-based reclamation safely protect NIC Gathering. The
upper part is a reader thread, while the lower part is a concurrent
update thread. The shaded part shows the protection domain.

For (i), PetPS uses the copy-on-write mechanism to ensure no
in-place writes. When receiving a Push request (i.e., updating pa-
rameters), PetPS first allocates a batch of buffers with the same
sizes as the to-be-updated embeddings from Memory Pool and
writes the updates to them. Then, PetPS updates the new locations
of these embeddings to PetHash atomically.

For (ii), the core obstacle of safely recycling old-version param-
eters is that: the updater threads are unaware of whether there
are DMAs reading them concurrently and whether there will be
upcoming ones. To record these information of reader threads for
updater threads, PetPS proposes an epoch-list-based space reclama-
tion scheme. Different from the classic epoch-based space reclama-
tion [21], which sets a single epoch for a thread, PetPS assigns each
reader thread an epoch list, which bookkeeps the epoches of all
ongoing and forthcoming DMAs. Specifically, for the reader thread,
each time it starts processing a Pull request, it acquires a global
epoch and adds the epoch to its epoch list. The list will delete this
epoch after the completion of scatter-gather DMA. For the update
thread, it first logically frees the old-version embedding (i.e., only
updating the index), and records the current global epoch as 𝑒 . The
old-version embedding can be freed physically (i.e., recycled to
Memory Pool) only if the smallest one of all threads’ epoch lists is
greater than 𝑒 , in which case all reader threads and DMA requests
have no references to it. Fig. 6 shows a concrete example.

Advantages. Offloading the embedding gathering process to
NIC brings three advantages. First, it is well suited for PM. It elimi-
nates CPU stalls caused by bulk of high latency PM reads, alleviating
the CPU bottleneck and thus improving the performance of PS. Sec-
ond, the NIC-based gathering does not disturb CPU cache [7], while
CPU Gathering incurs cache pollution, which affects the perfor-
mance of indexing. According to our evaluation, CPU Gathering
leads to 11% more LLC misses in indexing. Third, it does not rely on
customized hardware and can be deployed directly on off-the-shelf
NICs in our datacenter. Scatter-gather DMA, as a basic feature,
has already been supported by most vender NICs, including Intel,
Mellanox, and Broadcom.

3.4 Recovery

There are two phases for the recovery of PetPS: (i) recovering local
PM, and (ii) catching up on unfinished model updates from training
clusters. For (i), it is similar to existing PM KV stores. For (ii), we
record recent model updates in a Kafka[1]-like message queue and

the reading status of each PS persistently. Thus, after restarting,
the outaged PSs can continue to consume model updates.

4 EVALUATION

4.1 Experimental Setup

Testbed. We run experiments on three machines, one as the PS,
and two as the clients. All the machines are equipped with two
Intel Xeon Gold 6240M CPUs at 2.6 GHz, 64GB of DRAM, and
two 100Gbps Mellanox ConnectX-5 NICs. The PS machine has an
additional 1.5TB of Intel Optane DCPMM (6 × 256GB).

Although we employ DCPMM for evaluation, the assumptions
to PM in PetPS are completely based on its generic properties (byte
addressability, access latency between DRAM and SSD, high capac-
ity at low cost, persistence), independent of specific characteristics
of Optane’s 3D XPoint media. Therefore, we believe that PetPS
remains effective for any future forms of PM (e.g., CXL storage
devices like Samsung Memory-Semantic SSD [11]).

We configure the PS to use all cores as the RPC threads, and let
clients continuously send requests to it. Each client thread issues
up to 2 concurrent Pull requests, with 500 feature IDs per request.
We adjust the client thread count to change the test pressure.
Workloads.We use the following two workloads.
Production. We use a production workload to evaluate the perfor-
mance of PetPS and other competitor systems. It is a day-long
trace collected from one major video recommendation service in
Kuaishou production. The model running behind contains 100 bil-
lion parameters in total. The embedding dimension is set to 128.
After sampling (for confidentiality), the trace contains 6 million
samples, and involves 1 billion feature IDs.
YCSB. We use a synthetic workload YCSB [17] for the sensitivity
study, since it can easily change the access pattern (such as feature
ID distribution, skewness, and read/write ratio). Unless otherwise
specified, we use YCSB-C (100% read) and a Zipfian feature ID
distribution with the default parameter 0.99. The model is set to
the same as that of the Production workload.
Competitors.We compare PetPS with the following three systems.
PSLite [4] is the implementation of classic PSs [30]. It leverages C++
unordered_map as the index. PSLite is used by popular systems like
MXNet [2] and BytePS [27]. The original PSLite is single-threaded
and we reimplement it to support multiple threads by maintaining
32 shards of indexes and using per-shard reader-writer locks for
concurrency control.
DashPS replaces PSLite’s index with the state-of-the-art PM hash
index, Dash [33].
KuaiPS is Kuaishou’s in-house implementation of DRAM PSs. It
uses a concurrent chaining-based hash index. Like PetPS, it sup-
ports a variety of features required by production (e.g., parameter
admission, retirement).

For fair comparisons, we make the following modifications to
competitor systems. 1) For the systems which do not support PM
natively, we simply modify them by allocating both the index and
parameters on PM with our Memory Pool. 2) To avoid side effects
of rehashing, we reserve sufficient memory for indexes like [14].
3) We port the RPC of PetPS to all competitor systems to eliminate
the performance bias caused by network stacks.

1018

Th
ro

ug
hp

ut

(M
op

s/
s)

PSLite
KuaiPS

DashPS
PetPS

PSLite
KuaiPS

DashPS
PetPS

Workloads
0

10

20

30

YCSB Production

Figure 7: (Exp #1) Peak throughput.

(c) YCSB

P
99

 L
at

. (
m

s)

PSLite DashPS KuaiPS PetPS

0

5

10

10 20 30

(d) Production

10 20 30

(a) YCSB

M
ed

ia
n

La
t.

(m
s)

0

2

4

6

10 20 30

(b) Production

10 20 30
Throughput (Mops/s) Throughput (Mops/s)

Figure 8: (Exp #1) Throughput v.s. latency.

Level
CCEH

Dash
Clevel

PetHash

+Hot
+Prefetch

Uniform Zipf-0.9 Zipf-0.99

Avg Read Bytes
Per Operation

0 200
Level

Clevel
CCEH
Dash

PetHash(a) (b)

Th
ro

ug
hp

ut
 (

M
op

s/
s)

0

20

40

60

Figure 9: (Exp #2) Performance of PetHash. (a) YCSB with
three key distributions. (b) YCSB with Zipfian distribution (𝛼 = 0.99).

4.2 Overall Performance

Exp #1: Overall performance. Fig. 7 shows the peak through-
put of each system. The unit op refers to an operation of pulling
or pushing a parameter, the same below. PetPS yields 1.3 − 1.6×
throughput gains on YCSB-C and 1.4 − 1.7× on Production respec-
tively compared with other systems. It justifies the design of PetPS.

To illustrate more clearly, we collect the median / 99th percentile
(P99) latencies and the corresponding throughput of clients under
different test pressures; see Fig. 8. We find that PetPS consistently
exhibits higher throughputs and lower latencies than other systems.
At a low request pressure (such as 20Mops/s), PetPS respectively
achieves 2.9 − 5.5× and 3.1 − 5.1× reductions in median and P99
latencies. At peak throughput, the reduction of the two latencies
reaches 2.6 − 3.1× and 2.2 − 3.3×. All systems are bottlenecked
by CPUs. KuaiPS first encounters the bottleneck since its index
designed for DRAM is not suitable for PM, and its CPU is also
responsible for other extra work such as hotspot identification
and parameter retirement. The chained hashing of PSLite and the
extendible hashing of Dash all introduce multiple reads to the in-
dexing process (see Exp #2 for details), thus degrading the system
performance. Our PetPS performs better by leveraging PetHash
to greatly reduce the indexing time, with NIC Gathering to further
unlash CPU’s gathering.

4.3 Techniques

Exp #2: PetHash.We use the YCSB-C workload to evaluate the
performance of PetHash and existing PM hash indexes. The key
and value sizes are set to 8 bytes, which is the same with the set-
ting of PS. We evaluate three key distributions, including uniform,
Zipfian-0.9, and Zipfian-0.99 (a larger value means a more skewed
distribution). Fig. 9a presents their throughput. We make the follow-
ing observations: 1) PetHash enjoys 1.3 − 2.5× higher throughput

than existing PM hash indexes because its PS-suited design greatly
reduces the amount of PM reads (up to 2×, see Fig. 9b). 2) Com-
pared with a raw PetHash, enabling hotness-aware placement can
promote 8% throughput, mainly stemming from the query path
reduction of hot KVs. This technique brings more improvement
under a more skewed distribution. 3) Prefetching can further en-
hance the throughput by 11-40%. This benefit mainly comes from
the hiding latency of most PM reads.
Exp #3: NIC Gathering. Fig. 10 illustrates the CPU time break-
down of PetPS, with two gathering schemes, at their peak through-
put. We find that: 1) NIC Gathering reduces the gathering time
from 180 µs to 14 µs (about 12.8×). It justifies that NIC Gathering
eliminates the CPU overhead in gathering. 2) With NIC Gathering,
the indexing part also gets a speedup of 22% since it avoids cache
pollution caused by CPU Gathering. 3) The CPU saved from NIC
Gathering can then improve the peak throughput by 1.2×.

Note that NIC Gathering is also applicable to DRAM. We repeat
the above experiments by substituting PM with DRAM. Interest-
ingly, we find that NIC Gathering instead causes a 30% decline of
throughput. The underlying reason we find is that the low latency
of DRAM makes the DMA engine a performance bottleneck.
Exp #4: Contributions of techniques to performance. Fig. 11
shows the contributions of techniques to the final performance of
PetPS. We start with DashPS. By substituting Dash with PetHash,
PetPS gets 1.2 − 1.3×, 1.3 − 1.5×, and 1.2 − 1.7× improvement
in terms of throughput, median latency and P99 latency, since it
reduces PM reads and speeds up the indexing step. Introducing NIC
Gathering further delivers up to around 1.2× higher throughput,
2.3× lower median latency and up to 2.0× lower P99 latency, mainly
coming from lifting the burden of gathering off of CPUs.

4.4 Sensitivity Study

Exp #5: Impact of write ratios.We use YCSB to test the sensitivity
of PetPS to writes. We set different update ratios, the remaining
proportion is for reading. As shown in Fig. 12, PetPS consistently
achieves similar or better performance than any other system, even
with high update ratios. This is because the single-level structure
of PetHash is also friendly to updates. With a higher read ratio,
PetPS can enhance more performance (thanks to NIC Gathering).
Exp #6: Impact of embedding dimensions. We use the Pro-
duction workload and equip all systems with different embedding
dimensions. Fig. 13 shows the CPU time breakdown at peak through-
put of Dash-PS and PetPS. Due to space limitations, we omit other
competitors with similar performance. The increased embedding
dimension makes other systems take more time in the gathering

1019

La
te

nc
y

(µ
s)

PetPS(CPU	Gathering)
PetPS(NIC	Gathering)

Gathering
Indexing

0

200

400

600

800

YCSB

Production
300

350

Figure 10: (Exp #3)

Benefits of NIC

Gathering.

Latency (m
s)

Th
ro

ug
hp

ut
 (M

op
s/

s)

DashPS
PetPS+PetHash+NICGather

PetPS+PetHash

P99	Lat.
Median	Lat.

0

2

4

6

8

0

20

40

YCSB

Production

Figure 11: (Exp #4) Con-

tribution of techniques to

performance.

Th
ro

ug
hp

ut
(M

op
s/

s)

Read Ratio

PSLite
DashPS

KuaiPS
PetPS

0

10

20

50 100

2
4
6

60

Figure 12: (Exp #5)

Performance impact

of write ratios.

Gathering
Indexing

Dim	=	16
Dim	=	64

Dim	=	128
Dim	=	256

Latency (µs)

D
as

hP
S

P
et

P
S

0 1000

Figure 13: (Exp #6) Perfor-

mance impact of embed-

ding dimensions.

M
ed

ia
n

La
t.

(m
s)

KuaiPS-DRAM
PetPS

Throughput (Mops/s)
0

2

4

20 40

Figure 14: (Exp #7) Per-

formance comparison

with DRAM PS.

step and consequently affects the indexing step. However, PetPS
keeps CPU efficiency even under large embedding dimensions.

4.5 Comparison with DRAM PS

Exp #7: Performance comparison with DRAM PS. We run
KuaiPS on DRAM (called KuaiPS-DRAM) and compare it with
PetPS on PM. Fig. 14 shows the throughput-latency curves of two
systems. We only show the median latency due to space limitation,
and the results of P99 latency are similar. 1) When the throughput
is below 28Mops/s, PetPS reaches similar or even lower latency.
2) PetPS achieves only 12% lower peak throughput than KuaiPS-
DRAM. Taking into account that the price of DRAM is 1.9× higher
than that of PM, PetPS yields much better cost-efficiency gains
than KuaiPS. According to our cost analysis [9], PetPS can reduce
the TCO of PSs by 30% without performance degradation.
Exp #8: Recovery time. We evaluate the recovery time of PetPS
on PM and KuaiPS on DRAM. For the model with 1 billion feature
IDs, PetPS only needs 5 seconds of recovery time with the instant
recovery of PM, while KuaiPS requires nearly 7 minutes to reload
the model from remote storage.

5 RELATEDWORK

Parameter servers for embedding models. PS architecture [18,
19, 27, 30, 40, 50] decouples model storage from computation, and
eases training and serving of large-scale embedding models [35, 36,
42]. Traditional PSs are DRAM-only, introducing high storage costs
when facing at-scale embedding models. There are several works
extending the memory hierarchy of PS beyond DRAM with SSDs.

In the training scenario, AIBox [53] and HierPS[52] equip PS
with SSDs. Their intuition is that we can prefetch parameters of
the next training step to hide the latency of low-speed media, as
the training dataset is all pre-known. Compared with them, the
inference scenario of PetPS is more challenging due to the pre-
unknown inference requests.

In the inference scenario, Bandana [20] stores embedding models
with NVMe SSDs. The main challenges Bandana deals with are the
limited read bandwidth and read amplification of SSDs. SDM [12]
extends Bandana with a customized NVMe driver and a sophisti-
cated DRAM cache. PetPS distinguishes from them in two aspects.
1) Bandana and SDMwith slow SSDs are device-bottlenecked, while
PetPS with fast PM is CPU-bottlenecked. This leads to different

considerations and designs. 2) With a low performance, Bandana
and SDM only suit for non-performance-critical embeddings (e.g.,
user embeddings) [20], which only take a small proportion of all em-
beddings. However, PetPS has a broader suitability since it delivers
significantly better latency and throughput with PM.
Persistent memory indexes. PM is a promising low-cost substi-
tute for DRAM. In the last few years, there is a wealth of work on
PM indexes [13, 14, 29, 34, 46, 47]. The most relevant work with
PetPS is PM hash indexes [15, 33, 37, 51, 57]. They mainly focus
on optimizing writing, but are not suitable in the PS scenario with
massive reads. Level and Clevel [15, 57] apply the two-level scheme
to reduce PM writes and only need to rehash entries in one level.
However, under the read-intensive scenario, Level suffers additional
conflicts for its reader-writer locks for concurrency control, while
Clevel needs to probe all levels for reads inefficiently. CCEH [37]
and Dash [33] follow the extendible hash schemes. They can achieve
a finer resizing granularity by only rehashing segments. However,
they suffer from multiple pointer-chasing operations when locating
one KV pair. For the reading path optimization, Dash employs
fingerprint [38] to avoid unnecessary in-chunk PM reads and al-
leviate CPU stalls. PetPS also leverages it to speed up in-chunk
probing. Coroutine-based approaches [44, 45] try to hide the high
PM latency by scheduling another task (coroutine). PetPS achieves
similar effects by customizing the batch query pipeline.

6 CONCLUSION

PetPS, as the first PM-enabled PS, achieves both fast recovery and
low storage costs for huge embedding models compared with tradi-
tional DRAM PSs. First, based on the unique workload characteris-
tics, PetPS designs a hash index tailored for PSs and greatly reduces
PM reads. Second, PetPS offloads gathering from the CPU to NICs
and thus promotes CPU efficiency. Evaluation with production
workloads shows that PetPS outperforms PSs using state-of-the-
art PM hash indexes. Our PetPS provides a prime example of PM’s
industrial application; we expect further efforts on this emerging
hardware from both academia and industry.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China
(Grant No. 2021YFB0300500), the National Natural Science Founda-
tion of China (Grant No. 62022051) and Kuaishou.

1020

REFERENCES

[1] 2022. Apache Kafka. https://kafka.apache.org/.
[2] 2022. Apache MXNet | A flexible and efficient library for deep learning. https:

//mxnet.apache.org/versions/1.9.1/.
[3] 2022. Compute Express Link. https://www.computeexpresslink.org/.
[4] 2022. dmlc/ps-lite: A lightweight parameter server interface. https://github.com/

dmlc/ps-lite.
[5] 2022. DPDK. https://www.dpdk.org/.
[6] 2022. facebook/folly. https://github.com/facebook/folly/blob/main/folly/

container/F14.md.
[7] 2022. Intel(r) Data Direct IO A Primer. https://www.intel.com/content/dam/

www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-
brief.pdf.

[8] 2022. Intel® Optane™ Persistent Memory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[9] 2022. Kuaishou: Storage Upgrade for Short Video Services. https://www.intel.
com.au/content/www/au/en/customer-spotlight/stories/kuaishou-customer-
story.html.

[10] 2022. rdma-core/ibverbs.h at master · linux-rdma/rdma-core. https://github.com/
linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h.

[11] 2022. Samsung Electronics Unveils Far-Reaching, Next-Generation Mem-
ory Solutions at Flash Memory Summit 2022 – Samsung Global News-
room. https://news.samsung.com/global/samsung-electronics-unveils-far-
reaching-next-generation-memory-solutions-at-flash-memory-summit-2022.

[12] Ehsan K Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Ram-
persad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, et al. 2021.
Supporting Massive DLRM Inference Through Software Defined Memory. arXiv
preprint arXiv:2110.11489 (2021).

[13] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: an efficient
hybrid PMem-DRAM key-value store. Proceedings of the VLDB Endowment 14, 9
(2021), 1544–1556.

[14] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
Flatstore: An efficient log-structured key-value storage engine for persistent
memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 1077–1091.

[15] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free concurrent
level hashing for persistent memory. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 799–812.

[16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016,
Boston, MA, USA, September 15, 2016, Alexandros Karatzoglou, Balázs Hidasi,
Domonkos Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior
Rokach (Eds.). ACM, 7–10. https://doi.org/10.1145/2988450.2988454

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[18] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.
2016. Geeps: Scalable deep learning on distributed gpus with a gpu-specialized
parameter server. In Proceedings of the eleventh european conference on computer
systems. 1–16.

[19] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker,
Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks.
In Advances in Neural Information Processing Systems 25: 26th Annual Confer-
ence on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger (Eds.). 1232–1240. https://proceedings.neurips.cc/paper/2012/hash/
6aca97005c68f1206823815f66102863-Abstract.html

[20] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti. 2019. Bandana:
Using Non-Volatile Memory for Storing Deep Learning Models. In Proceedings
of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March
31 - April 2, 2019, Ameet Talwalkar, Virginia Smith, and Matei Zaharia (Eds.).
mlsys.org. https://proceedings.mlsys.org/book/277.pdf

[21] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[22] Ana Gainaru, Richard L Graham, Artem Polyakov, and Gilad Shainer. 2016.
Using infiniband hardware gather-scatter capabilities to optimize mpi all-to-all.
In Proceedings of the 23rd European MPI Users’ Group Meeting. 167–179.

[23] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee,
Aditya Agrawal, Mike O’Connor, and Onur Mutlu. 2018. What Your DRAM
Power Models Are Not Telling You: Lessons from a Detailed Experimental Study.
Proc. ACM Meas. Anal. Comput. Syst. 2, 3 (2018), 38:1–38:41. https://doi.org/10.

1145/3224419
[24] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 1725–1731. https://doi.org/10.24963/ijcai.2017/239

[25] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim M. Hazelwood, Mark Hempstead, Bill Jia,
Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy,
Liang Xiong, and Xuan Zhang. 2020. The Architectural Implications of Face-
book’s DNN-Based Personalized Recommendation. In IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020. IEEE, 488–501. https://doi.org/10.1109/HPCA47549.
2020.00047

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[27] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A unified architecture for accelerating distributed {DNN} training in
heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463–479.

[28] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design guide-
lines for high performance {RDMA} systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). 437–450.

[29] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. Recipe: Converting concurrent dram indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 462–477.

[30] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-
tributed machine learning with the parameter server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 583–598.

[31] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 1754–
1763. https://doi.org/10.1145/3219819.3220023

[32] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, YulongWang, YongjunHe, Honghuan
Wu, Lei Sun, Haodong Lyu, Chengjun Liu, Xing Dong, et al. 2021. Persia: A
Hybrid System Scaling Deep Learning Based Recommenders up to 100 Trillion
Parameters. arXiv preprint arXiv:2111.05897 (2021).

[33] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. Proc. VLDB Endow. 13, 8 (apr 2020), 1147–1161.
https://doi.org/10.14778/3389133.3389134

[34] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. {ROART}: Range-query Optimized Persistent
{ART}. In 19th USENIX Conference on File and Storage Technologies (FAST 21).
1–16.

[35] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi Yang, and
Bin Cui. 2022. HET-GMP: A Graph-based System Approach to Scaling Large
Embedding Model Training. In Proceedings of SIGMOD Conference, Zachary Ives,
Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 470–480. https://doi.org/10.
1145/3514221.3517902

[36] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao,
and Bin Cui. 2022. HET: Scaling out Huge Embedding Model Training via
Cache-enabled Distributed Framework. Proc. VLDB Endow. 15, 2 (2022), 312–320.

[37] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok Nam.
2019. {Write-Optimized} Dynamic Hashing for Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies (FAST 19). 31–44.

[38] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data. 371–386.

[39] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang
Zhu, and Kun Gai. 2020. Search-based user interest modeling with lifelong
sequential behavior data for click-through rate prediction. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
2685–2692.

[40] Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, and Volker Markl. 2022.
NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter
Access. In Proceedings of the 2022 International Conference on Management of
Data. 481–495.

[41] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel,
and Carole-Jean Wu. 2022. RecShard: statistical feature-based memory optimiza-
tion for industry-scale neural recommendation. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems. 344–358.

1021

https://kafka.apache.org/
https://mxnet.apache.org/versions/1.9.1/
https://mxnet.apache.org/versions/1.9.1/
https://www.computeexpresslink.org/
https://github.com/dmlc/ps-lite
https://github.com/dmlc/ps-lite
https://www.dpdk.org/
https://github.com/facebook/folly/blob/main/folly/container/F14.md
https://github.com/facebook/folly/blob/main/folly/container/F14.md
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com.au/content/www/au/en/customer-spotlight/stories/kuaishou-customer-story.html
https://www.intel.com.au/content/www/au/en/customer-spotlight/stories/kuaishou-customer-story.html
https://www.intel.com.au/content/www/au/en/customer-spotlight/stories/kuaishou-customer-story.html
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://doi.org/10.1145/2988450.2988454
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.mlsys.org/book/277.pdf
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3514221.3517902
https://doi.org/10.1145/3514221.3517902

[42] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu,
Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, and Luo Mai. 2022. Ekko:
A Large-Scale Deep Learning Recommender System with Low-Latency Model
Update. In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). USENIX Association, Carlsbad, CA, 821–839. https:
//www.usenix.org/conference/osdi22/presentation/sima

[43] Akshitha Sriraman and Thomas F Wenisch. 2018. {𝜇Tune}:{Auto-Tuned}
Threading for {OLDI} Microservices. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 177–194.

[44] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2020. Building blocks for persistent memory. The VLDB Journal 29, 6
(2020), 1223–1241.

[45] Marina Vemmou and Alexandros Daglis. 2021. COSPlay: Leveraging Task-Level
Parallelism for High-Throughput Synchronous Persistence. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 86–99.

[46] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu Shu.
2022. Pacman: An Efficient Compaction Approach for {Log-Structured}{Key-
Value} Store on Persistent Memory. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 773–788.

[47] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A {Black-Box}
Approach to {NUMA-Aware} Persistent Memory Indexes. In 15th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 21). 93–111.

[48] RuoxiWang, Bin Fu, Gang Fu, andMingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17, Halifax, NS, Canada,
August 13 - 17, 2017. ACM, 12:1–12:7. https://doi.org/10.1145/3124749.3124754

[49] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen
Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu. 2020. Kraken: memory-efficient
continual learning for large-scale real-time recommendations. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020,
Christine Cuicchi, Irene Qualters, and William T. Kramer (Eds.). IEEE/ACM, 21.
https://doi.org/10.1109/SC41405.2020.00025

[50] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,
Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An

efficient communication architecture for distributed deep learning on {GPU}
clusters. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). 181–193.

[51] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: a key-value store for optane persistent memory. In Proceedings
of the Sixteenth European Conference on Computer Systems. 194–209.

[52] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive
scale deep learning ads systems. Proceedings of Machine Learning and Systems 2
(2020), 412–428.

[53] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. Aibox: Ctr prediction model training on a single node. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
319–328.

[54] Guorui Zhou, Weijie Bian, Kailun Wu, Lejian Ren, Qi Pi, Yujing Zhang, Can Xiao,
Xiang-Rong Sheng, Na Mou, Xinchen Luo, et al. 2020. CAN: revisiting feature co-
action for click-through rate prediction. arXiv preprint arXiv:2011.05625 (2020).

[55] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu,
and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate
Prediction. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
AAAI Press, 5941–5948. https://doi.org/10.1609/aaai.v33i01.33015941

[56] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma,
Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network
for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 1059–
1068. https://doi.org/10.1145/3219819.3219823

[57] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. {Write-Optimized} and {High-
Performance} Hashing Index Scheme for Persistent Memory. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 461–476.

1022

https://www.usenix.org/conference/osdi22/presentation/sima
https://www.usenix.org/conference/osdi22/presentation/sima
https://doi.org/10.1145/3124749.3124754
https://doi.org/10.1109/SC41405.2020.00025
https://doi.org/10.1609/aaai.v33i01.33015941
https://doi.org/10.1145/3219819.3219823

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Persistent Memory
	2.2 Embedding Models
	2.3 Huge Embedding Model Serving at Kuaishou
	2.4 Motivation

	3 Design & Implementation
	3.1 PetPS Architecture
	3.2 PetHash
	3.3 NIC Gathering
	3.4 Recovery

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Techniques
	4.4 Sensitivity Study
	4.5 Comparison with DRAM PS

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

