
NV-SQL: Boosting OLTP Performance with Non-Volatile DIMMs

Mijin An†
Sungkyunkwan University

meeeejin@skku.edu

Jonghyeok Park†∗
Hankuk University of Foreign Studies

jonghyeok.park@hufs.ac.kr

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

Beomseok Nam
Sungkyunkwan University

bnam@skku.edu

Sang-Won Lee
Sungkyunkwan University

swlee@skku.edu

ABSTRACT
When running OLTP workloads, relational DBMSs with flash SSDs
still suffer from the durability overhead. Heavy writes to SSD not
only limit the performance but also shorten the storage lifespan. To
mitigate the durability overhead, this paper proposes a new data-
base architecture, NV-SQL. NV-SQL aims at absorbing a large frac-
tion of writes written from DRAM to SSD by introducing NVDIMM
into the memory hierarchy as a durable write cache. On the new
architecture, NV-SQL makes two technical contributions. First, it
proposes the re-update interval-based admission policy that deter-
mines which write-hot pages qualify for being cached in NVDIMM.
It is novel in that the page hotness is based solely on pages’ LSN.
Second, this study finds that NVDIMM-resident pages can violate
the page action consistency upon crash and proposes how to de-
tect inconsistent pages using per-page in-update flag and how to
rectify them using the redo log. NV-SQL demonstrates how the
ARIES-like logging and recovery techniques can be elegantly ex-
tended to support the caching and recovery for NVDIMM data.
Additionally, by placing write-intensive redo buffer and DWB in
NVDIMM, NV-SQL eliminates the log-force-at-commit and WAL
protocols and further halves the writes to the storage. Our NV-SQL
prototype running with a real NVDIMM device outperforms the
same-priced vanilla MySQL with larger DRAM by several folds in
terms of transaction throughput for write-intensive OLTP bench-
marks. This confirms that NV-SQL is a cost-performance efficient
solution to the durability problem.

PVLDB Reference Format:
Mijin An, Jonghyeok Park, Tianzheng Wang, Beomseok Nam and
Sang-Won Lee. NV-SQL: Boosting OLTP Performance with Non-Volatile
DIMMs. PVLDB, 16(6): 1453 - 1465, 2023.
doi:10.14778/3583140.3583159

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/meeeejin/mysql-57-nvdimm-caching.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583159

† Both authors contributed equally.
∗ Work done while in Sungkyunkwan University.

 0
 400
 800

 1200
 1600
 2000

0 200k 400k 600k 800k 1M

Th
ro

ug
hp

ut
 (T

PS
)

Number of Transactions

Vanilla NV-SQL (Proposed)

6.5x on average

Figure 1: Throughput of two systems under the same budget.
NV-SQL achieves 6.5× higher throughput with NVDIMM-N.

1 INTRODUCTION
As SSDs continue to evolve with higher performance and better
cost-effectiveness, storage-centric database systems remain the
mainstream and economical choice for most applications [4]. De-
spite the high bandwidth provided by modern SSDs, however, they
still exhibit high latency at the microsecond level (e.g., Samsung
970 PRO’s latency can be as high as over 300𝜇s [1]), which is signif-
icantly higher than DRAM latency at the tens of nanosecond level
(e.g., 50-100ns). This leads to non-trivial durability overheads when
data has to be persisted from the DRAM-resident buffer to SSD due
to checkpointing, eviction, and log flushing upon commit. Such stor-
age accesses happen frequently in relational DBMSs and especially
limit the performance of write-intensive OLTP workloads [2, 3].

DRAM-based non-volatile DIMMs (NVDIMMs) [14, 27] offer am-
ple opportunity to bridge the latency gap. In particular, NVDIMM-N
bundles normal DRAM and flash memory on a single DIMM with
super-capacitors. It operates as normal DRAM. Upon power failure,
the supercapacitor provides enough power to flush the DRAM con-
tents to the on-board flash memory. The data is loaded back from
flash to DRAM when the system is powered up again. Like recent
scalable persistent memory products such as Optane PMem [18],
NVDIMMs offer persistence and byte-addressability on the memory
bus. This allows them to be placed side-by-side with DRAM and
accessed using load and store instructions without going through
the software storage stack. However, unlike scalable PMem, which
is typically 3–5× slower than DRAM, NVDIMMs exhibit the same
performance characteristics as typical DRAM.
Notably, NVDIMMs are based on DRAM, so their capacity is

limited by DRAM capacity in the order of tens of GBs. However, we
observe that, in fact, the key to bridging the latency gap is allowing
frequently checkpointed/flushed data to be quickly persisted. More

1453

https://doi.org/10.14778/3583140.3583159
https://github.com/meeeejin/mysql-57-nvdimm-caching
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583159
https://www.acm.org/publications/policies/artifact-review-and-badging-current


importantly, OLTP workloads tend to focus on a small hot data set.
Typically, the amount of hot data is small enough to fit well within
NVDIMM capacity. Based on this observation, we advocate using an
NVDIMM-resident durable cache for staging hot pages. To address
the write durability overhead in the memory hierarchy of DRAM
and flash SSD, we propose a new database architecture, NV-SQL,
which leverages NVDIMMs as a cost-effective way to reduce write
traffic to flash SSD and thus boosts transaction throughput.
While the idea of using NVDIMM as a durable cache for hot

data is straightforward, realizing it in existing relational DBMS
engines is non-trivial due to several challenges. First, the system
must be able to efficiently identify and admit hot data to maxi-
mize the use of NVDIMM. Second, since the DBMS already uses a
general-purpose buffer pool in DRAM, adding the NVDIMM cache,
in essence, introduces a second buffer pool to the system. Hence,
it must be managed with a replacement policy that guarantees
data consistency across the two caching locations. To meet those
challenges, NV-SQL demonstrates how the ARIES-like logging and
recovery techniques [30] can be successfully and elegantly extended
to support NVDIMM caching. Specifically, we make the following
contributions by tackling these challenges:

• We observe write working set in OLTP workloads: only a
tiny fraction of the entire database is actively updated at a
time window. In addition, we show that NVDIMM is a very
economical device to keep such write working set.

• We propose a re-update interval-based admission policy to
determine which pages qualify for being cached in NVDIMM
based on their LSN and a replacement policy for NVDIMM
buffer whose goal is to evict false or less hot pages quickly.

• Since the effect of logical update actions (e.g., record inser-
tion) against NVDIMM pages becomes immediately durable,
some pages can violate the page action consistency upon crash.
NV-SQL suggests detecting inconsistent pages using the per-
page in-update flag and rectifying them using the redo log.

• By placing write-intensive objects of redo buffer and DWB
in NVDIMM, NV-SQL eliminates the log-force-at-commit and
WAL protocols and further halves the writes to the storage.

• We prototype NV-SQL with moderate non-intrusive modifi-
cation to the codebase of MySQL. With the NVDIMM smaller
than 2% of the database size, NV-SQL improves throughput
by up to 6.5x over the same-priced vanilla MySQL with larger
DRAM. In addition, by skipping the redo recovery for durable
write-hot pages in NVDIMM, NV-SQL can also reduce the
recovery time by one-fourth.

2 BACKGROUND
2.1 Durability Tax in DBMSs
In relational DBMS, transactional atomicity and durability are guar-
anteed by the log-force-at-commit and write-ahead-logging (WAL)
protocols. With the logging techniques, dirty pages can be writ-
ten back to storage asynchronously. Though asynchronous in na-
ture, however, writes are one of the major performance bottle-
necks when running write-intensive OLTP workloads, even on
high-performance SSDs. In particular, excessive writes to flash stor-
age with asymmetric read and write performance hinders overall

Table 1: Write Bandwidth: NVDIMM-N vs. DCPMM

Bandwidth Sequential Write Random Write
(GB/s) 64B 128B 256B 64B 128B 256B

NVDIMM-N 5.8 10.6 15.8 4.9 6.2 8.3
DCPMM 1.6 1.9 2.0 0.5 0.6 0.7

performance, and the read operations are often blocked by its pre-
ceding write operations in both database buffer and SSD buffer
layers, which degrades the throughput and latency [2, 3]. To im-
prove the read performance of flash storage and boost OLTP per-
formance, excessive writes to flash storage need to be steered to
a faster durable cache so that the write traffic going to the flash
storage can be throttled; the fewer write requests, the more read
operations the flash storage can process.

2.2 Non-Volatile DIMMs
Although the performance of storage devices has been getting faster,
it is still bounded by the PCIe bus speed as they are connected as pe-
ripheral devices [5]. To make the performance of storage surpasses
that of PCIe bus, various non-volatile memory (NVM) technologies,
such as Intel’s Optane DCPMM [18] and NVDIMM [14], have been
developed to use the same form factor as DRAM. As installed on
the memory bus, they exhibit performance similar to DRAM while
providing persistence and byte-addressability.
NVDIMM-N uses both DRAM and Flash, and it is the best in

terms of latency. DRAM is memorymapped and used during normal
operation, and Flash is used as backup media for durability in the
event of a power outage. Therefore, NVDIMM-N provides similar
performance to DRAM and is practically free from wearing issues,
unlike other NVMs. However, most supercapacitors in NVDIMM-N
are used as a backup power source when a power failure occurs, so
its capacity is limited and smaller than several tens of GB.

Table 1 shows the write bandwidth of DCPMM and NVDIMM-N
that we measure in our testbed machine equipped with a single
128 GB Optane DCPMM and a single 16 GB HPE NVDIMM-N. With
256B random writes, the bandwidth of NVDIMM-N is up to 12×
higher than that of DCPMM. Since OLTP workloads frequently per-
form small and random updates followed by cache-line flush com-
mands [55], DCPMM’s tardy write latency makes DCPMMs unsuit-
able for durable write buffer cache compared to NVDIMMs. Hence,
only NVDIMM-N is considered a storage medium for durable write
buffer, and NVDIMM-N will be referred to as NVDIMM hereinafter.

2.3 Write Characteristics of OLTP Workloads
Understanding the I/O characteristics of a given workload is a
prerequisite for improving I/O performance. In OLTP workloads,
there are two main write characteristics. First, write queries have
temporal locality [6, 26, 28]. OLTP workloads write a small number
of new pages repeatedly over a short period of time. Once they are
updated heavily, they tend not to be accessed for a while until the
access pattern changes, i.e., write operations alternate between hot
and cold phases. Second,write skews are common [6, 26, 28]. Certain
tables have a small number of tuples updated frequently during

1454



Table 2: Write Fraction by Types (TPC-C)

Buffer Size (%) 10 20 30 40 50
Replacement Write (%) 97.3 92.9 81.0 66.3 46.8
Checkpoint Write (%) 2.7 7.1 19.0 33.7 53.2

short periods that repeat periodically, whereas most other tuples
are rarely updated [6, 26]. As detailed later, NV-SQL considers these
characteristics when designing the page admission policy.

2.4 Page-Action consistency
A transaction invokes page modifications, which are translated into
a sequence of logical page actions, each applied to an individual
physical page. In that the conventional DBMSs keep track of every
such logical action for every physical page for recovery, they are
said to take the physio-logical logging approach. An important as-
sumption made by page-oriented recovery schemes such as ARIES
is that all database pages are consistent with respect to each logical
page-updating action [20]. To guarantee the action consistency
for pages, a process has to strictly follow the fix-rule [21] when
updating a page: the process has to fix the page first, then make
all modifications and generate log records, and finally unfix the
page. However, note that a physical page in DRAM can be inconsis-
tent because a logical action typically updates multiple parts of a
physical page. Thus, if the system crashes after only some subtask
completes, the page will be in an inconsistent state.

In the conventional memory hierarchy with volatile DRAM and
non-volatile secondary storage, such a transient inconsistency due
to a page action does not cause any recovery issue. This is because
only unfixed and thus action-consistent pages are written to the
storage, and DRAM-resident pages are lost despite the page might
be in an inconsistent state at the time of failure. The recovery
module can restore the database from a failure by transforming
the action-consistent database into the transaction-consistent one
using logical redo and undo logs. On the other hand, in the mem-
ory hierarchy with NVDIMM, since transient inconsistency for
NVDIMM-resident pages is durable, the database engine needs
a new mechanism to guarantee the page-action consistency for
NVDIMM pages upon failures (which is our focus).

3 MOTIVATION
3.1 Write Working Set and Write Types
Given the cost per gigabyte of commercial NVDIMM devices, it is
not cost-effective to use a large NVDIMM as the sole buffer cache to
keep all pages in the working set, regardless of their update hotness.
However, OLTP workloads are known to have a small set of pages
that are frequently updated during a specific time window due to
temporal locality and skewed writes [6, 26]. We call such pages
as write-hot and refer to the set as write working set. The size of
write working set is typically small (e.g., 2.6∼6.7% of total database
size) [11], but such a write working set allows a large portion of
the writes to be absorbed in NVDIMM cost-effectively.
Meanwhile, there are only two types of writes that occur in

DBMSs: (i) Replacement writes caused by the buffer replacement

Table 3: Price and Performance Characteristics

Storage Random IOPS (4KB) Unit Unit
Media Read Write Capacity Price

DRAM [43] - - 32GB $180
NVDIMM [33] 8,960K 5,152K 32GB $540

SSD [44] 530K 51K 512GB $350

policy for cold dirty pages and (ii) checkpoint writes for hot dirty
pages that the checkpointing module flushes to disk to reduce re-
covery time. To get insight into which pages need to be kept in
small NVDIMM, we examine the type of pages in the write work-
ing set. Table 2 shows the proportion of each write type. As the
buffer size increases, replacement writes decrease. This is because
a larger buffer cache can hold more dirty pages, which results in
fewer dirty pages being replaced. On the other hand, a larger buffer
cache increases transaction throughput, and thus redo logs accu-
mulate faster. As a result, the DBMS triggers checkpointing more
frequently; thus, the proportion of checkpoint writes increases.
As detailed later, our proposed NV-SQL exploits these charac-

teristics in designing its admission policy to effectively identify
write-hot pages worth keeping in NVDIMM regardless of buffer
cache sizes and the dominant write types.

3.2 Five-Minute Rule for Durability
When should data be kept in DRAM, and when should it be kept
on disk? A simple guide to data placement is to keep infrequently
accessed data on disk and bring it into DRAM when needed while
keeping frequently accessed data in DRAM. As a practical rule of
thumb to determine the access interval which justifies data to be
cached in memory, Jim Gray et al. put forth the five-minute rule for
trading memory to reduce disk accesses [16]. The rule explores the
trade-off between the cost of memory and the cost of disk accesses
and computes the break-even access interval using the formula:

Pages per MB of Memory
IOPS of Disk × Disk Price

Memory Price per MB
When NVDIMM is used as a durable cache (i.e., Memory in the

formula) for SSD (i.e., Disk in the formula), the above formula can
be applied to calculate the break-even write interval for data to be
cached in NVDIMM. That is, this break-even interval can be used
as an economic formula for durability against the aforementioned
write working set. Calculating the cost of writing a single 4KB page
in SSD and the cost of caching the same page in NVDIMM based
on Table 3, the break-even point is 106 seconds. That is, if a page
has to be repeatedly written to SSD every or less than 106 seconds,
it is more cost-effective to cache the page in NVDIMM durably.

Considering that the capacity of NVDIMM is much smaller than
SSD, if too many pages are written frequently in the break-even
interval, the NVDIMM will not be able to absorb all of the write-
hot pages, i.e., it will drain write-hot pages to SSD, and the perfor-
mance may be bounded by SSD performance. To determine whether
NVDIMM can be used as a cost-effective cache for write working
sets, we ran the TPC-C workload for 6 hours and measured the
percentage of pages written at least once every 106 seconds. We set

1455



 0

 0.005

 0.01

 0.015

 0.02

F
ra

c
ti
o

n
 o

f 
T

o
ta

l 
D

B

Working Set Period

Total
Writes

Figure 2: Working Set Size over Time (TPC-C)

the database size to 54 GB (i.e., 500 warehouses) and the buffer size
to 11 GB (i.e., 20% of the database size). Figure 2 shows the fractions
of pages written more than once in the time window (denoted as
writes) out of the total number of pages accessed in the same time
window (denoted as total). Overall, the write working set size
accounts for a very small portion (i.e., 0.54% on average, 300 MB).
This result is consistent with results reported in [11].

3.3 Threats to Page-Action Consistency
If a system crashes while logical actions are updating NVDIMM-
resident pages, those pages may remain action-inconsistent upon
restart. If a page is durable in NVDIMM and action-consistent
despite a system failure, the page does not require redo recovery
but only undo recovery. However, if the logical update action for an
NVDIMM page is not completed at the time of the crash, the page is
action-inconsistent upon restart and cannot be recovered using the
logical undo/redo logs. Furthermore, if an NVDIMM page becomes
page-action inconsistent, the durability of all its previous committed
updates, while it resides in NVDIMM, is also lost. For this reason,
the guarantee of page-action consistency for logical actions on the
NVDIMM-resident page must be ensured. While providing write
buffering and durability, the NVDIMM caching brings the problem
of page-action consistency. Thus, as we described in Section 5.1, we
need to devise a mechanism to guarantee the action consistency for
NVDIMM-resident pages upon failures: to detect action-inconsistent
pages and to rectify them to be consistent.

4 NV-SQL
NV-SQL leverages NVDIMM to absorb write-hot pages with mini-
mal modifications to a mature DBMS implementation, MySQL. The
key benefit of using NVDIMM as a durable buffer cache alongside
the conventional DRAM buffer is that it can fully utilize the exist-
ing mature DRAM-SSD architecture while persisting dirty pages
at the speed of NVDIMM. Due to the small write working set size,
NV-SQL can reduce the number of writes to SSD by placing fre-
quently updated pages on a small NVDIMM.With this goal in mind,
NV-SQL has to identify the write working set (i.e., write-hot pages
in OLTP workloads) to cache in the small NVDIMM buffer cache.

4.1 Design Choice for Tiering
NV-SQL is a non-hierarchical DBMS architecture in that the
NVDIMM buffer cache is located at the same tier as the DRAM
buffer cache, unlike the three-tier architectures proposed in the
previous literature [52, 56]. That is, the pages cached in the DRAM
buffer cache and those in the NVDIMM buffer cache are disjoint
in NV-SQL, i.e., a page can reside in only one of the two caches at
any moment. Considering that NVDIMM works at the same speed

��������

����������������� �������������������

�����

�������������

���������

�����������

�������������

�������

���������

���������

�������

���������

�����������

����
�������������

������

���������

������

������

�������������

����������

���������

������������

�������������

������������

������

Figure 3: NV-SQL: Overview

as DRAM, it is neither beneficial nor economical to use NVDIMM
as a cache between DRAM and SSD. In such a three-tier architec-
ture, foreground database processes can not directly access pages in
NVDIMM despite DRAM and NVDIMM being in the same address
space. This results in a lower hit ratio than our two-tier architecture,
allowing CPUs to access NVDIMM directly. Furthermore, upon a
miss for a page in NVDIMM, the page should be copied back to
DRAM. In addition, if a page is updated in DRAM, it should even-
tually be copied into the middle NVDIMM tier when it is evicted.
This memory copy overhead for write will stand out for frequently
checkpointed pages. As a result, the frequent memory copy be-
tween DRAM and NVDIMM makes it impossible to achieve bet-
ter performance than our two-tier architecture. More importantly,
considering that NVDIMMs are costlier than DRAM and all dirty
pages evicted from DRAM, regardless of hot or cold, move to the
NVDIMM cache with limited capacity, the effect of absorbing writes
in NVDIMM is marginal. For this reason, we decided to choose the
two-tier architecture over the three-tier one.

4.2 Basic Framework
Figure 3 illustrates the architecture of NV-SQL and the interactions
between its components.

• When a page is requested, DRAM and NVDIMM buffer
caches are searched for that page. If the page is found in
either one, it is fetched and used. Otherwise, it is read from
storage and cached in the DRAM buffer. Note that pages
in storage cannot be fetched to NVDIMM without going
through the DRAM buffer.

• When a page is flushed from the DRAM buffer, it is either
staged to the NVDIMM buffer or written back to storage,
depending on whether it is hot enough to be cached in the
NVDIMM. That is, the admission criteria described below
identify whether it is worth caching in NVDIMM. If it is a
write-hot page, it is moved to the NVDIMMbuffer. Otherwise,
it is written back to storage.

• When a page is evicted from the NVDIMM buffer according
to the replacement policy, it is written to storage as in the
conventional buffer cache replacement mechanism.

4.3 Page Admission Policy
Pages in database tables with skewed access patterns often have
high temporal locality. Since it is not difficult to identify skewed
write access at the table level, it can be beneficial to steer such

1456



write requests to the NVDIMM buffer if a table is known to have
skewed access. However, if such a table is large and there exist a
large number of pages that are within the break-even interval for
durability, it is not possible to steer all those pages, but they need
to be selectively cached in NVDIMM. To select the most write-hot
pages, we use two database semantics: (i) checkpoint and (ii) log
sequence number (LSN). Let us detail how these two classic database
semantics are used to identify the write-hotness.

Checkpoint-based Admission To expedite the recovery pro-
cess, most DBMSs, including MySQL, Oracle, PostgreSQL, and IBM
DB2, track dirty pages using a list (called dirty page list) sorted by
LSN, an ever-increasing value representing offset recorded in the
log file, checkpoint them to the durable storage and truncate log
files periodically [17, 20, 22, 29, 34, 42, 45]. This fuzzy checkpointing
asynchronously flushes dirty pages from the head of the dirty page
list in small batches without blocking database operations, includ-
ing the LRU replacement [34, 45]. That is, the fuzzy checkpointing
spreads disk writes across the checkpoint interval.

If a dirty page is not accessed for a long time, it is evicted by the
LRU replacement mechanism even before being selected for the
checkpoint target and removed from the list. Therefore, NV-SQL
regards the pages in the head of the dirty page list as write-hot and,
upon checkpoints, unconditionally migrates them to the NVDIMM
buffer, even if some of them are no longer write-hot and thus falsely
admitted. By leveraging the existing checkpoint mechanism, this ad-
mission policy does not require any prior analysis of the workload.
As such, it is a general policy that can be easily implemented in any
DBMS supporting the fuzzy checkpointing [17, 22, 29, 34, 42, 45].

Re-update Interval-based Admission As shown in Table 2,
most writes occur due to the buffer cache replacement, especially
when the buffer cache size is small. Therefore, it is necessary to dis-
tinguish write-hot pages from uncheckpointed pages and migrate
them to NVDIMM to reduce write traffic. For this (i.e., LRU writes),
we utilize the concept of LSN maintained per page to estimate the
write-hotness of the page. DBMSs supporting ARIES-like recovery
and fuzzy checkpointing mechanism manage two types of LSN for
each page [30]: (i) Last-Flush-LSN and (ii) First-Update-LSN.
Last-Flush-LSN is LSN when a page is last flushed to disk, and
First-Update-LSN is LSN when a page is first updated after being
fetched into the buffer. Leveraging these two LSNs, we can obtain
the following equation:

Re-update Interval = First-Update-LSN − Last-Flush-LSN

Re-update Interval is an indicator of how quickly an evicted page
is brought back into the cache. If the difference between these two
LSNs of a page is small, it means that the page is, as soon as flushed
to disk, read back to the DRAM buffer and updated in a short time.
Conversely, a large difference indicates that the page is read back
and updated long after the last write. These pages are write-cold,
so they are not worth caching in NVDIMM. That is, pages with a
short Re-update Interval can be considered as write-hot, so they
need to be cached in the NVDIMM buffer.

Due to the limited NVDIMM capacity, given a Re-update Interval,
we need to convert it into a relative write-hotness rank, i.e., the rank
of the page among all the working set pages. If the rank of the page
is within a predefined threshold percentage (e.g., 10%), the page

is admitted to the NVDIMM buffer cache. In order to convert the
Re-update Interval score to the write-hotness rank, the distribution
of the Re-update Interval scores of all the write working set pages
must be known. The distribution of Re-update Interval scores can
be sampled and predicted on-the-fly. Alternatively, the workload
can be profiled in advance, and a threshold can be manually selected.
We currently assume offline profiling to set the threshold. We defer
dynamically changing the threshold online to future work.

4.4 NVDIMM Buffer Replacement Policy
Given the limited NVDIMM capacity, the data pages in the
NVDIMM buffer need to be managed judiciously for better uti-
lization. Which buffer replacement algorithm does work best for
the NVDIMM cache? Recall that the main role of NVDIMM is not
to maximize the hit ratio but to minimize writes to SSD, while the
primary role of DRAM is to keep frequently accessed pages cached
for fast processing and to increase the hit ratio. Given its simplicity
and adaptability, the obvious first choice is the Least Recently Used
(LRU) replacement policy. It manages pages in the buffer cache
according to the page access recency and selects a page not used
for the longest time as a victim since it is least likely to be accessed
soon. Because pages with high temporal locality are migrated to
the NVDIMM buffer, LRU can be a good alternative.
However, we need to prevent false-positive write-hot pages as

much as possible from being cached into the NVDIMM buffer. Some
pages might be checkpointed or have a short Re-update Interval,
even though they are no longerwrite-hot. Our admission policymay
unfortunately admit such pages that do not deserve to be cached
in the NVDIMM buffer. Hence, for better utilization of limited
NVDIMM, it is desirable to evict those pages at the earliest time.
For this purpose, we inherit the midpoint insertion algorithm

from MySQL [36]. The LRU list is divided into a new sublist and an
old one. The new sublist holds the younger data, while the other
has the older data. When a new page is read into the buffer cache,
it is initially inserted at the head of the old list, i.e., in the middle of
the entire LRU list. If a page hit occurs in the old sublist, it is made
young and moved to the head of the new sublist. Otherwise, if a
page hit occurs in the new sublist, the page is transferred to the head
of the new sublist only if it is within a predefined distance from
the head. If not, the page stays in place. As the database operates,
pages that are not accessed age by moving toward the tail of the
list. Eventually, they reach the tail of the old sublist and are evicted.
Despite these efforts to prevent false-positive write-hot pages

from polluting the new sublist, those pages can still enter the new
sublist and evict warm pages. Tomitigate this problem,we introduce
an update count-based midpoint insertion, the variant of frequency-
based replacement [41]. To be specific, we maintain an update count
for each page, which increases when it is updated in the NVDIMM
cache. The update count indicates how many times a page has been
updated after entering the old list in the NVDIMM buffer. Hence,
if a page hit occurs in the old sublist, but its update count is less
than one (i.e., never been updated since it entered the buffer), it
remains in the old sublist. Otherwise, it moves to the new sublist.
As a result, the NVDIMM buffer can quickly age out pages that
are only accessed once while fully utilizing the new sublist for
true-positive write-hot pages.

1457



4.5 Prototype Implementation
The NV-SQL scheme has been implemented as an extended buffer
manager module of MySQL 5.7.

Buffer Allocator This module is modified to allocate the
NVDIMM buffer and extend buffer management to the NVDIMM
area, for which we leverage the existing buffer allocation mech-
anism in MySQL. Since pages are managed across DRAM and
NVDIMM buffers, data structures needed for buffer management,
such as hash tables for page lookup and locks/latches for page con-
sistency, are managed for each buffer. NV-SQL stores buffer frames
in NVDIMM to ensure persistence, and other data structures for
buffer management are stored on DRAM. The key to such place-
ment is that those metadata, even for NVDIMM resident pages, can
be reconstructed during recovery without requiring persistence.
An update count is also added to each page in the NVDIMM buffer
to decide whether to move a page to the new sublist. The NVDIMM
buffer size is 1GB by default, which is relatively small compared to
the DRAM buffer size (e.g., 8GB). NV-SQL organizes the NVDIMM
buffer into 8 instances (i.e., as Vanilla does) and dedicates each
instance to its DRAM counterpart, thereby reducing contention
when migrating pages from DRAM to NVDIMM.

Buffer Replacement This module manages the page admis-
sion policy for the NVDIMM buffer. When a page is evicted from
the DRAM buffer, the aforementioned criteria (i.e., checkpoint write
or short Re-Update Interval) are tested, and a boolean flag is set to
indicate whether the page will be moved to the NVDIMM buffer.
Then, to migrate the target page to the NVDIMM buffer, one free
buffer frame is removed from the NVDIMM buffer, and the content
of the DRAM buffer frame is copied to the NVDIMM buffer frame
using memcpy. To ensure the order and durability of memory writes,
mfence is called before and after each clflush call. If a failure
occurs during clflush, we follow the conventional redo semantics
of DBMS for recovery. We then insert the NVDIMM buffer frame
into the midpoint of the NVDIMM buffer. Finally, we discard the
content of the original DRAM buffer frame, and the emptied page
is added to the free list of the DRAM buffer.

Read Buffer In NV-SQL, data pages are cached across DRAM
and NVDIMM buffers, so both buffers need to be searched for a read
request, but note that hash table lookups incur negligible overhead.

Flush Buffer A background writer dedicated to the NVDIMM
buffer is introduced to make free space timely. The background
writer flushes dirty pages when it receives a signal that the buffer
manager runs out of free pages.

5 LOGGING AND RECOVERY IN NV-SQL
One of the challenges that NVDIMM caching needs to address is the
page-action consistency for each individual page. In this section, we
describe the failure-atomic page update method.We also discuss the
benefit of placing a redo buffer and double write buffer at NVDIMM.

5.1 Alternatives for Page-Action Consistency
There are at least three alternatives to achieve page-action consis-
tency for NVDIMM pages upon crashes - Copy-on-Write (CoW),
undo-based, and redo-based approaches. This subsection explains
the first two approaches and discusses why they are discarded.

CoW-based Page-Action Consistency The CoW approach
maintains action-consistent pages by occupying additional space
in NVDIMM and ensures an action-consistent state by means of in-
voking memory copy and cache flush operations. With the copy-on-
write (CoW) approach, page action consistency is no more problem-
atic since action-consistent pages are preserved as shadow pages.
Despite the benefit in terms of consistency, unfortunately, the CoW
approach has two drawbacks: (i) it halves the capacity of NVDIMM
to accommodate shadow pages, lowering the write-absorbing effect.
and (ii) it suffers from the overhead of memory copy and cache
flush on every page modification. In fact, we found from a separate
experiment that the CoW version underperforms our scheme by
20% in terms of transaction throughput.

Undo-based Page-Action Consistency Intel’s PMDK [39]
provides transactional APIs that perform undo logging to ensure
failure-atomicity when updating data in non-volatile memory. How-
ever, PMDK transactions are known to have a significant over-
head [32, 46], and database systems must be changed to use its
16-byte fat pointers. In addition, such undo-based page action con-
sistency techniques entail the following problems. First, storing
fine-grained and complex logs for microoperations within pages
incurs excessive clflush instruction overhead. If we enlarge the
atomic write granularity to a page, the log size will increase and
waste scarce NVDIMM space. Second and more importantly, NV-
SQL should support recovery not only for durable pages in the
NVDIMM buffer cache but also for volatile pages in DRAM buffer
cache. That is, volatile pages are recovered by redoing the logs in a
durable storage and then undoing the incomplete actions in most
DBMSs, including MySQL. If the NVDIMM buffer cache employs a
recovery method that is independent of the recovery method for
the volatile buffer cache, restored pages in DRAMmay conflict with
their corresponding restored pages in the NVDIMM buffer cache.

5.2 Redo-based Page Action Consistency
A simple but effective recovery method for the NVDIMM buffer
cache while compatible with the existing recovery method is to
recover inconsistent NVDIMM pages by replaying redo logs against
their old versions in SSDs. Therefore, NV-SQL creates a redo log
entry for each update to NVDIMM-resident pages as well as each
update to its undo page, respectively. Specifically, NV-SQL performs
the following three steps for logging as in vanilla MySQL.

• Step 1: Before modifying a page, NV-SQL creates an undo
page in the rollback segment.

• Step 2: NV-SQL creates a redo log entry for the undo page
and persists it in NVDIMM.

• Step 3: After completing page modification, redo logs are
recorded for the micro operations performed on the page.

Detecting Action-Inconsistent Pages On the other hand, a
potential disadvantage of the redo-based recovery method is that
the number of the redo logs can be very large, and replay times can
be long, especially for write-hot pages. To alleviate this problem,
NV-SQL uses a bit flag to keep track of which pages and which redo
logs need to be recovered and replayed, as follows.
For NVDIMM-resident pages, the following steps are added to

check the consistency. After writing an undo log page before page

1458



modification, NV-SQL sets and persists a bit flag (in-update flag)
in the page to indicate the page is being modified. After persisting
a redo log entry, the flag is cleared. Thereby, NV-SQL ensures page
action consistency for logical operations that occur on NVDIMM-
resident pages. Since NV-SQL can, according to the fix-rule, modify
a page only after acquiring the exclusive semaphore for the page,
toggling a bit flag will not incur further concurrency overhead.
In addition, NV-SQL has to invoke clflush instructions for a

logical action on a page, i.e., modifications to cache lines on a page,
prior to resetting the page’s in-update flag. Unless those modified
cache lines are flushed to NVDIMM, the page-action consistency of
the page may be violated. For instance, let us assume that a page’s
in-update flag has been durably cleared at the time point of the
crash, but its modified cache lines have not yet reached NVDIMM.
Then, the page is incorrectly regarded as consistent. clflush and
its variants clflushopt and clwb instructions prevent the CPU
and the memory controller from optimizing memory accesses and
incur latency of over 100 nsec [10]. However, NV-SQL offsets this
overhead by saving SSD writes (i.e., with latency of over 100 𝜇s).

By introducing the in-update flag, NV-SQL can detect the action-
inconsistent pages easily upon reboot. In addition, the number of
inconsistent pages is very limited. Recall that, at the time point of a
crash, only a small number of NVDIMM pages are being modified
by logical update actions while most other pages are in a consistent
state. Thus, the number of action-inconsistent pages is proportional
to the number of CPU cores executing logical update actions. Only
for those pages, NV-SQL will replay the corresponding redo logs to
make them action-consistent.

5.3 Prototype Implementation
NV-SQL extends the ARIES-style recovery module of MySQL to
ensure page-action consistency for NVDIMM-resident pages. The
recovery module of MySQL consists of three steps: Analysis, Redo,
and Undo. Below we describe how NV-SQL modifies each step for
page-action consistency.

Analysis The analysis phase of NV-SQL works in two steps.
First, it has to handle the problem of torn pages, as the Vanilla
MySQL [35]. For every DWB page in NVDIMM, NV-SQL checks
whether its corresponding page from the user tablespace is par-
tially written (i.e., torn), and, when torn, overwrites the page using
its corresponding copy from DWB. Given that DWB has at most
128 pages, the overhead of this additional step will be small. Sec-
ond, it reads checkpoint_lsn and the checkpoint offset of the
most recent checkpoint from the redo log file as in vanilla MySQL.
checkpoint_lsn determines the scope to “redo”, i.e.. log entries
with an LSN greater than checkpoint_lsn must be replayed, and
the checkpoint offset points to the starting position of the redo
logs to be scanned. Then, NV-SQL examines the in-update flag of
all NVDIMM pages, looking for pages that were being updated by
incomplete transactions, i.e., the pages with the in-update flag
set. The LSNs of the partially updated pages are used to determine
where in the redo log file to scan from. While scanning and parsing
redo logs, the redo log entries are copied to a volatile buffer and
indexed into a hash table with the page ID as the key for fast lookup.

Redo Once redo logs are scanned and parsed, the recovery pro-
cess replays the redo logs from the earliest point in the redo log

file identified in the analysis phase. Volatile pages in the DRAM
buffer cache are recovered no different than vanilla MySQL’s re-
covery process. For NVDIMM-resident pages with the in-update
flag unset, NV-SQL does nothing because the logical operations in
the redo log have already been reflected in the pages. Otherwise,
NV-SQL reads the pages from the durable storage and applies the
redo logs to convert them into consistent pages. Upon completion
of the redo phase, NV-SQL restores the state of the system to the
state it was in at the time of failure. In addition, NV-SQL also re-
stores on-disk organization structures (i.e., rollback segments) for
undo as in vanilla MySQL.

Undo After the redo phase, NV-SQL must roll back any ef-
fects of uncommitted transactions to ensure failure-atomicity. For
NVDIMM pages with updates made by uncommitted transactions,
NV-SQL restores them using undo logs as in vanilla MySQL [31].

5.4 Placing Redo Buffer and DWB on NVDIMM
In addition to write-hot data pages, DBMS engines have a few more
objects that are small and write-intensive and are worth storing in
NVDIMM. In the case of MySQL, such objects are in redo buffer
and double write buffer (DWB). By placing such write-intensive
and performance-critical objects in NVDIMM, we expect better
transactional latency and throughput. In addition, fewer writes to
the storage will prolong the lifespan of SSD.

Redo LogBuffer Placing redo log buffer in NVDIMM can avoid
the overhead of the log-force-at-commit and write-ahead-log (WAL)
protocols in the conventional DBMSs, which are inevitable with
volatile DRAM-resident redo buffer [40]. Such protocols for trans-
actional durability and atomicity are known to incur the process
communication overhead and the synchronous I/O overhead [20].
Meanwhile, as depicted in Figure 3, with a redo buffer placed on
NVDIMM, transaction durability, and atomicity can be achieved
without following those protocols. Being durable once written to
NVDIMM, redo logs need not be synchronously flushed to the stor-
age for durability at commit. The no-log-force-at-commit protocol
removes the log flushing latency from the critical path of transac-
tion execution, improving the transaction latency. The accumulated
redo logs in NVDIMM will be asynchronously flushed to the log
device. In addition, since undo logs are also durable in NVDIMM,
they need not be written ahead prior to evicting pages dirtied by
non-committed transactions (i.e., no-WAL protocol).

DWB Since neither file systems nor storage devices support
atomic page writes to the storage, MySQL engine resorts to redun-
dant journaling using DWB so as to guarantee the atomic propa-
gation of dirty pages from DRAM to the storage despite failures:
for each dirty page, write it first to DWB and then to the original
location. Unfortunately, the redundant writes for atomic page prop-
agation sacrifice the performance a lot (e.g., enabling DWB can
drop throughput by one-third [24].)
Simply by placing the 2MB-sized DWB buffer in NVDIMM, we

can atomically propagate dirty pages to the storage in single-write
journaling. First, when evicting a DRAM-resident dirty page to SSD,
we can avoid redundant writes to SSD just by copying the page to
DWB at NVDIMM and then writing the page to its original location
in SSD. That is, the storage operation of flushing the page to DWB
in the disk is replaced by the memory writes to NVDIMM-resident

1459



DWB. In this way, even when the system fails while overwriting
the old copy in SSD, the new copy of DWB in NVDIMM can be used
to guarantee the atomic write. Second, when evicting an NVDIMM
page, NV-SQL does not write the page redundantly to DWB in
the disk, either. Since the page is already durable and thus can be
atomically propagated to the SSD in single-write despite failures.
To summarize, placing DWB in NVDIMM enables the elimination
of redundant writes to SSD, further halving the physical writes in
NV-SQL. This is another positive side-effect of NV-SQL.

6 PERFORMANCE EVALUATION
This section evaluates the performance of NV-SQL on the same-
priced DRAM-SSD and DRAM-NVDIMM-SSD configurations to
highlight the cost-performance effectiveness of our solution.

6.1 Experimental Setup
We use a Linux platform equipped with Intel Xeon E5-2640 CPU
with 32 total cores, 32GBmain memory, and 16GB NVDIMM-N [33].
We use a Samsung 970 PRO 512GB NVMe SSD as a database storage
device and a Samsung 850 PRO 256GB SSD as a database log device.
All benchmarks use the ext4 file system in direct I/O mode. For
NVDIMM-N, we mount the device with the DAX option. Throughout
all the experiments, unless otherwise stated, we set the buffer cache
size to 20% of the database size, the database page size to 4KB, and
the number of concurrent client threads to 32. As shown in Table 3,
the price per unit capacity of NVDIMM is three times higher than
that of DRAM. Thus, we evaluate NV-SQL using various DRAM and
NVDIMM configurations to demonstrate which one is more cost-
effective in performance, given the same cost (i.e., a 1GB NVDIMM
or a 3GB DRAM). Below are described the two OLTP workloads
used in the experiments:

TPC-C tpcc-mysql from Percona [38] is used for TPC-C work-
load on MySQL. TPC-C is an industry-standard OLTP benchmark
for transactional database systems, consisting of heavy random
reads and writes. For all TPC-C experiments, the initial database is
set to 54GB (i.e., 500 warehouses).

LinkBench LinkBench [6] is an open-source database bench-
mark for a large-scale social graph, reflecting the read-intensive
feature with approximately 30% writes. The dataset consists of 50
million nodes, amounting to 64GB.

6.2 Run-Time Performance
In this section, we analyze the performance impact of NV-SQL with
respect to transaction throughput and reduction of writes to SSD.

6.2.1 Effect of Update Count-based Midpoint Insertion. Before dis-
cussing the performance of NV-SQL, let us first clarify the perfor-
mance of the update count-based NVDIMM buffer management
policy. The update count-based midpoint insertion policy is intro-
duced to differentiate truly write-hot pages for the new sublist.
Table 4 shows the detailed performance metrics of two midpoint
insertion schemes: the default and the update count-based one.
With the update count-based policy, the average number of up-

dates made to the pages in the new sublist (the Update # / Page
column) increases from 31 to 77, and the proportion of the false-
positive write-hot pages in the new sublist being written to the SSD

Table 4: Performance of NVDIMMManagement Schemes

Write Amount (%) Update # / Page TPS
Old New Old New

Default 83 17 9 31 1477
Update Count 95 5 13 77 1831

 0

 400

 800

 1200

 1600

 2000

0 200k 400k 600k 800k 1M

T
h

ro
u

g
h

p
u

t 
(T

P
S

)

Number of Transactions

Vanilla NV-SQL (8:1) NV-SQL (5:2)

Figure 4: TPC-C Performance (Buffer Size = 20%)

(the Write Amount(%) column) decreases from 17% to 5%. This is
because the policy admits a small amount of truly write-hot pages
to the new list and absorbs writes more effectively while prevent-
ing false-positive write-hot pages from entering and polluting the
new sublist. As a result, the update count-based policy improves
transaction throughput by 24% than the default.

6.2.2 Basic Performance Analysis using TPC-C. We run the TPC-
C benchmark for 1.5 hours and measure the throughput per sec-
ond to compare the economic cost-effectiveness of the three same-
priced systems, i.e., the throughput of DRAM-only Vanilla (11 GB
DRAM), 8GB DRAM–1GB NVDIMM, (NV-SQL(8:1)) and 5GB
DRAM–2GB NVDIMM (NV-SQL(5:2)).

Transaction Throughput Figure 4 shows TPS for 1 million
transactions; that is, the x-axis represents the number of completed
transactions, and the y-axis indicates TPS. For Vanilla used as
the baseline for comparison, we tuned flash-aware knobs known
to be critical for I/O performance in MySQL [3]. The performance
of the DRAM-only system is significantly lower than the other
two equi-cost systems that benefit from the NVDIMM buffer. On
average, NV-SQL(5:2) shows 5.8× better throughput than Vanilla
and NV-SQL(8:1) does 6.5×. Furthermore, due to the active trans-
action processing, NV-SQL improves the I/O utilization from 60% in
Vanilla to 82% and CPU utilization from 20% to 68%. These results
clearly show that the equi-cost NV-SQL with small but durable
cache can reduce writes to flash, and the benefit of lowering writes
to SSD is more performance-critical than sacrificing the hit ratio.
To analyze the benefit of NV-SQL in detail, we measure several

metrics for each mode as presented in Table 5. The first row is the
amount of page writes per transaction issued by the MySQL buffer
layer. Compared to Vanilla, NV-SQL reduces the per-transaction
write traffic to the storage in half as its NVDIMM buffer absorbs
writes. To further quantify the write reduction by NV-SQL, we
measure the number of writes to SSD per page while conducting
the same experiment in each mode. Figure 5 shows that NV-SQL
cuts the number of writes to SSD approximately in half. Specifically,

1460



 0
 0.2
 0.4
 0.6
 0.8

 1

 5  10  15  20  25  30  35  40

C
D

F

Duplicate Write Count

Vanilla

 0
 0.2
 0.4
 0.6
 0.8

 1

 5  10  15  20  25  30  35  40

C
D

F

Duplicate Write Count

NV-SQL

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40

C
D

F

Duplicate Write Count

Vanilla

Figure 5: Cumulative Distribution of Skewed Writes

Table 5: I/O Metrics (Buffer Size = 20%)

Vanilla NV-SQL NV-SQL
(DRAM:NVDIMM) (11:0) (8:1) (5:2)

Write/TX (KB) 94 42 52
Write/Second (MB) 23.1 75.9 85.7
Read/Second (MB) 13.7 106.7 93.0

Hit Ratio (%) 98.6 97.9 97.5
Average TPS 279 1,831 1,631

as depicted by two red lines, pages ranked in the top 20% are written
5 times in NV-SQL while they are written 10 times in Vanilla. This
result clearly indicates that NV-SQL can, as intended, absorb write-
hot pages using a small amount of NVDIMM buffer.

The second and third rows in Table 5 are the amount of each I/O
per second measured by iostat. They show that the ratio of per-
second read and write amount in Vanilla is about 1:1.7, whereas the
ratio in NV-SQL becomes roughly 1.4:1. That is, NV-SQL transforms
the write-heavy I/O pattern in Vanilla into the read-intensive (and
thus more SSD-friendly) pattern. Meanwhile, note that the data
transfer rates of NV-SQL aremuch higher than those of Vanilla. This
is not because NVDIMM fails to absorb the disk I/Os but because
NV-SQL yields higher TPS. The hit ratio of NV-SQL with smaller
memory is lower than that of Vanilla. Recall that this lowered hit
ratio leads to more reads. In addition, note that SSD can obviously
serve more reads because reads are less interfered with by writes
inside SSD [9]. As a result, NV-SQL achieves 6.5× better throughput.

Another observation made from Figure 4 and Table 5 is the trade-
off ofmore DRAMvs. more NVDIMM. From the throughput trends be-
tween NV-SQL(8:1) and NV-SQL(5:2), compared to NV-SQL(8:1),
the benefit of write reduction in NV-SQL(5:2) is not large enough
to offset the reduced hit ratio by far, and thus its TPS gain over
Vanilla is less, though still significant. Finding the optimal NVDIMM
size is beyond the scope of this paper and is left for future work.

Transaction Latency The high tail latency poses serious chal-
lenges for online service providers, as even a small increase in
latency can reduce traffic and revenue. NV-SQL can reduce trans-
action latency mainly for two reasons. First, since fewer writes
are in the critical path of transactions and thus the page-missing
foreground processes will experience fewer or no read stalls [2, 3],
NV-SQLwill obviously reduce transaction latency. That is, SSDwith
fewer write requests can serve more flash reads faster; thus, the
host buffer layer can read missing pages more quickly from the SSD.
Second, each committing transaction no longer has to wait for the
synchronous log flush (that is, no force flushing) as the redo buffer
resides in durable NVDIMM. Once the redo log records become

 0
 500

 1000
 1500
 2000

Vanilla +Caching-Only +DWB +Redo Buffer

3.9x
5.9x 6.5x

TP
S

Figure 6: In-depth Analysis of Performance Gain

persistent, NV-SQL can eagerly release the exclusive semaphore,
and thus this can reduce additional transaction latency.
To verify this effect, we measure transaction latency while run-

ning the TPC-C benchmark. The table is omitted due to the space
limitation, NV-SQL considerably reduces the overall transaction
latency and narrows the latency distribution. To be specific, the
average, 95th, and 99th percentile latency of NV-SQL are 85%, 90%,
and 90% lower than Vanilla, respectively.

CPU overhead of NVDIMM Cache Management The over-
head of maintaining the NVDIMM cache consists of two parts: (i)
the costs of persisting data pages on NVDIMM (i.e., data move-
ment and persistence overhead) and (ii) the cost of guaranteeing
page-action consistency (i.e., in-update flag manipulation upon
NVDIMM-resident pages are modified). For caching overhead, we
measured CPU cycles while calling memcpy and clflush instruc-
tions on flushed pages from the DRAM buffer. We accumulated CPU
cycles on every manipulation of the in-update flag of NVDIMM-
resident pages to identify the page-action consistency overhead.
We confirmed that about 2% of CPU cycles are spent on Caching
and 7% on guaranteeing page action consistency. Although the
CPU overhead of frequent calling of clflush is non-marginal, we
believe eADR [19] can mitigate this to enhance NV-SQL further.
That is, once CPU caches are also included in the power-failure
protection domain (e.g., extended ADR [19]), NV-SQL doesn’t need
to call clflush anymore to ensure the durability.

6.2.3 In-Depth Analysis of Performance Gain. In order to drill down
the total gain and thus understand the performance contribution of
each technique, we measure TPS while running the TPC-C bench-
mark used in Figure 4 using three different NV-SQL configurations:
Caching-Only, DWB, and Redo Buffer.

Caching-Only Caching-Only NV-SQL outperforms Vanilla by
up to 3.9×. This result corroborates our design goal that caching hot
data pages in a durable cache yields considerable write reduction,
resulting in performance improvement.

DWB Placing DWB on NVDIMM enables single-write jour-
naling for dirty pages. This boosts the throughput of NV-SQL by
reducing writes to SSD and enabling SSDs to serve more reads faster.
The performance gain by placing DWB on NVDIMM (denoted as
+DWB in Figure 6) corresponds to the result of DWB off [24].

Redo Buffer In addition to DWB, placing the redo buffer at
NVDIMM will allow us to take the no-log-force-at-commit and
no-WAL protocols. However, this does not lead to significant per-
formance improvement because MySQL flushes logs to disk every
second for higher throughput, even while taking the risk of losing
the durability guarantee. We expect the benefit of placing a redo

1461



 0
 500

 1000
 1500
 2000
 2500
 3000

D5
D2+N1

D8
D5+N1

D11
D8+N1

D14
D11+N1

D17
D14+N1

D20
D17+N1

D23
D20+N1

D: DRAM (GB), N: NVDIMM (GB)

7.2x
6.7x

6.5x 3.4x
2.8x 2.3x

2.1x

Th
ro

ug
hp

ut
 (T

PS
)

Buffer Cache Size (GB)

Vanilla
NV-SQL

 0
 500

 1000
 1500
 2000
 2500
 3000

D5
D2+N1

D8
D5+N1

D11
D8+N1

D14
D11+N1

D17
D14+N1

D20
D17+N1

D23
D20+N1

D: DRAM (GB), N: NVDIMM (GB)

7.2x
6.7x

6.5x 3.4x
2.8x 2.3x

2.1x

Th
ro

ug
hp

ut
 (T

PS
)

Buffer Cache Size (GB)

Vanilla
NV-SQL

 0
 500

 1000
 1500
 2000
 2500
 3000

D5
D2+N1

D8
D5+N1

D11
D8+N1

D14
D11+N1

D17
D14+N1

D20
D17+N1

D23
D20+N1

D: DRAM (GB), N: NVDIMM (GB)

7.2x
6.7x

6.5x 3.4x
2.8x 2.3x

2.1x

Th
ro

ug
hp

ut
 (T

PS
)

Buffer Cache Size (GB)

Vanilla
NV-SQL

Figure 7: TPC-C Throughput: Varying Buffer Sizes

 0

 300

 600

 900

 1200

 1500

2048 1024 768 512 256 128 64 32 16 0

2.7x2.9x

4.6x
5.2x5.5x

6.1x6.2x6.5x6.7x

T
h
ro

u
g
h
p
u
t 
(T

P
S

)

NVDIMM Buffer Cache Size (MB)

Figure 8: Scalability for Different NVDIMM Cache Sizes

buffer at NVDIMM to be more outstanding under full ACID compli-
ance, which is a strong requirement in transaction systems [47, 51].

6.3 Effect of NV-SQL on Other Parameters

Buffer Cache Size In general, investing more memory resources
in the buffer cache helps to improve performance because of the
higher hit ratio. To delve into the effect of different buffer sizes,
we run the TPC-C benchmark by varying the ratio of NVDIMM to
DRAM while ensuring the same cost for each system.
Across different buffer sizes, as presented in Figure 7, NV-SQL

consistently outperforms Vanilla in throughput and write reduc-
tion. On the one hand, as the buffer size increases, the throughput
improves, and the average write per transaction reduces in Vanilla
and NV-SQL. This result is obvious, considering a higher hit ra-
tio leads to fewer I/Os. Though the relative gap between the two
shrinks as the buffer size increases, the effect of NV-SQL remains
considerable under a memory configuration of larger than 40% of
the database size, as is illustrated by the rightmost bar in Figure 7.
On the other hand, as the buffer size is reduced, the gap between
the two is widened. NV-SQL with 2GB DRAM and 1GB NVDIMM
(denoted as D2+N1) ) wins over Vanilla even by 7.2× in terms of
throughput. In summary, when investing the same cost in the buffer
cache, NV-SQL always outperforms the DRAM-only Vanilla.
Another intriguing point in Figure 7 is the cost-performance

efficiency of NV-SQL. For example, while the cost of NV-SQL with
(D2+N1) is 70% lower than that of Vanilla with 17GB DRAM (de-
noted as D17), NV-SQL even outperforms Vanilla by 24%. This result
highlights that NV-SQL is a cost-performance effective solution.

Impact ofALargerWriteWorking Set The results presented
so far only have about 300MB of write working set, as mentioned in
Section 3.2, which is smaller than the NVDIMMbuffer size (i.e., 1GB)
and thus fits into it. Readers might question whether the design of
NV-SQL can scale to a larger write working set. In this situation, NV-
SQL will encounter a type of sequential flooding phenomenon [40]
in terms of durability, which is the worst case to NV-SQL.

Table 6: Three TPC-C Transaction Mixes

Write/TX (KB) Improvement by NV-SQL
Vanilla NV-SQL WR Reduction (%) TPS

Default 94 42 55 6.5
NO+PM 66 36 44 5.0

NO-Only 45 27 41 4.3

 0
 10000
 20000
 30000
 40000
 50000

0 5M 10M 15M 20M 25MTh
ro

ug
hp

ut
 (O

PS
)

Number of Operations

Vanilla
NV-SQL 8.6x on average

 0

 10000

 20000

 30000

 40000

0 5M 10M 15M 20M 25M

Th
ro

ug
hp

ut
 (O

PS
)

Number of Operations

Vanilla
NV-SQL

 0

 10000

 20000

 30000

 40000

0 5M 10M 15M 20M 25M

Th
ro

ug
hp

ut
 (O

PS
)

Number of Operations

Vanilla
NV-SQL

Figure 9: LinkBench Throughput (Buffer Size = 20%)

To evaluate the impact of a larger write working set, we run the
TPC-C benchmark with a larger TPC-C database of 200GB. We set
the total buffer cache size to 20GB (i.e., 10% of DB size) and size the
NVDIMM and DRAM buffers considering the 3× more expensive
NVDIMM cost. We present the results in Figure 8. The last bar with
0MB NVDIMM buffer indicates the throughput of Vanilla.
The result clearly shows that the performance gain of NV-SQL

reduces as the NVDIMM buffer size is reduced from 64MB to
32MB. This is because the working set size becomes larger than the
NVDIMM buffer size. However, NV-SQL still outperforms Vanilla
by caching fewer but write-hotter pages to NVDIMM and eliminat-
ing the write overhead due to DWB. Another thing to note is that,
according to Section 3.2, the write working set size for a 200GB
database would be around 1GB. However, this indicates the theoret-
ical amount of pages worth caching in NVDIMM, and the number
of actual write-hot pages cached in NVDIMM is very small, as men-
tioned in Section 4.4. Therefore, the sharp performance degradation
occurs at a much smaller NVDIMM buffer size than expected.

Different I/O patterns To investigate how NV-SQL behaves
across OLTP workloads with different I/O patterns, we conduct two
additional experiments. First, to verify the effect of NV-SQL with
different write/read ratios, we run the TPC-C using three mixes of
five transaction types in the benchmark, including the standard one
(denoted as default), a mix of New-Order and Payment (NO+PM),
and New-Order only (NO-Only). While running those mixes using
Vanilla and NV-SQL, we measure the write amount per transac-
tion as well as TPS and present the result in Table 6. The result
clearly indicates that NV-SQL is more effective with a more write-
intensive workload. For instance, for the default with the highest
write amount per transaction under Vanilla, the write reduction
ratio of NV-SQL over Vanilla is the largest. Accordingly, the TPS
improvement ratio is also the biggest.
Secondly, to demonstrate that NV-SQL works well for other

OLTP workloads, we measure OPS while running LinkBench [6]
using two configurations while executing 25 million operations. As
shown in Figure 9, NV-SQL outperforms Vanilla (i.e., DRAM-only)
by 8.6× on average, with an average of 52% reduction in writes per

1462



Table 7: Effect of NV-SQL on Various SSDs (TPC-C)

SSD-A [49] SSD-B [50] SSD-C [48]
Vanilla 215 413 30

NV-SQL 1,725 1,979 326
WR Reduction (%) 48 46 68
Perf. Improvement 8.0× 4.8× 10.9×

operation. Since the I/O pattern in LinkBench, as in TPC-C, has
temporal locality and write skew [28], the relative performance
gain of NV-SQL over Vanilla is similar to that of default TPC-C.

Different SSDs To verify the effect of NV-SQL on different
SSDs, we conduct the same experiment as Figure 4 using three
commercial SSDs. As shown in Table 7, NV-SQL consistently out-
performs Vanilla on all SSDs, although the improvement ratio varies
by SSD type. In the case of SSD-A, which is the latest version of
the SSD used in Figure 4 and thus has almost the same internal
architecture, the improvement ratio (i.e., 8 times) is similar to the
result in Figure 4. On the other hand, on SSD-B with higher IOPS,
NV-SQL outperforms Vanilla only by 4.8×. This is because NV-SQL
becomes CPU-bound (i.e., more than 85% CPU utilization) in effect,
not because its write reduction ratio is less. Lastly, SSD-C shows
the best performance improvement we have observed so far. The
reason for this is the large write reduction ratio, which is 68%.

The Number of Concurrent Threads We also vary the num-
ber of concurrent client threads to 16, 32, 64, 128, 256, 512, and 1024
while running the TPC-C benchmark. The graph is omitted due to
the space limitation, but as the number of threads increases, the
TPS of both Vanilla and NV-SQL decrease. As illustrated in Table 7,
the performance gain of NV-SQL decreases in CPU-bound. How-
ever, increasing the number of concurrent threads does not result
in high CPU usage. Rather, it shifts the performance bottleneck to
concurrency control (i.e., locking), dropping the throughput.

6.4 Comparison with Alternative Options
6.4.1 Alternative Baselines. We can consider two alternative op-
tions to NV-SQL: (i) Using more DRAM for a low miss ratio and (ii)
Using additional SSDs for high IOPS. First, let us compare option
(i) to NV-SQL using Figure 7. Even comparing Vanilla with 17GB
DRAM to NV-SQL with 2GB DRAM and 1GB NVDIMM, NV-SQL
still achieves better throughput, even though it costs less to config-
ure than Vanilla. Regarding option (ii), when using multiple disks, it
is more cost-effective to invest in NVDIMM to keep more write-hot
pages than to invest in more disks to write back them faster. To con-
firm this, we run a TPC-C benchmark using two SSDs in Figure 7
in RAID-0. Vanilla with two SSDs improves TPS by 1.6x because of
increased IOPS. Nonetheless, NV-SQL with one SSD still performs
4.1x better than the multiple disk option. The above results con-
firm that NV-SQL can address the page write-back bottleneck more
cost-effectively than other options.

6.4.2 Other NVM-based Alternatives. To understand the end-to-
end effect of NVM-based architecture, we compare the performance
of NV-SQL with NVM-only DBMS design on NVDIMM-only and
DCPMM-only systems. As described in [13], NVM-only architecture

Table 8: Performance of NVM-based Alternatives

Vanilla NV-SQL NVDIMM-only DCPMM-only
TPS 633 2265 2883 1029

Table 9: Performance over System Cost

Components Vanilla NV-SQL
CPU $939 $939
DRAM $61.88 $45.00
NVDIMM N/A $16.88
SSD $39.61 $39.61
𝑅 (Performance/Cost) 0.96 2.47

runs the entire database engine on pure NVM, which places a
buffer pool in NVM while its data and log files are stored in NVM
through the NVM-aware file system. To implement this approach,
we allocate buffer frames in NVM, as NV-SQL does, and use the
DAX-enabled filesystem. The TPC-C results are presented in Table 8.

NVDIMM-only shows superior performance, but this approach is
difficult to scale out due to its limited capacity. DCPMM-only can
scale much better with high capacity but has lower throughput due
to its high access latency and asymmetric I/O speed. All data in both
NVM-only approaches reside on NVM, so they do not incur any
disk I/O. NV-SQL, on the other hand, despite having this I/O stack
overhead, achieves approximately 3/4 of NVDIMM-only performance
and 2.2x of DCPMM-only performance. This result illustrates that
NV-SQL can cost-effectively improve performance using a small
amount of NVM on a full-fledged database engine.

6.5 Performance/Cost Ratio
Now we consider the total cost of ownership of DRAM–SSD and
DRAM–NVDIMM–SSD architectures. Assuming a multi-tenancy
where multiple tenants share computing resources of the same
server, the cost-effectiveness of NV-SQL can be different from the
on-premise system. To confirm the effect of NV-SQL in the cloud
environment following the pay-as-you-go pricing, we calculate the
performance/cost ratio 𝑅 based on the below formula proposed in
the previous study [23]. In the equation, we divide the measured
throughput 𝑃 by the total storage system cost, including storage
device cost $𝑆 , DRAM cost $𝐷 , and CPU computation cost $𝐸:

𝑅 =
𝑃

$𝑆 + $𝐷 + $𝐸 =
𝑃

$𝑆 + $𝐷 + (𝑊 ∗𝑈 ) ∗ ($𝐶 ∗ 1/𝑇 )
$𝐸 is calculated from the number of worker threads𝑊 , the average
CPU utilization 𝑈 , the market price of CPU $𝐶 and the number of
total hardware threads 𝑇 . Therefore, combining them can yield the
cost of active threads needed by the workload.
We present the cost of each component of Vanilla and NV-SQL

in Table 9. Note that $𝑆 and $𝐷 are the same because we adjust
the cost of memory devices used for each buffer cache to be equal.
We calculate the performance/cost ratio based on the performance
numbers obtained from the settings used for Vanilla(11:0) and
NV-SQL(8:1) in Figure 4. The ratio 𝑅 is 0.96 for Vanilla and 2.47 for

1463



 0

 40

 80

 120

 160

Vanilla NV-SQL

0.3 sec

0.2 sec

Ti
m

e 
(s

ec
on

ds
)

Analysis
Redo
Undo

Figure 10: Recovery Performance

NV-SQL. That is, NV-SQL is 2.6× more cost-effective than Vanilla,
although it uses more than 3×CPU and thus has high $𝐸. This result
clearly shows that NV-SQL can maximize the performance of exist-
ing DRAM–SSD architecture by using a small capacity of NVDIMM
as a complementary device while providing high cost-effectiveness.
In addition, given that 𝑅 takes into account the storage, DRAM,
and CPU space actually used, NV-SQL can provide cost benefits in
cloud systems that follow the pay-as-you-go pricing.

6.6 Recovery Performance
To evaluate recovery performance, we use SIGKILL signal to force
the system to crash after 10 minutes launching the same benchmark
used in Figure 4. We measure the amount of time to restore the
system, and the average recovery time is presented in Figure 10.

Analysis Phase Both MySQL versions have the same process
to scan and parse the redo log files. However, NV-SQL needs to
scan more redo log entries to recover action-inconsistent NVDIMM-
resident pages from on-disk pages as explained in Section 5.3.
Moreover, NV-SQL also scans NVDIMM pages to detect action-
inconsistent pages using the in-update flag. In our experiment,
this new phase for inspecting the 1GB NVDIMM buffer pool takes
about 1 second to complete. Thus, NV-SQL takes slightly more time
than Vanilla (51 and 43 seconds, respectively).

RedoPhase The reduction in the redo phase is because NV-SQL
can skip the redo for action-consistent NVDIMM pages. Though
the number of action-consistent NVDIMM pages is small, those
pages account for about half of the amount of redo logs. In NV-SQL,
however, for action-inconsistent pages, all their redo logs have to
be replayed against the corresponding old pages in SSD. However,
NV-SQL cancels out this overhead by avoiding replaying a bunch
of redo log entries for action-consistent pages. In our experiment,
NV-SQL reduces the redo phase time by ∼ 40% compared to Vanilla.

Undo Phase Both Vanilla MySQL and NV-SQL have the same
undo process. The most time-consuming task (i.e.reconstructing the
on-disk layout for undo) is done in the redo phase. Here, the asyn-
chronous rollback thread executes to revert any effect of uncommit-
ted transactions using undo logs. Most operations are conducted in
memory, so it takes less than 1 sec for both versions.

7 RELATED WORK

NVM-Aware DBMS Architectures. Recently proposed NVM-
aware designs can be classified into three types: NVM direct [7],

two-tiers with DRAM andNVM (MARS [12], SOFORT [37] and FOE-
DUS [25]), and three-tiers with DRAM, NVM and SSD (HyMem [52]
and Spitfire [56]). The first two designs place entire databases in
NVM, which is quite costlier than SSDs in terms of $/GB. Most of
them target scalable NVM products such as Optane DCPMM [18],
which are slower than DRAM but come with higher capacity. There-
fore, the tiered designs use DRAM as a caching layer for NVM.

Unlike previous studies, NV-SQL places NVDIMMat the same tier
as DRAM and leverages NVDIMM’s high performance to mitigate
durability overheads in traditional DRAM-SSD DBMS architectures.
Compared to HyMem and Spitfire, which transfer fine-grained
records or mini-pages between DRAM and NVM, NV-SQL admits
entire pages to NVDIMM. Moreover, NV-SQL leverages existing
checkpoint logic and per-page metadata to decide page admission
while the focus of other systems is on cache replacement policies
tailored for scalable but slower NVMs. NV-SQL also combines prop-
erties of NVM direct designs to allow direct updates in NVDIMM
without having to go through the storage hierarchy managed by
the buffer pool in HyMem and Spitfire.

Logging and Recovery Many NVM-aware logging and recov-
ery protocols have been proposed recently. Some [15, 54] advocates
placing the log buffer in NVM for fast commit, as NV-SQL does.
MARS [12] redesigns the ARIES protocol by discarding design de-
cisions for disk and opting for the force and no-steal policies. It also
introduces new storage primitive to encapsulate multiple random
writes in a transaction as a single atomic operation, making undo
logs unnecessarily and writing only redo logs ahead. Write-behind
logging [8] suggests adopting the force and steal policies to recover
NVM-resident databases. While both MARS and WBL assume the
NVM-resident databases, NV-SQL targets SSD-resident databases
assuming the traditional steal and no-force policies.

8 CONCLUSION
In this paper, we explored a new design for NVM-based caching
and suggested NV-SQL. Its key contribution is to show that the
ARIES-like logging and recovery scheme and the related concepts
such as checkpoint and LSN can be leveraged to cache data in the
limited NVDIMM effectively. We also pointed out the problem of
page-action consistency and suggested a redo-based solution.

Future research topics remain that can make NV-SQL more prac-
tical and performant. First, we need to devise an online mechanism
that automatically adapts the re-update interval threshold to work-
loads. We simply took the offline profiling-based approach because
this paper aims to explore a new caching architecture. Second, we
would like to evaluate the effect of NV-SQL on disaggregated cloud
storage. Like Amazon’s Aurora [53], NV-SQL will boost the OLTP
performance by reducing write traffic over the cloud network.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2015-0-00314, NVRam Based High
Performance Open Source DBMS Development) and the National
Research Foundation of Korea (NRF) grant funded by the Korea
government(MSIT) (No. 2022R1A2C2008225). We are thankful to
the anonymous reviewers for their insightful feedback.

1464



REFERENCES
[1] ADAM ARMSTRONG. Samsung SSD 970 PRO Review. https://www.

storagereview.com/review/samsung-ssd-970-pro-review.
[2] M. An, S. Im, D. Jung, and S.-W. Lee. Your Read is Our Priority in Flash Storage.

In Proceedings of VLDB Endowment. VLDB Endowment, 2022.
[3] M. An, I.-Y. Song, Y.-H. Song, and S.-W. Lee. Avoiding Read Stalls on Flash

Storage. In Proceedings of the 2022 International Conference on Management of
Data, SIGMOD ’22, page 1404–1417, 2022.

[4] R. Appuswamy, G. Graefe, R. Borovica-Gajic, and A. Ailamaki. The Five-Minute
Rule 30 Years Later and Its Impact on the Storage Hierarchy. Commun. ACM,
62(11):114–120, oct 2019.

[5] R. Appuswamy, G. Graefe, R. Borovica-Gajic, and A. Ailamaki. The five-minute
rule 30 years later and its impact on the storage hierarchy. Communications of
the ACM, 62:114–120, 10 2019.

[6] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. LinkBench:
a Database Benchmark based on the Facebook Social Graph. In Proceedings of
the 39th SIGMOD International Conference on Management of Data (SIGMOD ’13),
pages 1185–1196, 2013.

[7] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s Talk About Storage Recovery Methods
for Non-Volatile Memory Database Systems. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’15, page
707–722, 2015.

[8] J. Arulraj, M. Perron, and A. Pavlo. Write-behind Logging. Proc. VLDB Endow.,
10(4):337–348, nov 2016.

[9] F. Chen, B. Hou, and R. Lee. Internal Parallelism of Flash Memory-Based Solid-
State Drives. ACM Transactions on Storage, 12(3), May 2016.

[10] S. Chen and Q. Jin. Persistent B+-Trees in Non-Volatile Main Memory. Proc.
VLDB Endow., 8(7):786–797, feb 2015.

[11] J. W. Chris Ruemmler. A trace-driven analysis of disk working set sizes. 1993.
[12] J. Coburn, T. Bunker,M. Schwarz, R. Gupta, and S. Swanson. FromARIES toMARS:

Transaction Support for next-Generation, Solid-State Drives. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
page 197–212, 2013.

[13] J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker, S. Zdonik, and S. Dulloor. A
prolegomenon on oltp database systems for non-volatile memory. ADMS@ VLDB,
2014.

[14] Dell. Dell EMC NVDIMM-N Persistent Memory. https://dl.dell.com/topicspdf/
nvdimm_n_user_guide_en-us.pdf.

[15] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High Performance Database
Logging using Storage Class Memory. In 2011 IEEE 27th International Conference
on Data Engineering, 2011.

[16] J. Gray. The Five-Minute Rule. https://jimgray.azurewebsites.net/talks/
FiveMinuteRule.ppt(Unpublisedtechnicaldocument).

[17] IBM. Understanding Fuzzy Checkpoints. https://www.ibm.com/support/pages/
understanding-fuzzy-checkpoints.

[18] Intel Corp. Intel® 3D XPoint. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-micron-3d-xpoint-webcast.html.

[19] Intel Corp. eADR: New Opportunities for Persistent Memory Applica-
tions. https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html, 2021.

[20] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann publishers Inc., San Francisco, CA, USA, 1992.

[21] Jim Gray and Andreas Reuter. Transactional Resource Manager Concepts. In
Transaction Processing: Concepts and Techniques, chapter 10.3, pages 548–558.
Morgan Kaufmann publishers Inc., San Francisco, CA, USA, 1992.

[22] A. Joshi, W. Bridge, J. Loaiza, and T. Lahiri. Checkpointing in Oracle. In In
Proceedings of 24 th International Conference on Very Large Data Bases (VLDB),
1998.

[23] T. W. Kaisong Huang, Darien Imai and D. Xie. SSDs Striking Back: The Storage
Jungle and Its Implications on Persistent Indexes. In 12th Annual Conference on
Innovative Data Systems Research, CIDR ’22, New York, NY, USA, 2022.

[24] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh. Durable Write Cache in
Flash Memory SSD for Relational and NoSQL Databases. In Proceedings of the
40th SIGMOD International Conference on Management of Data (SIGMOD ’14),
pages 529–540, 2014.

[25] H. Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, page 691–706. Association for Computing Machinery, 2015.

[26] S. T. Leutenegger and D. Dias. A Modeling Study of the TPC-C Benchmark. In
Proceedings of ACM SIGMOD, pages 22–31, 1993.

[27] Micron. Micron NVDIMM. https://www.micron.com/products/dram-modules/
nvdimm/.

[28] Minji Kang, Soyee Choi, Gihwan Oh, and Sang-Won Lee. 2R: efficiently isolating
cold pages in flash storages. In Proc. VLDB Endow. 13, 12, 2020.

[29] C. Mohan. IBM’s Relational DBMS Products: Features and Technologies. SIGMOD
Records, 22(2):445–448, jun 1993.

[30] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transac-
tion RecoveryMethod Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM Transactions on Database Systems, 17(1), 1992.

[31] MySQL Community. InnoDB Recovery. https://dev.mysql.com/doc/refman/5.7/
en/innodb-recovery.html.

[32] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An Analysis of
Persistent Memory Use with WHISPER. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), page 135–148, 2017.

[33] Netlist. Netlist NVvault DDR4 NVDIMM-N. https://netlist.com/products/
specialty-dimms/nvvault-ddr4-nvdimm.

[34] Oracle (MySQL Team). InnoDB Checkpoints. https://dev.mysql.com/doc/refman/
5.7/en/innodb-checkpoints.html.

[35] Oracle (MySQL Team). InnoDB Disk I/O and File Space Management. https:
//dev.mysql.com/doc/refman/5.7/en/innodb-disk-io.html.

[36] Oracle (MySQL Team). Midpoint Insertion Strategy. https://dev.mysql.com/doc/
refman/8.0/en/midpoint-insertion.html.

[37] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm. SOFORT: A Hybrid
SCM-DRAM Storage Engine for Fast Data Recovery. In Proceedings of the Tenth
International Workshop on Data Management on New Hardware, DaMoN ’14, 2014.

[38] Percona Lab. tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql, 2018.
[39] pmem.io. Persistent Memory Development Kit. https://pmem.io/pmdk/, 2022.
[40] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems (3rd

edition). McGraw-Hill Company, Inc., NewYork, NY, USA, 2003.
[41] J. T. Robinson and M. V. Devarakonda. Data cache management using frequency-

based replacement. In Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’90, page 134–142,
New York, NY, USA, 1990. Association for Computing Machinery.

[42] E. Rogov. WAL in PostgreSQL: 3. Checkpoint. https://postgrespro.com/blog/
pgsql/5967965.

[43] Samsung. Samsung DDR4 Memory. https://semiconductor.samsung.com/dram/
module/rdimm/m393a2g40db0-cpb/.

[44] Samsung. SSD 970 PRO. https://www.samsung.com/semiconductor/minisite/
ssd/product/consumer/970pro/.

[45] B. Schwartz. How InnoDB Performs a Checkpoint. https://www.xaprb.com/blog/
2011/01/29/how-innodb-performs-a-checkpoint/.

[46] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin. Proteus: A Flexible and Fast
Software Supported Hardware Logging approach for NVM. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 178–190, 2017.

[47] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era: (it’s time for a complete rewrite). In
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB
’07, page 1150–1160. VLDB Endowment, 2007.

[48] TechPowerUp. Crucial MX500 250 GB (Micron B16A). https://www.techpowerup.
com/ssd-specs/crucial-mx500-250-gb.d75.

[49] TechPowerUp. Samsung 980 PRO 250 GB. https://www.techpowerup.com/ssd-
specs/samsung-980-pro-250-gb.d45.

[50] TechPowerUp. Samsung PM981a 512 GB. https://www.techpowerup.com/ssd-
specs/samsung-pm981a-512-gb.d783.

[51] A. Thomson and D. J. Abadi. The case for determinism in database systems. Proc.
VLDB Endow., 3(1–2):70–80, sep 2010.

[52] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi, L. Harada,
andM. Sato. Managing Non-Volatile Memory in Database Systems. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD ’18, 2018.

[53] Verbitski, Alexandre and Gupta, Anurag and Saha, Debanjan and Brahmadesam,
Murali and Gupta, Kamal and Mittal, Raman and Krishnamurthy, Sailesh and
Maurice, Sandor and Kharatishvili, Tengiz and Bao, Xiaofeng. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational Databases.
In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, 2017.

[54] T. Wang and R. Johnson. Scalable Logging through Emerging Non-Volatile
Memory. Proceedings of VLDB Endowment, 7(10):865–876, jun 2014.

[55] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory. In Proceedings of
USENIX conference on File and Storage Technologies, FAST’20, 2020.

[56] X. Zhou, J. Arulraj, A. Pavlo, and D. Cohen. Spitfire: A Three-Tier Buffer Manager
for Volatile and Non-Volatile Memory, page 2195–2207. 2021.

1465

https://www.storagereview.com/review/samsung-ssd-970-pro-review
https://www.storagereview.com/review/samsung-ssd-970-pro-review
https://dl.dell.com/topicspdf/nvdimm_n_user_guide_en-us.pdf
https://dl.dell.com/topicspdf/nvdimm_n_user_guide_en-us.pdf
https://jimgray.azurewebsites.net/talks/FiveMinuteRule.ppt (Unpublised technical document)
https://jimgray.azurewebsites.net/talks/FiveMinuteRule.ppt (Unpublised technical document)
https://www.ibm.com/support/pages/understanding-fuzzy-checkpoints
https://www.ibm.com/support/pages/understanding-fuzzy-checkpoints
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.micron.com/products/dram-modules/nvdimm/
https://www.micron.com/products/dram-modules/nvdimm/
https://dev.mysql.com/doc/refman/5.7/en/innodb-recovery.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-recovery.html
https://netlist.com/products/specialty-dimms/nvvault-ddr4-nvdimm
https://netlist.com/products/specialty-dimms/nvvault-ddr4-nvdimm
https://dev.mysql.com/doc/refman/5.7/en/innodb-checkpoints.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-checkpoints.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-disk-io.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-disk-io.html
https://dev.mysql.com/doc/refman/8.0/en/midpoint-insertion.html
https://dev.mysql.com/doc/refman/8.0/en/midpoint-insertion.html
https://github.com/Percona-Lab/tpcc-mysql
https://pmem.io/pmdk/
https://postgrespro.com/blog/pgsql/5967965
https://postgrespro.com/blog/pgsql/5967965
https://semiconductor.samsung.com/dram/module/rdimm/m393a2g40db0-cpb/
https://semiconductor.samsung.com/dram/module/rdimm/m393a2g40db0-cpb/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.xaprb.com/blog/2011/01/29/how-innodb-performs-a-checkpoint/
https://www.xaprb.com/blog/2011/01/29/how-innodb-performs-a-checkpoint/
https://www.techpowerup.com/ssd-specs/crucial-mx500-250-gb.d75
https://www.techpowerup.com/ssd-specs/crucial-mx500-250-gb.d75
https://www.techpowerup.com/ssd-specs/samsung-980-pro-250-gb.d45
https://www.techpowerup.com/ssd-specs/samsung-980-pro-250-gb.d45
https://www.techpowerup.com/ssd-specs/samsung-pm981a-512-gb.d783
https://www.techpowerup.com/ssd-specs/samsung-pm981a-512-gb.d783

	Abstract
	1 Introduction
	2 Background
	2.1 Durability Tax in DBMSs
	2.2 Non-Volatile DIMMs
	2.3 Write Characteristics of OLTP Workloads
	2.4 Page-Action consistency

	3 Motivation
	3.1 Write Working Set and Write Types
	3.2 Five-Minute Rule for Durability
	3.3 Threats to Page-Action Consistency

	4 NV-SQL
	4.1 Design Choice for Tiering
	4.2 Basic Framework
	4.3 Page Admission Policy
	4.4 NVDIMM Buffer Replacement Policy
	4.5 Prototype Implementation

	5 Logging and Recovery in NV-SQL
	5.1 Alternatives for Page-Action Consistency
	5.2 Redo-based Page Action Consistency
	5.3 Prototype Implementation
	5.4 Placing Redo Buffer and DWB on NVDIMM

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Run-Time Performance
	6.3 Effect of NV-SQL on Other Parameters
	6.4 Comparison with Alternative Options
	6.5 Performance/Cost Ratio
	6.6 Recovery Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References



