
RobustQuery Driven Cardinality Estimation under Changing
Workloads

Parimarjan Negi
MIT CSAIL

pnegi@mit.edu

Ziniu Wu
MIT CSAIL

ziniuw@mit.edu

Andreas Kipf
MIT CSAIL
kipf@mit.edu

Nesime Tatbul
MIT CSAIL, Intel Labs
tatbul@csail.mit.edu

Ryan Marcus
MIT CSAIL, Intel Labs
rcmarcus@mit.edu

Sam Madden
MIT CSAIL

madden@csail.mit.edu

Tim Kraska
MIT CSAIL

kraska@csail.mit.edu

Mohammad Alizadeh
MIT CSAIL

alizadeh@csail.mit.edu

ABSTRACT
Query driven cardinality estimation models learn from a historical
log of queries. They are lightweight, having low storage require-
ments, fast inference and training, and are easily adaptable for any
kind of query. Unfortunately, such models can suffer unpredictably
bad performance under workload drift, i.e., if the query pattern
or data changes. This makes them unreliable and hard to deploy.
We analyze the reasons why models become unpredictable due to
workload drift, and introduce modifications to the query representa-
tion and neural network training techniques to make query-driven
models robust to the effects of workload drift. First, we emulate
workload drift in queries involving some unseen tables or columns
by randomly masking out some table or column features during
training. This forces the model to make predictions with missing
query information, relying more on robust features based on up-
to-date DBMS statistics that are useful even when query or data
drift happens. Second, we introduce join bitmaps, which extends
sampling-based features to be consistent across joins using ideas
from sideways information passing. Finally, we show how both of
these ideas can be adapted to handle data updates.

We show significantly greater generalization than past works
across different workloads and databases. For instance, a model
trained with our techniques on a simple workload (JOBLight-train),
with 40𝑘 synthetically generated queries of at most 3 tables each,
is able to generalize to the much more complex Join Order Bench-
mark, which include queries with up to 16 tables, and improve
query runtimes by 2× over PostgreSQL. We show similar robust-
ness results with data updates, and across other workloads. We
discuss the situations where we expect, and see, improvements,
as well as more challenging workload drift scenarios where these
techniques do not improve much over PostgreSQL. However, even
in the most challenging scenarios, our models never perform worse
than PostgreSQL, while standard query driven models can get much
worse than PostgreSQL.

PVLDB Reference Format:
Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus,
Sam Madden, Tim Kraska, and Mohammad Alizadeh. Robust Query Driven
Cardinality Estimation under Changing Workloads. PVLDB, 16(6): 1520 -
1533, 2023.
doi:10.14778/3583140.3583164

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/learnedsystems/CEB.

1 INTRODUCTION
Cardinality estimators are a critical part of query optimizers [23].
Traditional DBMSes’ use simple cardinality estimators that optimize
for practical concerns such as inference speed, predictability, and
handling all types of filters — but this requires several simplifying
assumptions (e.g., no correlation between columns or tables) which
can lead to large estimation errors and suboptimal query plans.
Several recent works [6, 9, 16, 18–20, 32, 38, 40, 41, 43–46] evaluate
machine learning (ML) models for cardinality estimation — all these
methods significantly improve estimation errors but have different
practicality challenges.

ML-based cardinality estimators can broadly be divided into
data driven and query driven methods. Conceptually, data driven
methods model the joint distribution over all attributes in the data-
base — e.g., using Deep Autoregressive Neural Networks [44, 45],
or probabilistic graphical models [9, 16, 38, 43, 46] — which im-
prove cardinality estimates compared to traditional methods by not
relying on any simplifying assumptions. But accurately modeling
the joint distribution of all attributes leads to large model sizes and
slow inference times. Moreover, these methods typically do not
support all kinds of queries: such as self joins or cyclic joins, or
string LIKE filters.

Query driven models [6, 19, 20, 32, 40, 41], on the other hand, do
not have these drawbacks. They learn regression models which map
queries to their corresponding cardinalities using past workloads,
without explicitly modeling the underlying data — therefore, these
models can be lightweight and fast. Moreover, query driven models
easily extend to all kinds of join patterns and filters. A key limitation
of existing query driven methods, however, is that they do not
generalize well to workload drift, i.e., new or changing workloads.
For instance, slightly different query patterns (e.g., filters on new
columns or tables), or data updates, can lead to unexpectedly bad
query plans [32, 39], which makes these models impractical for
real-world deployment.

To understand the failure cases of current query driven models,
consider a purely query driven approach, in which the features
only contain information about the SQL text. If there are filters on
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583164

1520

https://doi.org/10.14778/3583140.3583164
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/learnedsystems/CEB
https://doi.org/10.14778/3583140.3583164
https://www.acm.org/publications/policies/artifact-review-and-badging-current

a new table or column, then such models are doomed as they have
no information to make useful estimates. A simple approach to
improve generality is to augment query features with data features.
For example, past work provides the database’s estimate of the
cardinality (based on a traditional estimator) as an input feature to
the neural network [6, 32]. Since these estimates rely on up-to-date
statistics (e.g., histograms) about all attributes, they provide useful
information to the model even under workload drift. However, just
providing DBMS estimates is not enough to ensure robustness. As
we show, models trained using current techniques do not learn to
utilize these features effectively. The reason is that the query fea-
tures alone are often enough to perform very well on the training
workload. Therefore, the model learns to rely mainly on these fea-
tures during training, causing it to fail (sometimes catastrophically)
under workload drift [10, 24, 25, 32, 39].

To avoid this problem, our idea is to emulate the characteris-
tics of the workload drift scenarios for which we want robustness
during training. Specifically, we partially mask query information
during training, forcing the model to make predictions with miss-
ing information — this emulates scenarios with queries involving
new tables or columns at test time. The DBMS estimate would still
contain information from the masked part of the query, which the
model uses together with the available query information to make
predictions.

Our technique can be viewed as correcting an initial cardinality
estimate, provided by the DBMS, using partial information about
the query. Intuitively, the model learns the adjustments needed to
improve upon the DBMS estimate. For example, if two columns are
correlated, the DBMS estimate using the independence assumption
would under-estimate the true cardinality; the model learns how
much to inflate the estimate to account for the correlation. When
there is a workload drift, the learned adjustment function would re-
main valid if the correlation structure has not changed significantly.
Real-world data often exhibits consistent correlation structure over
time even as the data changes (§3.3) provides several examples).
In such cases, a learned “cardinality corrector” would continue to
perform well. This reduces the need to retrain the model frequently,
making it practical to deploy such models in dynamic settings.

A commonway to provide the neural network information about
the data correlations is through sampling. However, we find that cur-
rent sampling featurization approaches cannot capture correlations
across different tables in a join in the presence of workload drift. We
develop a procedure based on sideways information passing [17] to
provide sampling features which capture join correlations and are
consistent and useful across workload drift scenarios. Finally, we
show how to modify the training procedure, and these techniques,
to train a model that adapts to data updates.

To evaluate robustness to query drift, we use three publicly re-
leased workloads on the Internet Movie Database (IMDb) with very
different properties: Join Order Benchmark (JOB) [23], Cardinality
Estimation Benchmark (CEB) [32], and JOBLight-train [19]. We also
introduce a new workload on a public racing database, ErgastF1 [8]
to verify our results on a different database. To evaluate robust-
ness to data drift, we generate training cardinalities using these
workloads with data only up to 1950 or 1980. We use one workload
to train the model, and evaluate on the others. The key results on
the final query performance are summarized in Figure 1, which

(a) Trained CEB, Evaluated CEB
0

1

2

3

4

5

6

To
ta

l R
un

tim
e

(H
ou

rs
)

Static Scenario
MSCN Robust-MSCN PostgreSQL True

(b) Trained JOB, Evaluated CEB
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

To
ta

l R
un

tim
e

(H
ou

rs
)

Query Drift

(c) Trained CEB Template 1a (1950)
 Evaluated CEB Template 1a

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

l R
un

tim
e

(H
ou

rs
)

Data Drift

(d) Trained: JOBLight (1950),
Evaluated: CEB

0

5

10

15

20

25

To
ta

l R
un

tim
e

(H
ou

rs
)

Data+Query Drift

Figure 1: End to end query latencies of the MSCN model vs.
our Robust-MSCN model in different workload drift scenar-
ios. True cardinalities or PostgreSQL estimates are baselines.

includes a subset of our main experiments (§6). In a static scenario
(no query/data drift), the state of the art MSCN model [19, 32]
does very well. However, MSCN gets up to 5× slower than simply
using PostgreSQL estimates in different workload drift scenarios.
Meanwhile, the model trained with our techniques, Robust-MSCN,
reliably improves query performance over PostgreSQL in each sce-
nario — with speedups ranging from 1.2× to 2× despite workload
drift.

Surprisingly, our model improves performance significantly over
PostgreSQL on JOB, evenwhen trained on the very simple JOBLight-
trainworkload that only contains 40𝑘 synthetically generated queries
with 3 tables and 2 joins each. Intuitively, the improvements occur
when filters on just one or two tables have a dominant effect on
the resulting cardinality. For instance, we find that for several large
queries in JOB, involving dozen tables or more, most filters are
redundant and the estimates of subplans are influenced by only
a few filters for which similar patterns were seen in the simpler
training workload (see §6.5 for details). This result shows that the
learned model can effectively correct DBMS estimates using avail-
able query information, even outside of the training distribution.
Therefore, performing well on such workloads does not require
learning complicated joint distributions over all attributes, and ef-
fectively utilizing information even from a simple workload can be
enough.

2 BACKGROUND
In this section, we will describe the details of query-driven models
and their key benefits that motivate our extensive study.

1521

SELECT * FROM
A, B, C

WHERE

A.b1 = B.b1

A.c1 = C.c1

A.a ='A1'

TRUE Est
|A ⨝ B| 5 30
|A ⨝ C| 10 10

Best Plan Plan 1 Plan 2
A B

C⋈
⋈

A C
B⋈

⋈Plan 1 Plan 2

Cost = |A ⨝ B| = 5 Cost = |A ⨝ C| = 10

Figure 2: Simple example to describe evaluation functions.

2.1 Evaluation Functions
A query optimizer requires cardinality estimates for all the query’s
sub-plans, i.e., intermediate joins that it encounters when costing
alternative query plans. For a simple example, consider Figure 2,
which uses a simplified model costing each plan as the size of
its intermediate result. In practice, each DBMS will have its own
custom cost model, but the definition of the evaluation functions
stays the same. The best plan, according to true estimates, is Plan
1 because |𝐴 ⊲⊳ 𝐵 | < |𝐴 ⊲⊳ 𝐶 |, however the estimator (‘Est’) over-
estimates |𝐴 ⊲⊳ 𝐵 |, therefore, it chooses sub-optimal Plan 2. This
leads to a few ways to evaluate how good the estimates for a query,
𝑦̂, are compared to the true values, 𝑦.

a) Q-Error.𝑚𝑎𝑥 (𝑦
𝑦̂
,
𝑦̂
𝑦). This is referred to as the Q-Error [29],

or multiplicative error. In Figure 2, the average Q-Error of
‘Est’ would be (30/5)+(10/10)

2 = 3.5.
b) Query Runtime. This is the execution time of the plan

chosen using 𝑦̂ — Plan 2 in Figure 2.
c) DBMS Plan Cost. This is a proxy for runtime using cost

model units. Est’s cardinalities lead to Plan 2, so, its cost is 10.
Since cost units are hard to interpret, we will use the relative
plan cost w.r.t the best plan. Here, Plan 1 costs 5, so we get
10
5 = 2 as the relative cost. This calculation depends on the
cost model; if we use the PostgreSQL cost model, we will
refer to it as the Relative PostgreSQL Plan Cost.

The ultimate goal is to optimize for query runtime. Even though
Q-Error is a useful measure, recent works have shown the plan cost
is better correlated to query runtime [11, 32]. Therefore, we use
the DBMS plan cost metric when it is impractical to execute query
plans, such as analyzing the performance of a model throughout
its training phase.

2.2 Query Representation
In order to use a learned model (e.g. neural network), we need to
represent, or featurize, the query in a compatible form.
Query Features.We refer to the tables, joins, and columns in the
query as query features. We represent them using one-hot vectors.
For e.g., if there are 10 tables in a workload, then each table will be
represented by a length 10 vector with a 1 in the appropriate index.
Typically, the training workload will contain several examples of
the same tables, columns, or joins — thus, these one-hot vectors
can be meaningfully interpreted by the model to learn correlations,
or other patterns, from the workload data.
Data Features.We can run the DBMS estimator on a query, and
use its output as a feature. This was proposed by Dutt et al. [7].
DBMS estimates rely on traditional cardinality estimators which
are extremely fast due to various simplifying assumptions — thus,

they do not add much to the inference time of the learned model,
while providing the model with useful information.
Representing Filter Constants. It is harder to encode the filter
predicate constants in a query because these have many more po-
tential unique values. These constants can be for numerical range
filters, categorical variables (‘IN’ or ‘=’ clauses), or arbitrary strings
in ‘LIKE’ clauses. However, it is also crucial for query driven meth-
ods as the cardinality depends on the effects of these filters. We will
review the featurization approaches for categorical filters, which
sets the backdrop for the techniques developed in §4. We can en-
code the filter constants explicitly (e.g., hashing [6, 32]) or implicitly
(e.g., by filtering on a sample, and using learned embeddings.)
Explicit encoding. Explicit encoding is useful when constants
repeat over workloads, possibly in different combinations. This
approach does not help when there are filters with new constants,
or on new columns — these would be ignored. An assumption
made by models relying on explicitly encoding the filters is that the
training workload is diverse enough to see most common constants,
which is clearly not suitable for a workload drift scenario.
Sample bitmap. An example of implicit encoding are sample
bitmaps, proposed by Kipf et al. [20]. They work as follows: for
every table, keep a small sample (e.g., on IMDb, samples of size
1000 do well, with the actual size of the large tables ranging from
3𝑀 to 40𝑀). Execute the filter on the sample, and create a bitmap
based on the output rows. Since particular constant values, such
as genre = ‘action’ should map to particular rows in the sample,
this approach can distinguish between different common constants.
But notice that it is more general: it will produce a reasonable, and
meaningful output even when there are filters on new columns, or
LIKE filters. This utilizes the principle that there are many differ-
ent ways to write a semantically similar SQL query, for instance,
filters on different columns may actually have very similar effects
when the columns are correlated. Therefore, it gives a signal for
the correlation of attributes within a single table.
Learned embeddings. Another way to encode filters is to learn an
embedding of the filter constants as a fixed-length vector. This has
been done in databases using word2vec in Neo [28] or using con-
trastive learning [35]. Intuitively, filters that are correlated would
be close to each other in the embedding space, even if they are
on different columns. For instance, in Neo, every row tuple in the
database is treated as a sentence, with each constant being a word.
Then, Neo uses the unsupervised word2vec technique to map every
filter constant to an embedding vector [28].

2.3 Why use query driven models?
The key challenge of query driven models for cardinality estimation
is to be robust to queries that differ from the training workload.
This is not a challenge for data driven models because they do not
rely on the query workload. However, query-driven models have
several advantages that make them an attractive choice. We now
compare state-of-the-art query driven and data driven models in
order to motivate our extensive study on the robustness of query
driven models.

1522

0

2

4

6

8

10

Qu
er

y
Ru

nt
im

e
(H

ou
rs

)

PostgreSQL
True

FLAT
DeepDB

MSCN
Robust-MSCN

10−1

100

101

102

M
od

el
 S

ize
 (M

Bs
)

Figure 3: Comparing data-driven models with MSCN and
Robust-MSCN.

Training / Evaluation workload. To directly compare the query
driven and data driven models, we use the STATS-CEB bench-
mark [11] as the evaluation workload. Its key benefit is that the
queries are supported by all data driven models. Figure 3 shows per-
formance of several models on STATS-CEB in terms of end-to-end
query latency and model sizes.
Runtime performance. The data driven models: FLAT [46] and
DeepDB [16] are close to optimal when compared to the total query
runtime of plans generated using true cardinalities. The query
driven MSCN [19] model still improves over PostgreSQL, and our
Robust-MSCN model is almost as good as the data driven models.
Model complexity. The data driven models achieve high accuracy
by modeling the joint distribution of all attributes. This adds to
model complexity, which is seen in the over 100× larger model sizes.
This is despite STATS-CEB being a relatively small DB — with total
size < 100 MB. This also causes similar slowdowns for training and
inference time of data driven models.

If a query-driven model could reliably improve over PostgreSQL,
even with workload drift, then their benefits: supporting all kinds
of queries, low model complexity, faster training, and inference
times, would make such models very attractive. However, current
query-driven models can perform poorly under workload drift as
we highlight next.

3 THEWORKLOAD DRIFT PROBLEM
There are many forms of workload drift which can have drastically
different impacts on a learned model’s performance. These include
adding new data, or having new kinds of filters or filter constants,
or filters on new columns and tables. A query-driven model learns
patterns from a training workload, and applies them to new queries.
We would not expect this approach to work well if no relevant
pattern to the new queries was present in the training workload.
But surprisingly, even in cases where relevant patterns do exist
in the training workload, current query-driven models often fail
under workload drift.

The root of the problem is that some of the patterns present
in training are spurious correlations that do not generalize to new
contexts. In this section, we will present simple microbenchmarks
that provide examples of such spurious correlations. Although we
leave the details of our techniques to §4, we provide insights on

N = 1K; Corr = 0.9

(a) Table T, 2d Gaussian columns

N = 10K; Corr = 0.9 SELECT COUNT(*) FROM T

WHERE T.A < X AND T.B < Y

(c) Query Drift Example

SELECT COUNT(*) FROM T

WHERE T.A > X AND T.B > Y

(b) Data Drift Example

Figure 4: (a) For the query masking microbenchmarks we
use a table, T, with correlated 2d gaussian columns, and pa-
rameters 𝑁 (number of samples) and 𝐶𝑜𝑟𝑟 (correlation b/w
the variables). (b),(c) show data and query drift examples.

0

20

40

60

M
ea

n
Q-

Er
ro

r

N = 1K
PostgreSQL
MSCN
Robust-MSCN

N = 10K N = 100K N = 1M

(a) Varying 𝑁 .

0.0

2.5

5.0

7.5

10.0

M
ea

n
Q-

Er
ro

r

Less than filters
PostgreSQL
MSCN
Robust-MSCN

Greater than filters

(b) Query drift.

Figure 5: The performance of MSCN and Robust-MSCN
model as we change size of the data, with same distribution
(a), and as we move from ‘<’ to ‘>’ queries (b).

how biasing the model to learn to use more generalizable patterns
during training can improve robustness to workload drift.
Setup. We test queries filtering a single table with two columns of
correlated Gaussian variables (see Figure 4a for their distributions).
We use two parameters to generate the table: the number of rows
𝑁 , and the correlation between the two variables 𝑐𝑜𝑟𝑟 . The models
are trained on several thousand queries from a particular data and
workload distribution. Then, we evaluate them in the same setting
or after the workload changes. We train each model five times and
show standard deviation as error bars. For simplicity, we do not
use sampling features for these examples.

3.1 Similar data insertion
In this experiment, we randomly sampled range filters on both
columns A and B to generate the testing and training queries. We
fix the correlation of the data to be 0.9.
Inserting more data (varying 𝑁). The models are trained on data
from the table with 𝑁 = 1𝐾 . Later, we insert tuples with 𝑐𝑜𝑟𝑟 = 0.9
into the table, increasing 𝑁 to 10𝐾 , 100𝐾 , and 1𝑀 respectively, as
shown in Figure 4b. From Figure 5a, we observe that the represen-
tative query-driven model MSCN does not adapt to data insertion.
Specifically, MSCN is often significantly worse than the PostgreSQL
baseline with a very large variance.

Note that as 𝑁 increases, the only input feature that changes
is the PostgreSQL estimate. Despite having this estimate as an
input, MSCN does not use it effectively. Since 𝑁 = 1𝐾 throughout
training, it is possible to produce good estimates using only the
query filter features. Therefore, MSCN’s learning procedure, which
only optimizes for the loss (Q-Error) achieved on the training data,
can result in many functions that appear to work equally well —
sometimes, it may use the PostgreSQL estimate and sometimes it

1523

may rely more on filter features. By contrast, our approach is to
guide the learning procedure to emphasize the DBMS estimate. We
encourage the model to learn to adjust the provided DBMS estimate
using observed patterns in the training data. In this example, these
patterns will be consistent as 𝑁 increases because the DBMS’s
estimator (using the independence assumption) will consistently
under-estimate the true cardinality in a similar way as observed
during training.

3.2 Unseen features
We use the same experimental setup to study the effect of the query
drift scenario shown in Figure 4c. Specifically, we generate the table
with 𝑁 = 100𝐾 and 𝑐𝑜𝑟𝑟 = 0.9. Then, we generate training queries
having only less than filters (‘<’) and consider a query drift with
testing queries having only greater than filters (‘>’). Since ‘>’ does
not appear in the training queries, the featurization will ignore
the ‘>’ operator. Thus, there will be some missing features when
evaluating queries with the ‘>’ operator. Other examples of such
missing features could be a new table or column that was not seen
in the training queries.

Figure 5b shows the results. Both the MSCN and Robust-MSCN
models perform very well in the training template (‘<’ queries).
However, the MSCN model has a significantly higher variance and
a worse accuracy on the testing template (‘>’ queries). Although
the Robust-MSCN model’s performance also degrades outside the
training template, it still manages to outperform the PostgreSQL
baseline and has a much lower variance than the MSCN model.
These results suggest a similar reasoning to the situation in §3.1.
The original MSCN model can learn patterns that are not gener-
alizable to queries beyond the training workload; for instance, in
the less than queries, cardinalities are small when 𝑋 and 𝑌 are
small and increase proportionally as they increase. This relation-
ship is reversed for ‘>’ queries. The Robust-MSCN trained under
our framework learns to correct the PostgreSQL estimate, which is
an under-estimate for both ‘<’ and ’>’ queries.

3.3 More complex workload drift
We provided two simple examples of workload drift, but the in-
tuition underlying our method — that learning to correct DBMS
estimates using patterns in training data results in more robust
cardinality estimators — applies to many real-world scenarios.
Real-world databases often exhibits consistent correlation patterns
over time, causing traditional DBMS estimators to make consistent
types of errors. Examples include: (1) Country and language are
highly correlated in IMDb as movies get added over time. (2) Stock
prices at the start and end of the day in a financial database. (3)
Columns derived from other columns in a database, such as total
and average sales, or date/time in different formats. In all these ex-
amples, the underlying correlation structure would persist through
time regardless of data or query changes. Our evaluation explores
several such real-world scenarios.

4 ROBUST TRAINING FRAMEWORK
4.1 Overview
Our goal is to train a model to output cardinalities for a new query,
and all of its subplans (i.e., queries involving some subset of the

title

id title kind year

1 Monkeyshines movie 1882

...
1000011 Breaking Bad tv-show 2013

movie_id person_id role

1 201122 director

...
3003131 120120 actress

id name gender

1 Ana de Armas f

...
20012123 Zendaya f

cast_info name

(a) (Partial) IMDb Schema.

SELECT COUNT (∗) FROM

t i t l e AS t ,
c a s t _ i n f o AS c i ,
name AS n
WHERE t . i d = c i . movie_ id
AND c i . p e r s on_ i d = n . i d
AND t . t i t l e IN (' . . . ')
AND n . gender IN (' . . . ')

(b) Training template

SELECT COUNT (∗) FROM

t i t l e AS t ,
c a s t _ i n f o AS c i ,
name AS n
WHERE t . i d = c i . movie_ id
AND c i . p e r s on_ i d = n . i d
AND t . k ind = 'movies '
AND n . gender IN (' f ')

(c) Example evaluation query

Query features Data features

Ta
bl

es
Jo

in
s

Fi
lte

rs

[1 0 0] title t
[0 1 0] cast_info ci
[0 0 1] name n

[1 0] t.id = ci.movie_id
[0 1] n.id = ci.person_id

[1 0] t.title
[0 1] n.gender

SQL

title t, t.title IN (...)

cast_info ci

name n, n.gender IN ('f')

t,ci,n, t.title IN (...)

 AND n.gender IN (...)

PostgreSQL Estimate

42

36000000

1004000

531

Sampling Features (Join Bitmaps)
[0 0 1 0 0 ... 0 0] movie_id
[1 0 1 0 1 ... 0 0] person_id

(d) Query representation for the example query.

Figure 6: Running example.

tables in the original queries). The model is trained using a query
workload and its true cardinalities (training data). After training,
the model is fixed, and only used for predicting cardinalities of new
queries that are different from the training queries in some of the
following aspects:

a) New queries have same templates, and only the filter con-
stants change.

b) New queries include filters on new columns, new join graphs
(new combination of tables), or entirely new tables.

c) New queries, and their cardinalities, are on updated data.
Several prior works have shown that different query driven mod-

els are very effective in the first scenario [6, 20, 32], but these models
do not handle either of the second or third scenarios well [32, 39].
In the extreme case, these scenarios can be extended to evaluat-
ing the query driven models on a completely new database with a
new workload — and naturally, we would not expect using a query
driven model to be useful there. However, we seek to address the
scenario where there is a smaller drift in the evaluation workload.

Current models can be very brittle, and lead to surprisingly
bad query performance even with a relatively small shift in the
workload. Such slight shifts are not uncommon: these could be
exploratory queries that filter on different columns, a new user
interested in slightly different questions, or just new data coming in
over time. We seek to still do as well for parts of the query that have
patterns observed in the training data, while effectively utilizing
DBMS estimates to have reasonable accuracy for the rest.

An orthogonal approach to improve a query driven model in the
presence of workload shift is to retrain it periodically. However,

1524

Query

Workload

Query

Representation

Model

Architectures

Training

Techniques

Learned

Model

Estimate

SELECT *

FROM title t,

cast_info ci

t.id = ci.movie_id

t.kind = 'tv-show'

.

.

.

Query features: t,ci,t.id,ci.movie_id,t.kind

Data Features: DBMS statistics

Sampling Features: Join Bitmaps (4.3)

Multi Set Convolution Networks

Set Transformers

Fully Connected Neural Networks

XGBoost

Masking query features (4.2)

Shuffled Bitmaps (4.4)

Training query features: t,t.kind

Updated DBMS statistics (4.4)

Updated Join Bitmaps (4.4)

SELECT *

FROM title t,

aka_title at

t.id = at.movie_id

t.kind = 'tv-show'

Updates

...

Updates

...

Figure 7: System overview. Our contributions are highlighted, with pointers to their section numbers.

retraining has its own associated cost — in particular, for collecting
new training data — and our aim is to train models that are toler-
ant of some amount of workload drift, and therefore require less
frequent retraining.
Running Example. To illustrate the key ideas, we will use simple
pairs of training and evaluation workloads on IMDb shown in
Figures 6b and 6c. We will assume that the model sees several
examples with the form of a training template, and is then evaluated
on a new query which differs from the training queries in some key
aspect.

Figure 7 provides an overview of our training framework. We in-
troduce techniques to mask query-related features during training,
emphasizing DBMS estimates in the learned model and improving
robustness to query workload drift (§4.2). In addition, we improve
the query representation by developing join-bitmaps, a sampling-
based feature that captures correlations across tables in a join (§4.3).
During data updates, we provide the model up-to-date DBMS esti-
mates and sampling features to further improve robustness (§4.4).
We now describe each technique in turn.

4.2 Query Masking
In this section, we will introduce a new training scheme to make the
model more robust to new query workloads with unseen columns
or tables. The core idea is to stochastically hide some query-specific
features during training and force the model to rely more on the
data features, which are reliable across workload drift scenarios.

As an example, the training workload in Figure 6b contains filters
selecting for specific movies. The evaluation queries in Figure 6c
instead have a filter on a different column of ‘title’, i.e., ‘title.kind =
movies’. The cardinalities of these evaluation queries will be larger
since the size of the ‘title’ table after applying the filter to the ‘kind’
attribute would be much larger than applying the filters to the
‘title’ attribute. The DBMS estimates for ‘title’ would reflect that the
new queries should be much larger. But as discussed in §3, current
techniques could learn to map all queries containing ‘title’ to small
values.
Masking technique. We randomly zero out each query feature
with probability 𝑝 during training. This is not the same as simply not
having query features, as most query features would still be present.
Instead, this is akin to forcing the model to predict cardinalities with
missing query information by relying more on the data features.
At test time, when the model is used to estimate new queries, we
will provide all available query features — if the query involves a
new column or table, this will just be represented as zeros.

This is similar to the common ML technique called dropout, al-
though the motivation is different here. Dropout is typically used
on all input features or on the hidden layers, and has been shown
to be useful for regularization [3]. However, in tasks such as image
processing, the models often serve as feature extractors and do not
apply dropout selectively to specific elements of the input. Never-
theless, the success of dropout shows that it is not unreasonable to
ask a model to make predictions with missing information.
Alternatives. We experimented with other ways to try to achieve
similar benefits. For instance, changing the target label of the ML
models from the true cardinalities to the difference between the
DBMS estimate and the true cardinality also increases the reliance
of the model on the DBMS estimate. In some scenarios, like data
updates, this was equally helpful, but it did not help as much with
new tables or columns. The query masking technique is a more
effective approach because it combines two benefits: (i) increased
reliance on data features, and (ii) robustness to missing information.
Regularization techniques could in theory help the model learn
simpler functions that increase reliance on the DBMS estimate, but
we found general-purpose regularizers such as adding an 𝐿1/𝐿2
penalty on model’s weights did not help improve robustness to
workload drift scenarios. A complimentary approach to improve
robustness is to modify the loss function to promote simpler models,
as in Flow-Loss [32]. Query masking is more widely applicable and
can be combined with any loss function (see §7 for a more detailed
discussion).

4.3 Join Bitmaps

(a) Example training query.

(b) Example evaluation query.

Figure 8: Comparing sample bitmap vs. join bitmap.

1525

Join bitmap. Figure 8a shows how sample bitmap and join bitmap
differ in the context of a simple two table join. The sample bitmap ap-
proach will have two independent samples on ‘title’ and ‘cast_info’.
The filter on title selects for ‘tv-shows’ — this filter is applied on ti-
tle’s sample table, and only a few rows are selected. Since no filter is
applied on ‘cast_info’, all rows from the sample are selected. These
values are then hashed to bit-vectors, which are part of the query
representation processed by the model. The join bitmap approach
creates a sample on ‘title.id’ (the primary key), and a correlated
sample over the same values on ‘cast_info.movie_id’ (the foreign
key). Then, the filters on title and cast_info are applied to the cor-
related samples. The join condition, ‘title.id = cast_info.movie_id’
is enforced by the intersection of the results on these samples —
which finally gives us the single bitvector to be processed by the
model. Thus, there will be one bitmap per primary key in the query
representation, with the information from the foreign key samples
included in this bitmap. Figure 8b shows an example where a corre-
lated filter to Figure 8a is used, but on the ‘cast_info’ table. The join
bitmap approach will continue to model the effect of the filter on
the ‘movie_id’ key — which will give similar featurization to the
training query in Figure 8a.
Join sampling efficiency. A classical result in the sampling litera-
ture states that if you have a uniform and independent sample of
two tables, then the quality of a sample drops quadratically for their
join; i.e., if we started with two 1% samples, their join would reflect
a 0.1% sample from the joined table [2]. This is because there might
be many misses in which the join key value selected in one sample
is not present in another. However, the approach we proposed uses
correlated sampling — e.g., after we have selected 1000 values from
‘title.id’, we create samples with exactly those values in other tables
where ‘title.id’ is a foreign key.
Alternatives. Another approach to capture correlations across
tables that we considered was using learned embeddings [28, 35].
This works quite well on the example in Figure 8 because it would
generate similar embeddings for the filters ‘t.kind = tv-show’ and
‘ci.role=showrunner’. However, this approach cannot be extended
to support cases with multiple filter constants, e.g., ‘IN’ queries.
Specifically, it will provide several embedding vectors for the ‘IN’
filter and average them, which will not be meaningful in the embed-
ding space. Alternatively, our sampling-based approach can directly
apply the ‘IN’ filter (or any other type of filter) on the sample, and
the resulting bitmap would consistently represent the semantics of
the filter.

4.4 Data Updates
Data updates can mean that the ground truth cardinalities used in
the training workload may now be wrong — thus, models learned
to predict those cardinalities would degrade as well. Existing query
driven models inevitably recommend collecting new training data
(or updating old training queries) by executing the queries, and
retraining their models [24–26]. As these models need a large num-
ber of queries to retrain, collecting the new training data is the
main bottleneck in retraining the model. Therefore, existing query
driven methods are generally believed to be unsuitable for dynamic
databases, where data updates frequently [11, 43].

Our key insight is that information about data updates can be
encoded in the data and sampling features. However, we need to
ensure that the learned model actually understands and utilizes this
information. For instance, we would like the model to learn that
filters on two columns are often correlated, but the DBMS estimate
may be underestimating it because of the independence assumption,
so the model could learn to correct the DBMS estimate upward. As
the data updates, the exact estimate may be much larger, but the
correction pattern of DBMS under-estimation would still hold in
general. For a concrete example, let us assume that we trained our
model on data from the 1950 version of IMDb. Then, consider the
following query:

SELECT COUNT (∗)
FROM c a s t _ i n f o AS c i , name AS n
WHERE c i . p e r s on_ i d = n . i d AND n . gender = ' f '
AND c i . role = ' a c t r e s s '

In the full IMDb version, the cardinalities would be much higher
than the 1950 version. However, the strong correlation between
‘n.gender=f’ and ‘ci.role=actress’ will be preserved.

Thus, query driven models trained within our framework can be
made robust against data update to a much larger extent. We expect
the quality of the trained model to drop as data updates, but the
drop is gradual and avoids unpredictably bad performance. Thus,
even in a dynamic scenario, we can continue to get the benefits of
our trained model, and will require retraining the model much less
frequently. This can be useful even with highly dynamic databases,
where a model retraining may be scheduled periodically, with our
training techniques allowing us to trust the learnedmodel in periods
between the retraining.
Updating data features. The data features used in our frameworks
are derived from DBMS estimators (e.g. histograms). These estima-
tors generally use simplified assumptions to maintain per-attribute
statistics for cardinality estimation. Therefore, they can easily keep
up with fast data updates and our framework can use these updated
DBMS estimates as new data features dynamically. In PostgreSQL,
for instance, the ‘VACUUM ANALYZE’ command should update
all these statistics in just a few minutes on IMDb.
Sampling join bitmap on-the-fly. It is trickier to update sam-
pling features than data features. Existing query driven cardinality
estimators keep a fixed data sample on which filters are applied to
generate bitmaps. The trained model will only learn the correla-
tions captured by this fixed sample. As data updates, the original
sample would no longer be a uniform sample; for e.g., queries that
select new data will always have zero hits. Similar to data features,
we could periodically create new updated samples in order to keep
up with data updates, or even sample join bitmaps on-the-fly using
techniques such as reservoir sampling. This will ensure the samples
are fresh at inference time.

At training time, we emulate these bitmaps by shuffling the
bitmap indices at each step. At first, this may seem to lose the
benefits of the bitmaps. The indices in the bitmap will no longer be
meaningful. However, the bitmap will still carry a useful signal —
capturing the join correlations, and distinguishing between broad
patterns, such as a lot of rows being selected, very few rows being
selected, and so on. Compared to using a fixed sample, shuffling

1526

10 15 20 25 30
A

15

20

25

30

35

40

B

(a) Corr=0.9.

10 15 20 25 30
A

20

25

30

35

40

B

(b) Corr=-0.5.

0

5

10

15

20

25

M
ea

n
Q-

Er
ro

r

C = 0.9
PostgreSQL
MSCN
Robust-MSCN

C = 0.5 C = 0.0 C = -0.5

(c) Results.

Figure 9: Data drift for the correlated gaussians. (a) presents
the training data, 𝑐𝑜𝑟𝑟 = 0.9.(b) shows a drift, 𝑐𝑜𝑟𝑟 = −0.5.

bitmaps will lose performance as the learned model will not be able
to learn correlations that relied on the specific indices in the sample.
Therefore, in the non-update scenario, we use the models with static
bitmaps. In general, since data updates are easily noticeable, it is
possible to choose a model based on whether it requires robustness
to data updates or not.

4.5 Limitations
In this section, we will discuss the drawbacks of the query masking
and join bitmaps techniques discussed above.
4.5.1 Query Masking.

The effect of query masking is to increase the reliance of the
models on the DBMS estimates. DBMS estimators make strong
uniformity and independence assumptions about the data. A model
trained with masking would learn to correct for the errors caused
by these assumptions, and we would expect it to generalize better
to new workloads where the DBMS estimator makes similar kinds
of errors, as shown in the microbenchmarks in §3.1.

However, if the nature of the errors in the DBMS estimates
change— e.g., because the data correlations are inherently different
in the training and evaluation workloads— then, this approach
would not help. As an example, consider the case of correlated
2d gaussian variables again. We will keep the number of samples,
𝑁 , fixed and vary the correlation between the two variables. An
example is shown in Figures 9a and 9b. The models are trained with
samples from 𝑐𝑜𝑟𝑟 = 0.9. The results are shown in Figure 9c.

Both the MSCN and Robust-MSCN models perform worse as cor-
relation changes, getting progressively worse than PostgreSQL es-
timates as the correlation deviates further from the training regime.
Robust-MSCN does not help in this scenario because it had learned
to correct for PostgreSQL’s under-estimates due to the indepen-
dence assumption. At 𝑐𝑜𝑟𝑟 = 0.5, the models still improve a little
over PostgreSQL as the variables are still correlated like the training
regime. When 𝑐𝑜𝑟𝑟 = 0.0, PostgreSQL estimates are much more
precise and do not require corrections, but our learned model con-
tinues to treat them as under-estimates from the 𝑐𝑜𝑟𝑟 = 0.9 regime
observed during training.When 𝑐𝑜𝑟𝑟 = −0.5, the PostgreSQLwould
over-estimate, but the model would now “correct” it in the wrong
direction.
4.5.2 Join Bitmaps.

Sampling overhead. Join bitmaps adds additional overhead at
inference time compared to the standard sample bitmap in two
ways: (1) The sample sizes are slightly larger since the multiplicity
of each value in a primary table is larger when it is a foreign key. We
limit this by having a maximum number of entries in the samples
on foreign keys. (2) The number of joined columns is more than

the number of tables, i.e., more samples are needed. At inference
time, sample bitmap will execute the filters on each table’s sample.
Join bitmaps executes these filters on each join key sample.
Only supports equi-joins. We efficiently combine samples on all
equivalent join keys by taking their intersection — this works only
for equi-joins. For arbitrary join types, one would essentially need
to perform the join on the sample which is more expensive.
Beyond primary - foreign key joins.We require existing sample
tables on the join key before inference. This is only practical for
known join keys, such as primary / foreign keys, and join bitmaps
could not be created on ad-hoc join queries on new columns.
Correlations involving multiple primary keys. There is no
easy way to efficiently capture the correlations across equi-joins
involving more than one primary key in a single bitmap. For in-
stance, consider a query that filters for movies of Robert Downey
Jr, which will need a filter on the table ‘names’. This also filters out
most titles, but it will not be captured in the join bitmap of ‘title.id’.
The join bitmap on the primary key ‘name.id’ should capture it.
This suggests the requirement for training workloads: we would
like to see coverage of bitmaps on all the primary keys involved in
the evaluation.

5 MODELS ANDWORKLOADS
In this section we go over the models and workloads used in the
experiments, and the trade-offs with other alternatives.

5.1 Query driven models
First, we describe how the features are used by different neural
network architectures, and design decisions we make with a focus
on robustness to workload drift. There are two class of architectures
that have been proposed for query driven models, which differ in
how the inputs are represented.
1d featurization. Flattens all the query information into a 1d vector,
and then uses standard learning methods, such as XGboost [6], or
fully connected neural networks [7, 31, 40]. The idea is to assign an
index to every table, join key, or column in the vector, and put the
representation of it at that index. Its benefits include simplicity, and
interpretability for tree based methods such as XGBoost. It has two
problems: (1) Input sizes can get large, e.g., when using bitmaps,
since all bitmaps would be concatenated. (2) It doesn’t represent
information from outside training, e.g., new columns or joins.
Set featurization. In set based architectures, the set of tables, joins,
and filters in a query are considered independently. Each table,
join, or filter is featurized to a fixed length 1d vector. An example
is Multi Set Convolutional Networks (MSCN) [13, 19, 20, 32]. It
processes the three sets of fixed length vectors for tables, joins, or
filters independently using a fully connected network, and output a
single vector by averaging for each. These vectors are concatenated
together and processed further by fully connected layers. These
set features are more suited for workload drift, such as self-joins
or having new table / joins / columns. A new table will not have
an appropriate query features, as discussed in §4.2, however, we
can still embed information about it using the DBMS estimate or
bitmaps. Therefore, in our evaluation, we focus on set architectures.

1527

Adding data features to set networks. The original MSCN archi-
tecture [19] did not use DBMS data features. We append the data
feature to each hidden layer after the sets are concatenated. This
further enhances the importance of the DBMS estimate, which can
be relied upon in workload drift scenarios.

5.2 Workloads
Here we describe the key properties of the workloads used, and how
we use them to test challenging workload drift scenarios. Several
different workloads have been released on the Internet Movie Data-
base (IMDb) over the years. We select three such workloads with
very different properties, but over the same schema and database.
We utilize this to train our models on one workload, and test on
other workloads to rigorously evaluate workload drift.
Join Order Benchmark (JOB). JOB [23] is a set of 113 handwritten
queries with up to 16 joins. This does not contain a separate training
workload. However, several papers have used it as a test workload
for query runtimes [4, 5, 14, 27, 28, 32].
Cardinality Estimation Benchmark (CEB). CEB [32] uses hand-
crafted templates, and query generation rules to create challenging
large queries, like JOB, but with several thousand queries — thus,
having both training and test workloads. In comparison, JOB con-
tains 5 additional tables, and several more columns.
JOBLight-train. JOBLight-train [20] contains synthetically gener-
ated 40𝐾 queries with 3-table joins. Since there are only two joins
per query, the workload is trivial as a test workload for query opti-
mization. However, it is a useful training workload since it is very
simple, and contains several differences with the other workloads.
Evaluating data updates. The full IMDb database we use contains
data up to 2013 [32]. We create two additional versions of IMDb:
IMDb-1950, and IMDb-1980, in which we filter out all movies after
1950 and 1980 (and related entries in other tables). IMDb-1950 has
less than 10% of the full IMDb data, and IMDb-1980 has about
30%. These old versions of the database are just used for training.
We regenerate the ground truth cardinalities of all the queries in
JOBLight-train, and one of the templates in CEB (since generating
ground truth data on CEB templates takes much longer — requiring
almost a month of execution for the full workload). We use these
as training workloads, and evaluate the models on the full IMDb.
ErgastF1.We introduce a new challenging cardinality estimation
workload, ErgastF1. The workload is on the ErgastF1 database, as
used in [15]. It uses the templating scheme from [32] to construct
queries with several joins (up to 8) which induce large errors from
PostgreSQL.We also construct a ‘Simple-ErgastF1’ workload, which
follows the design of JOBLight-train, including only up to 3 tables,
and random filters. ‘Simple-ErgastF1’ is used to train the models,
in order to test workload drift on ‘ErgastF1’ workload.

6 EXPERIMENTS
6.1 Setup
Baselines. As baselines to compare the learned models against,
we use: (1) True cardinalities. This represents the best query run-
time performance we can achieve. (2) PostgreSQL estimates (3)
Microsoft SQL-Server estimates. PostgreSQL estimates are also pro-
vided as data features to the models. SQL-Server represents the

CEB JOB JOBLight-train
Training Workload

0

5

10

15

20

To
ta

l R
un

tim
e

(h
ou

rs
)

Tested on CEB
True PostgreSQL MS-SQL MSCN Robust-MSCN

CEB JOB JOBLight-train
Training Workload

0.0

0.2

0.4

0.6

0.8

1.0

Tested on JOB

Figure 10: Runtime performance on PostgreSQL of baselines,
and models trained on CEB, JOB, or JOBLight-train.

best traditional estimator using more sophisticated strategies than
PostgreSQL [1].
Learned Models. We will be comparing the MSCN and Robust-
MSCN models. The MSCN model is trained as in past works with
bitmaps of size 1000 [19]. Robust-MSCN model uses query masking
with 𝑝 = 0.2, primary key bitmap size of 1000, and a foreign key
bitmap size of atmost 1% of the table (which is atmost 30𝐾 on IMDb).
In the online appendix [30], we show that the results presented
here are not very sensitive to these hyperparameter choices. We
use Q-Error as the loss function to train all the models.
Execution environment. We use the execution environment pro-
vided with CEB [33], using a docker container with PostgreSQL
12, and 1GB RAM. We clear cache before every execution, and use
primary and foreign key indexes.
Learning curves. In a few scenarios, to better understand the
learned models, we plot error metrics after each epoch of a model’s
training, i.e., after each pass over the full training data.
Training / Testworkload splits.We train ourmodels on JOBLight-
train, JOB, or CEB. We use JOB and CEB as the test workloads
as they have complex queries where better cardinality estimates
clearly improve query plans. When testing on CEB, we use a test
set of 509 queries [33]. When training on CEB, we use a training set
of 2600 queries [33]. When testing on JOB, we use all 113 queries.
Because JOB has much fewer queries, when training and testing on
it, we use ten different 50 − 50 training/test splits. This scenario is
an example of a workload drift scenario as well because each JOB
query has a slightly different template.

6.2 Cross Workload Generalization
In Figure 10, we show the end to end runtime of query plans on CEB
and JOB generated from estimates of the MSCN and Robust-MSCN
model trained on different workloads. Robust-MSCN model shows
non-trivial improvements over PostgreSQL across all scenarios.
Evaluating on new queries from sameworkload.When trained
and tested on CEB, both the models do clearly better than Post-
greSQL, and are close to optimal.
MSCN is brittle when tested on different workloads. It is
expected that workload drift should make a learned model perform

1528

Figure 11: Q-Error of baselines, and models trained on CEB,
and tested on CEB (left) or JOB (right).

ErgastF1 Simple-ErgastF1
Training Workload

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l R
un

tim
e

(h
ou

rs
)

PostgreSQL True MSCN Robust-MSCN

ErgastF1 Simple-ErgastF1
Training Workload

101

103

105

107

QE
rro

r

Figure 12: Results on ErgastF1 workload for models trained
on it, or trained on a simple workload with only two joins.

worse, however, it is problematic when models may output noisy
or inconsistent estimates for parts of a query that are outside the
training regime. This may not always lead to worse query plans;
It is reflected in the MSCN model’ total latencies getting worse by
different amounts, with worse total runtime than PostgreSQL in
three of the scenarios. Meanwhile Robust-MSCN improves over
PostgreSQL in each scenario.
Q-Errors. The distribution of Q-Errors for models trained on CEB,
and tested on CEB or JOB — is shown in Figure 11. On the same
workload, both models improve drastically over PostgreSQL. On
the new workload, both models again improve over PostgreSQL,
with the Robust-MSCN model having lower median and 90th per-
centile Q-Error than MSCN. However, despite improving Q-Error
compared to PostgreSQL, as we saw in Figure 10, MSCN has worse
runtime. This discrepancy makes sense when you consider that
Q-Errors on JOB are over 70𝐾 subplan estimates — and only im-
proving overall Q-Error estimates is not enough to guarantee better
end to end performance in the 113 query plans.
New database. We find similar patterns in performance also show
on a different database. Figure 12 shows the runtime performance
and Q-Errors on ErgastF1. When the training and test workload are
from the same distribution, both models clearly improve over Post-
greSQL and are close to optimal. However, on the simple workload,
MSCN’s query performance gets worse than PostgreSQL while
Robust-MSCN degrades much less.

6.3 Data Updates
For the data updates experiments, the Robust-MSCN model will
include the updated join bitmaps and shuffled bitmaps training
approach described in §4.4.
Only data drift. Figure 14 shows the results of models trained
on CEB template 1𝑎 with ground truth data from IMDb-1950, and
tested on unseen queries from the same template. For comparison,
we also show Robust-MSCN trained on the full IMDb — this would
be the static scenario without any workload drift, and both Robust-
MSCN and MSCN models do equally well here. In terms of total
runtime, the Robust-MSCN model loses only a little performance
despite the old data, while the MSCN model gets much worse than
PostgreSQL when trained on 1950 data. The learning curves for
Relative PostgreSQL Cost and Q-Error in Figure 14 include error
bars over three runs for each model. The Robust-MSCN model
trained on 1950 data has more variance, but over time it converges
close to the performance of the Robust-MSCN model trained with
the latest data.
Workload drift + data drift. Figure 15 shows the result of train-
ing MSCN or Robust-MSCN on the JOBLight-train workload from
IMDb-1950, and IMDb-1980, and evaluating on the full IMDb ver-
sion. In general, we don’t see the consistent improvements over
PostgreSQL estimates in terms of query latency as when we trained
on IMDb-full itself — which suggests scope for developing better
techniques in such scenarios. However, Robust-MSCN is better than
if we had just used MSCN on the same training data — where the
performance drops up to 4 − 5× when trained on stale data. This
is one of the benefits: even in highly challenging scenarios, the
Robust-MSCN approach doesn’t get unpredictably bad.

6.4 Ablation Study
In this section, we tease apart the individual effect of our proposed
techniques, and the different kind of features, by an ablation study.
Figure 16 shows the results of training a model on JOBLight-train
after some key modifications compared to the Robust-MSCN model.
No query features. Throughout our scheme, we have focused a lot
on effectively utilizing the data and sampling features. It is natural
to ask if the query features are even required? As we see, there is a
noticeable degradation in performance without the query features
— especially on Q-Errors. This is not surprising: the key benefit of
query driven models is that it makes it possible to learn correlations
between certain attributes / joins or tables in a compact form —
removing all query information makes this impossible.
Effect of masking. Consider the ‘Mask All Features’ ablation. In
this, we apply masking/dropout (§4.2) to the data features as well.
This evaluates if the benefits seenwere just due to the regularization
properties of dropout, or because of the DBMS specific adaptation
of the idea we use here. As we see, the ‘Mask All Features’ performs
similar to ‘No Query Masking’ on JOB, and both of these get worse
than PostgreSQL when tested on CEB..
Overlap between sampling and data features. Both the sam-
pling and data features capture information about the underlying
data — interestingly, the model still does quite well on JOB if we just
remove one of them. However, the performance degrades drastically
when both are removed. On CEB, the performance is particularly

1529

10
c

25
c

18
c

18
a

17
b

17
d

17
c

17
f

16
b

30
a

17
a

30
c

29
c

17
e 6f 6d 29
a

29
b 8a 25
a

15
d

15
c

20
b

20
a

16
c

13
c

26
c

30
b

13
b

31
b

13
a

25
b

20
c

31
a 6b 16
d

32
b

14
b

11
d

31
c

24
a 8d 26
a

26
b

18
b

12
a

19
b 2c 11
a

28
c

28
b 2d 8b 16
a

21
c

21
b

23
a

21
a 7b 28
a

14
a 7a 5b 27
c

24
b 3b 27
b

27
a 2b 11
c

15
a

22
b 2a 4b 6c 22
c 9d 9a 23
b 3a 33
c

19
d 9b 33
b

33
a

19
a 6e 15
b

22
a

12
b 1c 4a 3c 1a 4c 5a 6a 32
a

10
b

10
a

14
c 8c 1d 11
b 1b 22
d

23
c 5c 19
c 9c 12
c

13
d 7c

Query

−400

−200

0

200

400

Di
ffe

re
nc

e
fro

m
 P

os
tg

re
SQ

L
(s

)

MSCN
Robust-MSCN

Figure 13: Per query results for models trained on JOBLight-train and evaluated on JOB. (Lower is better).

Figure 14: Final runtimes, and learning curves for models
evaluated on the data drift scenario.

1950 1980 Full DB
Training Data Year

0.0

0.5

1.0

1.5

2.0

To
ta

l R
un

tim
e

(h
ou

rs
)

Evaluated on JOB
PostgreSQL True MSCN Robust-MSCN

1950 1980 Full DB
Training Data Year

0

5

10

15

20

25

Evaluated on CEB

Figure 15: Models trained on old IMDb versions and
JOBLight-train workload. Evaluation is on full IMDb.

bad if the data features are removed. We believe that this is because
of the extreme nature of filters on JOB — often, having a coarse
signal, such as the output being present / or not present in the
bitmap, is enough to learn a reasonable model there.

6.5 Understanding JOBLight-train performance
Since JOBLight-train is such a simple workload, the improvements
of Robust-MSCN in terms of total runtime are particularly sur-
prising. We will analyze these results in greater detail — although
the themes we highlight are also applicable to the other scenarios
shown above.

0.0 0.5 1.0 1.5 2.0
Total Runtime (hours)

Robust-MSCN
 (Best Model)

No Data Features

No Query Features

No Sampling Features
Sample Bitmap,
No Join Bitmap

No Query Masking

Mask All Features

Only Data Features

Evaluated on JOB
PostgreSQL True Robust-MSCN

0 5 10 15 20
Total Runtime (hours)

Evaluated on CEB

Figure 16: Ablation study. Each label (y-axis) is a difference
from the Robust-MSCN model trained on JOBLight-train.

SELECT COUNT(*) FROM
cast_info AS ci,
movie_info AS mi1,
movie_keyword AS mk,
title AS t
WHERE t.production_year leq 2015
AND t.production_year gt 1990
AND t.id=ci.movie_id
AND t.id=mi1.movie_id
AND t.id=mk.movie_id
PostgreSQL table estimate
PostgreSQL subplan estimate

0.05 0.10 0.15 0.20
Importance for Neural Net Prediction

(a) MSCN’s importance.

SELECT COUNT(*) FROM
cast_info AS ci,
movie_info AS mi1,
movie_keyword AS mk,
title AS t
WHERE t.production_year leq 2015
AND t.production_year gt 1990
AND t.id=ci.movie_id
AND t.id=mi1.movie_id
AND t.id=mk.movie_id
PostgreSQL table estimate
PostgreSQL subplan estimate

0.05 0.10 0.15
Importance for Neural Net Prediction

(b) Robust-MSCN’s importance.

Figure 17: Feature importance of MSCN vs Robust-MSCN.

Where do the MSCN and Robust-MSCN model performances
differ? Figure 13 shows both the model’s runtime difference from
PostgreSQL on all JOB queries. Both models are able to correct Post-
greSQL when its significantly wrong — there are several queries
where they improve on PostgreSQL by over 100 seconds. How-
ever, the MSCN model cancels these out with several regressions
of similar magnitude — showing its brittleness to workload drift.
Robust-MSCN has much fewer, and smaller, regressions.
Interpreting learned models. We apply interpretablity tech-
niques developed to understand what a deep neural network learns

1530

Figure 18: JOB Learning curves, trained on JOBLight-train.

to the MSCN and Robust-MSCN model trained on JOBLight-train.
We use the integrated gradients algorithm [37] implemented in the
Captum library [21]. Figure 17 shows the relative importance of
each input in a CEB SQL query to the models. This gives us insight
into what the two models learned — and they are quite different
despite having the same training workload. For Robust-MSCN, the
importance for the PostgreSQL estimate is the highest. This is in
line with our intuition behind the query masking technique (§4.2).
MSCN relies more on the query features, such as the presence of the
column ‘t.production_year’, which is less robust for workload drifts.
For instance, the ‘production_year’ feature will be very misleading
if the model was trained with IMDb-1950 data, and tested on the
latest data.
Learning curves. Consider the learning curves of the MSCN and
Robust-MSCN model trained on JOBLight-train (Figure 18). In the
first couple of epochs, both models go from random estimates, to
reasonable estimates that improve accuracy on the very different
JOB queries. However, beyond that, the MSCN model continues to
overfit to its training workload (JOBLight-train), and progressively
gets worse on JOB. The Robust-MSCN model continues to improve
Q-Error on JOB throughout training, therefore, it shows that it is
learning generalizable and useful features rather than overfitting.
Intuitively, it suggests that it learns to correct cardinalities wherever
there is a strong signal. Moreover, these improvements translate to
consistent gains in the plan costs as well — which suggests that the
model provides consistent estimates for all subplans in a query.
Comparison with shuffled bitmaps. Recall that in the static
scenario, we did not use the shuffled bitmap approach from §4.4. In
the learning curves in Figure 18, we show the performance penalty
we would have if we used the shuffled bitmap approach when there
were no data updates.

7 RELATEDWORK
Many early works using ML in DBMS were for improving cardi-
nality estimation [9, 22, 36], and several classical approaches have
been proposed for it, but it has remained a challenging and open
problem. Recent ML research for cardinality estimation considers
two main approaches.
Data driven models. Data driven approaches draw from the wide
ML literature on modeling joint probability distributions using

deep autoregressive models [44], sum product networks [16, 46],
or probabilistic graphical models [38, 42, 43], or other methods [12,
16, 34, 41, 45].
Query driven models. Query driven approaches generate ground
truth cardinalities for a given workload, and use a regression model
to map the queries to their cardinalities. This includes MSCN [19],
lightweight models [6, 7], and several other related variants [6, 13,
14, 20, 32, 40, 41].
Workload drift. Several works have noted the workload drift
challenge for query driven cardinality estimation models [10, 24,
25, 32, 39]. We expand on this by exploring the causes that lead to
workload drift, and propose a solution framework for it.
Flow-Loss.An alternative loss function toQ-Error, proposed in [32],
is Flow-Loss, which is a differentiable approximation of the plan
cost. This requires it to model the end to end query optimization
process using approximations and differentiable primitives —which
require several assumptions. If the differentiable cost model is a
reasonable approximation, then this loss function leads to more
robust models, as shown in [32]. The authors showed that models
trained with Flow-Loss generalize better to new unseen templates.
This is an example of query workload drift. In this paper, we con-
sidered more extensive drifts. Our approach is complementary to
Flow-Loss, and it can be used to improve Flow-Loss trained models
further. But, more importantly, our approach is much simpler, easier
to interpret and implement, and can make the models optimized
using Q-Error more robust than ones just using Flow-Loss. How-
ever, when the training workload contains very simple queries, like
JOBLight-train— Flow-Loss models may not learn to predict accu-
rate cardinalities for complex queries (see online appendix [30]).
Retraining models. Query driven approaches assume retraining
models in case of new workloads. Warper [24] builds on this idea:
it automatically detects workload drift, generates similar queries,
collects ground truth, and retrains the model. This approach is
complementary to the techniques described in our work — we will
require retraining models as well, but much less frequently.

8 CONCLUSION
We show that appropriately trained query drivenmodels can remain
very useful in a much wider settings than previously considered.
Previously, a query driven model would be considered obsolete
as query patterns changed, or data updates [24]. This would re-
quire retraining, and potentially a very expensive data collection
process. Thus, it is not ideal to do it every time workload drift
occurs.Instead, with our techniques, we could trust our model to
adapt gracefully to workload drift, utilizing its training workload
to improve where it can, and being reasonably anchored to the
baseline DBMS performance in cases where it is not possible to
improve. And as query or data patterns keep changing, retraining
could be triggered periodically.

ACKNOWLEDGMENTS
This research was supported by Intel as part of the MIT Data Sys-
tems and AI Lab (DSAIL), and partially supported by NSF award
numbers 1900933 and 1751009.

1531

REFERENCES
[1] 2018. SQL Server’s Join Cardinality Estimation. https://www.sqlshack.com/join-

estimation-internals/ [Online;].
[2] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-

maswamy. 1999. The Aqua Approximate Query Answering System. In SIGMOD
1999, Proceedings ACM SIGMOD International Conference on Management
of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, Alex Delis, Chris-
tos Faloutsos, and Shahram Ghandeharizadeh (Eds.). ACM Press, 574–576.
https://doi.org/10.1145/304182.304581

[3] Pierre Baldi and Peter J Sadowski. 2013. Understanding dropout. Advances in
neural information processing systems 26 (2013).

[4] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardi-
nality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities.
In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 18–35. https://doi.org/10.1145/3299869.3319894

[5] Asoke Datta, Yesdaulet Izenov, Brian Tsan, and Florin Rusu. 2021. Simpli-Squared:
A Very Simple Yet Unexpectedly Powerful Join Ordering Algorithm Without
Cardinality Estimates. arXiv preprint arXiv:2111.00163 (2021).

[6] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/
pvldb/vol13/p2215-dutt.pdf

[7] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.
org/10.14778/3329772.3329780

[8] Ergast. 2021. Ergast F1 Database Schema. https://relational.fit.cvut.cz/assets/
img/datasets-generated/ErgastF1.svg [Online;].

[9] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estima-
tion using Probabilistic Models. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA, USA,
May 21-24, 2001, Sharad Mehrotra and Timos K. Sellis (Eds.). ACM, 461–472.
https://doi.org/10.1145/375663.375727

[10] Max Halford, Philippe Saint-Pierre, and Franck Morvan. 2020. Selectivity correc-
tion with online machine learning. arXiv preprint arXiv:2009.09884 (2020).

[11] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765. https://doi.org/10.14778/3503585.3503586

[12] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1035–1050.
https://doi.org/10.1145/3318464.3389741

[13] Rojeh Hayek and Oded Shmueli. 2020. Improved Cardinality Estimation by
Learning Queries Containment Rates. In Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen,
Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan Zhou, Marcos
Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George H. L. Fletcher, Arijit
Khan, and Bin Yang (Eds.). OpenProceedings.org, 157–168. https://doi.org/10.
5441/002/edbt.2020.15

[14] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering. In 11th Conference on Innovative
Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_
paper01.pdf

[15] Benjamin Hilprecht and Carsten Binnig. 2021. One model to rule them all: to-
wards zero-shot learning for databases. arXiv preprint arXiv:2105.00642 (2021).

[16] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[17] Zachary G Ives and Nicholas E Taylor. 2008. Sideways information passing for
push-style query processing. (2008).

[18] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned cardinality estimation: An in-depth study. In
Proceedings of the 2022 International Conference onManagement of Data. 1214–
1227.

[19] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neumann,
and Alfons Kemper. 2019. Estimating filtered group-by queries is hard: Deep
learning to the rescue. In 1st InternationalWorkshop on Applied AI for Database
Systems and Applications.

[20] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Vik-
tor Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. 2019. Estimat-
ing Cardinalities with Deep Sketches. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anas-
tasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1937–1940.
https://doi.org/10.1145/3299869.3320218

[21] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, EdwardWang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi
Yan, et al. 2020. Captum: A unified and generic model interpretability library for
pytorch. arXiv preprint arXiv:2009.07896 (2020).

[22] M. Seetha Lakshmi and Shaoyu Zhou. 1998. Selectivity Estimation in Extensible
Databases - A Neural Network Approach. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, Ashish Gupta, Oded Shmueli, and Jennifer Widom
(Eds.). Morgan Kaufmann, 623–627. http://www.vldb.org/conf/1998/p623.pdf

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[24] Beibin Li, Yao Lu, and Srikanth Kandula. 2022. Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts. In Proceedings of
the 2022 International Conference on Management of Data.

[25] Beibin Li, Yao Lu, Chi Wang, and Srikanth Kandula. 2021. Cardinality Estimation:
Is Machine Learning a Silver Bullet. In 3rd International Workshop on Applied
AI for Database Systems and Applications (AIDB).

[26] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. 2021. Fauce: fast and
accurate deep ensembleswith uncertainty for cardinality estimation. Proceedings
of the VLDB Endowment 14, 11 (2021), 1950–1963.

[27] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making learned query optimization practical.
ACM SIGMOD Record 51, 1 (2022), 6–13.

[28] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[29] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993. https://doi.org/10.14778/1687627.1687738

[30] Parimarjan Negi. 2022. Robust Query Driven Cardinality Estimation under
Changing Workloads: Online Appendix. Retrieved 2022 from https://parimarjan.
github.io/robust_cardinality_appendix.pdf [Online;].

[31] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where it
Matters. In 36th IEEE International Conference onData EngineeringWorkshops,
ICDEWorkshops 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 154–157. https:
//doi.org/10.1109/ICDEW49219.2020.00034

[32] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[33] Andreas Kipf Hongzi Mao Nesime Tatbul Tim Kraska Mohammad Alizadeh
Parimarjan Negi, Ryan Marcus. 2021. Cardinality Estimation Benchmark. https:
//github.com/learnedsystems/ceb [Online;].

[34] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel:
Quick Selectivity Learning with Mixture Models. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 1017–1033. https://doi.org/10.1145/3318464.3389727

[35] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das.
2020. Astrid: Accurate Selectivity Estimation for String Predicates using Deep
Learning. Proc. VLDB Endow. 14, 4 (2020), 471–484. https://doi.org/10.14778/
3436905.3436907

[36] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Pe-
ter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ra-
mamohanarao, and Richard T. Snodgrass (Eds.). Morgan Kaufmann, 19–28.
http://www.vldb.org/conf/2001/P019.pdf

[37] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for
deep networks. In International conference on machine learning. PMLR, 3319–
3328.

[38] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight
Graphical Models for Selectivity EstimationWithout Independence Assumptions.
Proc. VLDB Endow. 4, 11 (2011), 852–863. http://www.vldb.org/pvldb/vol4/p852-
tzoumas.pdf

[39] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow.
14, 9 (2021), 1640–1654. https://doi.org/10.14778/3461535.3461552

1532

https://www.sqlshack.com/join-estimation-internals/
https://www.sqlshack.com/join-estimation-internals/
https://doi.org/10.1145/304182.304581
https://doi.org/10.1145/3299869.3319894
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://relational.fit.cvut.cz/assets/img/datasets-generated/ErgastF1.svg
https://relational.fit.cvut.cz/assets/img/datasets-generated/ErgastF1.svg
https://doi.org/10.1145/375663.375727
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.5441/002/edbt.2020.15
https://doi.org/10.5441/002/edbt.2020.15
http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/3299869.3320218
http://www.vldb.org/conf/1998/p623.pdf
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/1687627.1687738
https://parimarjan.github.io/robust_cardinality_appendix.pdf
https://parimarjan.github.io/robust_cardinality_appendix.pdf
https://doi.org/10.1109/ICDEW49219.2020.00034
https://doi.org/10.1109/ICDEW49219.2020.00034
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://github.com/learnedsystems/ceb
https://github.com/learnedsystems/ceb
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.14778/3436905.3436907
https://doi.org/10.14778/3436905.3436907
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
https://doi.org/10.14778/3461535.3461552

[40] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-
gang Lehner. 2019. Cardinality estimation with local deep learning mod-
els. In Proceedings of the Second International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management, aiDM@SIGMOD 2019,
Amsterdam, The Netherlands, July 5, 2019, Rajesh Bordawekar and Oded
Shmueli (Eds.). ACM, 5:1–5:8. https://doi.org/10.1145/3329859.3329875

[41] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021,
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
2009–2022. https://doi.org/10.1145/3448016.3452830

[42] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2022. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. arXiv preprint arXiv:2212.05526 (2022).

[43] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.
2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.
arXiv preprint arXiv:2012.14743 (2020).

[44] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[45] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3
(2019), 279–292. https://doi.org/10.14778/3368289.3368294

[46] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. https:
//doi.org/10.14778/3461535.3461539

1533

https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.14778/3461535.3461539
https://doi.org/10.14778/3461535.3461539

	Abstract
	1 Introduction
	2 Background
	2.1 Evaluation Functions
	2.2 Query Representation
	2.3 Why use query driven models?

	3 The Workload Drift Problem
	3.1 Similar data insertion
	3.2 Unseen features
	3.3 More complex workload drift

	4 Robust Training Framework
	4.1 Overview
	4.2 Query Masking
	4.3 Join Bitmaps
	4.4 Data Updates
	4.5 Limitations

	5 Models and Workloads
	5.1 Query driven models
	5.2 Workloads

	6 Experiments
	6.1 Setup
	6.2 Cross Workload Generalization
	6.3 Data Updates
	6.4 Ablation Study
	6.5 Understanding JOBLight-train performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

