
CatSQL: Towards Real World Natural Language to SQL
Applications

Han Fu

Alibaba Group

fuhan.fh@alibaba-inc.com

Chang Liu

Alibaba Group

liuchang2005acm@gmail.com

Bin Wu

Alibaba Group

binwu.wb@alibaba-inc.com

Feifei Li

Alibaba Group

lifeifei@alibaba-inc.com

Jian Tan

Alibaba Group

j.tan@alibaba-inc.com

Jianling Sun

Zhejiang University

sunjl@zju.edu.cn

ABSTRACT
Natural language to SQL (NL2SQL) techniques provide a conve-

nient interface to access databases, especially for non-expert users,

to conduct various data analytics. Existing methods often employ

either a rule-base approach or a deep learning based solution. The

former is hard to generalize across different domains. Though the

latter generalizes well, it often results in queries with syntactic or

semantic errors, thus may be even not executable. In this work,

we bridge the gap between the two and design a new framework

to significantly improve both accuracy and runtime. In particular,

we develop a novel CatSQL sketch, which constructs a template

with slots that initially serve as placeholders, and tightly integrates

with a deep learning model to fill in these slots with meaningful

contents based on the database schema. Compared with the widely

used sequence-to-sequence-based approaches, our sketch-based

method does not need to generate keywords which are boilerplates

in the template, and can achieve better accuracy and run much

faster. Compared with the existing sketch-based approaches, our

CatSQL sketch is more general and versatile, and can leverage the

values already filled in on certain slots to derive the rest ones for

improved performance. In addition, we propose the Semantics Cor-
rection technique, which is the first that leverages database domain

knowledge in a deep learning based NL2SQL solution. Semantics
Correction is a post-processing routine, which checks the initially

generated SQL queries by applying rules to identify and correct

semantic errors. This technique significantly improves the NL2SQL

accuracy. We conduct extensive evaluations on both single-domain

and cross-domain benchmarks and demonstrate that our approach

significantly outperforms the previous ones in terms of both accu-

racy and throughput. In particular, on the state-of-the-art NL2SQL

benchmark Spider, our CatSQL prototype outperforms the best of

the previous solutions by 4 points on accuracy, while still achieving

a throughput up to 63 times higher.

PVLDB Reference Format:
Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. CatSQL:
Towards Real World Natural Language to SQL Applications. PVLDB, 16(6):

1534 - 1547, 2023.

doi:10.14778/3583140.3583165

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.

doi:10.14778/3583140.3583165

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/asfuhan/CatSQL.git.

1 INTRODUCTION
In the era of big data, the wide adoption of database management

systems (DBMS) has grown from traditional companies such as

banks to almost all industries. The DBMS users also extends from

well-trained database experts to data analysts whomay not be famil-

iar with the underlying database schemas, or even non-expert users

who do not have the understanding of the basic DBMS concepts. A

traditional DBMS provides SQL as a convenient interface to access

the data stored in the DBMS. However, writing a correct SQL may

be challenging for a non-expert user, especially for complex tasks.

It is a long standing open question whether it is possible to

build a natural language to SQL (NL2SQL) system so that users

can express their query intentions with natural language, such as

English, and rely on a NL2SQL system to successfully translate to

correct SQL statements. Researchers from the database community

have utilized rule-based methods to tackle this problem [2, 26, 36,

38]. Existing systems first parse the natural language question

into an intermediate representation (e.g. a parsing tree), and then

develop rules to map it into a SQL abstract syntax tree, which is

then converted into a SQL query. Such a method works well on a

targeted domain, but is hard to generalize across different domains

and tasks. Therefore, deploying such a system requires tremendous

human efforts to develop new rules to adapt to a new domain.

Recent advancements from the deep learning (DL) community

and the natural language processing (NLP) community demonstrate

promising results towards tackling the cross-domain adaption prob-

lem. A deep learning model is a machine learning model with a

large set of trainable parameters. Given a large dataset, the param-

eters can be trained to generalize well to unseen examples. The

NLP community creates several large NL2SQL datasets, e.g., Wik-

iSQL [58] and Spider [55]. Using these datasets, researchers have

proposed deep learning-base NL2SQL solutions that can achieve

a relatively high accuracy, i.e., 80% to 90%, on these benchmark

datasets [8, 13, 19, 29, 35, 37, 43, 49]. When they are handling rela-

tively complex queries, however, their performance drops signif-

icantly, down to below 50%. The reason why deep learning ap-

proaches do not show good performance on complex queries is

because they treat the NL2SQL problem as a machine translation

1534

https://doi.org/10.14778/3583140.3583165
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583165
https://github.com/asfuhan/CatSQL.git
https://www.acm.org/publications/policies/artifact-review-and-badging-current

problem and solely rely on machine translation techniques, such as

sequence-to-sequence, to solve it. These techniques do not leverage

database domain knowledge, and are easy to introduce semantic

errors when the question needs a good understanding of the un-

derlying database schemas.

In this work, we are the first to bridge the advancements from

both database and deep-learning communities, develop novel ap-

proaches to the NL2SQL problem, and demonstrate such a combi-

nation can boost the performance significantly. In particular, our

approach, named CatSQL, is a deep learning-based approach, which
can mitigate the issues of rule-based solutions to generalize across

application domains. Our CatSQL approach differs from existing

deep learning approaches in two different aspects. First, most exist-

ing deep learning approaches are based on a sequence-to-sequence

[37, 49, 58] or sequence-to-tree model [8, 13, 16, 35, 43]. These meth-

ods do not guarantee the generated SQL queries are executable or

even syntactically legal. Instead, our approach is a sketch-based

solution, which relies on our novel CatSQL sketch to generate the

SQL query. CatSQL sketch is a template with keywords and slots.

These slots initially serve as placeholders. We use a deep learning

model to fill in the empty slots to get a final SQL query, which is

almost always a legal SQL query.

In doing so, the deep learning model in our solution can focus on

generating essential information relevant to the natural language

question to fill in the slots, instead of wasting resources to generate

boilerplates such as keywords. Notice that there also exist works

that use such a sketch-based idea [9, 20, 48, 54]. These solutions

typically develop different specialized templates for different ap-

plication domains [9, 20, 48, 54]. These templates are not general

enough, and limit the expressiveness of SQL queries that can be

handled. Our CatSQL sketch is more general and largely akin to

the standard SQL syntax. Also, existing works typically fill in dif-

ferent slots independently and train separate sets of parameters for

different query modules. Our CatSQL SQL generation algorithm

employs a novel CatSQL sketch, which is general enough, and can

facilitate the idea of parameter sharing to boost the performance.

Second, although some deep learning approaches are designed

to generate syntax legal SQL statements, the predicted queries are

not guaranteed to be semantically legal to return non-empty re-

sults. This is because none of existing deep learning-based solutions

take the schema information of the underlying database into con-

sideration. Considering semantic constraints in a neural network

is inherently challenging, since the former handles discrete rules,

while the latter solves continuous optimization problems. To miti-

gate this issue, we develop a novel Semantics Correction algorithm

to examine whether the generated SQL queries are semantically

unsound and try to fix the semantic issues in the generated queries.

In doing so, Semantics Correction leverages database domain knowl-

edge into the SQL generation process to avoid obvious semantic

errors, so as to greatly improve the performance for generating

complex queries. To the best of our knowledge, we are the first

to incorporate semantic information into a deep learning-based

NL2SQL solution. We evaluate our CatSQL approach on the well-

known Spider dataset, and the results demonstrate that CatSQL is 4

points better than the previous state-of-the-art methods.

We summarize our contributions as follows:

• A novel sketch-based model CatSQL is proposed to achieve

the state-of-the-art performance on various NL2SQL bench-

marks;

• Semantics Correction of CatSQL is the first work that adopts

database domain knowledge in a NL2SQL solution;

• Extensive evaluations demonstrate thatCatSQL significantly
outperforms all existing solutions on cross-domain bench-

marks such as Spider and WikiSQL;

• On single-domain benchmarks, CatSQL solution also sig-

nificantly outperforms existing solutions;

• CatSQL prototype achieves outstanding runtime perfor-

mance: its single query runtime latency can be 2 × −20×
faster than all baselines; while its throughput can be 2.5 ×
−63× higher than the previous approaches.

The rest of the paper is organized as follows. In Section 2, we

first demonstrate the problem with a motivating example, provide

necessary backgrounds and terminologies for existing NL2SQL

techniques, and give an overview of our CatSQL solution. Next, we

present our CatSQL SQL generation and the Semantics Correction
approach in Section 3. We explain our system design choice and

model details in Section 4, and evaluate our system in Section 5.

We discuss related works in Section 6, and conclude this paper in

Section 7.

2 OVERVIEW
In this section, we first introduce the NL2SQL problem using an

example. Then we introduce some background knowledge so as to

explain the existing NL2SQL solutions; we also explain the issues of

existing methods and why gap still exists when applying them for

real-world applications. In the end, we describe our overall design

of CatSQL.

2.1 Motivating Example
Figure 1 presents an example to translate a natural language ques-

tion into its corresponding SQL query. The query is looking for

average life expectancy of some countries which does not use Eng-

lish as its official language. Figure 2 illustrates a part of the database

schema relevant to the question. The database contains several

tables: “Country”, “Country Language”, “City”, etc. Each table has

several columns, such as “Name" in “Country”, “IsOfficial” in “Coun-

tryLanguage”, etc. We notice that both table names and column

names are meaningful phrases. This makes the NL2SQL task possi-

ble. Such a naming practice is also well adopted in modern database

applications.

The NL2SQL problem is to translate the natural language ques-

tion into the corresponding SQL query. We need to figure out three

challenging questions from the natural language description: (1)

what tables and columns that will be used in the query; (2) what

is the correct query structure; and (3) how to fill in query details

and the literal in the query. In the example in Figure 1, from the

description, we can identify two tables whose names are relevant:

“Country” and “CountryLanguage”. However, the second table will

be used in the nested query, so the outter query will use only the

“Country” table.

The query structure is a nested query structure: the outter query

calculates the average life expectancy, which corresponds to the

1535

What is average life expectancy in the countries where English is
not the official language?

SELECT avg(LifeExpectancy)
FROM Country
WHERE Name NOT IN (
SELECT T1.Name FROM Country AS T1
JOIN CountryLanguage AS T2
ON T1.Code = T2.CountryCode
WHERE T2.Language = "English"
AND T2.IsOfficial = True
)

Figure 1: A natural language question and its corresponding
SQL query.

main clause; the nested query quantifies the selected countries

use English as their official language, which corresponds to the

attribute clause. In the end, we need to translate “average life ex-

pectancy" into avg(LifeExpectancy); and also, we need to

fill in "English" into the T2.Language = "English" con-

straint, and True into the T2.IsOfficial = True constraint.

This requires both understanding the question semantics and un-

derstanding the data stored in the database.

Solutions from the DB community requires designing rules for

the mapping between natural language tokens into SQL elements,

and translating a natural language parsing tree into a SQL’s abstract

syntax tree (AST). However, these approaches’ performance decay

significantly when they are applied to a new domain of database,

that requires redesigning the mapping.

The state-of-the-art solutions from the NLP community relies

on deep neural network to train a large model, which can be ap-

plied to handle the cross-domain issue, and demonstrate superior

performance. However, all of these approaches do not leverage

any semantics information to generate the query. Therefore, when

these approaches are applied to handle complex query structures,

their performances decay significantly. Also, since large neural

networks require computing expensive computation, their runtime

performance typicaly increases with the increase of the model’s

parameters.

Our work combines the benefits of the approaches from the two

community, and we demonstrate that our approach performs better

than all existing solutions. Our approach employs a deep learning

architecture, and we leverage DB domain knowledge to develop

novel Semantics Correction techniques to postprocess the query

generated by a neural network to fix obvious semantics errors. In

the following, we will first provide necessary background on how

a deep neural network NL2SQL solution works, and then we will

give an overview of our approach.

2.2 Background
Most of the state-of-the-art NL2SQL algorithms are built on top

of deep neural networks. In this section, we will briefly introduce

these building blocks with their key ideas to faciliate the readers

to understand our approach. In particular, we will use the example

player name

Code

id

Column

Table

Connected
Schema Graph

CountryCode CountryCode
foreign key

primary key

foreign key

CountryLanguage Country City

Name

District

Population

ID

primary key
primary key

LanguageCode

IsOfficial

Language Name Continent

Figure 2: The schema graph of the database that the query in
Figure 1 is executed on. Each circle is a table, and each box
is a column. An arrow from a circle to a box indicates that
a table contains a column; an arrow labeled with “primary
key” from a circle to a box is a primary key relationship; and
an arrow labeled with “foreign key” from one box to another
box is a foreign key relationship.

in Figure 1 to illustrate how a deep neural network-based NL2SQL

solution works.

Embedding. As an atomic operator, neural networks, such as

LSTMs [18] and Transformers [41], can model a sequence of tokens

into a sequence of 𝑁 -dimensional numeric vectors called embed-
ding. Formally, given an input sequence of tokens 𝑡1, ..., 𝑡𝑛 , a model

M converts them into a sequence of embeddings ℎ1, ..., ℎ𝑛 , i.e.,

M(𝑡1, ..., 𝑡𝑛) = ℎ1, ..., ℎ𝑛
Note that each embedding ℎ𝑖 encodes information of position 𝑖 ,

that includes not only the token 𝑡𝑖 at this position, as well as all

other tokens that may have information towards understanding 𝑡𝑖
and the context input.

The network to compute embeddings is also referred to as the

encoding network. The natural language community makes tremen-

dous efforts on the general purpose pretrained encoding networks,

and the latest results for NL2SQL are BERT[11] and GraPPa[53]

which are widely adopted by the state-of-the-art NL2SQL models.

Classifier. Using this operator, we can build a classifier to classify

the input sequence into one of 𝐶 categories as follows. Let us say

𝑓 (𝑡1, ..., 𝑡𝑛) = softmax
(︁
𝑊

𝑛∑︂
M(𝑡1,, 𝑡𝑛)

)︁
where𝑊 is 𝐶 × 𝑁 matrix, and softmax(𝑣)𝑖 = 𝑣𝑖/(

∑︁
𝑗 𝑣 𝑗) is a well

adopted deep learning operator. Therefore, 𝑓 (𝑡1, ..., 𝑡𝑛) will output
a 𝐶-dimension vector, and the summation of all dimensions is 1.

We can view 𝑓 (𝑡1, ..., 𝑡𝑛) as a probability distribution over the 𝐶

categories. For this classification task, we can choose the dimension

with the highest probability as the prediction. It is obvious that we

can run another multi-layer neural network on top ofM(𝑡1, ..., 𝑡𝑛)
instead of a simple softmax-layer to perform the classification task.

Actually, our work will run a four layer transformer instead.

Sequence-to-sequence translation. On top of this sequence clas-

sification example, we can build a sequence generator so that the

overall model becomes a sequence-to-sequence generation algo-

rithm [1, 40]. For example, given an input sequence 𝑡1, ..., 𝑡𝑛 , we

want to translate it into an output sequence 𝑑1, ..., 𝑑𝑚 . Similar to

1536

the classification problem, we essentially estimate the probability

of 𝑃 (𝑑1, ..., 𝑑𝑚 |𝑡1, ..., 𝑡𝑛), and choose the one with the maximal prob-

ability. However, this naive idea faces two obstacles: (1) the output

sequence may be arbitrarily long, and therefore there can be infi-

nite many possible outputs; and (2) even for a fix length of outputs,

there are exponentially many candidates, and thus an exhaustive

search approach is infeasible.

The deep learning community tackles this problem using a beam-

search approach. The model first calculates the pool of candidates

of 𝑑1 using the decoding network method explained above. The

beam search approach keeps only the top 𝐾 possible candidates

for 𝑑1, where 𝐾 is referred to as the beam size. When generat-

ing 𝑑2, for each candidate 𝑑1, we can estimate the probability of

𝑃 (𝑑2 |𝑑1, 𝑡1, ..., 𝑡𝑛) using the same approach, and calculate

𝑃 (𝑑1, 𝑑2 |𝑡1, ..., 𝑡𝑛) = 𝑃 (𝑑2 |𝑑1, 𝑡1 ..., 𝑡𝑛) · 𝑃 (𝑑1 |𝑡1 ..., 𝑡𝑛)
In doing so, we can obtain a candidate set of 𝑑1, 𝑑2 sequences, and

we reserve only top 𝐾 candidates with the highest probability in

the candidate set. This routine can continue to generate arbitrarily

long sequences. We use a special token ⟨EOS⟩ to mark the end of a

sequence. When this token is generated at the end of a sequence,

we no long extend it. The beam search procedure terminates when

the candidate with the highest probability reaches the ⟨EOS⟩ token.
Subsequent works also extend this approach to generate the

abstract syntax tree instead of a token sequence as the output[16,

43]. We do not elaborate the details, but refer the readers to [52]

for more information.

Training. To train a neural network model, we can design a loss

function L to estimate the distance between the prediction and the

ground truth. Since deep neural network models are continuous

functions, we can calculate the gradient 𝜕L/𝜕𝜃 , where 𝜃 is the set

of all parameters used in the model. Then we can apply a gradient

descent algorithm to update the parameters with 𝜃 ← 𝜃 − 𝜂 𝜕L
𝜕𝜃

,

where 𝜂 is a small value that is typically referred to as the step size.
Different algorithms[7, 24, 28] will calculate 𝜂 differently.

2.3 Existing NL2SQL Approaches
In this section, we explain three categories of NL2SQL solutions:

(1) rule-based approaches; (2) sequence-to-sequence approaches;

and (3) sketch-based approaches. We will briefly explain the basic

ideas below.

2.3.1 Rule-based approaches. Existing NL2SQL solutions devel-

oped from the database community mainly relies on manually

designed heuristics to translate a natural language question into a

SQL query [2, 26, 36, 38]. In particular, these approaches use stan-

dard NLP techniques to parse the natural language question into a

parsing tree; and then depending on the tree structure, rules are

developed to translate the parsing tree into a SQL AST, which is

then converted into the final SQL query. The subtle issue is how to

generate the table/column names and string literals in the query,

which can be found by looking into the database. To do so, these

approaches develop a mapping between natural language token

into elements in the queried databases to faciliate the translation

procedure. The benefits of these approaches are: (1) they do not

need training a machine learning model, and thus do not need to

develop a training set; and (2) they can handle complex queries

when the rules are designed so. However, when they are deployed

to a new database domain, they require developing a novel map-

ping, which requires tremendous human efforts or the performance

will decay significantly.

2.3.2 Sequence-to-sequence approaches. A sequence-to-sequence

approach considers a SQL query as a sequence of tokens, so that any

deep learning approach introduced in Section 2.2 can be applied.

The main challenge is that the generated output sequence may not

be a valid SQL statement. Therefore, almost all works along this

line are designed to handle syntactically invalid SQL queries. For

example, the state-of-the-art work along this line is called PICARD

[37]. Its algorithm checks whether the generated partial SQL state-

ment violates the syntax rules during the beam search and filters

out invalid candidates. Another line of works consider to generate

the abstract syntax tree (AST) using a sequence-to-tree approach. In

doing so, any generated AST automatically becomes syntactically

legal. For example, most existing works along this line are based

on RAT-SQL [43]. These approaches typically face the problem of

picking a wrong column or a wrong value. Therefore, most of the

efforts in these works are devoted to tackling this issue.

2.3.3 Sketch-based deep learning approaches. Another alternative
line of deep learning NL2SQL works develop sketch-based methods.

Typically, a sketch is a SQL template with empty slots so that neural

networks only need to fill in those slots. A sketch-based method

is inherently faster than a sequence-to-sequence solution, because

thesemodels do not need to concern about predicting SQL keywords

which are boilerplates in the sketch. Instead, a sketch-based model

can focus on filling in the essential information that is extracted

from the natural language question. However, existing works [48,

54] do not achieve the state-of-the-art performance along this line.

In this work, we develop a novel sketch-based approach called

CatSQL, and demonstrate that it can achieve a superior performance

than all existing methods.

3 CATSQL APPROACH
In this section, we introduce our Column Action Templates approach
to tackle the NL2SQL problem. Our approach is a template-based

deep learning approach. That is, using a deep neural network to

fill in the empty slots in the template to form the final SQL query.

Compared with existing sequence-to-sequence-based approach,

the template-based approach does not need to waste resources to

generate keywords such as SELECT/FROM/WHERE; therefore,
such an approach can focus on generating essential information to

form a SQL query.

Existing template-based approaches suffer from two issues. First,

they train different models to generate different sub-clauses. There-

fore, each model uses only a subset of the data. For example, the

model for the SELECT clause does not leverage any data for the

WHERE clause. Existing work demonstrates that, for a sequence-

to-sequence model, sharing model parameters to generate different

clauses will improve the performance.

In our work, we develop a special template called Column Ac-
tion Templates SQL or CatSQL, so that we only train one model for

multiple clauses to implement the idea of parameter sharing for a

template-based approach. Second, existing works rely on pure deep

1537

aquery = SELECT [CAT]+
FROM [table | nested_term_token]+
[WHERE | HAVING] [CAT]*
GROUP BY [CAT]*
ORDER BY [CAT]*
[LIMIT literal]?

CAT = AGG? DISTINCT? column OP? value?
[AND | OR]? [ASC | DESC]?

value = literal | (literal, literal)
| nested_term_token

query = aquery | aquery conj query
conj = INTERSECT | UNION | EXCEPT

Table 1: CatSQL template

neural network to generate the query, and thus ignore semantics

constraints such that most join conditions should have a PK-FK (pri-

mary key-foreign key) relationship. Our CatSQL approach develops

a novel Semantics Correction technique to take care of these seman-

tics constraints. Our Semantics Correction technique fixes simple

semantics errors during the CatSQL SQL generation process, and

post-processes the generated query to fix more complex semantics

errors considering the database schema.

In the following, we will first introduce our CatSQL template

(Section 3.1), and then describe our neural network model to fill in

each slots in the template (Section 3.2). In the end, we explain our

Semantics Correction technique in Section 3.3.

3.1 CatSQL template
The CatSQL template is defined in Table 1. The core definition of

Column Action Templates (or CATs) is as follows:

AGG? DISTINCT? 𝑐𝑜𝑙𝑢𝑚𝑛 OP? value? [AND | OR]? [ASC | DESC]?

We can see that CAT is a generic template that fits into multiple

causes of a SQL query including: (1) SELECT; (2) WHERE; (3)
GROUP BY; (4) ORDER BY; and (5) HAVING. Different clauses
fill only a subset of slots. For example, the SELECT fills (optionally)

AGG, DISTINCT, and column; and ORDER BY fills column, and
[ASC|DESC].

Each of these clauses is a keyword followed by a sequence of

CATs. In particular, for theWHERE clause, the conjunction key-

words (i.e.,AND andOR) are treated as a part of aCAT. For example,

the following expression

a > 1 AND b < 10 OR c = 20

is composed of the following three CATs:

(1)a > 1 AND (2)b < 10 OR (3)c = 20

The definition of the CatSQL template is designed to facilitate the

idea of parameter sharing, which is not adapted by previous sketch-

based approaches. In particular, since each of the four CAT clauses

can be viewed as a sequence of CATs, we can train one sequence-to-

sequence model for all four different clauses. At runtime, once the

CATs are predicted, we can simply construct the final SQL query by

assembling different CAT clauses. We will explain how our neural

network fills a CatSQL sketch in the next section.

3.2 CatSQL query generation
As illustrated in Figure 3, the overall architecture of CatSQL is com-

posed of four components, namely (1) GraPPa embedding network,

(2) CAT decoder network, (3) conjunction network, and (4) FROM

decoder network. We now explain each of these components.

GraPPa Embedding Network. The first implementation of the

parameter sharing idea is through the use of a common embedding

network. To this aim, we concatenate the natural language ques-

tion, database schema, and some additional information used for

generating nested queries. The question is a sequence of tokens

embraced between a pair of a [CLS] token and a [SEP] token.

The database schema part encodes each table’s name and its column

names together into a table schema sequence, and concatenate all

tables’ schema sequences together separated by a [SEP] token.

The additional information is mainly used for generating nested

queries, so we will leave them for shortly later.

We run an embedding network called GraPPa [53] over the input

sequence to generate a sequence of hidden states. The GraPPa

architecture is a 24-layer transformer network pre-trained with

multiple SQL parsing tasks. All other components share the same

GraPPa encoding network so as to leverage the parameter sharing

idea.

Generating the query body using the CAT Decoder Network.
For the fiveCAT clauses, we canmodel each of them as a sequence of

CATs with some slots masked out. Therefore, predicting each clause

is formulated as a standard CAT sequence generation problem. In

particular, from Table 1, a query can be viewed as the concatenation

of the SELECT, FROM,WHERE, GROUP BY, and ORDER BY
clauses. In our framework, we handle the FROM clause differently,

and each other clauses can be viewed as a sequence of CATs. In our

approach, we concatenate these four clauses together separated by

a special [SEP] token, thus we can view the problem of generating

these four clauses as a standard sequence-to-sequence generation

problem where the input sequence is described above, and the

output is a sequence of CATs and [SEP] tokens.

To this aim, from the embedding sequence generated by the

GraPPa Encoding Network, the CATDecoder Network uses another

four layer transformer network to generate an output sequence of

CAT hidden states. Each of them corresponds to one CAT. Based
on the generated CAT and [SEP] sequence, we can split each CAT
into different clauses.

Each CAT has up to seven slots, and thus we use seven different

classifiers to generate the differents lots of a CAT. Different clauses
may fill different slots. For example, for the SELECT clause, we

only fill the AGG, DISTINCT, and column slots, and ignore the

outputs of the other four classifiers to make sure the generated SQL

query is valid.

For 5 out of the 7 slots such as AGG, DISTINCT, OP, AND/OR
conjunction, and ASC/DESC descriptor, we use a feed-forward

layer with softmax activation as the classifier. If one slot is optional,

we may fill a special [EMPTY] token to indicate that the slot is

omitted.

The column slot is filled using a pointer newtork [42]. That

is, for each CAT we first get the hidden state vector calculated

by the CAT Decoder Network. At the same time, we collect all

1538

Additional Information
* [SEP] code [SEP] name [SEP]

GraPPa Encoding Network

[CLS] what is average life ? [SEP] district [SEP]

𝐡𝐡[CLS] 𝐡𝐡𝑞𝑞1 𝐡𝐡𝑞𝑞2 𝐡𝐡𝑞𝑞3 𝐡𝐡𝑞𝑞4 𝐡𝐡𝑞𝑞14 𝐡𝐡𝑞𝑞15 𝐡𝐡𝑞𝑞16 𝐡𝐡𝑐𝑐11 𝐡𝐡𝑐𝑐21 𝐡𝐡𝑐𝑐12 𝐡𝐡𝑐𝑐22 𝐡𝐡𝑐𝑐13 𝐡𝐡𝑐𝑐23 𝐡𝐡𝑐𝑐112 𝐡𝐡𝑐𝑐212

⋯ name

𝐡𝐡ℎ𝑐𝑐21 𝐡𝐡ℎ𝑐𝑐31 𝐡𝐡ℎ𝑐𝑐12

Question Schema
⋯language life [SEP]expectancy[SEP]

𝐡𝐡ℎ𝑐𝑐11 𝐡𝐡ℎ𝑐𝑐22

1

⋯

⋯

⋯

FROM Clause

𝐬𝐬1
𝑓𝑓

FROM Decoder Network
𝐬𝐬3
𝑓𝑓𝐬𝐬2

𝑓𝑓

Table(country) Table(countrylanguage)Table([EOS])

NESTED(N) NESTED(N) NESTED(N)

4

CAT Decoder Network
𝐬𝐬1 𝐬𝐬2 𝐬𝐬3 𝐬𝐬4

COL(Language) AGG(NONE)OP(=) CON(AND)VAL(“English”)

WHERE/HAVING Clause

NESTED(N)

𝐬𝐬5
SELECT Clause

⋯

2

INTERSECT(N) UNION(N) EXCEPT(N)

Set Operation

Conjunction Network

3

Softmax

NONE(Y)

Figure 3: Architecture of CatSQL

columns in the database, and compute one embedding vector for

each column name. Then for each column, we compute the score as

the inner product of the CAT hidden state vector and the column’s

embedding vector. Then for each column name, we compute a score

as the inner product of the CAT hidden state vector and the column

embedding. The column name with the highest score is picked to

fill in the column slot.

Before discussing the value slot handling approach, we want

to mention that different clauses may have different slots voided.

For example, when we fill in the SELECT clause, we do not need to

fill in the slots such as OP and value. In this case, the network still

generate the values for these slots, but will mask them out when

forming the final query. We have a special routine to handle the .

We now describe our approach below.

Literal handling. The value slot may have three different forms:

(1) one single literal; (2) a pair of literals; and (3) the

nested_term_token. When filling in this slot, the model will

first run a classifer to determine which one of the three scenarios

it chooses. When a literal is needed, a special literal handling

routine will be employed.

Most existing literal filling works try to locate a token directly

in the natural language question and copies it into the literal
location. However, this approach suffers from the issue that the

words used in the question may not match the values in the data-

base when the exact data records are inaccessible to end users. Our

approach will examine database values to improve the accuracy. For

each literal slot to be generated, the network produces a embedding

vector for this slot as the literal embedding. We also obtain the col-

umn in the same CAT. Then we retrieve all distinct values from this

column, and calculate an embedding for each value. We calculate

a cosine similarity score between the literal embedding and each

value embedding vector, and the value with the maximal score is

picked. If this score exceeds a manually specified threshold, then

we copy this value directly; otherwise, we resort to the traditional

approach to copy a token in the natural language question that

best matches this literal embedding. We observe that this approach

significantly improves the execution accuracy.

Note that the set of all distinct values in each column and their

embeddings are computed offline, and are periodically updated with

a model update. Therefore, the online serving module only needs to

scan through this set of value embeddings. This takes much shorter

time compared with the entire neural network computation.

Nested queries and query conjunction.We now explain howwe

expand a nested_term_token and how the Conjunction Net-

work handles conjunction queries.When anested_term_token
is generated, the generator should expand it into a nested subquery.

The approach is quite similar to the top-level process, but we pro-

vide additional information as an input to the GraPPa Network.

One straightforward idea is to use the entire top-level query (or

outer block for the inner block in a nested query) to form a sequence

as the additional information. However, this approach makes the

additional input too long, and thus requires a large amount of

computational resources, which limits the application in real-world

scenes. In our framework, we propose an efficient method to record

the information of the outer block. In particular, when expanding a

nested_term_token, we collect all column names appeared in

the outer query, and concatenate them into a sequence separated

by the [SEP] tokens to form the additional information.

We handle the conjunction keywords such as INTERSECT,
UNION, EXCEPT, and LIMIT, similar to expand the nested term

token. Once an atomic query is generated, we run a Conjunction

Network (part 3 in Figure 3) to predict whether a keyword exists

for each of these four keywords. The model consists of a feed

forward layer followed by an attention pooling layer and another

feed forward layer. If LIMIT exists, a separate literal handling

model generates the literal for this LIMIT clause. When any of the

three conjunction keywords exist, e.g., INTERSECT, we consider
the right part of the keyword as a nested query, and the left part

as its outter query. In doing so, we delegate the generation of the

right part to the above explained nested query generation routine.

FROM clause. The FROM clause is handled differently from other

CAT clauses. It needs to generate two parts: (1) the tables to ap-

pear in the query; and (2) the join-conditions. Our FROM Decoder

Network focuses on generating the tables in the FROM clause. In

particular, we consider the tables in the FROM clause as a sequence

of tables, and thus generating the clause is a standard sequence

generation problem.

1539

Our FROMDecoder Network employs a standard four layer trans-

former architecture to generate a sequence of table embeddings.

From each embedding, we will first run a standard two-class classi-

fier to classifywhether it should be a table or anested_term_token.
If later, we will employ the nested query expansion technique dis-

cribed above to handle it.

If an embedding is a table, we employ a pointer network to select

one table from all tables in the database. This is quite similar to the

one used in the CAT Decoder Network to generate the column
slot. The only difference is that the network here selects one table,

instead of one column.

Our join condition generation algorithm does not use any learn-

ing algorithm, but runs a minimal spanning tree algorithm over

the generated tables for the FROM clause. Once we generate a

sequence of 𝑘 tables, i.e, 𝑡1, 𝑡2, ..., 𝑡𝑘 , we want to generate the join

conditions to connect them. To this aim, we build a graph with

𝑘 nodes, so that each table 𝑡𝑖 corresponds to one node 𝑛𝑖 in the

graph. For two tables 𝑡𝑖 and 𝑡 𝑗 , if we have a PK-FK relationship

between 𝑡𝑖 and 𝑡 𝑗 , we build an edge between 𝑛𝑖 and 𝑛 𝑗 , labeled with

a weight |𝑖− 𝑗 | indicating the distance between the two tables in the

FROM clause. Also, if 𝑡𝑖 and 𝑡 𝑗 are the same table, we build an edge

connecting 𝑛𝑖 and 𝑛 𝑗 with the weight |𝑖 − 𝑗 |. In this graph, each

edge indicates either a PK-FK join condition or a self-join condition.

On this graph, we run a minimal spanning tree algorithm to get

a set of 𝑘 − 1 edges with the minimal total weight. If the graph is

not connected, then we get one minimal spanning trees for each

connected subgraph. All edges on the minimal spanning tree will

be converted into a join-condition in the generated query.

Some existing methods [9, 43] also employ the similar approach

when generating the table sequence, but differs in how join condi-

tion is generated. For each generated table 𝑡𝑖 , existing models try

to find the PK-FK relationship between 𝑡𝑖−1 and 𝑡𝑖 and use it as

the join condition. When this routine fails, it does not generate the

join condition for 𝑡𝑖 . Note that since the weight between two tables

𝑡𝑖 and 𝑡 𝑗 is |𝑖 − 𝑗 |, if 𝑡𝑖 has a PK-FK relationship with 𝑡𝑖−1, then
it will prefer choosing this relationship (which has the minimal

weight of 1). Therefore, when existing methods generate the correct

FROM clause, our algorithm behaves the same. At the same time,

our approach generalizes better when such a relationship does not

exist. In case, we need to seek a farther PK-FK relationship or a

self-join relationship to form the join condition.

Once the FROM clause is predicted, a atomic SQL query is

constructed by assembling all different CAT clauses and the FROM
clause. If the nested_term_token presents in the query, the

model is called iteratively until all nested tokens are expanded and

no new nested token is predicted.

3.3 Semantics Correction
In this section, we present our Semantics Correction technique,

which significantly improves the accuracy by leveraging database

domain knowledge. While a deep learning model is effective in un-

derstanding the intention of a question, sometimes the generated

SQL query expresses the same intention, but is semantically invalid

considering the database schema.

It is challenging to incorporate these semantics constraints into

a neural network-based SQL generation process. The reason is that

a neural network approach is generally a continuous optimization

approach, but semantics constraints are mostly discrete rules to

satisfy. Our Semantics Correction technique is developed as a rule-

based approach to postprocess the generated query, and makes

its best-effort attempt to fix obvious semantics errors. We classify

our Semantics Correction rules into three categories: (1) token-level

violation, (2) FROM clause revision, and (3) join-path revision.

We want to emphasize that our Semantics Correction is a best-

effort attempt, and does not guarantee to generate a correct query.

Since it only affects queries that involve semantics error, it will not

rewrite a correct query into a wrong one. Therefore, our Seman-
tics Correction always improve the accuracy. We detail the three

categories of rules below.

Token-level violation. This type of semantics errors are the easi-

est to fix. Let us see the following example:

SELECT AVG(petType) FROM pets GROUP BY petType

Since the column petType takes categorical values, it does not

make sense to compute the average over this column. In this case,

we consider theAGG slot in theCAT corresponding toAVG(petType)
cannot take the value of AVG. Our token-level violation rules will

mask such an invalid value with an output probability 0 during the

decoding process.

This type of violation is easy to handle, since it only requires

inspecting a small part of the partially generated query, and does

not need a deep understanding of the entire query.

FROM clause revision. This type of violation is that the query

body uses some columns that do not appear in any tables in the

FROM clause. In this case, we prefer to consider the WHERE
clause is more trustworthy since it captures more semantics of

the natural language question. Therefore, we will add the missing

tables to the end of the FROM clause. Also, we will generate the

join-conditions for the newly added tables. We can employ the same

minimal spanning tree technique to generate these join conditions.

Join path revision. In many cases involving nested query, it is

very easy that the join path is wrong. Let us see the following SQL

query:

SELECT avg(LifeExpectancy) FROM country
WHERE name NOT IN (SELECT isofficial
FROM countrylanguage
WHERE language = "english")

In this example, the column name in the country table does

not have a FK relationship with the isofficial column in the

countrylanguage table generated in the nested query. In this

case, we will try to reconstruct a correct join path.

In particular, when a query involves a component of c1 op (
SELECT c2 FROM t2), we require c1 and c2 have a PK-FK

relationship. When this requirement is not met, we try to rewrite it

with minimal modifications.

In particular, in such a case, we assume (1) c1 in the outter query

is correct; and (2) the column c2 and t2 in the nested query are

correct. Based on these two assumptions, we need to reconstruct a

join path connecting c1 to t2 from the schema graph constructed

similarly as described for constructing the join conditions for the

FROM clause.

1540

In doing so, the above example will be rewritten into the follow-

ing:

... name NOT IN (SELECT country.name
FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code ...)

4 SYSTEM IMPLEMENTATION
In this section, we present details on system implementation. Our

prototype uses MySQL v5.7.30 to host our databases and all gener-

ated SQL queries will be executed by the MySQL engine.

Offline processing. The offline procedure includes model training

and some pre-processing procedures. We perform a pre-processing

procedure for literal handling. We use Redis [34] as our in-memory

key-value store, and we store a mapping from literals to their em-

beddings in one redis instance. In particular, for each column in

the table, we retrieve all values, and use word2vec [31] to compute

an embedding for each of them. Here, we choose to use word2vec

instead of other more recent language models such as BERT mostly

for speed. We observe that word2vec runs much faster than BERT,

while achieving comparable performance.We then use each column-

value pair as the key and its embedding as the value to store them

into another redis store.

Online serving. Our online serving module has a web application

built on top of RESTful APIs to accept natural language questions.

The backend launches a separate process for each query to perform

SQL generation and Semantics Correction in a sequel. The bottleneck
of parallelization is at the GPU memory. Each process use the

minimum amount of GPUmemory so as to maximize the number of

queries to be handled in parallel. In each process, the SQL generation

module retrieves all value-embedding pairs into the memory for

literal handling. For all datasets in our evaluation, the time for

literal handling takes less than 1 millisecond, which is negligible

compared with time taken for the entire process. Other modules

are implemented as we described in Section 3.

Model details. Both CAT Decoder Network and FROM Decoder

Network consist of four transformer decoder layers. All hidden

states are 256-dimensional vectors. We use Adam [24] to train

our model with default setup. We use different learning rates for

different components. For CatSQL, the encoder’s learning rate is

set to be 7 × 10−6, and the transformer decoders’ is set to 3 × 10−4.

5 EXPERIMENTS
In this section, we evaluate the performance of our system in terms

of both accuracy and running speed compared with previous state-

of-the-art methods. In the following, we will first explain the evalu-

ation setup. We then present the accuracy results with respect to

different modules of the system. This is followed by the running

speed and throughput evaluation results. In the end, we study some

cases which shed light on the direction of future works.

5.1 Benchmarks and Baselines

Dataset. In this work, we adopt two recent cross-domain NL2SQL

benchmarks, WikiSQL [58] and Spider [55], which is widely evalu-

ated in the NLP community. WikiSQL is the largest public NL2SQL

Table 2: Statistics for NL2SQL benchmarks.

Benchmark Queries Tables Databases Rows

GeoQuery [56] 880 7 1 937

Scholar [21] 816 10 1 144M

MAS [26] 196 17 1 54.3M

IMDB [50] 131 16 1 39.7M

YELP [50] 128 7 1 4.48M

WikiSQL [58] 80,654 26,531 26,531 459K

Spider [55] 9,693 873 200 1.57M

Table 3: Baselines to compare

Method Reason to include Pretraining

PICARD [37] The top-1 on Spider Accex T5-3B [33]

NatSQL [13] The top-2 on Spider Accex GraPPa [53]

SmBoP [35] The top-3 on Spider Accex GraPPa [53]

LGESQL [8] The top-2 on Spider Acclf ELECTRA [10]

RAT-SQL [43] Widely adopted baseline BERT [11]

RYANSQL [9] The SOTA sketch-based model BERT [11]

SeaD [49] Top-1 on WikiSQL board BART [25]

SDSQL [19] Top-2 on WikiSQL board BERT [11]

HydraNet [29] Top-4 on WikiSQL board RoBERTa [27]

SQLova [20] We can obtain code and model BERT [11]

dataset containing 80,000 human-annotated queries on 24,000 ta-

bles over multiple domains. The drawback of WikiSQL is that its

queries only use SELECT andWHERE, while the FROM clause

is provided and no other complex operators are involved.

Spider is considered as the hardest NL2SQL dataset currently.

Spider supports much richer SQL syntax, and it classifies the dataset

into four categories based on their hardness levels:

Easy. Single-table queries;

Medium. Using GROUP BY, ORDER BY and HAVING;
Hard. Using JOIN on multiple tables and set operations;

Extra Hard. Nested queries.

BothWikiSQL and Spider splits the data into train/dev/test.
train is used for training the model; dev is used to evaluate the

model’s performance during training to avoid overfitting; andtest
is used for evaluation after training. Spider has a separate hold-out

test dataset that is not publicly available. To avoid ambiguity, in this

work, all reported results are evaluated on the publicly available

dataset only.

Besides, we also use several classical single-domain NL2SQL

benchmarks, including GeoQuery [21, 32, 56, 57], Scholar [21], MAS

[26], IMDB [50], and YELP [50] to make a fair comparison of our

CatSQL approach and existing NL2SQL systems. The statistics are

listed in Table 2

Evaluation metrics. To evaluate the accuracy of our approach,

we mostly focus on the so-called execution accuracy (i.e., Accex)

metrics. For each test case, we will run different systems to get a

1541

Table 4: Evaluation on Spider with different hardness levels. CatSQL (w.o. SC) does not perform Semantics Correction. CatSQL
(w.o PC) does not use parameter sharing.

Method Logical From Accuracy Execution Accuracy Executable
RateEasy Medium Hard Extra Hard All Easy Medium Hard Extra Hard All

NaLIR 0.8 0.2 0.0 0.0 0.3 1.6 0.7 0.0 0.0 0.7 3.9

Templar 0.8 0.2 0.0 0.0 0.3 1.6 0.4 0.6 0.0 0.7 3.7

RYANSQL 87.9 68.2 54.0 42.8 66.4 70.2 59.9 56.9 37.3 58.2 97.0

RAT-SQL 86.4 73.6 62.1 42.9 69.7 50.8 43.9 50.0 34.3 45.1 99.8

LGESQL 91.1 78.3 64.9 52.4 75.1 51.6 33.0 40.2 9.0 34.8 99.3

SmBoP 88.3 79.1 65.5 50.6 74.7 90.7 83.0 70.7 52.4 77.9 95.6

PICARD 89.9 83.4 66.1 44.0 75.5 95.6 85.4 67.8 50.6 79.3 98.1

CatSQL (w/o SC) 90.7 80.9 64.4 51.8 75.8 94.4 86.5 73.6 59.6 81.9 99.6

CatSQL (w/o PS) 86.7 70.6 59.2 50.0 69.2 89.9 72.0 69.5 50.6 72.4 100

CatSQL 95.6 85.0 67.8 59.6 80.6 95.6 88.3 74.7 62.7 83.7 100

Table 5: Execution accuracy on unpublished Spider test set.

Model Name Acc𝑒𝑥

SmBoP + GraPPa [35] 71.1

T5-3B + PICARD [37] 75.1

T5-SR (Anonymous) 75.2

RASAT + PICARD (Anonymous) 75.5

SHiP + PICARD (Anonymous) 76.6

Graphix-3B + PICARD (Anonymous) 77.6

CatSQL + GraPPa 78.0

generated SQL, and execute the SQL query over the underlying

database and compare the results with a gold standard.

The NL2SQL community also uses another metrics called logical
form accuracy (i.e., Acclf). This metrics considers a generated SQL

query correct when it matches the gold standard exactly. In Spi-

der, since the SQL literal may not appear in the natural language

question, in its Acclf evaluation, it does not require the literal to be

identical; therefore, when evaluating Acclf on Spider, a generated

SQL query is considered correct if all other keywords and columns

exactly match the gold standard but the literals may be wrong.

Clearly this metrics is not as practical as execution accuracy, since

(1) a practical NL2SQL application requires the generated literals to

be correct; and (2) a syntactically different but semantically equiv-

alent SQL query should be considered correct since it does not

change the execution results. For Spider and WikiSQL benchmarks,

we also provide the logical form accuracy results as a reference to

the NLP literatures.

In addition, we report a new metrics called exectuable rate. This
metrics reports the portion of generated SQL queries that can be

successfully executed by the underlying database engine.

To evaluate the speed, we will evaluate different methods us-

ing the same hardware setup, and report the number of queries

generated per second.

Baseline approaches. For rule-based systems, we compare NaLIR

[26] and Templar [2]. For deep learning baselines, there have been

extensive works evaluated against WikiSQL and Spider. To make a

meaningful evaluation, we pick our baseline approaches based on

the following criterion: (1) a method is reported to be among top of

the leadership board by April 2022 and we have the code and the

model to replicate the results; or (2) a method is widely compared

against. All baselines and the pre-training models to achieve their

best performance are summarized in Table 3.

Evaluation machine. All experiments are conducted on the a

server machine equipped with an Intel Xeon Platinum 8163 CPU

with 24 cores running at 2.5GHz, 128 GB memory, 2 TB of SSD, and

one NVIDIA V100 GPU with 32 GB memory.

5.2 Cross-Domain Evaluation Results

Spider results.Ourmain evaluation results on Spider are presented

in Table 4. From the table, we can observe that the two rule-based

approaches, NaLIR and Templar almost fail on all test cases. This

observation is the same as reported in [23]. The reason is that both

of these approaches require tremendous human efforts to adapt to

a new domain.

Among all deep learning-based approaches, we can observe that

CatSQL is the best and significantly better than the second on almost

all sub-tasks. Especially, on Hard and Extra Hard, CatSQL execu-

tion accuracy can achieve about 7 ~15 points higher accuracy than

the second, i.e., PICARD. In total, CatSQL is 4.4 points better than

PICARD on Accex , which is a significant improvement considering

that PICARD is only 1.4 points better than SmBoP, which is the 3rd

on the current leadership board. Another important observation

is that even without the Semantics Correction, CatSQL itself can

achieve almost 2.6 points better execution accuracy than PICARD.

It should be noted that PICARD uses a 8× larger model compared

with CatSQL. This result demonstrates the benefits brought by our

CatSQL sketch. Besides, we also evaluate the model without the

parameter sharing (CatSQL w/o PS). It can be observed that the

parameter sharing technique contributes 11.3 points to the overall

accuracy, which demonstrates the effectiveness of the proposed

architecture.

1542

Throughput (queries/second)

Ex
ec

ut
io

n
A

cc
ur

ac
y

NatSQL

BRIDGE

SADGA
RAT-SQL

LGESQL

CatSQLPICARD SmBoP CatSQL (w/o SC)

Figure 4: Execution accuracy versus throughput on several
state-of-the-art NL2SQL approaches on the Spider dataset.

The advantage of CatSQL is also supported by the evaluation re-

sults on executable rate. From the result, all existing neural network

models may generate un-executable queries while CatSQL is the

first deep-learning-based model which achieves 100% executable

rate. It should be noted that even without Semantics Correction, the
executable rate of CatSQL is 99.6%, which significantly outperforms

existing sketch-based models (e.g. RYANSQL and SmBoP), and

sequence-to-sequence networks (e.g. PICARD). This result demon-

strates the superiority brought by the newly introduced CatSQL

architecture.

Another interesting observation is that, while our approach is

not designed for logical form accuracy, CatSQL can also achieves

a better Acclf than other approaches. In particular, LGESQL [8]

and PICARD [37] are the 2nd and 3rd best on the Acclf leadership

board, while CatSQL is 2 points better. We cannot evaluate the top-1

method called G3R since its model is not open-sourced. However,

their reported Acclf on the test set is 77.2, which is much lower

than ours. Thus we conclude that CatSQL is the new state-of-the-

art on Spider’s Acclf leadership board, although it is designed to

optimize for Accex .

We also submit our model to the Spider leaderboard on Septem-

ber. For a fair competition, the Spider official has not released the

test set for public usage. At the time of writing, CatSQL achieved

the first place on the overall leaderboard. Especially, CatSQL outper-
forms the last non-anonymous T5-3B + PICARD by a a significant

and substantial margin of 2.9 points. The results on Table 5 demon-

strate the effectiveness and generalization of CatSQL.
Last but not least, while our CatSQL is more accuracy, it also

runs faster. Figure 4 demonstrates a diagram showing different

approaches’ execution accuracy versus throughput. From the figure,

we can observe that CatSQL is better in both dimensions. Later in

Section 5.4, we will show that CatSQL’s throughput is 63× larger
than PICARD and 4.5× larger than SmBoP.

WikiSQL results. We present the WikiSQL results in Table 6. We

can observe that our approach is better than all other baselines

on all metrics. One main reason is that all baseline approaches

train separate models for generating the SELECT clause and the

WHERE clause. Different from all these approaches, our CatSQL
technique uses the Column Action Template so that the model

components generating the SELECT and WHERE clauses can

Table 6: Accuracy evaluation on WikiSQL.

Method Dev Test

Acc𝑙 𝑓 Acc𝑒𝑥 Acc𝑙 𝑓 Acc𝑒𝑥

SQLova 84.2 90.2 83.6 89.6

HydraNet 86.6 92.4 86.5 92.2

SDSQL 87.1 92.6 87.0 92.7

SeaD 87.6 92.9 87.5 93.0

CatSQL 87.9 93.2 87.6 93.4

share their parameters and contextual information, so as to improve

the performance. All existing approaches use a technique called

Execution-Guided Decoding [44]. We implement this technique as

a special Semantics Correction rule, and thus we enjoy the benefit

from it as well.

5.3 Single-Domain Evaluation Results
We compare our approach against previous approaches on single-

domain benchmarks as well. It should be noted that our CatSQL
is trained only on the Spider training set for this evaluation. The

results are reported in Table 7. Notice that our evaluation setup is

the same as used in [23]. Therefore, we also include several deep

learning baselines’ results reported in [23].

We can observe that our CatSQL approach is superior than all

other baselines on all benchmarks. That is, we are better than not

only NaLIR and Templar, but also better than existing deep learning-

based baselines. The only baseline close to CatSQL is NSP [21],

which is only slightly lower than CatSQL on GeoQuery. The reason

is that NSP uses manually annotated samples on the GeoQuery

database for training while our CatSQL only uses Spider as the

training dataset. All other baselines are far behind our CatSQL
approach on all benchmarks.

We can observe that CatSQL achieves only 20% accuracy on

IMDB. The major reason is that the join rules of most SQL state-

ments in IMDB are not supported by CatSQL currently. This ob-

servation sheds light on the direction of future work. On all other

benchmarks, CatSQL’s accuracy is above 60%, which demonstrates

the adaptability of CatSQL to new database schema.

5.4 Throughput analysis
In this section, we study the throughput of our CatSQL prototype

comparedwith baseline approaches.Wemainly compare our system

against Spider baselines and the two rule-based systems.We present

the throughput results in Table 8. From the table, we can observe

that our CatSQL system uses a relatively small model to achieve

the state-of-the-art performance, and its overall latency is also the

smallest. Our CatSQL system is almost 4× faster than SmBoP, and

18× faster than PICARD in terms of processing one query.

One interesting observation is that the latency of NaLIR and

Templar, which does not use GPU at all is larger than CatSQL. The
reason is because both these two systems requires visiting the entire

database, which is expensive when the database size increases.

Ourmodel has a smaller overall latency for two reaons. First, com-

pared with most existing methods, CatSQL uses a relative smaller

1543

Table 7: Execution accuracy on various single-domain benchmarks.

Benchmark NaLIR [26] Templar [2] NSP [21] SyntaxSQLNet [54] GNN [6] IRNet [16] CatSQL (ours)

GeoQuery 0.36 0.0 70.0 49.64 38.21 60.36 70.88
Scholar 0.0 0.0 48.17 1.38 1.38 0.0 60.79

Restaurant 0.0 0.0 63.75 0.0 0.0 66.25 71.80
MAS 32.26 12.90 51.61 0.0 0.0 14.52 60.71
IMDB 0.0 11.90 16.67 0.0 2.38 14.29 20.61
YELP 4.88 9.76 0.0 0.0 0.0 0.0 62.50

Table 8: Inference throughput of different models. Latency
indicates the overall latency of processing an entire query.
Throughput is the number of queries that can be processed,
when a maximum number of processes are launched to pro-
cess the queries.

Method #Para Latency (ms) Throughput

NaLIR - 662.7 21.9

Templar - 1140.8 9.5

RAT-SQL 449.4M 205.3 16.6

SmBoP 366.9M 489.3 11.3

LGESQL 375.4M 642.8 9.3

PICARD 2950.1M 2302.7 0.8

CatSQL 379.4M 126.4 50.7

Table 9: Latency of different components of CatSQL.

Process Latency(ms)

CatSQL Embedding 42.6

CatSQL Decoding 63.7

CatSQL Semantics Correction 0.65

pretrained embedding model GraPPa, which requires less memory

and computational resource. Second, at each decoding step, Cat-

SQL generates a set of multiple slots in one CAT. This technique
enhances the parallelization at inference and significantly reduces

the time cost.

Since our CatSQL system launches a separate process to handle

each query, and on our test machine, we can handle around 11

queries in parallel. Other systems using a larger model can handle a

lower number of queries due to the limitation on GPUmemory. This

further amplifies the throughput advantage. In particular, compared

with PICARD, our throughput is 63× larger than PICARD. Also, the

throughput of NaLIR and Templar, which are not bounded by the

GPU resources, is also worse than our approach, mainly due to the

fact that their overall latency is larger.

We further give a detailed breakdown on each component of our

system in Table 9. We can observe that the most time consuming

component is the decoding network, which takes half of the time.

Although the decoding network shares almost the same number of

parameters with the GraPPa encoding network, the decoding phase

needs to run a beam search, and thus its latency is larger than the

encoding phase. Note that the decoding phase includes the literal

handling algorithm, which takes less than 1 millisecond. Therefore,

the literal handling’s running time is a negligible compared with

other components of the algorithm. Also, the Semantics Correction
phase takes less than 1 millisecond, which is negligible compared

with other components.

5.5 Case Study
We conduct an in-depth study of our CatSQL approach and existing

approaches on the Spider dataset. We will first examine several

cases that CatSQL can generate correct SQL queries while others

cannot; then we will also discuss several error cases of CatSQL.

Correct Cases. We will show two complex cases that CatSQL
succeeds. The first one is as follows.

Example 1. Find the last name of the students who currently live
in North Carolina but have not registered in any degree program.

The ground truth is

SELECT T1.last_name
FROM Students AS T1 JOIN Addresses AS T2
ON T1.current_address_id = T2.address_id

WHERE T2.state_province_county = 'NorthCarolina'
EXCEPT SELECT DISTINCT T3.last_name
FROM Students AS T3
JOIN Student_Enrolment AS T4
ON T3.student_id = T4.student_id

All other approaches failed on this case, because their performance

decays significantly when handling nested queries. For example,

PICARD will generate the following SQL query:

SELECT T1.last_name
FROM Students as T1
JOIN Student_Enrolment as T2
ON T1.current_address_id = T2.student_id

We can observe that the SELECT and FROM clauses are both

correct, but the WHERE clause lacks a significant portion of infor-

mation from the given natural language question.

Another example is as follows.

Example 2. What are the first names of all players, and their
average rankings?

The gold SQL query is

SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2
ON T1.player_id = T2.player_id

GROUP BY T1.first_name

1544

Systems such as PICARD will emit an almost correct SQL query,

but the GROUP BY keyword is different (i.e. T1.player_id)
We consider this case as a semantics violation, since we require the

GROUP BY column(s) must appear in the SELECT clause as well.

In this case, our Semantics Correction routine will correct this error

case by replacing T1.player_id with T1.first_name.

Error Cases. The error cases show that our CatSQL still have rooms

to improve. For example, the following question

Example 3. What is the average and maximum capacities for all
stadiums?

CatSQL will translate it into

SELECT average, MAX(capacity) FROM stadium

while the gold answer is

SELECT AVG(capacity), MAX(capacity) FROM stadium

The column name average confuses the CatSQL generator

to choose them to represent the description of “average” in the

question. Such column names will confuse human users as well. A

possible solution in real-world scene is to enrich the descriptive

information of the column name (i.e., average_attendance).

Another class of errors happen when there is a complex usage

of conjunction operators. For example, in the following example:

Example 4. What are the names of properties that are either houses
or apartments with more than 1 room?

Our model generates

SELECT property_name
FROM properties
WHERE property_type_code = "House"

AND room_count > 1
OR property_type_code = "Apartment"

while the gold standard SQL is

SELECT property_name FROM Properties
WHERE property_type_code = "House"
UNION SELECT property_name
FROM Properties
WHERE property_type_code = "Apartment"

AND room_count > 1

The conjunction relationship is translated into a wrong statement.

Part of the reason is because our Column Action Template flatterns

these conjunction relationship; and thus our approach is inherently

weak on handling these cases. This problem could be possibly han-

dled by either collecting more training data containing queries with

complex conjunction relationships, or designing new architecture

to predict logical operations explicitly. Both approaches are chal-

lenging to implement and require high-quality manual labels. We

leave this issue as a further research to study.

6 RELATEDWORK
NL2SQL problem is a long standing open problem lasting more

than five decades since [14]. Earlier works are mostly rule-based.

They develop searching-based techniques [4, 5] and parsing-based

approaches [2, 22, 26, 36, 38, 50]. These approaches performs well

on small single-domain datasets, and do not rely on the collection of

a large training dataset; however, they typically do not scale well to

a new domain for which the rules need to be manually re-designed.

With the recent advancements on deep neural network research

and the availability of large training datasets [30, 55, 58], recent

research exploits deep learning NL2SQL solutions and achieve the

state-of-the-art results [12, 16, 17, 21, 23, 39, 43, 45, 51, 53, 58]. There

are three lines of solutions. The first line takes a deep learning

favor to consider the NL2SQL problem as a sequence-to-sequence

translation problem [37, 58]. Such an approach typically struggles

with generating syntactically legal SQL queries, and thus most of

the efforts along this line are devoted to fixing the syntax issues.

The second line of research employs a sequence-to-tree model to

generate an abstract syntax tree along a predefined grammar to

eliminate the syntax issue entirely [16, 35, 43], and demonstrates

great promises towards tackling the problem.

Our work is along the third line of research, which takes a slot-

filling-based solution [9, 48, 54]. In particular, these works design

a sketch template with empty slots to fill, and the deep learning

model only needs to predict the values to fill in the slot. This line of

research typically enjoys great speed benefits since they do not need

to waste computation resources to generate boilerplates such as

keywords; so that all computation resources are devoted to extract

meaningful information from the natural language to complements

the SQL query. However, the accuracy of previous slot-filling ap-

proaches are typically low compared with the other two lines of

works. We are the first work to demonstrate that a slot-filling ap-

proach can improve the state-of-the-art accuracy significantly.

All these methods are building on top of similar building blocks

such as embedding network. While the state-of-the-art general

purpose pretrained embedding network is based on pretrained

language models[11], GraPPa [53] demonstrates that a specially

designed embedding network for the NL2SQL task can significantly

improves the performance. This line of research is orthorgonal and

can benefit all deep learning-based NL2SQL solutions.

The collection of training datasets and benchmarks is also an

important line of research. Existing works either manually build

templates [3, 46] or employ a neural generators [15, 47] to automat-

ically generate a large amount of data. This makes deep learning-

based NL2SQL solution scalable. The most widely used benchmarks

are WikiSQL [58] and Spider [55]. There are also some recent con-

tributions which provide benchmarks for robustness evaluation,

such as MT-Teql [30].

7 CONCLUSION
In this paper, we consider the NL2SQL problem and bridge existing

rule-based solutions and deep learning-based solutions to achieve

significant improvements in terms of both accuracy and throughput.

First, we design CatSQL, a sketch-based NL2SQL solution, which is

designed to be fast and accurate. Second, we develop the Semantics
Correction technique, which is the first work to leverage database

domain knowledge to improve the performance of deep learning-

based NL2SQL algorithms. Our evaluation results demonstrate that

our approach can significantly outperform previous approaches

in a wide range of benchmarks. In particular, on the state-of-the-

art cross-domain NL2SQL benchmark, Spider, our approach can

improve the accuracy over previous state-of-the-art solution by 4

points on execution accuracy, while achieving an up-to 63× larger

throughput.

1545

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. arXiv preprint (2014).
[2] Christopher Baik, HV Jagadish, and Yunyao Li. 2019. Bridging the Semantic Gap

with SQL Query Logs in Natural Language Interfaces to Databases. In ICDE.
[3] Fuat Basik, Benjamin Hättasch, Amir Ilkhechi, Arif Usta, Shekar Ramaswamy,

Prasetya Utama, Nathaniel Weir, Carsten Binnig, and Ugur Cetintemel. 2018.

DBPal: A Learned NL-Interface for Databases. In SIGMOD.
[4] Hannah Bast and Elmar Haussmann. 2015. More accurate question answering

on freebase. In CIKM.

[5] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo-Lado,

and Yannis Velegrakis. 2013. QUEST: a keyword search system for relational

data based on semantic and machine learning techniques.

[6] Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema

Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. 4560–
4565.

[7] Léon Bottou. 2010. Large-scale machine learningwith stochastic gradient descent.

In Proceedings of COMPSTAT’2010. Springer, 177–186.
[8] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021.

LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-

Local Relations. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 2541–2555.

[9] DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin.

2021. Ryansql: Recursively applying sketch-based slot fillings for complex text-to-

sql in cross-domain databases. Computational Linguistics 47, 2 (2021), 309–332.
[10] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019.

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

In International Conference on Learning Representations.
[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In NAACL.
[12] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural

Attention. In ACL.
[13] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R Woodward, John

Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL Easier to Infer from

Natural Language Specifications. In Findings of the Association for Computational
Linguistics: EMNLP 2021. 2030–2042.

[14] Bert F Green Jr, Alice KWolf, Carol Chomsky, and Kenneth Laughery. 1961. Base-

ball: an automatic question-answerer. In western joint IRE-AIEE-ACM computer
conference.

[15] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng

Chen, and Ming Zhou. 2018. Question Generation from SQL Queries Improves

Neural Semantic Parsing. In EMNLP.
[16] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and

Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database

with Intermediate Representation. In ACL.
[17] Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. 2019. X-SQL:

reinforce schema representation with context. arXiv preprint (2019).
[18] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation (1997).

[19] Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, and

Xiaodan Zhu. 2021. Improving text-to-sql with schema dependency learning.

arXiv preprint arXiv:2103.04399 (2021).
[20] Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. 2019. A

Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualiza-

tion. arXiv preprint (2019).
[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke

Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feedback.

In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 963–973.

[22] Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel

Liu, and Niyati Mehta. 2019. Verifying text summaries of relational data sets. In

SIGMOD.
[23] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural

language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737–1750.

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880.

[26] Fei Li and HV Jagadish. 2014. Constructing an interactive natural language

interface for relational databases.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:

A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[28] Agnes Lydia and Sagayaraj Francis. 2019. Adagrad—an optimizer for stochastic

gradient descent. Int. J. Inf. Comput. Sci 6, 5 (2019), 566–568.
[29] Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang,

and Zheng Chen. 2020. Hybrid Ranking Network for Text-to-SQL. arXiv preprint
arXiv:2008.04759 (2020).

[30] Pingchuan Ma and Shuai Wang. 2021. MT-teql: evaluating and augmenting

neural NLIDB on real-world linguistic and schema variations. Proceedings of the
VLDB Endowment 15, 3 (2021), 569–582.

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality.

Advances in neural information processing systems 26 (2013).
[32] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of

natural language interfaces to databases. In Proceedings of the 8th international
conference on Intelligent user interfaces.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the

limits of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[34] WG Redis. 2016. Redis. URL: http://redis. io/topics/faq Accessed November 17
(2016).

[35] Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-up

Semantic Parsing. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies. 311–324.

[36] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq

Minhas, Ashish R Mittal, and Fatma Özcan. 2016. ATHENA: an ontology-driven

system for natural language querying over relational data stores.

[37] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:

Parsing Incrementally for Constrained Auto-Regressive Decoding from Language

Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 9895–9901.

[38] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi

Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-

narayanan. 2020. ATHENA++ natural language querying for complex nested

SQL queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747–2759.
[39] Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun

Wang, Cicero Nogueira dos Santos, and Bing Xiang. 2021. Learning Contextual

Representations for Semantic Parsing with Generation-Augmented Pre-Training.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 13806–
13814.

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In NIPS.
[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In NIPS.
[42] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In

NIPS.
[43] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for

Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics.

[44] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,

Oleksandr Polozov, and Rishabh Singh. 2018. Robust text-to-sql generation with

execution-guided decoding. arXiv preprint arXiv:1807.03100 (2018).
[45] Wenlu Wang, Yingtao Tian, Haixun Wang, and Wei-Shinn Ku. 2020. A Nat-

ural Language Interface for Database: Achieving Transfer-learnability Using

Adversarial Method for Question Understanding. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 97–108.

[46] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,

Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen

Eger, et al. 2020. DBPal: A Fully Pluggable NL2SQL Training Pipeline. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 2347–2361.

[47] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018.

SQL-to-Text Generation with Graph-to-Sequence Model. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 931–936.

[48] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured

queries from natural language without reinforcement learning. arXiv preprint
(2017).

[49] Kuan Xuan, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. 2021.

SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising. arXiv
preprint arXiv:2105.07911 (2021).

[50] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:

query synthesis from natural language. PACMPL.

1546

[51] Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. 2016. Neural enquirer:

learning to query tables in natural language. In IJCAI.
[52] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-

Purpose Code Generation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 440–450.

[53] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan, Xinyi Yang, Dragomir

Radev, Caiming Xiong, et al. 2021. GraPPa: Grammar-Augmented Pre-Training

for Table Semantic Parsing. In International Conference on Learning Representa-
tions.

[54] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li,

and Dragomir Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex

and Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.

[55] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James

Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale

human-labeled dataset for complex and cross-domain semantic parsing and

text-to-sql task.

[56] John M Zelle and Raymond J Mooney. 1996. Learning to parse database queries

using inductive logic programming. In Proceedings of the national conference on
artificial intelligence. 1050–1055.

[57] Luke S Zettlemoyer and Michael Collins. 2005. Learning to map sentences to

logical form: structured classification with probabilistic categorial grammars. In

Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence.
[58] Victor Zhong, Caiming , and Richard Socher. 2017. Seq2sql: Generating structured

queries from natural language using reinforcement learning. arXiv preprint
(2017).

1547

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Background
	2.3 Existing NL2SQL Approaches

	3 CatSQL Approach
	3.1 CatSQL template
	3.2 CatSQL query generation
	3.3 Semantics Correction

	4 System Implementation
	5 Experiments
	5.1 Benchmarks and Baselines
	5.2 Cross-Domain Evaluation Results
	5.3 Single-Domain Evaluation Results
	5.4 Throughput analysis
	5.5 Case Study

	6 Related Work
	7 Conclusion
	References

