
LIDER: An Efficient High-dimensional Learned Index for
Large-scale Dense Passage Retrieval

Yifan Wang

University of Florida

wangyifan@ufl.edu

Haodi Ma

University of Florida

ma.haodi@ufl.edu

Daisy Zhe Wang

University of Florida

daisyw@ufl.edu

ABSTRACT
Passage retrieval has been studied for decades, and many recent ap-

proaches of passage retrieval are using dense embeddings generated

from deep neural models, called “dense passage retrieval”. The state-

of-the-art end-to-end dense passage retrieval systems normally

deploy a deep neural model followed by an approximate nearest

neighbor (ANN) search module. The model generates embeddings

of the corpus and queries, which are then indexed and searched by

the high-performance ANN module. With the increasing data scale,

the ANN module unavoidably becomes the bottleneck on efficiency.

An alternative is the learned index, which achieves significantly

high search efficiency by learning the data distribution and predict-

ing the target data location. But most of the existing learned indexes

are designed for low dimensional data, which are not suitable for

dense passage retrieval with high-dimensional dense embeddings.

In this paper, we propose LIDER, an efficient high-dimensional

Learned Index for large-scale DEnse passage Retrieval. LIDER has

a clustering-based hierarchical architecture formed by two layers

of core models. As the basic unit of LIDER to index and search data,

a core model includes an adapted recursive model index (RMI) and

a dimension reduction component which consists of an extended

SortingKeys-LSH (SK-LSH) and a key re-scaling module. The di-

mension reduction component reduces the high-dimensional dense

embeddings into one-dimensional keys and sorts them in a specific

order, which are then used by the RMI to make fast prediction.

Experiments show that LIDER has a higher search speed with high

retrieval quality comparing to the state-of-the-art ANN indexes

on passage retrieval tasks, e.g., on large-scale data it achieves 1.2x

search speed and significantly higher retrieval quality than the

fastest baseline in our evaluation. Furthermore, LIDER has a better

capability of speed-quality trade-off.

PVLDB Reference Format:
Yifan Wang, Haodi Ma, and Daisy Zhe Wang. LIDER: An Efficient

High-dimensional Learned Index for Large-scale Dense Passage Retrieval.

PVLDB, 16(2): 154 - 166, 2022.

doi:10.14778/3565816.3565819

1 INTRODUCTION
As one of the most important types of information retrieval, pas-

sage retrieval finds and returns relevant passages to a given query.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.

doi:10.14778/3565816.3565819

The typical applications of passage retrieval include question an-

swering (QA) systems [14] (which retrieve relevant answers to the

questions), dialogue response selection [19] (which selects proper

responses given a dialogue context and multiple response candi-

dates) and search engines. A passage retrieval pipeline normally

consists of two stages, the first-stage retrieval and second-stage

reranking, where the former retrieves a collection of candidate pas-

sages and the latter reranks them by relevance to the query. In this

paper we focus on the first-stage retrieval and simply denote it by

retrieval. A typical implementation of the retrieval uses bag-of-word

vectors to represent the query and passages, where each element

in a vector stands for a term in the vocabulary and length of the

vector equals the vocabulary size. So the representation is usually

very sparse and such an implementation is called sparse retrieval.
In recent years dense retrieval has emerged and shown its great

potential in effective passage retrieval. This new implementation

of passage retrieval uses dense neural embeddings to represent

the text, by which significant improvement has been made, due

to the capability of neural embeddings on capturing semantic in-

formation. One of the biggest problems in sparse retrieval is the

vocabulary mismatch. When the query and passage use different

terms (like synonyms) to express similar meanings, term-based

sparse retrieval cannot match them. But in such a case the neural

embeddings of the query and passage are likely to be still close to

each other. Therefore more and more passage retrieval systems are

deploying dense retrieval today. Specifically, the state-of-the-art

dense retrieval pipelines commonly consist of a deep neural model

(which is normally a two-tower deep model, e.g., two-tower BERT)

and an approximate nearest neighbor (ANN) index [14, 15, 21]. The

embeddings of the corpus are generated by the model and indexed

by the ANN module offline, then online the embeddings of queries

are computed and their top-k nearest neighbors are retrieved by

the efficient ANN index from the corpus embeddings as results, by

which the pipelines can support low-latency online serving.

But no matter how high-performance the ANN index is on spe-

cific sizes of datasets, with the continuous data explosion today, it

still becomes the bottleneck of retrieval speed. Given a query, the

retrieval time mainly consists of two parts, the query embedding

generation time and ANN search time, where the former takes

0.0007 ∼ 0.0008 seconds while the latter takes 0.04 ∼ more than 0.2

seconds in our evaluation, i.e., the ANN search usually costs more

than 50x time of the query embedding generation.

A potential high-performance alternative to the typical ANN

indexes [7, 10, 11, 20] is the learned index. Unlike traditional index

techniques, instead of “looking up” the location of a key, the learned

index “predicts” the location after learning the key-location distribu-

tion of the dataset, which makes its search process highly efficient.

As the first work to propose the concept “learned index structure”,

154

https://doi.org/10.14778/3565816.3565819
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565819

[17] introduces a learned index structure called Recursive-Model
Index (RMI) that outperforms traditional B-tree index on efficiency

and memory usage for range queries on one-dimensional data.

Specifically, RMI is a hierarchical structure including multiple lay-

ers of machine learning models. Given data and their corresponding

indexing keys, RMI assumes the data records are sorted as a dense

array by the keys and learns the location distribution of the keys in

the array. Then for any given key, RMI can predict its location in

the array with a bounded error. In the case that prediction error is

beyond the required bound, a hybrid index mixing RMI and B-tree

will be built to reduce the overall error.

Since RMI requires the data records to be stored in a one di-

mensional sorted array, it cannot be directly applied to multi-

dimensional data as such data has no natural order for sorting.

Therefore, following studies normally utilize dimension reduction

methods to convert the multi-dimensional data into sortable one-

dimensional points for RMI to fit, based on which several multi-

dimensional learned indexes are proposed, e.g., ZM index [40],

ML-Index [5], Flood [28], etc. But most of them are still designed

for very low-dimensional data, like 2D and 3D spatial data or multi-

dimensional data with only tens of dimensions. On dense neural

embeddings with hundreds to thousands of dimensions, their di-

mension reduction methods are no longer effective due to the curse

of dimensionality, making them not suitable for dense retrieval

tasks.

An effective dimension reduction method for high-dimensional

data is locality-sensitive hashing (LSH). It is able to convert high-

dimensional data into one-dimensional hash code string, which is

called “hashkey” in this paper. But there is still a gap between LSH

and learned index: RMI not only requires one-dimensional data, but

also requires the data can be sorted meaningfully. Unfortunately,

there is no explicit order for the hashkeys generated by LSH. This

problem can be solved by SortingKeys-LSH (SK-LSH) [23], which

defines a specialized order on the LSH hashkeys such that the data

points can be sorted by their hashkeys to form a continuous array

where the positions meaningfully reflect the similarities between

the data points.

However, to make the index system practical, we must solve one

more problem which we call “the curse of space size”: when search

space (i.e., dataset size) becomes larger, both of SK-LSH and RMI

perform worse. Specifically, SK-LSH needs a larger hashkey length

and more sorted arrays to guarantee the effectiveness, leading to a

significantly larger memory usage, and the capability of RMI to ac-

curately fit a dataset normally degrades with the increasing dataset

size. Our solution to this problem is the clustering. By clustering

the whole dataset into smaller groups and building index inside

each group, the search space of each index is shrunk effectively.

Furthermore, this solution can benefit from parallelization as the

clusters are independent from each other.

In this paper we propose LIDER, a novel high-dimensional

Learned Index for efficient large-scale DEnse passage Retrieval.
LIDER has a clustering-based two-layer architecture that consists

of multiple core models. As the basic unit in LIDER, a core model is
a module combining modified RMI and adapted SK-LSH together.

Specifically, a core model mainly consists of two components, a

couple of simplified RMIs and an extended SK-LSH module (called

ESK-LSH). The ESK-LSH module works on reducing data dimen-

sion, i.e., converting the high-dimensional dense embeddings to

one-dimensional hashkeys and sorting them to form several sorted

arrays by a specialized order, while the RMIs learn the hashkey-

location distributions in those sorted arrays. During ANN search, in

a coremodel, ESK-LSH converts the query embedding into hashkeys

and feeds them to RMIs to predict the locations, starting fromwhere

a range search on the sorted arrays will finally retrieve the approx-

imate nearest neighbors. To have the two major components better

interact with each other and better fit the demands of dense re-

trieval, we make several critical adaptions and improvements. The

technical details are included in Section 3, 4 and 5.

The two-layer structure of LIDER is built as follows: first the

target dataset is clustered, then one core model is created over the

cluster centroids, called “centroids retriever” and forming the first

layer. And one core model per cluster is created to index the data

inside that cluster, called “in-cluster retriever”. All these in-cluster

retrievers fill the second layer. During the retrieval process, the

centroids retriever is first called to find the target clusters (i.e., the

clusters possibly including correct answers to the query) and then

the in-cluster retrievers in those targets will retrieve the final results.

In such a way, each single core model works on a smaller subspace,

which effectively tackles “the curse of space size”. And the retrieval

in this architecture is simple to be parallelized between clusters

since the in-cluster retrievers work independently from each other.

We conduct evaluation based on the passage retrieval scenario,

which shows that LIDER is highly effective with higher efficiency

than the state-of-the-art ANN indexes on large-scale dense retrieval.

Comparing to the fastest baseline method, LIDER achieves signifi-

cantly higher retrieval quality with 1.2x search speed on the largest

evaluation dataset. To our best knowledge, LIDER is one of the first

learned index structures for ANN queries on high-dimensional data.

And LIDER is the first implementation of such a learned index to

solve dense retrieval tasks.

The main contributions of this paper are shown below:

(1) We build LIDER, an efficient and effective high-dimensional

learned index for ANN search in dense retrieval. This is

one of the first learned indexes for ANN search on very

high-dimensional data, and one of the first dense retrieval

solutions utilizing learned index.

(2) We design a clustering-based two-layer hierarchical archi-

tecture to address the performance issues raised by large

search space and optimize the retrieval efficiency by paral-

lelization between clusters.

(3) We extend SK-LSH to more distance metrics, improve its

parallelism and hashkey sorting method, design an effective

re-scaling method on the hashkeys to better train RMI, and

simplify RMI for better predicting efficiency and effective-

ness.

(4) We conduct experiments based on commonly used passage

retrieval benchmarks to evaluate the performance of LIDER,

which shows LIDER outperforms all baseline methods on

both efficiency and effectiveness, especially for large-scale

data.

This paper is organized as follows: Section 2 introduces works re-

lated to LIDER. Section 3 introduces the architecture and workflow

155

of LIDER. The following Sections 4 and 5 present technical details

for the major components. Section 6 provides the time complexity

analysis. Finally Section 7 presents experiments to evaluate the

performance of LIDER, the effect of some important factors and

parameters, and the memory footprint and index construction cost.

2 RELATEDWORK
There are two major categories of retrieval methods, sparse and

dense retrieval. Sparse retrieval normally uses bag-of-word (BOW)

models, where the document representations are sparse vectors,

while dense retrieval mostly utilizes neural embeddings from deep

neural models which are dense vectors. Typical sparse retrieval

methods include BM25, DeepCT [4], Doc2query [31] and docTTTT-

Tquery [30], which are commonly used in recent retrieval studies

as strong baselines. Due to the power of dense neural embeddings

in semantic search, many state-of-the-art retrieval researches focus

on dense retrieval. After BERT [6] was proposed, most of the recent

dense retrieval models are designed based on it and achieve signifi-

cant improvement on retrieval quality, e.g., Sentence-BERT [34] and

MarkedBERT [2]. But as a heavy model, BERT has high inference

latency, which limits its application on online retrieval that re-

quires low-latency serving. To solve this problem, following works

have proposed several variants to reduce its complexity, including

DistilBERT [36], ColBERT [15], TCT-ColBERT [22], etc.

To better support the low-latency online retrieval, in addition to

deploying more lightweight neural models, most state-of-the-art

end-to-end dense retrieval systems also arrange a high-performance

ANN search module following the neural model to fast look up the

closest documents to the queries based on their embeddings. ANN

indexes include four major categories, i.e., hashing, graph, quantiza-

tion and tree based indexes. Among them the tree based indexes are

more suitable to low-dimensional space, so dense retrieval systems

normally choose from the other three types of indexes. For exam-

ple, DPR [14] utilizes a graph based index, HNSW [26], ColBERT

deploys IVFADC index which is based on product quantization,

BPR [43] integrates learning-to-hash technique into DPR [14], etc.

FAISS [13] is one of the most popular ANN index libraries in today’s

dense retrieval, as it implements high-performance indexes of all

the three classes. It has been used by many recent dense retrieval

studies [25, 33, 38, 41, 44]. There are also many other representative

ANN indexes [7, 10, 11, 20].

Learned index is first proposed by [17], where the structure is

called Recursive-model index (RMI). RMI is designed to replace the

traditional range search indexes on one-dimensional data. To han-

dle multi-dimensional data, following works propose many multi-

dimensional learned index structures based on RMI. Their main dif-

ferences are on the dimension reduction methods used to reduce the

multi-dimensional data into one-dimension. SageDB [16] uses a di-

mension reduction method with some similarities to LSH (which is

not explicitly discussed in the paper). ZM-index [40], ML-index [5]

and Flood [28] reduce data dimension by Z-order, iDistance, and

a multi-dimensional grid based method respectively. [32] applies

the idea of Flood to several traditional multi-dimensional indexes

to make them better handle spatial queries. [39] proposes LIMS, a

learned index for efficient similarity search in metric spaces. LIMS

applies a clustering-based strategy to split the dataset into more

uniformly distributed subsets to improve the search performance.

Though LIDER also has a clustering-based architecture, it is quite

different from LIMS: (1) LIMS is an exact similarity search index

while LIDER is for approximate similarity search, (2) LIMS is a

disk-based index while LIDER is in-memory index, and (3) the data

dimension of LIMS is not very high, i.e., less than 100 in their exper-

iments, which is significantly lower than that of LIDER. To our best

knowledge, all these existing learned indexes mentioned above are

designed for relatively low-dimensional data and there is no learned

index for very high-dimensional data like neural embeddings.

3 LIDER
In this section we introduce the overall architecture and workflow

of LIDER and each core model in it. Then in the following sections

we discuss important technical details about the major components

in LIDER.

Linear
Regression

Linear
Regression

Linear
Regression

Linear
Regression

Linear
Regression

RMI

k1 k2 k3 ...

Key re-scalingHashing

Sorting

Hashkeys

ESK-LSH
Hashkeys

Dense
embeddings

Figure 1: Core model structure

3.1 Core model structure
The structure of core model is illustrated in Figure 1. There are two

major modules in the core model, the dimension reduction module

(illustrated as the pink and green boxes) and the location prediction

module (i.e., the RMI, marked as the blue box). The dimension

reduction module includes two components, the extended SK-LSH

(ESK-LSH), which is extended from the original SK-LSH, and the Key

re-scaling component, which is used to convert the string hashkeys

into numeric keys within a proper range to train the RMIs. The

yellow boxes stand for one of the sorted arrays generated by ESK-

LSH. Essentially, one RMI corresponds to one sorted array. And

ESK-LSH may maintain multiple sorted arrays, in which case there

will be multiple RMIs existing in a core model. More details are

presented in Section 4 and 5.

156

In-cluster
retriever

Centroids
retriever

Centroids...C3C1 ...C2

Clusters

LIDER
Queries

Layer-1

In-cluster
retriever

In-cluster
retriever

Layer-2

Figure 2: LIDER architecture (the centroids retriever and each
in-cluster retriever are both a coremodel as shown in Figure 1)

3.2 Clustering-based architecture
As shown in Figure 2, LIDER has a clustering-based two-layer

architecture. The first layer (the higher grey box, marked as “Layer-

1”) includes one core model, named centroids retriever, to index all

the cluster centroids. And the second layer (the lower grey box,

marked as “Layer-2”) consists of multiple core models, one inside

each data cluster, named in-cluster retriever. Each in-cluster retriever
indexes the data within the corresponding cluster.

Comparing to building only one core model to index the whole

dataset, such a clustering-based layered architecture allows each

core model to fit a significantly smaller search space, e.g., roughly

less than 1/1000 of the whole dataset since we normally set the

number of clusters to be more than 1000. A smaller dataset is better

for RMI to fit and predict more accurately, and allows ESK-LSH

to reduce the memory usage and search latency by shrinking the

hashkey length and number of hashkey arrays while guaranteeing

the effectiveness. In our implementation, the clusters are generated

simply by k-means clustering. So unlike the components in core

model, this paper does not have a specific section to show more

details about the clustering strategy. All important details for it

have been included in this section and Section 3.3.

3.3 Workflow
In this section, we introduce the workflow of building LIDER and

query processing in LIDER, from perspectives of single core model

and the whole system respectively.

3.3.1 Workflow in each core model. For a single core model, to

make it simple, here we introduce the indexing and querying work-

flow in the case that only one sorted array and one RMI are main-

tained, as it is in Figure 1. When a core model is indexing the

corpus of documents, document embeddings generated by the up-

stream deep neural model are first input to ESK-LSH to generate

their hashkeys. Then the hashkeys are sorted to form the sorted

hashkey array, and also passed to the key re-scaling component to

be converted into numeric keys. For each of these numeric keys, its

location is that of the original hashkey in the sorted array. These

key-location pairs are then used to train the RMI, where the key is

data and location is label. RMI will learn to predict the location of

a given key by the training. When querying 𝑘 nearest neighbors

with the core model, the query embedding is first input to ESK-LSH

to generate the query hashkey, then query hashkey is converted

into numeric query key, which will be passed to RMI to predict

its location. After the prediction, ESK-LSH will do a bi-directional

range search (with a pre-determined range width purely depending

on 𝑘) starting from the predicted location on the sorted array to

retrieve a pre-determined number of candidate hashkeys (where

the number is normally several times of 𝑘). Finally the original

document embeddings corresponding to the candidate hashkeys

will be scored (e.g., computing cosine similarity to the query em-

bedding) and the top-𝑘 of them will be returned. In the case that

multiple arrays and RMIs are used, the core model will simply do a

parallel execution of such a process on each array and RMI then

merge the results.

3.3.2 Overall workflow in LIDER. LIDER is built as follows: first

the whole dataset is clustered into several subsets by k-means clus-

tering algorithm, then a core model is created on the collection of

the cluster centroids, and within each data cluster, one core model

is also created to index that subset. The core model indexing the

centroids is the centroids retriever while each core model inside

a cluster is an in-cluster retriever. When using LIDER for ANN

queries, the query embedding is first passed into the centroids re-

triever to find the approximate nearest centroids to it, then the

query will be searched by the in-cluster retrievers in the clusters

corresponding to those centroids. This in-cluster retrieval process

is parallelized between clusters, since the in-cluster retrievers work

independently from each other, therefore LIDER makes them exe-

cute the retrieval simultaneously to improve the efficiency. Finally

the results from in-cluster retrievers will be merged and the top-𝑘 of

them by some score (like cosine similarity to the query embedding)

will be returned.

4 EXTENDED SK-LSH
Locality-sensitive hashing (LSH) is an effective hashing framework

for approximate similarity search on high-dimensional data. It gen-

erates a signature (called “hashkey”) for each data vector by hashing

it with several hashing functions ℎ1 (·), ..., ℎ𝑚 (·) and concatenating

the resulting hashing values. Then the similarity between two data

vectors can be approximated using their hashkeys. The specialized

hashing function ℎ𝑖 (·) is so called LSH function while the sequence

of them𝐺 (·) = (ℎ1 (·), ..., ℎ𝑚 (·)) is normally called compound LSH
function. LSH function is specially designed to achieve both of

randomization and locality-preserving. Its formal definition is:

Definition 4.1 (LSH function). Given a metric space and its dis-

tance metric 𝑑 , a threshold 𝑡 > 0, and any two data points 𝑢 and 𝑣 in
the metric space, an LSH function ℎ(·) should satisfy the following

two conditions:

(1) if 𝑑 (𝑢, 𝑣) ≤ 𝑡 , then ℎ(𝑢) = ℎ(𝑣) with a probability at least 𝑝1
(2) if 𝑑 (𝑢, 𝑣) ≥ 𝑐𝑡 , then ℎ(𝑢) = ℎ(𝑣) with probability at most 𝑝2
where 𝑐 > 1 is an approximation factor, and the probabilities

𝑝1 > 𝑝2.

157

The definition means an LSH function maps similar/close data

points into the same hash bucket with a higher probability than

mapping dissimilar points into the same bucket. As a result, the

data points within the same bucket are very likely to be similar to

each other. By using the compound LSH function, the false negative

rate can be further reduced to increase the recall.

Based on the essential LSH model, SK-LSH [23] defines a linear

order over the hashkeys to sort them such that the data points with

smaller Euclidean distance are placed closer on the sorted hashkey

array. To find nearest neighbors of the query vector, it is sufficient to

find data vectors whose hashkeys are close to the query hashkey on

the array, and it is easy for SK-LSH to expand the nearest neighbor

search by scanning farther locations from the initial hashkey (i.e.,

the closest hashkey to that of the query) towards both of its left

and right sides along the array, called “bi-directional expansion”,

which is basically a fixed length range search on the array, where

the range length is pre-determined by 𝑘 (normally several times

of 𝑘). To let SK-LSH better fit dense retrieval scenario and have a

higher performance, we make several extensions and improvement

on it.

4.1 Extension on similarity metrics
Many of the state-of-the-art embedding based research and applica-

tions [6, 18, 27, 37] rely on cosine similarity to accurately measure

the embedding similarities. For dense retrieval, in addition to co-

sine similarity [14, 15, 35], inner product is another commonly used

similarity metric [21, 38, 42]. However, SK-LSH is designed for Eu-

clidean distance. Therefore, we extend SK-LSH to also work with

cosine similarity and name the extended algorithm as ESK-LSH.

We do not make a specific extension for inner product since it is

equivalent to cosine similarity on normalized vectors.

SK-LSH requires a base LSH model to perform the hashing. To

support cosine similarity, we use the hyperplane-based random

projection LSH [3] model. Since [23] only guarantees the proper-

ties of SK-LSH for Euclidean distance and the corresponding LSH

model, it is necessary to show those properties still hold for cosine

similarity and hyperplane-based random projection LSH model.

For any two vectors 𝑝1, 𝑝2 ∈ 𝑅𝑑 , we define 𝑠𝑖𝑚(𝑝1, 𝑝2) as their
cosine similarity:

𝑠𝑖𝑚(𝑝1, 𝑝2) := cos(𝜃1,2) =
𝑝1 · 𝑝2 𝑝1 · 𝑝2 (1)

We also know from [3] that, the probability of generating identi-

cal hash values for two vectors by the LSH model is

𝑝 (𝜃1,2) := 𝑃 [ℎ(𝑝1) = ℎ(𝑝2)] = 1 −
𝜃1,2

𝜋
(2)

Following [23], we use𝐺 (·) = (ℎ1 (·), ..., ℎ𝑚 (·)) to denote a com-

pound LSH function, where ℎ𝑖 : 𝑅𝑑 → {0, 1} are randomly se-

lected hash functions defined in [3]. KL(𝐾1, 𝐾2) is the non-prefix
length [23] between𝐾1 = 𝐺 (𝑝1) and𝐾2 = 𝐺 (𝑝2). dist(𝐾1, 𝐾2) is the
distance between𝐾1 and𝐾2. Please refer to Equation 6 of [23] for the

complete definition of dist(𝐾1, 𝐾2), and Equation 4 for KL(𝐾1, 𝐾2).

Lemma 4.2. For any two arbitrary random vectors 𝑝1, 𝑝2 ∈ 𝑅𝑑

with angle 𝜃1,2, the probability of dist(𝐺 (𝑝1),𝐺 (𝑝2)) being less than
𝑚 − 𝑙 + 1 (∀𝑙 : 0 ≤ 𝑙 ≤ 𝑚) is [𝑝 (𝜃1,2)]𝑙 .

Proof. According to Definition 5 in [23],

dist(𝐺 (𝑝1),𝐺 (𝑝2)) < 𝑚 − 𝑙 + 1 ⇔ KL(𝐺 (𝑝1),𝐺 (𝑝2)) ≤ 𝑚 − 𝑙

Let KL(𝐺 (𝑝1),𝐺 (𝑝2)) =𝑚 − 𝐿, then we have𝑚 − 𝐿 ≤ 𝑚 − 𝑙 , then
𝑙 ≤ 𝐿, also trivially 𝐿 ≤ 𝑚. Thus, by definition of 𝐾𝐿, 𝐺 (𝑝1) and
𝐺 (𝑝2) share common prefix whose length is 𝐿. This implies that

ℎ𝑖 (𝑝1) = ℎ𝑖 (𝑝2) holds for 1 ≤ 𝑖 ≤ 𝐿. Due to the fact that each hash

function ℎ𝑖 is independently and randomly selected, the desired

probability can be computed as follows:

𝑃 [dist(𝐺 (𝑝1),𝐺 (𝑝2)) < 𝑚 − 𝑙 + 1] = 𝑃 [KL(𝐺 (𝑝1),𝐺 (𝑝2)) ≤ 𝑚 − 𝑙]

=

𝑚∑︁
𝐿=𝑙

𝑃 [KL(𝐺 (𝑝1),𝐺 (𝑝2)) =𝑚 − 𝐿]

=

𝑚−1∑︁
𝐿=𝑙

𝐿
𝑖=1

𝑃 [ℎ𝑖 (𝑝1) = ℎ𝑖 (𝑝2)] (1 − 𝑃 [ℎ𝐿+1 (𝑝1) = ℎ𝐿+1 (𝑝2)])

+
𝑚
𝑖=1

𝑃 [ℎ𝑖 (𝑝1) = ℎ𝑖 (𝑝2)]

=

𝑚−1∑︁
𝐿=𝑙

𝑝 (𝜃1,2)𝐿 (1 − 𝑝 (𝜃1,2)) + 𝑝 (𝜃1,2)𝑚 = 𝑝 (𝜃1,2)𝑙 (3)

□

According to Equation 3, for any given 𝑙 , the probability of two

hashkeys 𝐺 (𝑝1) and 𝐺 (𝑝2) being close monotonically increases

when the cosine similarity 𝑠𝑖𝑚(𝑝1, 𝑝2) increases (i.e., 𝜃1,2 decreases).
Therefore, distance of compound hashkeys is a reasonable metric

to estimate cosine similarity between the original vectors. In such

context, to find similar data points to the query, searching a small

vicinity of the query hashkey is possibly enough.

4.2 Extension on hashkey distance
Though we prove that by using a random projection LSH model as

the base model, SK-LSH works for cosine similarity, there is a new

problem which does not exist in the original SK-LSH: when using

cosine similarity, the hashkey distance defined in [23] is too coarse

to distinguish the actual similarities of many different document

embeddings to the query embedding. We name such a problem as

“low resolution problem”. In [23], the hashkey distance is defined as

𝑑𝑖𝑠𝑡 (𝐾1, 𝐾2) = 𝐾𝐿(𝐾1, 𝐾2) +
𝐾𝐷 (𝐾1, 𝐾2)

𝐶
(4)

where 𝐾1, 𝐾2 are two hashkeys, 𝐾𝐿(𝐾1, 𝐾2) is the non-prefix length
[23] between 𝐾1 and 𝐾2 (i.e., the length of the sub-sequence after

their common prefix), and 𝐾𝐷 (𝐾1, 𝐾2) is the (𝑙 + 1)-th element
distance between 𝐾1 and 𝐾2 (i.e, the absolute difference of the first
non-identical elements between the two hashkeys), while 𝐶 is a

constant factor that is set to be larger than the maximum of 𝐾𝐷

such that
𝐾𝐷 (𝐾1,𝐾2)

𝐶
< 1 always holds. When the similarity metric

is Euclidean distance, each element in a hashkey is an integer within

a wide bounded range, which means the range of 𝐾𝐷 is also wide.

But when the similarity metric is cosine similarity, each hashing

value must be either 0 or 1, in which case 𝐾𝐷 (𝐾1, 𝐾2) ≡ 1,∀𝐾1, 𝐾2.
Therefore, no matter how different 𝐾1 and 𝐾2 are after the common

prefix, 𝑑𝑖𝑠𝑡 (𝐾1, 𝐾2) cannot reflect it.

158

For example, supposing we use hashkeys of length 6. Given a

query embedding 𝑣𝑞 with hashkey 𝐾𝑞 = 000000, one document

embedding 𝑣1 with hashkey 𝐾1 = 111111 and another 𝑣2 with

𝐾2 = 100000, according to Equation 4, we have 𝑑𝑖𝑠𝑡 (𝐾𝑞, 𝐾1) =

𝑑𝑖𝑠𝑡 (𝐾𝑞, 𝐾2) = 6 + 1

𝐶
. In such case, relying on the hashkey distance,

𝑣1 and 𝑣2 are the same in terms of similarity to 𝑣𝑞 . But obviously
𝑣2 is probably more similar to 𝑣𝑞 than 𝑣1 to 𝑣𝑞 , since the Hamming

distance between 𝐾2 and 𝐾𝑞 is much smaller than that between

𝐾1 and 𝐾𝑞 . Therefore the original hashkey distance is not able to

distinguish between 𝑣1 and 𝑣2 in such situations, or in another word,
it has a low resolution under the settings of cosine similarity metric

and random projection LSH.

To solve this problem, an intuitive way is replacing 𝐾𝐷 with

Hamming distance. But unfortunately, this will cause the linear

order of hashkeys to no longer hold. Specifically, the linear order

defined by SK-LSH is based on element-wise comparison from

the most significant element to the least significant element of

the hashkeys. When using random projection LSH (where each

element is either 0 or 1), the order is actually a dictionary order

(a.k.a., lexicographic order). By sorting hashkeys in this order, SK-

LSH guarantees that for any three ordered hashkeys in one array,𝐾2,

𝐾1, 𝐾 , 𝑑𝑖𝑠𝑡 (𝐾2, 𝐾) ≥ 𝑑𝑖𝑠𝑡 (𝐾1, 𝐾) always holds, which is essential to

the bi-directional expansion search. However, Hamming distance

does not consider the element significance, instead, it treats all the

elements equally. This may cause that for some ordered 𝐾2, 𝐾1, 𝐾 ,

𝑑𝑖𝑠𝑡 (𝐾2, 𝐾) < 𝑑𝑖𝑠𝑡 (𝐾1, 𝐾), which breaks the theoretical foundation

of SK-LSH. And we do observe many occurrences of this issue in

our experiments.

We tackle the low resolution problem successfully by extending

the length of sub-sequence used by 𝐾𝐷 . In [23], 𝐾𝐷 is computed as

𝐾𝐷 (𝐾1, 𝐾2) = |𝑘
1,𝑙+1 − 𝑘2,𝑙+1 | (5)

where 𝑙 is the length of the common prefix between hashkeys 𝐾1
and 𝐾2, and 𝑘1,𝑙+1, 𝑘2,𝑙+1 stand for the first non-identical elements

between 𝐾1 and 𝐾2. We extend it to

𝐾𝐷𝑒 (𝐾1, 𝐾2) = |𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (𝐾
1,𝑙+1:𝑙+1+𝐵) − 𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (𝐾2,𝑙+1:𝑙+1+𝐵) |

(6)

where 𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (·) is the operation to convert a binary hashkey

(which only includes 0 and 1 and can be seen as a binary number)

into a decimal integer number, while 𝐾
1,𝑙+1:𝑙+1+𝐵 stands for the

sub-sequence of length 𝐵 starting from the (𝑙 + 1)-th element in 𝐾1,

i.e., right after the common prefix, and the same for 𝐾
2,𝑙+1:𝑙+1+𝐵 .

Then we have a new definition of hashkey distance

𝑑𝑖𝑠𝑡𝑒 (𝐾1, 𝐾2) = 𝐾𝐿(𝐾1, 𝐾2) +
𝐾𝐷𝑒 (𝐾1, 𝐾2)

𝐶
(7)

here𝐾𝐿 keeps original, andwe set𝐶 = 2
𝐵
tomake sure

𝐾𝐷𝑒 (𝐾1,𝐾2)
𝐶

<

1 still holds. Comparing to the original 𝐾𝐷 which is always 1, 𝐾𝐷𝑒

has more possible values ranging from 0 to 2
𝐵 − 1, thus it can

better distinguish between different hashkeys. Using 𝑑𝑖𝑠𝑡𝑒 , if we

set 𝐵 = 3, the example above becomes 𝑑𝑖𝑠𝑡𝑒 (𝐾𝑞, 𝐾1) = 6 + 7

𝐶
,

𝑑𝑖𝑠𝑡𝑒 (𝐾𝑞, 𝐾2) = 6 + 4

𝐶
, successfully reflecting that 𝐾2 is more simi-

lar to 𝐾𝑞 . In addition, 𝑑𝑖𝑠𝑡𝑒 does not change the conclusion from

Equation 3, as 𝐾𝐿 is the same and
𝐾𝐷𝑒

𝐶
is still less than 1. Further-

more, unlike Hamming distance, the linear order still holds given

𝑑𝑖𝑠𝑡𝑒 . Formally, it can be stated as two lemmas

Lemma 4.3. In a hashkey array sorted by the original SK-LSH
linear order, for any three ordered hashkeys 𝐾2, 𝐾1, 𝐾 , 𝑑𝑖𝑠𝑡𝑒 (𝐾2, 𝐾) ≥
𝑑𝑖𝑠𝑡𝑒 (𝐾1, 𝐾).

Lemma 4.4. In a hashkey array sorted by the original SK-LSH
linear order, for any three ordered hashkeys 𝐾 , 𝐾1, 𝐾2, 𝑑𝑖𝑠𝑡𝑒 (𝐾2, 𝐾) ≥
𝑑𝑖𝑠𝑡𝑒 (𝐾1, 𝐾).

Lemma 4.3 and 4.4 are straightforward to be proven following

similar steps to the proof of Lemma 4 and 5 in [23], so we just skip

the proof in this paper. In conclusion, by extending 𝑑𝑖𝑠𝑡 and 𝐾𝐷 ,

we effectively improve the resolution of the hashkey distance.

4.3 Improvement on parallelism
In addition to extending the similarity metrics and hashkey dis-

tance, ESK-LSH also achieves a higher efficiency than SK-LSH by

improving its parallelism. In the original SK-LSH, though it may

maintain multiple sorted arrays, the expansion search is not parallel

but iterative on the arrays. Specifically, it iteratively looks for the

next globally closest hashkey to the query hashkey across all the

arrays, which limits its recall within a specific period of search

time. In order to efficiently retrieve more candidate hashkeys, we

increase the parallelism by making each array independent from

others, i.e., ESK-LSH does not look for the globally closest hashkey,

but the next closest hashkey locally on each array. Therefore ESK-

LSH can do the expansion search parallelly on each array. Such

an improvement makes it possible to use more sorted arrays to in-

crease retrieval quality with only tiny time overhead (e.g., the cost

of operating system to manage more threads), as long as the hard-

ware resources are sufficient, e.g., enough number of CPU cores.

Though in practice the hardware resources might be insufficient

such that the parallelism may be limited, we show in the evaluation

that a low-end to middle-end machine (with less than 30 cores) is

enough for LIDER to outperform the baselines.

5 RMI AND KEY RE-SCALING
As the first learned index for range query, recursive-model index
(RMI) [17] works on finding out the locations of given keys in some

given ordered array, just like what a B-tree index does. But unlike

traditional indexes that lookup the locations, RMI “predicts” the

locations. Specifically, as illustrated in Figure 1, RMI is a hierarchical

structure consists of several layers of simple machine learning

models, e.g., shallow neural network or linear regression model.

Within one layer, the whole search space (i.e., all locations in the

ordered array) is partitioned by all the models in this layer, where

each model takes responsibility of a subspace. The key will be first

input to the root model. The root model predicts its location, and

passes the key to one of the next layer models which corresponds to

the subspace containing the location. Then such a predict-and-pass

process is repeated layer by layer until one of the final layer models

accepts the key and makes the final prediction of the location as the

output of RMI. In this process the prediction is gradually refined and

finally the error is minimized. Comparing to traditional indexes like

B-tree, RMI has a nearly constant search time with the dataset size.

This is because RMI can handle larger dataset by only increasing

the width (i.e., the number of models in each layer) while fixing the

depth (i.e., the number of layers), and the prediction time mainly

depends on the depth. Specifically, placing more models in one

159

layer will reduce the size of each subspace, such that each model

can better fit the smaller subspace. So increasing the width of RMI

is often an effective way to improve search quality with only tiny

growth on search time.

5.1 Key re-scaling
In order to let RMI accept the hashkeys generated by ESK-LSH,

we need to convert each hashkey to a numeric value, so called

“RMI key” in this paper. We design a key re-scaling module for this

conversion. In the conversion, the binary hashkey is first seen as

a binary number and converted into a decimal integer number,

then the decimal integer number is further re-scaled to a floating-

point number in the range [0, 𝐿𝑎𝑟𝑟𝑎𝑦 − 1], where 𝐿𝑎𝑟𝑟𝑎𝑦 is the

length of each sorted hashkey array in ESK-LSH. The re-scaling

is the most critical step in the conversion, which has a significant

effect on the learning of RMI. This is because on large-scale dataset,

the length of hashkey is normally long to have a large enough

capacity for encoding the data embeddings. Thus after the first-

step conversion, the decimal integer numbers are mostly very big.

However, comparing to the big integer RMI keys at this step, the

labels, i.e., the locations, are much smaller. So most predictions of

RMI will be out of range (i.e., much less than 0 or much larger than

𝐿𝑎𝑟𝑟𝑎𝑦 − 1), making RMI ineffective.

To solve this issue, we use min-max normalization as the second-

step re-scaling method. Formally, the normalization is defined as

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(𝑏 − 𝑎) + 𝑎 (8)

where 𝑥 is the original integer key, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum

and maximum of 𝑥 , 𝑥𝑛𝑜𝑟𝑚 is the key after normalization, and [𝑎, 𝑏]
is the range of 𝑥𝑛𝑜𝑟𝑚 . In LIDER, we set 𝑎 = 0, 𝑏 = 𝐿𝑎𝑟𝑟𝑎𝑦 − 1. The

effect of such normalization is evaluated in Section 7.4.

There might be another issue of duplicate RMI keys. Because

there is a possibility (which is very low) that LSH generates the same

hashkey for different embeddings, duplicate RMI keys might exist.

And due to the float-point number precision, after normalization,

some originally different RMI keys may also become duplicate. In

such cases, duplicate keys still correspond to different locations,

i.e., the same training data points have different training labels,

which may lower the training quality of RMI. But fortunately, these

duplicate keys are adjacent in each sorted array, meaning the error

caused by such an issue is bounded in a local range. As long as the

local range is small enough, this issue will not affect RMI too much.

For instance, we can set the length of hashkey to be large enough

to reduce the number of duplicate hashkeys.

5.2 Simplified RMI
The original RMI in [17] uses two layers of models, where the top

level includes one neural network and the second level includes

several linear regression models. We also use a similar two-layer

structure, but based on the re-scaled RMI keys, we simplify RMI

to only include linear regression models since the RMI keys and

their labels/locations are almost linearly distributed, as illustrated

in Figure 3. Thus a linear regression on the top can fit better than a

neural network, which can also reduce the prediction time. Further-

more, we do not deploy the hybrid index strategy (as introduced

in Section 1) in the RMI for strict error bounding, due to the re-

quirement on high efficiency and the fact that prediction error has

been reduced significantly by the key re-scaling module (which is

further discussed in Section 7.4).

Figure 3: RMI training data distribution (MS-500k dataset as
example)

6 TIME COMPLEXITY
We derive the search time complexity of LIDER in this section. Ta-

ble 1 lists major notations used in this and all the following sections.

The search process of LIDER includes three stages, the centroids

retrieval, in-cluster retrieval and the final verification, where the

first is simply a standard search process of a single core model, the

second is a parallel search with multiple core models (whose time

complexity is the same as single core model theoretically), and the

third is a simple top-𝑘 selection process.

Table 1: List of notations used in this and following sections

Notation Description

𝑘𝑚, 𝑘 Number of output points by a core model, and that by LIDER

𝐻 ,𝑀 Number of hashkey arrays, and hashkey length in ESK-LSH

𝑅, 𝑟0 Length of ESK-LSH expansion range on each hashkey array,

and a user-specific factor (𝑅 = 𝑟0𝑘𝑚)

𝑐 , 𝑐0 Total number of clusters, and number of retrieved centroids

by the centroids retriever

𝑁 Dataset size

6.1 Time complexity of a single core model
The search in a single core model includes five steps: (1) query

hashkey generation, (2) query hashkey rescaling, (3) RMI prediciton,

(4) ESK-LSH expansion and (5) candidate verification, where the

step 2 and 3 are constant with the data scale. So we analyze the

time complexity for the rest three steps as follows: In query hashkey
generation step, ESK-LSH generates one query hashkey per array,

where each needs 𝑀 hashings, costing 𝑂 (𝐻𝑀) time. As a linear

160

scanning on range 𝑅, complexity of ESK-LSH expansion step is

simply 𝑂 (𝑅) (since the expansion is parallel on all hashkey arrays).

The candidate verification computes exact distances between the

query and candidates (found by ESK-LSH expansion), and selects

top-𝑘𝑚 of them as output. Since there are 𝑅𝐻 candidates and the

output top-𝑘𝑚 are not required to be sorted, this step takes 𝑂 (𝑅𝐻)
time. We set 𝑀 = ⌈𝑙𝑜𝑔𝑁 ⌉ to guarantee the hashing space has

enough capacity, and 𝐻 and 𝑟0 are fixed. Given that 𝑅 = 𝑟0𝑘𝑚 , we

have the overall search time complexity of a single core model

𝑂 (𝐻 ⌈𝑙𝑜𝑔𝑁 ⌉ + 𝐻𝑟0𝑘𝑚) (9)

6.2 Time complexity of LIDER search process
For the centroids retriever, 𝑘𝑚 = 𝑐0. And as discussed in Section 7.5,

we recommend to set 𝑐0 = 𝑐/100 ∼ 𝑐/50, and 𝑐 = 𝑁 /(5 × 10
4) ∼

𝑁 /(104), i.e., 𝑐0 = 𝑁 /(5 × 10
6) ∼ 𝑁 /(5 × 10

5). We present it as

𝑐0 = 𝑡0𝑁 for simplification. So the time complexity of centroids

retrieval stage is

𝑂 (𝐻 ⌈𝑙𝑜𝑔𝑁 ⌉ + 𝐻𝑟0𝑡0𝑁) (10)

For each in-cluster retriever we set 𝑘𝑚 = 𝑘 , then time complexity of

in-cluster retrieval stage is 𝑂 (𝐻 ⌈𝑙𝑜𝑔𝑁 ⌉) as term 𝐻𝑟0𝑘 is constant

with 𝑁 and this stage is parallelized. In addition, an in-cluster re-

triever can optionally sort the 𝑘 results, which is not a burden on

time complexity but benefits the next stage.

The third stage is simply selecting top-𝑘 from the totally 𝑐0𝑘 neigh-

bors found by the 𝑐0 in-cluster retrievers, with the exact distances

computed in the in-cluster retrieval stage. As mentioned above, the

𝑐0 neighbor lists can be sorted by the in-cluster retrievers, based on

which the top-𝑘 selection here can be completed in 𝑂 (𝑐0 + 𝑘𝑙𝑜𝑔𝑐0)
time, just by utilizing a heap of size 𝑐0 that maintains the head of

each list.

In summary, the overall search time complexity of LIDER is

𝑂 (2𝐻 ⌈𝑙𝑜𝑔𝑁 ⌉ + 𝑘𝑙𝑜𝑔(𝑡0𝑁) + (𝐻𝑟0 + 1)𝑡0𝑁) (11)

Given the fact that 𝑡0 is tiny (2 × 10
−7 ∼ 2 × 10

−6
) and 𝐻 and 𝑟0

are also small (like 𝐻 = 10 and 𝑟0 < 10 in our evaluation), the

factor (𝐻𝑟0 + 1)𝑡0 is around 10
−6

in practice. This means before

𝑁 reaches tens ∼ hundreds of millions, the complexity is close to

logarithmic, then it gets closer to linear (but with a tiny factor) on

larger 𝑁 , presenting the high efficiency and scalability of LIDER

theoretically. And our evaluation proves this in practice.

7 EXPERIMENTS
7.1 Experiment settings
All experiments are evaluated on a Lambda Quad workstation with

28 3.30GHz Intel Core i9-9940X CPUs, 4 RTX 2080 Ti GPUs and 128

GB RAM. Note that all the experiments are conducted purely on

the ANN search stage of dense retrieval, excluding the embedding

generating stage, i.e., all of them start from the step where the dense

embeddings are already generated. We do not include the deep

neural model in the evaluation, but directly use their generated

embeddings as input. In addition, all the baseline methods and

LIDER are evaluated purely on CPU. We do not utilize GPU for the

ANN search in this paper since the linear regressions in LIDER are

simple to compute such that it is not necessary to use GPU, though

they have the potential to be further accelerated by GPU.

7.1.1 Evaluation datasets, tasks and metrics.
We use two datasets for our evaluation, MSMARCO andWiki-21M.

MS MARCO: The MS MARCO passage retrieval (a.k.a., passage

ranking) dataset [29] is one of the most commonly used dataset in

passage retrieval research. It includes a collection of 8.8M passages

from online webpages, several collections of queries used by differ-

ent tasks and the corresponding groundtruth collections to those

queries (i.e., for each query collection, there is a relevant passage

collection including relevant (query, passage) pairs). We conduct

our experiments on two tasks from MS MARCO, MS MARCO Dev
and TREC2019 DL, which share the same passage collection but use

different queries and different performance metrics. Specifically,

(1) MS MARCO Dev has 6980 queries where each query has one

or more (but only a few) relevant passages, and we measure the

performance by MRR@10 for quality and average query processing

time (AQT) for efficiency on this task. (2) TREC2019 DL has 43 valid

queries and about 9000 (query, passage) pairs in its groundtruth

collection. We evaluate the performance using the quality metric

NDCG@10 and the efficiency metric AQT on this task.

To explore the impact of data scale on different methods, we

sample the MS MARCO dataset into several subsets whose number

of passages are respectively 100k, 500k, 1M, 4M (while the full MS

MARCO dataset includes 8.8M passages), named as “MS-” followed

by the size (like “MS-500k”), where the “MS-8.8M” is the full dataset

itself. Both of MS MARCO Dev and TREC2019 DL tasks are evalu-

ated on all those subsets. The query and passage embeddings are

generated by deep neural model “msmarco-distilbert-base-v3”
1
,

pre-trained on MS MARCO dataset.

Wiki-21M: Another dataset is Wiki-21M from [14]. It includes

21,015,324 passages collected fromWikipedia dump. The evaluation

queries we use on this dataset is Natural Questions (NQ) [14] which

is designed for end-to-end question answering, with questions

collected from real Google search queries and the answers from

Wikipedia articles. The test set of NQ includes 3610 queries. We

name this task (i.e., retrieving passages from Wiki-21M dataset to

answer the queries in NQ test set) as “Wiki-21M NQ”. Similar to

MS MARCO Dev, the experiment metrics on this task are MRR@10

for quality and average query processing time (AQT) for efficiency.

The embeddings of this dataset are generated by pre-trained DPR

model [14]
2

The embeddings for both MS MARCO and Wiki-21M are 768-

dimensional. The total size of MS MARCO passage embeddings is

26GB while that of Wiki-21M embeddings is 62GB. The embedding

similarity metric in all the experiments is cosine similarity. Since

our baseline methods do not support cosine similarity but work

for inner product similarity, we normalize all the query and pas-

sage embeddings such that cosine similarity is equivalent to inner

product over the normalized embeddings.

Note that all the time results reported by the experiments are

measured after the embedding generation, i.e., they are only the

ANN search time, excluding the embedding generation time of the

neural model.

1
available at https://www.sbert.net/docs/pretrained-models/msmarco-v3.html (last

accessed date: 10/08/2022)

2
the pre-trained model (named as “checkpoint.retriever.single-adv-hn.nq.bert-base-

encoder”) and corresponding Wiki-21M passage embeddings are available at https:

//github.com/facebookresearch/DPR (last accessed date: 10/08/2022)

161

https://www.sbert.net/docs/pretrained-models/msmarco-v3.html
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR

7.1.2 Baselines.
We select several widely used high-dimensional ANN indexes as

baselines. They are introduced as follows:

(1) Flat: It simply searches the exact KNN by brute-force. So we

treat its retrieval quality as the upper bound of effectiveness

for LIDER and other baseline methods.

(2) PQ: This is an ANN index that encodes high-dimensional

data into shorter codes by product quantization, and does

ANN search using the codes to reduce computation.

(3) OPQ [8]: This is an improved variant of PQ index which

optimizes PQ to better fit the data by applying a rotation.

It has a better effectiveness than PQ.

(4) PCA-PQ [12]: This is another improved variant of PQ index

that applies PCA dimension reduction to the data before

encoding it using PQ.

(5) IVFPQ [11]: It implements the classic “inverted index +

product quantization” ANN index, IVFADC in [11], which

is one of the fastest high-dimensional ANN indexes today.

(6) IVFPQ-HNSW: This method further optimizes the IVFPQ

index by using HNSW [26] to do the cluster assignment and

management for the inverted index, which further improves

the search efficiency.

(7) FALCONN [1]: This is a mature and high-performance

LSH index library based on the classic multi-probe LSH

[24], which is one of the most practical LSH methods in

real-world applications.

(8) SK-LSH: We include the original SK-LSH index as one of

our baselines, in order to evaluate the improvement to it by

our idea.

There are also other popular high-dimensional ANN indexes, but

due to some reasons we do not include them. For example, ScaNN

[9] requires users to compile it with AVX support (which provides

a non-trivial acceleration using the facility of modern hardware),

while LIDER does not utilize such a technique currently since it

needs much effort on the engineering. Therefore, to guarantee a

fair comparison, we do not include ScaNN in the baselines.

The Flat and all PQ-based baselines are implemented using FAISS

[13], a high-performance industrial ANN index library. FALCONN

also provides a public codebase, while SK-LSH is implemented by us

as there is no open-source implementation. We set the parameters

of the baseline indexes as such: (1) Flat is an exhaustively exact

search index, so there is no specific parameter to set. (2) For IVFPQ

and IVFPQ-HNSW, 𝐶 =
√
𝑁 , 𝑚 = 32, 𝑏 = 8, 𝑝 = 500, where

𝑁 is the number of passage embeddings in current dataset (as in

Table 1), 𝐶 is the number of centroids associated with the coarse

quantizer in IVFADC,𝑚 is the number of segments into which each

embedding will be split, 𝑏 is the number of bits used to encode the

centroids associated with the product quantizer in IVFADC, and 𝑝

is the number of nearest inverted file entries to be inspected during

search. As recommended by [13], we dynamically compute𝐶 based

on dataset size 𝑁 instead of fixing it. The number of neighbors per

node and search depth of the HNSW in IVFPQ-HNSW are both set

to be 32. (3) For PQ and OPQ, their parameters are just a subset of

those for IVFPQ, i.e., the𝑚 and 𝑏, which are same as IVFPQ. (4) For

PCA-PQ, the parameters of its PQ component are the same as OPQ,

while its PCA component reduces the data dimension to 192. (5) For

FALCONN and SK-LSH, we set the number of hash tables/hashkey

arrays 𝐻 = 24 and the hashkey length 𝑀 = ⌈𝑙𝑜𝑔2 (𝑁)⌉. Since the
memory requirement of SK-LSH onWiki-21M exceeds the machine

limit, we reduce its 𝐻 to 14 on Wiki-21M. For all the experiments

in this paper, we set 𝑘 = 100, i.e.,always retrieving top-100 relevant

passages to each query.

7.1.3 Experiment categories.
We design two major categories of experiments,

(1) end-to-end retrieval evaluation: This evaluation is con-

ducted on all of MS MARCO Dev, TREC2019 DL and Wiki-

21M NQ tasks. It reports retrieval efficiency and quality by

the corresponding metrics introduced in Section 7.1.1 for

LIDER and the baselines. To make it complete, this evalua-

tion consists of two parts: (a) evaluation on varying datasets

with fixed method parameters, and (b) evaluation on fixed

datasets with varying parameters.

(2) evaluation of critical parameters, memory usage and
construction cost: This evaluation includes several ex-

periments for the impact of critical parameters on LIDER

(Section 7.3, 7.4 and 7.5) as well as the memory footprint

and construction cost of LIDER (Section 7.6).

7.2 End-to-end retrieval evaluation
This section introduces the two parts of the end-to-end retrieval

evaluation, where the first is on varying datasets and the second is

on varying method parameters.

7.2.1 Evaluation on varying datasets and tasks.
In the first part of the end-to-end retrieval evaluation, the parame-

ters of baseline methods are set as stated in Section 7.1.2, and we fix

the parameters of LIDER as such (which are selected by grid search):

the number of clusters 𝑐 = 1000, the number of retrieved centroids

by centroids retriever 𝑐0 = 20, the number of ESK-LSH arrays in

any core model 𝐻 = 10, and the RMI width (i.e., the number of

the second-layer models in an RMI) in centroids retriever𝑊𝑐 = 10

while that of each in-cluster retriever𝑊𝑖 = 5. Normally larger 𝐻

and𝑊 lead to better retrieval quality with slightly lower efficiency,

while the effect of the clustering related parameters 𝑐 and 𝑐0 is more

complex, which will be explored in Section 7.5.

Table 2 reports the scores to measure retrieval quality in the

three tasks. Flat is annotated as exact to highlight that it finds

the exact k nearest neighbors to the query, therefore we consider

its retrieval quality scores as the upper bound for other methods.

The other methods are all approximate search methods. We also

highlight the highest score (among the approximate methods only)

on each dataset in Table 2. OPQ has no score for Wiki-21M NQ,

since it requires huge memory space on Wiki-21M which exceeds

the memory capacity of our evaluation machine. According to the

scores, LIDER achieves the best retrieval quality among all ANN

methods in most cases. Though OPQ is competitive to LIDER in

the smaller datasets, LIDER outperforms it on the larger datasets,

especially given the fact that OPQ cannot be performed on the

largest dataset. Therefore, we can still conclude that LIDER has

higher effectiveness than all ANN baselines on large-scale data.

Figure 4 illustrates the average query processing time, AQT, for

end-to-end retrieval by LIDER and the baselines on MS MARCO

162

Table 2: End-to-end retrieval quality for all three evaluation tasks. The MS MARCO Dev and TREC2019 DL tasks are based on
the same subsets of the MS MARCO dataset, while Wiki-21M NQ task is based on the Wiki-21M dataset.

MS MARCO Dev
(MRR@10)

Wiki-21M NQ
(MRR@10)

TREC2019 DL
(NDCG@10)

Method MS-100k MS-500k MS-1M MS-4M MS-8.8M Wiki-21M MS-100k MS-500k MS-1M MS-4M MS-8.8M

Flat (exact) 0.8511 0.7227 0.6496 0.4922 0.3314 0.5518 0.5681 0.4726 0.4769 0.5762 0.6707

PQ 0.7721 0.6304 0.5588 0.4129 0.2734 0.2145 0.4585 0.4204 0.4083 0.4533 0.5802

OPQ 0.8143 0.6742 0.5994 0.4392 0.2907 - 0.5658 0.4360 0.4100 0.4893 0.5974

PCA-PQ 0.8001 0.6575 0.5778 0.4248 0.2816 0.4513 0.5438 0.4013 0.4080 0.4824 0.5997
IVFPQ 0.6152 0.4811 0.4349 0.3107 0.2154 0.2066 0.4228 0.3420 0.3584 0.4215 0.4973

IVFPQ-HNSW 0.6151 0.4784 0.4274 0.3138 0.212 0.2133 0.3963 0.3230 0.3433 0.3911 0.4929

FALCONN 0.7543 0.6402 0.5765 0.426 0.2882 0.3175 0.4712 0.3453 0.3767 0.5232 0.5595

SK-LSH 0.7893 0.5785 0.5045 0.3225 0.2226 0.2702 0.5386 0.3429 0.3988 0.3806 0.4662

LIDER 0.7428 0.6225 0.5667 0.4292 0.2908 0.4671 0.4684 0.4548 0.4366 0.5363 0.5861

0.001

0.01

0.1

1

10

MS-100K MS-500K MS-1M MS-4M MS-8.8M Wiki-21M

A
Q

T
(s

)

Datasets

Flat PQ
OPQ PCA-PQ
IVFPQ IVFPQ-HNSW
FALCONN SK-LSH
LIDER

Figure 4: Average query processing time on MS MARCO Dev
and Wiki-21M NQ for all the methods

Dev and Wiki-21M NQ tasks. AQT results of all the methods on

TREC2019 DL task are very similar to those on MS MARCO Dev,

therefore we do not show them in this paper.

By the figure, Flat (the exact search method, presented by the

grey dashed line on the top) takes the longest query processing

time, which also increases fastest with the data scale. LIDER (the red

solid line with circle points) outperforms all baselines on the largest

datasets (i.e., MS-8.8M and Wiki-21M) since its average retrieval

time grows slowest with data scale, which complies to the time

complexity analysis in Section 6 and proves the high efficiency of

LIDER in practice. Particularly, on the largest datasets (MS-8.8M and

Wiki-21M), comparing to the fastest baseline method (i.e., IVFPQ-

HNSWwhich is shown as the blue dashed line), LIDER achieves 15%

∼ 20% speedup and much higher retrieval quality. Comparing to

the highest-quality ANN baseline methods (i.e., OPQ and PCA-PQ

which are shown as orange dashed line with triangle points and

orange dotted line), LIDER still has better quality on the largest

datasets with more significant speedup, i.e., 300% ∼ 500%. We also

observe that SK-LSH has a similar AQT growth trend to LIDER, but

its base AQT is too high. Note that in the figure, the distribution

of dataset labels on the x-axis are not proportional to the dataset

sizes, instead, the labels are evenly placed to have a better view. But

this does not affect the comparison of AQT growth trends between

different methods. Since in real-world applications the data scale

can be much larger than that in our experiments, LIDER does have

a great potential in highly efficient dense retrieval for real-world

scenarios, due to its slow AQT growth trend with the data scale.

7.2.2 Evaluation on varying parameters.
In the first part experiments above, we fix key parameters of the

methods and compare their performance on different datasets and

tasks. To further evaluate the effectiveness and efficiency of LIDER,

in this part we fix the datasets and tasks (i.e., MS MARCO Dev and

Wiki-21M NQ), and vary those parameters to draw the AQT-MRR

curves for all the approximate methods. The exact method Flat has

no parameters to vary its performance, so this part of evaluation

does not include it.

Figure 5 and 6 illustrate the AQT-MRR curves for the two tasks

respectively. There are some observations: (1) in the range of low

MRR, IVFPQ and IVFPQ-HNSW have better efficiency than LIDER,

but (2) in the range of high MRR, LIDER is significantly more effi-

cient than the baselines. Actually in our experiments, we find that

IVFPQ and IVFPQ-HNSW are hard to achieve a high MRR under

the similar resource constraints (e.g., an acceptable length of index

building time) to other methods. And that is the reason why the

points on the curves of IVFPQ and IVFPQ-HNSW are concentrated

in a relatively lowMRR area. But it is enough to show the trends, i.e.,

LIDER has the best performance on effectiveness-efficiency trade-

off. In most cases it takes the shortest search time to achieve the

same retrieval quality as the baselines, and its efficiency is easy to

be further improved with only tiny sacrifice on the quality. Or vice

versa, it is also able to significantly enhance the retrieval quality

with a tiny loss on search speed. Such a good capability of trade-off

does make LIDER practical.

7.3 Impact of 𝐻 in ESK-LSH
The ESK-LSH expansion time takes a large portion in the end-to-

end retrieval time of LIDER, so in this experiment, we explore the

163

0.0006

0.006

0.06

0.6

0.03 0.08 0.13 0.18 0.23 0.28 0.33

A
Q

T
(s

)

MRR@10

PQ OPQ

PCA-PQ IVFPQ

IVFPQ-HNSW FALCONN

SK-LSH LIDER

Figure 5: Average query processing time vs MRR@10 for all
ANN methods on MS MARCO Dev

0.0007

0.007

0.07

0.7

0.03 0.13 0.23 0.33 0.43 0.53

A
Q

T
(s

)

MRR@10

PQ PCA-PQ

IVFPQ IVFPQ-HNSW

FALCONN SK-LSH

LIDER

Figure 6: Average query processing time vs MRR@10 for all
ANN methods except OPQ on Wiki-21M NQ

Table 3: Retrieval MRR@10 and average ESK-LSH expansion
time of the standalone core model with different values of 𝐻
on MS-1M dataset

𝐻 MRR@10 Average expansion time

32 0.4928 0.0375s

48 0.5569 0.0399s

64 0.5912 0.0492s

effect of the critical ESK-LSH parameter, 𝐻 , on the core model per-

formance. To simplify the evaluation, we build a standalone core

model on MS-1M dataset without the clustering-based architec-

ture. So 𝐻 may be different from the end-to-end evaluation, but

the trend of its effect on the performance remains the same. We set

𝐻 = 32, 48, 64 and report MRR@10 and average ESK-LSH expansion

time of this single core model in Table 3, which shows that by using

more arrays, the retrieval quality of the core model is significantly

improved, with only tiny time overhead added on ESK-LSH expan-

sion. This proves the way to increase the parallelism of SK-LSH (as

discussed in Section 4.3) is effective.

7.4 Impact of the key re-scaling module
In this section, we evaluate the effect of key re-scaling module on re-

ducing out-of-range predictions of RMI (as discussed in Section 5.1).

We define a predicted location as out-of-range prediction (OOR) if

it equals 0 or 𝐿𝑎𝑟𝑟𝑎𝑦 − 1, as RMI will truncate big prediction to

𝐿𝑎𝑟𝑟𝑎𝑦 − 1 and round negative prediction to 0. We also define a

predicted location as large-error prediction (LE) if the gap between

it and the true location is larger than 100, i.e., any prediction error

exceeding 𝑘 is a large error where 𝑘 = 100 in our evaluation. Then

we check the overlap between OOR and LE predictions, which

reflects if the large errors are mainly caused by the out-of-range

problem. We denote the numbers of OOR, LE and their overlapped

predictions by 𝑁𝑂𝑂𝑅 , 𝑁𝐿𝐸 and 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 . Similar to Section 7.3, this

experiment is also conducted on a standalone core model.

Table 4: RMI prediction quality (the number of out-of-range
predictions 𝑁𝑂𝑂𝑅 , the number of large-error predictions 𝑁𝐿𝐸
and the size of their overlap 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝) before and after using
key re-scaling module on the MS-100k dataset

Using key re-scaling 𝑁𝑂𝑂𝑅 𝑁𝐿𝐸 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝

No 4846 4733 4245

Yes 3 2536 0

As shown in Table 4, on MS-100k dataset and the 6980 queries

of MS MARCO Dev (where for each query, one prediction is made),

before using key re-scaling module, the out-of-range and large-

error predictions are heavily overlapped, meaning that most of the

large-error predictions are probably caused by the out-of-range

problem. And after using the module, all of the three numbers

significantly decrease, which means the large errors from out-of-

range problem have been successfully reduced, and the remaining

errors are likely to be from RMI itself. In conclusion, key re-scaling

module effectively improves RMI prediction quality.

7.5 Impact of the clustering related parameters
In this section we investigate the effect of the two clustering related

parameters, the number of clusters 𝑐 and the number of retrieved

centroids 𝑐0, on the end-to-end performance of LIDER. Experiments

are conducted on MS MARCO Dev task using MS-8.8M dataset.

First we fix 𝑐 = 1000 and set 𝑐0 = 1, 5, 10, 15, 20, 30, 40, 50, 100 to

observe the end-to-end retrieval performance of LIDER. As shown

in Figure 7, overall the quality and search time both increase with

𝑐0, because increasing 𝑐0 will let LIDER retrieve more candidates

on which the exact vector distances are computed and the top-

k are finally selected. So more candidates normally lead to more

accurate results and longer search time. Another observation in the

figure is that the effect of 𝑐0 on the retrieval quality improvement

is degrading with its growth, i.e., when 𝑐0 is small, increasing it

will bring more gain on the quality than when it is large, and also

bring less latency growth than when it is large. So we recommend

164

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 5 10 15 20 30 40 50 100

AQ
T

(s
)

M
RR

@
10

The number of retrieved centroids

MRR@10
AQT(s)

Figure 7: Retrieval quality and time of different 𝑐0 (𝑐 = 1000)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 200 400 600 800 1000 1200 1600 2000 2400 3000 4000

AQ
T

(s
)

M
RR

@
10

The number of clusters

MRR@10
AQT(s)

Figure 8: Retrieval quality and time of different 𝑐 (𝑐0 = 10)

users of LIDER to keep 𝑐0 relatively small comparing to the total

number of clusters 𝑐 , like around 1/100 ∼ 1/50 of 𝑐 .
Second we fix 𝑐0 = 10 and vary the total number of clusters 𝑐 =

50, 100, 200, 400, 600, 800, 1000, 1200, 1600, 2000, 2400, 3000, 4000. Fig-

ure 8 presents the MRR@10 and AQT on each 𝑐 value. The AQT

is decreasing with the increasing 𝑐 , which is straightforward to

explain: the dataset size is fixed, therefore increasing 𝑐 means the

average size of each cluster will decrease. Given that 𝑐0 is fixed,

fewer candidates will be retrieved and verified, so AQT decreases.

But the MRR@10 is not monotonic, instead, it first increases then

falls with the increasing 𝑐 . This is because (1) when 𝑐 is small, each

cluster will include a large number of data points, making it harder

for RMI to accurately learn the distribution, so the in-cluster re-

trieval quality degrades. And (2) when 𝑐 is large, each cluster will be

small, meaning that the number of candidates is likely not enough

since an in-cluster retriever will just stop and return whatever it

found when the corresponding cluster is exhausted. In such a case

the recall will be probably low, resulting a low MRR. Thus we rec-

ommend to set a proper 𝑐 based on the dataset size, such that each

cluster includes around 10k ∼ 50k data vectors.

7.6 Memory footprint and construction time
In this section we analyze the memory footprint and construction

time of LIDER. Table 5 reports elapsed time for the three main

construction stages (where the construction finishes after Stage

3), and memory footprint of LIDER after each stage. In addition,

Table 5 also includes the construction time and memory usage of

the original SK-LSH to show the improvement made by LIDER on

the index size. All the memory results in the table have excluded the

memory of data embeddings, i.e., they are purely the spaces used to

maintain the indexes. The parameters of LIDER and SK-LSH are the

same as those in the end-to-end retrieval evaluation (Section 7.2).

Memory footprint: By Table 5, memory usage of LIDER after

building the centroids retriever (i.e., after Stage 2) is close to the

previous stage, meaning that the centroids retriever has a small

size, while the memory usage significantly increases after Stage 3,

reflecting that the in-cluster retrievers take up the major fraction

of the index size. Comparing to the original SK-LSH, LIDER saves

53% and 58% memory space on the two largest datasets, enabling

it to process larger scale data than original SK-LSH on the same

hardware. Such a saving is achieved mainly by its cluster-based

architecture. As each cluster is significantly smaller than the whole

dataset, the required number of hashkey arrays and the length of

hashkey can be both reduced while still guaranteeing high effec-

tiveness, e.g., in Section 7.2 each core model of LIDER only needs

10 arrays to outperform the SK-LSH baseline with 24 arrays.

Construction time: LIDER achieves the saving on memory, with

a cost of construction time. As in Table 5, LIDER has a longer

construction time than SK-LSH,where the bottleneck is the k-means

clustering (Stage 1). However, this is not an issue in practice since

there are many approaches to speed up the k-means clustering. For

example, the FAISS library provides GPU-based k-means clustering,

which can complete LIDER Stage 1 in a few seconds.

Table 5: Time of construction stages andmemory usage when
each stage finishes, with comparison to the original SK-LSH
on the two largest datasets. CR in Stage 2 means Centroids
Retriever while IR in Stage 3 stands for In-cluster Retriever.

MS-8.8M Wiki-21M

Time Memory Time Memory

LIDER Stage 1 - Clustering 818s 306MB 1336s 725MB

LIDER Stage 2 - Building CR 0.1s 309MB 0.1s 727MB

LIDER Stage 3 - Building all IRs 83s 14.2GB 224s 26.4GB

SK-LSH 472s 30.2GB 1181s 62.7GB

8 CONCLUSION
In this paper, we introduce LIDER, an efficient high-dimensional

learned index for large-scale dense passage retrieval. Experiments

present that LIDER outperforms the state-of-the-art ANN indexes

on large-scale dense retrieval tasks by achieving higher efficiency

with high retrieval quality. It also has a much better capability of

effectiveness-efficiency trade-off. Therefore, LIDER can serve as a

practical and powerful component in very large-scale real-world

dense retrieval applications.

ACKNOWLEDGMENTS
This work is partially supported by DARPA under Award #FA8750-

18-2-0014 (AIDA/GAIA).

165

REFERENCES
[1] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. 2015. Practical and optimal LSH for angular distance. Advances in
neural information processing systems 28 (2015).

[2] Lila Boualili, Jose G. Moreno, and Mohand Boughanem. 2020. MarkedBERT:
Integrating Traditional IR Cues in Pre-Trained Language Models for Passage Re-
trieval. Association for Computing Machinery, New York, NY, USA, 1977–1980.

https://doi.org/10.1145/3397271.3401194

[3] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-

rithms. In Proceedings of the thirty-fourth annual ACM symposium on Theory of
computing. 380–388.

[4] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First
Stage Passage Retrieval. Association for Computing Machinery, New York, NY,

USA, 1533–1536. https://doi.org/10.1145/3397271.3401204

[5] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:

A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor

Queries.. In EDBT. 407–410.
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv:1810.04805 [cs.CL]

[7] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph

construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[8] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product

Quantization for Approximate Nearest Neighbor Search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic

vector quantization. In International Conference on Machine Learning. PMLR,

3887–3896.

[10] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.

Fast approximate nearest-neighbor search with k-nearest neighbor graph. In

Twenty-Second International Joint Conference on Artificial Intelligence.
[11] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[12] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. 2010. Ag-

gregating local descriptors into a compact image representation. In 2010 IEEE
computer society conference on computer vision and pattern recognition. IEEE,
3304–3311.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity

search with GPUs. arXiv preprint arXiv:1702.08734 (2017).
[14] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational

Linguistics, Online, 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.

550

[15] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. Association for Computing

Machinery, New York, NY, USA, 39–48. https://doi.org/10.1145/3397271.3401075

[16] Tim Kraska, Mohammad Alizadeh, Alex Beutel, H Chi, Ani Kristo, Guillaume

Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. Sagedb: A

learned database system. In CIDR.
[17] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. arXiv:1712.01208 [cs.DB]

[18] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canon-

ical tensor decomposition for knowledge base completion. arXiv preprint
arXiv:1806.07297 (2018).

[19] Tian Lan, Deng Cai, Yan Wang, Yixuan Su, Heyan Huang, and Xian-Ling Mao.

2021. Exploring Dense Retrieval for Dialogue Response Selection. https:

//doi.org/10.48550/ARXIV.2110.06612

[20] Victor Lempitsky and A Babenko. 2012. The inverted multi-index. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,

3069–3076.

[21] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling Dense Repre-

sentations for Ranking using Tightly-Coupled Teachers. arXiv:2010.11386 [cs.IR]

[22] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling Dense Repre-

sentations for Ranking using Tightly-Coupled Teachers. arXiv:2010.11386 [cs.IR]

[23] Yingfan Liu, Jiangtao Cui, Zi Huang, Hui Li, and Heng Tao Shen. 2014. SK-LSH:

an efficient index structure for approximate nearest neighbor search. Proceedings
of the VLDB Endowment 7, 9 (2014), 745–756.

[24] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-

Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In Pro-
ceedings of the 33rd International Conference on Very Large Data Bases (Vienna,
Austria) (VLDB ’07). VLDB Endowment, 950–961.

[25] Craig Macdonald and Nicola Tonellotto. 2021. On Approximate Nearest Neighbour
Selection for Multi-Stage Dense Retrieval. Association for Computing Machinery,

New York, NY, USA, 3318–3322. https://doi.org/10.1145/3459637.3482156

[26] Yu A Malkov and DA Yashunin. 2016. Efficient and robust approximate nearest

neighbor search using Hierarchical Navigable Small World graphs. arXiv preprint
arXiv:1603.09320 (2016).

[27] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[28] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-Dimensional Indexes. Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data (May 2020). https://doi.org/10.1145/

3318464.3380579

[29] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading

comprehension dataset. In CoCo@ NIPS.
[30] Rodrigo Nogueira. 2019. From doc2query to docTTTTTquery.

[31] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document

Expansion by Query Prediction. arXiv:1904.08375 [cs.IR]

[32] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,

and Alfons Kemper. 2020. The case for learned spatial indexes. arXiv preprint
arXiv:2008.10349 (2020).

[33] Prafull Prakash, Julian Killingback, and Hamed Zamani. 2021. Learning Robust
Dense Retrieval Models from Incomplete Relevance Labels. Association for Com-

puting Machinery, New York, NY, USA, 1728–1732. https://doi.org/10.1145/

3404835.3463106

[34] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[35] Nils Reimers and Iryna Gurevych. 2020. The Curse of Dense Low-Dimensional

Information Retrieval for Large Index Sizes. arXiv preprint arXiv:2012.14210
(2020).

[36] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.

arXiv:1910.01108 [cs.CL]

[37] Yichun Shi and Anil K Jain. 2019. Probabilistic face embeddings. In Proceedings
of the IEEE International Conference on Computer Vision. 6902–6911.

[38] Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang Wang, Fuzheng Zhang, and

Wei Wu. 2021. Improving Document Representations by Generating Pseudo

Query Embeddings for Dense Retrieval. arXiv preprint arXiv:2105.03599 (2021).
[39] Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, and Xiaofang Zhou. 2022. A Learned

Index for Exact Similarity Search in Metric Spaces. https://doi.org/10.48550/

ARXIV.2204.10028

[40] HaixinWang, Xiaoyi Fu, Jianliang Xu, andHua Lu. 2019. Learned Index for Spatial

Queries. In 2019 20th IEEE International Conference on Mobile Data Management
(MDM). 569–574. https://doi.org/10.1109/MDM.2019.00121

[41] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettle-

moyer. 2019. Scalable zero-shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814 (2019).

[42] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-

tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[43] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient

Passage Retrieval with Hashing for Open-domain Question Answering.

arXiv:2106.00882 [cs.CL]

[44] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.

2021. Learning Discrete Representations via Constrained Clustering for Effective

and Efficient Dense Retrieval. arXiv preprint arXiv:2110.05789 (2021).

166

https://doi.org/10.1145/3397271.3401194
https://doi.org/10.1145/3397271.3401204
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://arxiv.org/abs/1712.01208
https://doi.org/10.48550/ARXIV.2110.06612
https://doi.org/10.48550/ARXIV.2110.06612
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/2010.11386
https://doi.org/10.1145/3459637.3482156
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3318464.3380579
https://arxiv.org/abs/1904.08375
https://doi.org/10.1145/3404835.3463106
https://doi.org/10.1145/3404835.3463106
https://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2204.10028
https://doi.org/10.48550/ARXIV.2204.10028
https://doi.org/10.1109/MDM.2019.00121
https://arxiv.org/abs/2106.00882

	Abstract
	1 Introduction
	2 Related work
	3 LIDER
	3.1 Core model structure
	3.2 Clustering-based architecture
	3.3 Workflow

	4 Extended SK-LSH
	4.1 Extension on similarity metrics
	4.2 Extension on hashkey distance
	4.3 Improvement on parallelism

	5 RMI and Key re-scaling
	5.1 Key re-scaling
	5.2 Simplified RMI

	6 Time complexity
	6.1 Time complexity of a single core model
	6.2 Time complexity of LIDER search process

	7 Experiments
	7.1 Experiment settings
	7.2 End-to-end retrieval evaluation
	7.3 Impact of H in ESK-LSH
	7.4 Impact of the key re-scaling module
	7.5 Impact of the clustering related parameters
	7.6 Memory footprint and construction time

	8 Conclusion
	Acknowledgments
	References

