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ABSTRACT
Query optimization based on deep reinforcement learning (DRL)
has become a hot research topic recently. Despite the achieved
promising progress, DRL optimizers still face great challenges of
robustly producing efficient plans, due to the vast search space
for both join order and operator selection and the highly varying
execution latency taken as the feedback signal. In this paper, we
propose LOGER, a learned optimizer towards generating efficient
and robust plans, aiming at producing both efficient join orders
and operators. LOGER first utilizes Graph Transformer to capture
relationships between tables and predicates. Then, the search space
is reorganized, in which LOGER learns to restrict specific operators
instead of directly selecting one for each join, while utilizing DBMS
built-in optimizer to select physical operators under the restric-
tions. Such a strategy exploits expert knowledge to improve the
robustness of plan generation while offering sufficient plan search
flexibility. Furthermore, LOGER introduces 𝜖-beam search, which
keeps multiple search paths that preserve promising plans while
performing guided exploration. Finally, LOGER introduces a loss
function with reward weighting to further enhance performance ro-
bustness by reducing the fluctuation caused by poor operators, and
log transformation to compress the range of rewards. We conduct
experiments on Join Order Benchmark (JOB), TPC-DS and Stack
Overflow, and demonstrate that LOGER can achieve a performance
better than existing learned query optimizers, with a 2.07x speedup
on JOB compared with PostgreSQL.
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1 INTRODUCTION
Query optimization has long been critical in the database field for
its difficulty and importance in query execution performance. To
find an efficient execution plan for each query, query optimizers
have to search in an extremely vast search space, in which we
know that finding optimal join order is an NP-hard problem [7]. In
addition, the performance is affected by the selection of physical
operators, leading the problem to be more complicated. Hence at
present, almost all relational database management systems apply
heuristic methods and various strategies to balance between query
optimization complexity and execution latency. With great effort in
development, these traditional query optimization methods achieve
stable performance under different circumstances.

However, traditional optimizers still face challenges as data dis-
tribution and queries can be highly complicated in real applications,
and it’s impossible to evaluate all possible plans. Thus, these opti-
mizers rely on simple strategies and assumptions to make decisions
and often produce fine but sub-optimal plans. In addition, these opti-
mizers typically require years or decades to develop. When changes
like running on new hardware are taken into consideration, tradi-
tional optimizers are difficult to adapt to different environments.

To overcome the limitations of traditional query optimizers, DRL-
based optimizers have come into view in recent years [12, 16, 17, 28,
29]. With DRL, plan generation is naturally converted to a sequence
decision problem in the plan search space by considering each join
as an action. The DBMS serves as the environment of DRL, replying
reward feedback, i.e. execution latency, when a complete plan is
generated. These DRL query optimizers then learn from the rewards
to generate efficient plans on current data distribution. The success
of these learned optimizers demonstrates the feasibility of DRL
query optimization, showing that after sufficient training, learned
optimizers can significantly outperform traditional methods under
specific workloads and environments, on both open-source DBMSs
like PostgreSQL and commercial DBMSs.

Although learned optimizers achieve promising competitive per-
formance, these methods are still in their early stage. DRL opti-
mizers face the same vast search space as traditional methods. To
reach high and robust performance, proper strategies are required
to obtain promising plans. In addition, DRL optimizers are trained
with execution latency, which varies largely with both join order
and operators, leading stable training of robust query optimization
to further be difficult. Thus, the method design should consider the
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factors impacting the robustness of plan generation. We summarize
the requirements for a successful learned optimizer as follows.

First, expressive query representation is a pre-requirement for
learned optimizers. Various previous methods [16, 17, 28] represent
each query as a join graph, in which each node represents a table
and each edge is a join predicate. To utilize the graph structure, the
model should exploit sufficient information in node representations,
and exchange them along edges to extract relationships between
tables and predicates. However, these previous methods exploit the
join graph by simply processing the adjacency matrix as a flattened
vector with a network like MLP, which is inefficient to extract
information through graph structure. A more expressive model for
query representation is needed for better performance.

Second, it is crucial to robustly search for efficient plans from an
extremely large search space. A number of existing learned query
optimizers [17, 29] reduce the difficulty of finding efficient plans
by handling searching for only join orders, leaving the choice of
physical operators to built-in optimizer of DBMS, which provides
fewer chances to achieve higher performance. Others [16, 28] at-
tempt to generate plans with both join order and physical operators
to reach potentially better performance, but the search difficulty
is significantly higher as the search space is further enlarged. To
robustly obtain efficient plans from such a space that contains both
join order and operators, not only a search method that produces
promising plans is required, but it’s also worth discussing how to
leverage traditional optimizers to reduce search difficulty.

Third, a strategy is required to deal with scattered and highly
fluctuating rewards, which have a severe impact on the robust-
ness of learned optimizers. An inefficient plan can be tens or even
thousands of times more costly than a better one, leading the la-
tency to be sparse within an extremely wide range. Meanwhile, the
interaction between join order and physical operators makes the
latency vary drastically. Plans with identical join order but differ-
ent join operators can have distinct performances, resulting in a
large variance of reward feedback in reinforcement learning, and
further increasing difficulty for robust plan generation. To solve the
problem, a simple timeout mechanism is proposed to limit feedback
on poor plans to a predefined value [28]. However, more flexible
methods are necessary for robust performance.

In order to provide a practical idea for overcoming the aforemen-
tioned problems, we propose LOGER, a learned optimizer towards
generating efficient and robust plans, aiming at producing both
efficient join orders and operators.

To improve representation expressiveness, we applyGraph Trans-
former (GT) [5], a graph neural network (GNN) model, to capture
information from tables and predicates in the join graph. With GT,
LOGER can not only sufficiently exchange information between
adjacent table nodes, but also integrate structural information of
the graph into each node, thus reflecting relationships between
tables and predicates in table representations.

In order to utilize expert knowledge to improve the robustness of
plan generation, we propose Restricted Operator Search Space (ROSS),
which combines the advantages of both learned and traditional
optimizers to select operators along with join order selection. ROSS
uses a restricted operator to forbid the use of a specific physical
operator instead of directly selecting an operator for each join, and
invokes DBMS built-in optimizer to complete operator selection.

The key insight of ROSS is to utilize DBMS optimizer to reduce
plan search difficulty of learned optimizer, while providing adequate
flexibility to avoid inefficient operator selection. To further improve
search efficiency, we propose a new search method called 𝜖-beam
search, which takes steps in multiple paths simultaneously and
selects the predicted best candidate paths with a wide vision. The
proposed method adopts the idea of 𝜖-greedy [26] algorithm to
introduce exploration mechanism, which is further guided by value
prediction to find the most potential plans, and adaptively balances
between exploration and exploitation.

Finally, LOGER utilizes different strategies to lower the impact
of fluctuating rewards on robustness during training. We propose
reward weighting to stabilize reward values and make LOGER focus
on learning efficient join order. By taking the weighted value of
operator-relevant latency and operator-irrelevant latency as the re-
ward, the fluctuation caused by previously selected poor operators
is alleviated. In addition, we use log transformation to compress
the scattered reward values of disastrous plans and let LOGER pay
more attention to better plans by making their reward values more
distinguishable from poor ones.

We tested LOGER’s performance on Join Order Benchmark
(JOB) [13], TPC-DS [19], and Stack Overflow [15] with PostgreSQL.
Experiments show that on JOB testing workload, our method can
outperform traditional optimizer after about 2 hours of training, and
achieve a 2.07x speedup in the end.We further tested our method on
a commercial DBMS and obtained similar results. Compared with
prior state-of-the-art learned query optimizers, LOGER performs
best and also has a low inference time.

2 METHOD FRAMEWORK
The framework of LOGER is shown in Figure 1. Similar to exist-
ing methods [12, 16, 28, 29], LOGER focuses on select-project-join
(SPJ) statements without sub-queries and uses a value-based DRL
framework, in which the qualities of intermediate plans (subplans)
are evaluated to guide plan generation during search procedure.
The latency of each generated plan then serves as feedback from
the environment, utilized as the reward to train LOGER. In this sec-
tion, we give a brief introduction to the value-based DRL method in
LOGER and list three main procedures, while discussing similarities
and differences between existing methods and LOGER.

Value-based DRL for query optimization. In reinforcement
learning, an agent starts from an initial state, searches in the state-
action space by taking actions according to the policy, and receives
reward value from the environment, which is then used to improve
performance by training. In value-based DRL methods, the policy
is determined by a learned value network 𝑉 (𝑆) or 𝑄 (𝑆, 𝑎) that
estimates the largest cumulative future reward of states or state-
action pairs. The agent evaluates all action candidates and decides
between selecting the action with the largest predicted reward and
exploring others, until reaching a terminal state.

DRL-based query optimization adopts the idea of DRL by convert-
ing the query optimization problem to the decision of join sequence
for each query. An incomplete sequence, i.e. a subplan, is then re-
garded as a state, and the behavior of selecting the next join is an
action. Similar to previous methods like Neo [16] and RTOS [29], we
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Figure 1: Framework overview for LOGER. The boxes in yellow contain learnable parameters, and different border and line
colors represent data correlations of distinct state-action pairs.

consider the sequences as forests of join trees, each tree represent-
ing a single table or the result of joining multiple tables. Trees need
to be combined to produce new trees until only one tree is left in the
forest, indicating all tables are joined. Starting from a state where
none of the tables in the query is joined, LOGER selects actions by
estimating the lowest reachable latency of all action candidates. We
note each subplan 𝑆 as a pair (𝐽 ,𝑂) below, where 𝐽 is a set of join
trees indicating the join order and𝑂 is a set containing information
of selected join operators. Taking a query with four tables 𝐴, 𝐵, 𝐶
and 𝐷 as an example, the initial state is 𝑆1 = ({𝐴, 𝐵,𝐶, 𝐷}, ∅), and
state 𝑆2 = ({𝐴 ⊲⊳ 𝐵,𝐶, 𝐷}, {𝐴 ⊲⊳𝑁𝑁 𝐵}) is reached after the action
of joining 𝐴 and 𝐵 with ⊲⊳𝑁𝑁 , where ⊲⊳𝑁𝑁 is a restricted operator
that will be explained later in detail. This process comes to an end
when a complete join tree ((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶) ⊲⊳ 𝐷 is obtained, as all
tables are joined together. After this process, the latency is obtained
from the DBMS engine and used for model training.

Query representation. To capture information in the query for
evaluating subplans, LOGER converts it into vectorized representa-
tions, which are used as the input of the value model, as is shown in
Figure 1(a). In this step, the representation of each table is obtained
by query representation module. While previous methods use simple
networks like MLP which is inefficient in utilizing graph structure,
LOGER exploits it by using GT to effectively extract information
and capture relationships between tables and predicates.

Plan search. After query representation, LOGER sets up the initial
subplans and generates plans step-by-step via DRL search proce-
dure, shown in Figure 1(b). LOGER uses a value model to predict
latency values for state-action pairs at each step with table rep-
resentations and selects actions according to the predictions. To
fairly evaluate plans of both slow and fast queries, the value model
predicts relative execution latency. Given a query, its relative la-
tency 𝑙 is calculated by the following formula, where 𝑇exe (𝑆) is the
execution latency of the plan 𝑆 generated by LOGER, and 𝑇exe (𝑆𝑏 )
is for the plan 𝑆𝑏 generated by DBMS optimizer.

𝑙 =
𝑇exe (𝑆)
𝑇exe (𝑆𝑏 )

Different from existing work, LOGER reorganizes the search
space using restricted operators to utilize expert knowledge of
traditional optimizer and applies 𝜖-beam search to obtain potentially

Table 1: Frequently used notations in the paper.

Notation Description
𝑆 A subplan that is represented as a pair (𝐽 ,𝑂).
𝐽 A set of join trees in a subplan.
𝑂 A set about operator selections in a subplan.
𝑎 An action of joining tables with a specified operator.

𝑇exe (𝑆) The execution latency of a complete plan 𝑆 .
𝐶 (𝑆, 𝑎) The reachable lowest latency of 𝑆 after action 𝑎.
𝑇 (𝑆, 𝑎) The recorded reached lowest latency of pair (𝑆, 𝑎).
𝜖 The exploration probability of 𝜖-beam search.

better plans for training with balanced exploration and exploitation.
In Figure 1, the subplans 1○ - 4○ are sequentially generated along
with other subplans shown behind them, selected by 𝜖-beam search
with either exploration or exploitation. The branch nodes in each
subplan represent selections of restricted operators.

Model training. After plan generation, the generated plans are
executed to obtain latency values, which are then recorded in expe-
rience dataset. Experience dataset contains a hash lookup table 𝑇
that records the reached lowest latency for each state-action pair
((𝐽 ,𝑂), 𝑎). As incomplete subplans like 1○ - 3○ in Figure 1 can-
not be evaluated alone, their table values 𝑇 ((𝐽 ,𝑂), 𝑎) are updated
with the latency of the corresponding final plan like 4○. The loss
function is then used to update the parameters of value model and
query representation module. Different from previous work, we
propose reward weighting to reduce the impact of previous poor
operators and make LOGER pay less attention to disastrous plans
by log transformation. To perform reward weighting, another table
value 𝑇 ((𝐽 , /), 𝑎) is also recorded, which will be explained later.

In the following sections, we describe each procedure in detail.
We list the frequently used symbols in Table 1.

3 QUERY REPRESENTATION
In this section, we first introduce the construction of join graphs,
and then demonstrate how LOGER extracts information and obtains
table representations through query representation module.
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3.1 Join Graph Construction
As is shown in Figure 2(a) and 2(b), a select-project-join query can
be naturally transformed into a join graph, in which each node
represents a table and each edge is a join predicate. LOGER inte-
grates other information into node attributes, including knowledge
of the corresponding tables, columns, and predicates involved in
the query, supported by statistical information collected by DBMS.
The node attributes are further utilized by query representation
module to generate node representations.

LOGER uses a table-level learned embedding vector 𝑅𝑡 for each
table to integrate the knowledge of the table into node represen-
tation. For example, the learned embedding vector of table 𝐴 is
denoted as 𝑅𝑡 (𝐴). The values of 𝑅𝑡 are trained to capture informa-
tion for different tables in the database.

LOGER uses a column-level statistic vector 𝑅𝑠 of size 13 for
each column to utilize statistical information of columns, contain-
ing (1) the value type of the column, described as a 3-bit one-hot
vector indicating integer, float, and non-numeric, respectively; (2)
the proportion of unique values, described as 3 bits indicating in-
terval [0, 0.001), [0.001, 0.999] and (0.999, 1]; (3) the prediction of
whether unique value count will increase according to collected
statistics,1 described as 2 bits indicating true or false; (4) the propor-
tion of null values, described as 3 bits indicating interval [0, 0.001),
[0.001, 0.999] and (0.999, 1]; and (5) whether the column has in-
dexes, described as 2 bits.

LOGER uses a column-level predicate vector 𝑅𝑝 for each column
involved in the query to represent information of predicates. Each
𝑅𝑝 is a vector of size 3, denoted as [𝑟⊲⊳, 𝑟𝑠 , 𝑟1−𝑠 ]. We take 𝑅𝑝 of
column 𝐴.𝑎1 as an example below.

𝑅𝑝 (𝐴.𝑎1) = [𝑟⊲⊳ (𝐴.𝑎1), 𝑟𝑠 (𝐴.𝑎1), 𝑟1−𝑠 (𝐴.𝑎1)]
𝑟⊲⊳ indicates whether a corresponding join predicate exists. For

example, since the join predicate 𝐴.𝑎1 = 𝐵.𝑏1 presents in the query,
𝑟⊲⊳ (𝐴.𝑎1) is set to 1. If not, 𝑟⊲⊳ is set to 0.
𝑟𝑠 represents the selectivity of the single-table predicate on the

column. When such a predicate does not exist, 𝑟𝑠 is set to 0. Other-
wise, 𝑟𝑠 is set to the negative logarithm of the selectivity, with the
purpose of distinguishing differences. For example, the selectivities
of two predicates are 10−4 and 10−5 respectively, which are close
in value, yet the results of two predicates applying to the table have
a 10x difference. By employing logarithms, these small values can
be distinctly identified by the model. Assuming that the selectivity
of predicate 𝐴.𝑥1 >= 100 is 0.1, the value of 𝑟𝑠 (𝐴.𝑥1) is calculated
as follows.

𝑟𝑠 (𝐴.𝑥1) = − ln Sel[𝐴.𝑥1 >= 100] = − ln 0.1 ≈ 2.30

𝑟1−𝑠 represents the selectivity of the inverse predicate on the
column, whose purpose is to lower the sensitivity issue of negative
logarithm in handling large values. Taking the above example, the
value of 𝑟1−𝑠 (𝐴.𝑥1) is calculated by the selectivity of 𝐴.𝑥1 < 100.

𝑟1−𝑠 (𝐴.𝑥1) = − ln Sel[𝐴.𝑥1 < 100] = − ln 0.9 ≈ 0.11

LOGER utilizes the approximation of the DBMS cardinality esti-
mator to estimate the selectivity of each predicate, as exact selectivi-
ties are not practical to obtain. When there are multiple single-table
predicates on a column, LOGER uses only the predicate with the
1In PostgreSQL, the prediction can be obtained through pg_stats.
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Figure 2: Steps of query representation.

smallest selectivity and discards others to avoid underestimation
caused by distribution assumptions. For the calculation of loga-
rithms above, all input values are restricted to a lower bound 10−9.

3.2 Query Representation Module
Query representation module produces vectorized representation
for nodes in the join graph, which are provided for plan generation.

Initial representation. After table-level embedding vectors 𝑅𝑡 ,
column-level predicate vectors 𝑅𝑝 and statistic vectors 𝑅𝑠 are ob-
tained, query representation module combines them to get ini-
tial node representations 𝑅̂. A distinct matrix𝑀𝑐 for each table is
learned to combine 𝑅𝑠 and 𝑅𝑝 = [𝑟⊲⊳, 𝑟𝑠 , 𝑟1−𝑠 ] together into column
representation 𝑅𝑐 , following the equations below, where𝑊1,𝑊2
and𝑏 are learned matrices and vectors. 𝑀̂𝑐 (𝐴.𝑎1) is an intermediate
result split into vectors𝑀⊲⊳,𝑀𝑠 and𝑀1−𝑠 with the same size.

𝑀̂𝑐 (𝐴.𝑎1) = ReLU (𝑅𝑠 (𝐴.𝑎1)𝑊1𝑀𝑐 (𝐴))𝑊2 + 𝑏
= [𝑀⊲⊳ | | 𝑀𝑠 | | 𝑀1−𝑠 ]

𝑅𝑐 (𝐴.𝑎1) = [𝑟⊲⊳𝑀⊲⊳ | | 𝑟𝑠𝑀𝑠 | | 𝑟1−𝑠𝑀1−𝑠 ]
Query representation module forms each table’s column-level

representation by applying pooling to column representations. We
use max-pooling because a predicate with a smaller selectivity,
which has a higher 𝑟𝑠 , should be concerned more than larger ones.
Considering the example in Figure 2(a), column-level representation
𝑅𝑐 (𝐴) is formed by aggregating 𝑅𝑐 (𝐴.𝑎1), 𝑅𝑐 (𝐴.𝑎2), 𝑅𝑐 (𝐴.𝑎3) and
𝑅𝑐 (𝐴.𝑥1) together. The initial node representation 𝑅̂(𝐴) is then
calculated as follows, where𝑊3 is a learned matrix.

𝑅𝑐 (𝐴) = MaxPooling {𝑅𝑐 (𝐴.𝑎1), 𝑅𝑐 (𝐴.𝑎2), 𝑅𝑐 (𝐴.𝑎3), 𝑅𝑐 (𝐴.𝑥1)}
𝑅̂(𝐴) = ( [𝑅𝑐 (𝐴) | | 𝑅𝑡 (𝐴)])𝑊3

Final representation. To exchange information in table node
representations along graph structure, query representationmodule
applies Graph Transformer [5] to the join graph, as is demonstrated
in Figure 2(c). With the attention mechanism of Transformer [25]
and Laplacian positional encodings, GT not only efficiently captures
relationships between table representations that include both table
and predicate information, but also integrates global structural
information of join graph into table representations.
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(or no merge join)
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Figure 3: An example of operator selection in DOSS and ROSS.
Choices inferior to the DBMS optimizer are highlighted in
red, and better choices are highlighted in blue.

Taking the join graph along with initial node representations
𝑅̂(·) as input, the final representations 𝑅(·) of all tables in the query
are calculated by a GT layer, and are then utilized by the value
model for latency prediction during plan search.

4 PLAN SEARCH
In this section, we introduce the idea of ROSS, explain the approach
to evaluate state-action pair candidates with the value model, and
describe how LOGER performs efficient search with adaptive ex-
ploration and exploitation by 𝜖-beam search.

4.1 Restricted Operator Search Space
LOGER utilizes knowledge of DBMS optimizer to improve the ro-
bustness of plan generation. As is adopted by various previous
works [12, 16, 28], a plan search space contains both join order
and physical operators. In such a space, physical operators totally
depend on the learned optimizer to select, which has the potential
to obtain efficient plans along with high risk to generate poor ones.
Therefore, we reorganize it and propose Restricted Operator Search
Space (ROSS), in which the learned optimizer selects join order and
restricted operator in each step, and physical operators are deter-
mined by both restricted operators and choices of DBMS optimizer
to reduce the risk of poor plans. In LOGER, ROSS allows four types
of restricted operators to forbid specific physical operator selec-
tions: no restriction (⊲⊳), no nested loop join (⊲⊳𝑁𝑁 ), no merge join
(⊲⊳𝑁𝑀 ) and no hash join (⊲⊳𝑁𝐻 ). Correspondingly, the search space
in which physical operators are directly selected is called Direct
Operator Search Space (DOSS).

Figure 3 shows an example of operator selection in both search
spaces, from which we can find that restricted operators reduce the
difficulty of efficient plan search when the DBMS optimizer selects
optimal physical operators. The example in Figure 3(b) shows that
in DOSS, the physical operator has to be exactly specified to obtain
equal or higher performance than the DBMS optimizer. The diffi-
culty of selecting the best one out of 3 choices may lead to failure
and therefore poor performance. In contrast, LOGER only needs to
select among 3 choices out of 4 in ROSS when the choice of DBMS
optimizer is correct. In addition, ROSS keeps the potential to select
better operators than the DBMS optimizer by disabling specific
physical operators. Figure 3(c) shows that it’s equally efficient to
select among three choices at the first step, which is apparently
easier to learn. In the second step, a ⊲⊳𝑁𝐻 operator that forbids
DBMS optimizer to use hash join can be selected for a better plan.
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Figure 4: The process of state-action evaluation.

4.2 Value Model for State-Action Evaluation
The value model evaluates state-action pair candidates (𝑆, 𝑎) of
subplans 𝑆 by predicting the reachable lowest latency, i.e. the lowest
latency among all plans that can be reached from (𝑆, 𝑎), denoted
as 𝐶 (𝑆, 𝑎) below. The information of a subplan includes join order
and operators, which together determine the performance. Thus
LOGER respectively obtains the representation of join order and
operators to provide input for value model.

Candidate generation. The state-action pair candidates (𝑆, 𝑎) of
each state 𝑆 = (𝐽 ,𝑂) are generated by enumerating all possible
joins. We adopt the strategy of System R [22] in this process, which
avoids Cartesian products when there exist two join trees in 𝐽 that
can perform a conditional join. Figure 4(a) shows an example of a
candidate, in which the join of two trees 𝐴 ⊲⊳ 𝐵 and 𝐶 is enumer-
ated. These candidates are then evaluated through the following
procedures.

Join order representation. Inspired by RTOS [29], LOGER utilizes
Tree-LSTM [24] to vectorize join order 𝐽 for each plan 𝑆 = (𝐽 ,𝑂).
As a variant of LSTM [6], Tree-LSTM is adapted to tree-structured
data to capture bottom-up sequential information. For each join
tree in 𝐽 , we use the final representations 𝑅(·) yielded by query
representation module as the hidden vectors 𝑣ℎ of leaf nodes, and
cell vectors 𝑣𝑐 of the leaf nodes are set to 0. We apply N-ary Tree-
LSTM to calculate hidden and cell vectors for branch nodes in the
tree. In the example shown in Figure 4(b), the hidden vector and
cell vector of node (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 are calculated as follows.

[𝑣ℎ ((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶), 𝑣𝑐 ((𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶)]
= TreeLSTM( [𝑣ℎ (𝐴 ⊲⊳ 𝐵), 𝑣𝑐 (𝐴 ⊲⊳ 𝐵)], [𝑅(𝐶), 0])

Operator representation. The operator representation 𝑅𝑜 is a
combination of operator representations on all tables concerned in
the query. Each table has a list of four learned embedding vectors
𝑀𝑜 = [𝑜⊲⊳, 𝑜⊲⊳𝑁𝑁

, 𝑜⊲⊳𝑁𝑀
, 𝑜⊲⊳𝑁𝐻

], representing operator ⊲⊳, ⊲⊳𝑁𝑁 ,
⊲⊳𝑁𝑀 and ⊲⊳𝑁𝐻 respectively. When a table is joined, its operator
representation is selected from 𝑀𝑜 according to the used restricted
operator. For example, 𝑜⊲⊳𝑁𝑁

(𝐴) is taken as operator representation
𝑅𝑜 (𝐴) for table 𝐴 when it is joined with 𝐵 by operator ⊲⊳𝑁𝑁 . For
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tables whose restricted operators are not determined, their 𝑅𝑜 are
set to 0. The operator representation 𝑅𝑜 (𝑂) of a subplan 𝑆 = (𝐽 ,𝑂)
is the mean 𝑅𝑜 of all tables in the query (denoted as a set T ).

𝑅𝑜 (𝑂) =
1
|T |

∑︂
𝜏∈T

𝑅𝑜 (𝜏)

State-action pair evaluation. The value model predicts latency
values for each state 𝑆 with all its enumerated joins. As is shown in
Figure 4(c), the valuemodel includes two sub-networks called action
network and state network. The state network handles information
about subplan 𝑆 , and the action network takes the information of
enumerated join as input. The outputs of two sub-networks are
combined to produce predictions of 𝐶 (𝑆, 𝑎) for all four actions 𝑎
that share the same join but with different restricted operators.

The input of state network includes hidden vectors of all root
nodes in join tree set 𝐽 , along with the operator representation
𝑅𝑜 (𝑂). Through mean-pooling, the root node representations are
aggregated into join representation vector 𝑅 𝑗 . For the above exam-
ple, 𝑅 𝑗 is obtained by the following equation.

𝑅 𝑗 (𝐽 ) =
1
|𝐽 |

∑︂
𝜏∈ 𝐽

𝑣ℎ (𝜏) =
1
3
(𝑣ℎ (𝐴 ⊲⊳ 𝐵) + 𝑣ℎ (𝐶) + 𝑣ℎ (𝐷))

For the input of action network, LOGER calculates the hidden
vector of the produced new node specified by the enumerated join.
Taking the case shown in Figure 4(c) as an example, when 𝐴 ⊲⊳ 𝐵

and 𝐶 are joined together, the hidden vector of (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 is
calculated. Then the new hidden vector is inputted along with 𝑣ℎ of
the two joined nodes into action network. Value model combines
the output of state network and action network by a fully connected
(FC) layer to produce a vector of size 4, each element representing
𝐶 (𝑆, 𝑎) for an action 𝑎 with a specific restricted operator.

4.3 𝜖-Beam Search with Adaptive Exploration
Starting from an initial subplan in which none of the tables is joined,
LOGER generates plans step-by-step in ROSSwith predictions of the
value model. To select promising subplans in the vast search space,
we propose 𝜖-beam search, a variant of beam search with adaptive
exploration. Classic algorithms including 𝜖-greedy [26], UCB [2],
Boltzmann exploration [9] and Thompson sampling [20] perform
linear search, which preserves only one search path, denoted as a
list of sequentially chosen state-action pairs [(𝑆1, 𝑎1), (𝑆2, 𝑎2), . . .].
In contrast, beam search simultaneously searches on multiple paths
to seek globally better results. In addition, to introduce exploration,
𝜖-beam search performs random selection following the idea of 𝜖-
greedy algorithm, which is further guided by value model to select
potential actions. Besides, we apply an adaptive method to balance
between exploration and exploitation.

Combination of beam search and 𝝐-greedy. 𝜖-beam search pre-
serves 𝐾 search paths on each step, where 𝐾 is a constant. The
search paths are categorized into exploration paths (R-paths) and
exploitation paths (T-paths). R-paths refer to the search paths in
which at least one state is obtained by random pick, and T-paths in-
dicate that states in the search path are always obtained by selecting
the best ones according to predictions of value model. Before each
step, 𝜖-beam search determines the number of preserved R-paths
and T-paths in the next step. At least one R-path and one T-path
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Figure 5: An example of 𝜖-beam search. Solid lines represent
top-k selection procedure, and dashed lines represent ran-
dom picking from T-candidates to R-candidates.

are kept, and each of the rest 𝐾 − 2 paths becomes an R-path with
exploration probability 𝜖 or otherwise a T-path. In other words,
denoting the number of R-paths as 𝑘𝑟 and T-paths as 𝑘𝑡 , 𝑘𝑟 − 1
follows binomial distribution 𝐵(𝐾 − 2, 𝜖).

Figure 5 presents an example of 𝜖-beam search. When 𝑘𝑟 and
𝑘𝑡 are determined, 𝜖-beam search categorizes all enumerated state-
action pair candidates from current paths into R-candidates and
T-candidates. T-candidates are the pairs from current T-paths, and
the top 𝑘𝑡 pairs are selected as the next T-paths. In the example,
𝑆11 produces the next T-paths by selecting the best 2 candidates. R-
candidates are from two sources, including randomly picked 𝜆 × 𝑘𝑟
of the remaining T-candidates and all candidates from current R-
paths, where 𝜆 is a constant factor. 𝑆21 and 𝑆22 produce T-candidates
in the second step, and after deciding one T-path by top-1 selection,
4 T-candidates are randomly put into R-candidates along with the
pairs produced by 𝑆23. The subsequent R-paths are then decided by
top-𝑘𝑟 selection of R-candidates.

This example shows the advantage of 𝜖-beam search over both
𝜖-greedy and the original beam search. Top-𝑘𝑡 selection in the
second step compares candidates of different subplans 𝑆21 and 𝑆22,
providing a wide vision of the search space. In contrast, 𝜖-greedy
only compares locally among candidates of one state. Moreover, 𝜖-
beam search selects the exploration paths by choosing the predicted
best R-candidates instead of the random decision in 𝜖-greedy, which
ensures that LOGER explores promising plans in the extremely large
space. The original beam search is equivalent to 𝜖-beam search
when the number of R-paths 𝑘𝑟 = 0, which will always select
identical paths after convergence.

Adaptive exploration with probability adjustment. To balance
between exploration and exploitation, exploration probability 𝜖
should be initially large to sufficiently explore the search space and
gradually decrease during training. In addition, different queries
require distinct exploration probabilities. When a query is poorly
optimized with large relative latency, it requires more exploration
until reaching a fine performance. Increasing explorations of queries
with a long execution time also help improve the throughput of the
workload. LOGER utilizes a decay period 𝑁half for 𝜖 . Starting from
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an initial value 𝜖𝑖 , the distance between 𝜖 and a constant final value
𝜖𝑓 is half decreased after generating plans for 𝑁half queries. Mean-
while, 𝜖 (𝑞 𝑗 ) of each query 𝑞 𝑗 in workload Q is increased according
to a value 𝛼 (𝑞 𝑗 ) that varies with performance. The formulas are as
follows, where 𝑛 is the number of iterated queries during training.

𝜖𝑏 = 𝜖𝑖 + (𝜖𝑓 − 𝜖𝑖 ) (1 − 0.5𝑛/𝑁half )

𝜖 (𝑞 𝑗 ) = 𝜖𝑏 + (1 − 𝜖𝑏 ) (1 − 𝑒−𝜆𝑝𝛼 (𝑞 𝑗 ) )
𝛼 (𝑞 𝑗 ) = 𝛾𝑝𝛼rel (𝑞 𝑗 ) + (1 − 𝛾𝑝 )𝛼abs (𝑞 𝑗 )

The value of 𝛼 is composed of two parts 𝛼rel and 𝛼abs. 𝛼rel shows
whether the plan generated by LOGER is relatively poor compared
with the DBMS optimizer, obtained as follows, where 𝑙 𝑗 is the
relative latency of 𝑞 𝑗 and 𝑙 is the geometric mean of 𝑙 𝑗 .

𝛼rel (𝑞 𝑗 ) =
𝛼̂rel (𝑞 𝑗 )∑︁ | Q |

𝑘=1 𝛼̂rel (𝑞𝑘 )
, 𝛼̂rel (𝑞 𝑗 ) = max{𝑙 𝑗 − 𝑙, 0}

𝛼abs (𝑞 𝑗 ) shows whether 𝑞 𝑗 is one of the queries that require the
longest time to execute, with the plan generated by LOGER. It is
set to 1/⌈𝛾𝑎 |Q|⌉ if 𝑞 𝑗 is one of the slowest queries within a ratio 𝛾𝑎 ,
or otherwise 0.

We set 𝐾 = 4, 𝜆 = 2, 𝜖𝑖 = 0.8, 𝜖𝑓 = 0.2, 𝑁half = 200, 𝜆𝑝 =

0.5, 𝛾𝑎 = 0.125 and 𝛾𝑝 = 0.6 in our experiments. During testing,
exploration is disabled to stabilize performance by setting 𝑘𝑟 = 0.

5 MODEL TRAINING
In this section, we first introduce experience dataset, the data struc-
ture that stores rewards from execution, and then describe the loss
function of LOGER, which applies reward weighting and log trans-
formation to reduce variation caused by poor operators and handle
rewards of disastrous plans respectively.

5.1 Experience Dataset
LOGER trains the value model to predict the reachable lowest la-
tency 𝐶 (𝑆, 𝑎) for each state-action pair (𝑆, 𝑎). Since obtaining real
𝐶 (𝑆, 𝑎) is a costly process that requires exhausting the search space,
LOGER stores the reached lowest latency 𝑇 (𝑆, 𝑎) as the approxi-
mation of 𝐶 (𝑆, 𝑎) into experience dataset. When a latency value 𝑙
is obtained from the DBMS engine, 𝑇 (𝑆, 𝑎) of all state-action pairs
in the corresponding search path are updated, and the stored val-
ues are used to train the agent after each iteration. Denoting 𝑆 as
(𝐽 ,𝑂), when an old value of𝑇 ((𝐽 ,𝑂), 𝑎) does not exist, the value is
initialized with 𝑙 . Otherwise, 𝑇 ((𝐽 ,𝑂), 𝑎) is updated only when 𝑙 is
smaller than the original value, as is described in formula (1).

𝑇 ((𝐽 ,𝑂), 𝑎) := min{𝑇 ((𝐽 ,𝑂), 𝑎), 𝑙} (1)

To perform reward weighting in the loss function, another table
value 𝑇 ((𝐽 , /), 𝑎) is also updated through formula (1), where opera-
tor information 𝑂 is replaced with a placeholder. 𝑇 ((𝐽 , /), 𝑎) repre-
sents the minimum latency of all recorded pairs ((𝐽 ,𝑂′), 𝑎) that has
the same join order as 𝑆 = (𝐽 ,𝑂), named as operator-irrelevant la-
tency. The value of table entry ((𝐽 ,𝑂), 𝑎) is called operator-relevant
latency correspondingly.

The data in the experience dataset is not directly sampled for
training. Following the settings of Deep Q-learning [18], LOGER
keeps a replay memory, which is a queue with a limited capacity
that stores state-action pairs (𝑆, 𝑎) discovered during search. During

training, mini-batches of state-action pairs are sampled from the
queue, with their ground truth values obtained from 𝑇 . We set the
capacity to 4000 during training. When the capacity is exceeded,
the head items are discarded to make room for new items.

DRL methods typically face a cold-start problem due to insuffi-
cient knowledge for selecting actions of high quality initially, which
has to be alleviated by effective strategies [4]. LOGER introduces
initial knowledge by taking the DBMS optimizer as an expert model
to generate plans for each query in training workload, and stores
corresponding state-action pairs into experience dataset at the be-
ginning of training. Those experiences are then sampled from the
queue to train LOGER with expert knowledge.

5.2 Reward Weighting Loss with Log
Transformation

Since the execution latency is greatly influenced by both join order
and operators, directly learning to predict reached lowest latency
𝑇 (𝑆, 𝑎) can be extremely difficult, leading to issues on robust plan
generation. We list two major difficulties in detail below.

First, inefficient plans can result in disastrous latency values,
which cause great interference in model training. A value of relative
latency within the interval (0, 1) shows that the plan is better than
the DBMS optimizer’s plan. However, an improper plan can have a
large relative latency within [1, +∞). Such plans lead the latency
values to be scattered in a wide range, significantly increasing the
difficulty of value prediction.

Second, the interaction between join order and physical oper-
ators makes the latency vary drastically. The previously selected
poor operators in a subplan can thus influence the learning of sub-
sequent action selections. Consider an example in which two tables
𝐴 and 𝐵 are joined together with an efficient operator in subplan
𝑆1 and a poor one in 𝑆2. Although similar subplans 𝑆1 and 𝑆2 are
followed by the same subsequent action 𝑎 that joins 𝐴 ⊲⊳ 𝐵 and
𝐶 , (𝑆2, 𝑎) finally receives a latency significantly larger than (𝑆1, 𝑎).
This increases the difficulty in evaluating action 𝑎 for value model,
and easily causes underestimations of efficient actions.

To deal with the aforementioned difficulties of value prediction,
we propose a loss function with reward weighting and log transfor-
mation, through which the relative latency is transformed to a value
with a much smaller variance. Let 𝜃 denote all learnable parameters
of LOGER. For the output𝑄 (𝑆, 𝑎;𝜃 ) of the value model, LOGER uses
the following loss function 𝐿(𝜃 ), which will be explained below.

𝑦 = LT (RW (𝑆, 𝑎))
RW((𝐽 ,𝑂), 𝑎) = 𝑤𝑇 ((𝐽 ,𝑂), 𝑎) + (1 −𝑤)𝑇 ((𝐽 , /), 𝑎) (2)

LT(𝑥) =
{︃

ln(2 + ln𝑥) 𝑥 ≥ 1
ln(1 + 𝑥) 0 ≤ 𝑥 < 1 (3)

𝐿(𝜃 ) = (𝑄 (𝑆, 𝑎;𝜃 ) − 𝑦)2

Reward weighting. To reduce the impact of poor operators in
state 𝑆 = (𝐽 ,𝑂) on the evaluation of subsequent action 𝑎, we com-
bine operator-relevant latency 𝑇 ((𝐽 ,𝑂), 𝑎) and operator-irrelevant
latency 𝑇 ((𝐽 , /), 𝑎) by weighting with a factor 𝑤 as is shown in
formula (2). The weighted value is taken as the ground truth value
instead of directly using 𝑇 ((𝐽 ,𝑂), 𝑎). Reward weighting stabilizes
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the evaluation and prevents underestimation of action 𝑎 by de-
creasing the influence of previous operators, with a stable value
𝑇 ((𝐽 , /), 𝑎) that is irrelevant to operator information 𝑂 . Through
weighting, even if improper operators in 𝑆 lead to poor performance
with a high𝑇 ((𝐽 ,𝑂), 𝑎), the evaluation of a correct action 𝑎 will not
be largely affected, as the impact is reduced by taking 𝑇 ((𝐽 , /), 𝑎)
into consideration.

Reward weighting also encourages LOGER to search for better
join orders in preference to operators, with the drawback of select-
ing sub-optimal plans. We set𝑤 = 0.1 to balance the trade-off. We
will further demonstrate its effectiveness through experiments.

Log transformation. To reduce the impact of disastrous plans, the
log transformation function LT(·) in formula (3) is applied to the
weighted reward values. The key insight of LT(·) is to compress
the scattered poor reward values for reducing model sensitivity to
them and make LOGER focus more on distinguishing better plans.
For a plan better than the baseline, LT(·) maps the value to the
interval (0, 0.69). Meanwhile, it significantly compresses the range
of values for poorer plans. For example, the values of poor plans
scattered in a long range (1, 100] are mapped to a much smaller
interval (0.69, 1.89].

6 EXPERIMENTS
In this section, we describe the settings of our experiments in detail,
demonstrate the results of both LOGER and other competitors, and
show the effectiveness of components through ablation study.

6.1 Experiment Setup

Datasets and workloads.We conduct experiments on three dif-
ferent datasets: Join Order Benchmark [13] on IMDB, TPC-DS [19]
and Stack Overflow [15].

Join Order Benchmark (JOB) is a query workload established
on IMDB, a real-world dataset. Different from synthetic datasets,
IMDB is highly skewed and contains a large number of correlations,
bringing great challenges to query optimization. We load IMDB
dataset into the database and add all foreign keys. JOB consists
of 113 queries from 33 different templates, each query including
from 4 to 17 relations. To investigate LOGER’s performance on all
templates of JOB, the testing workload in the experiment contains
33 queries from 1a to 33a, with the remaining 80 queries as the
trainingworkload. Besides, following the split strategy of RTOS [29]
and Balsa [28], we perform tests on Balsa’s random split workload
(noted as JOB-RS below), which samples 19 queries as the testing
workload, to show more comprehensive results.

TPC-DS is a standard benchmark with data and query genera-
tor. We use a scale factor of 4 to generate data. Since most query
templates of TPC-DS are not SPJ templates, which are supported
by neither LOGER nor most competitors, we use only 20 simple
templates out of 99 for experiments. We choose 5 templates as the
testing workload and the rest as the training workload, ensuring
that all concerned tables in testing workload appear in training
workload.2 3 queries are generated for each template in both train-
ing and testing workload.

2The templates used as testing workload are 18, 27, 52, 82 and 98, and the templates in
training workload are 3, 7, 12, 20, 26, 37, 42, 43, 50, 55, 62, 84, 91, 96 and 99.

Stack Overflow (noted as Stack below) is a large real-world dataset
with 16 templates, each containing at least 100 queries with the
same join graph but different predicates. We discard templates 9 and
10 in our experiments since they are not for SPJ queries. Templates
1, 3, 5, 12, 14 and 16 are used as testing workload, with the rest as
training workload. We randomly pick 5 queries for each template
in testing workload, and 10 queries for each in training workload.

Database and environment settings. We do experiments on
PostgreSQL 13.5 with 64GB shared buffers. We disable GEQO and
apply the pg_hint_plan plugin to enable hints for PostgreSQL’s
query optimizer to implement ROSS. We also use an anonymous
commercial DBMS (noted as CommDB below) with its default set-
tings to test the generalization capability of LOGER. We implement
LOGER with Python 3.8 and Pytorch 1.8.0, and run experiments
on a Ubuntu 20.04 server with two Intel(R) Xeon(R) Gold 2.30GHz
CPUs, 256GB memory and an NVIDIA RTX 3090 GPU.

Training configuration.We train LOGER on training workload
for 200 epochs in each experiment. In an epoch, we shuffle the
queries in training workload and iteratively generate 𝐾 plans for
each query with 𝜖-beam search. After that, a mini-batch of size 128
is randomly sampled from experience dataset to train the network.
During training, we use Adam optimizer with an initial learning
rate 3 × 10−4, which is gradually decreased to 3 × 10−5 between
the 50th and the 100th epoch, and 3 × 10−6 until the 200th epoch.

To improve training speed, we use a random beam size from 1 to
4 during the first 10 epochs. As the agent does not have sufficient
knowledge initially, this strategy enables LOGER to perform quick
exploration. After 10 epochs, the beam size is set to 𝐾 = 4. Mean-
while, we cache the latency of plans to avoid repetitive execution.
We also set a timeout limit on plan execution. When the execution
latency of a plan exceeds the limit, the execution is terminated and
LOGER uses an estimation instead of real latency𝑇exe (·). Denoting
cost(·) as the DBMS I/O cost model, the estimation is obtained
through the following approximation formula.

𝑇exe (𝑆) ≈
cost(𝑆)
cost(𝑆𝑏 )

𝑇exe (𝑆𝑏 )

We use 4x the longest execution latency of training workload
queries as the timeout limit in each experiment. Besides, we limit
the plan tree structure as left-deep in experiments of JOB, JOB-RS
and TPC-DS, which significantly reduces the search space while
preserving the most promising plans. Left-deep restriction is fairly
efficient as a left-deep plan can exploit existing indexes and is suit-
able for the execution pipeline. We do not use left-deep restriction
on Stack as it requires bushy plans for some queries, but we disallow
bushy plans in the first 4 epochs to stabilize the performance.

Metrics. We apply two major metrics to evaluate the performance.
Workload relative latency (WRL) shows the total execution la-

tency on the entire workload. In query workload Q, letting 𝑆𝑏𝑖 and
𝑆𝑖 represent the plan generated by DBMS optimizer and LOGER
for query 𝑞𝑖 respectively, WRL is calculated as follows. We can see
that 1/WRL represents the speedup of workload latency, which is
used as a metric in a number of previous methods [15, 28].

WRL(Q) =
∑︁
𝑞𝑖 ∈Q 𝑇exe (𝑆𝑖 )∑︁
𝑞𝑖 ∈Q 𝑇exe (𝑆𝑏𝑖 )
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Geometric mean relative latency (GMRL) [29] is the geometric
mean of relative latency within the workload, calculated as follows.

GMRL(Q) = |Q|

⌜⎷ ∏︂
𝑞𝑖 ∈Q

𝑇exe (𝑆𝑖 )
𝑇exe (𝑆𝑏𝑖 )

From the formulas above, it can be seen that lower WRL and
GMRL indicate higher optimization performance. WRL and GMRL
evaluate the performance from distinct aspects. WRL demonstrates
overall execution latency, which focuses more on slow queries.
GMRL focuses on query-wise relative latency speedup and fairly
evaluates both fast and slow queries, but is not able to measure
total speedup on the workload.

Apart from these two major metrics, we show other details in-
cluding model training time and the average inference time during
testing for more comprehensive analyses. The metrics on both
training and testing workload are evaluated every 4 epochs.

Comparison. We compare LOGER with the following prior state-
of-the-art learned query optimizers, along with a simple baseline
denoted as PG-NoMerge below.

PG-NoMerge improves the performance of PostgreSQL by dis-
abling the merge join operator on the entire workload. We do not
use disabling nested loop join or hash join as a baseline, since we
find that it leads to a slowdown on JOB with no apparent advantage
on other workloads compared with PG-NoMerge, which produces
stabler performance.

RTOS [29] is a learned query optimizer that uses Tree-LSTM
to vectorize subplans. RTOS focuses on join order selection only,
leaving physical operator selection to the DBMS optimizer.

Bao [15] is a learned query optimizer that relies on the DBMS
optimizer to generate plans. Different from most previous methods
that select plans from the plan search space, Bao selects from a
number of arms, each arm representing a set of global parameters
that disables specific operators. Bao leverages the DBMS optimizer
to generate a plan for each parameter set and selects the predicted
best one. We configure Bao to select from 5 arms in our experiments.

Balsa [28] is a learned query optimizer that completely avoids
the participation of the DBMS optimizer by bootstrapping from a
simulator. Balsa further introduces a variant of beam search and
applies a timeout mechanism to handle disastrous plans. Balsa
provides two modes that require training 1 agent and 8 agents
respectively. Since the time cost of training 1 agent is similar to
that of LOGER, we perform experiments on the former mode.

Experimental design. We demonstrate LOGER’s performance on
both PostgreSQL and CommDB, analyze its per-query speedup and
tail performance, and make a comparison with previous methods
in terms of WRL, GMRL, training time and average inference time.
An analysis for generalizing to the updated schema by incremental
training is also shown in the experiments.

Furthermore, we verify the effects of components and design
choices including (1) 𝜖-beam search algorithm, (2) ROSS, (3) GT
layer and pooling method in query representation module, (4) re-
ward weighting and log transformation, (5) expert knowledge in
experience dataset and (6) left-deep restriction, by ablation study.
Through this process, we analyze the effects on a number of issues
including cold-start ability, training stability and final performance.

6.2 Overall Performance and Comparison

Performance overview. Figure 6 shows the performance on differ-
ent workloads on PostgreSQL, from which we can see that LOGER
quickly outperforms PostgreSQL’s optimizer and finally reaches
a high performance on both JOB, TPC-DS and Stack. The solid
lines in the figure indicate testing workload performances, and
transparent lines are for training workload performances. LOGER
outperforms PostgreSQL after 12 epochs (about 2 hours) and fi-
nally reaches 0.502(train)/0.482(test) in WRL, which indicates a
1.990x/2.076x total speedup, and 0.426/0.664 in GMRL on JOB.
The shades in Figure 6 show relative latency from 25% to 75% of
queries in testing workload. After sufficient training, about 75% of
queries reach a relative latency lower than 1.1, and 25% of queries
are lower than 0.4. We can also see that LOGER performs well on
TPC-DS and Stack. An interesting phenomenon is that WRL on
Stack testing workload is much higher than on training workload,
which is caused by PostgreSQL’s weakness on template 16 with an
average time of 2.5 secs. In contrast, LOGER can reduce the aver-
age to 0.3 sec, significantly improving the workload performance.
Besides, we can see that LOGER has a similar WRL but a higher
GMRL on JOB-RS than on JOB. The time required to outperform
the DBMS optimizer is also much longer, indicating that JOB-RS is
a more challenging workload.

To verify whether LOGER can generalize to different database
systems, we test it on JOB workloads on CommDB as is shown in
Figure 7, from which we can find that LOGER also quickly reaches
a better performance than CommDB’s optimizer, and achieves
0.417(train)/0.474(test) in WRL and 0.526/0.508 in GMRL after 200
epochs. The results show that LOGER can cooperate with different
DBMS optimizers by ROSS to achieve better performance.

Workload latency analysis. A robust learned query optimizer
should not only produce efficient plans for most queries but also en-
sure a good tail performance, i.e. good performance for the poorest
optimized queries. LOGER has a total execution latency speedup
of 52.96 seconds on JOB training workload, and 13.25 seconds on
testing workload. Figure 9 shows the execution latency distribution
on JOB. About 55% of queries achieve a speedup of at least 50ms on
training workload, and 42% achieve a speedup of 50ms on testing
workload. Although a few queries with relatively poor performance
do exist, the largest slowdown is not disastrous. While 12% of test
workload queries reach a speedup higher than 1000ms, the poorest
is slowed down by only less than 500ms. From the results, we can
see that LOGER not only produces efficient plans for most queries
but also has a robust performance on the poorest optimized ones.

Performance on a changed schema. LOGER is designed to be
capable of responding to schema changes through incremental
training. For each table in the database, LOGER holds a set of learned
parameters, including the learned embedding vector 𝑅𝑡 , the learned
matrix 𝑀𝑐 and the learned operator representation 𝑀𝑜 . When a
new table is created, LOGER randomly initializes these parameters
for the new table and fine-tunes the network on the previously
trained checkpoint. We first train LOGER on JOB workload that
excludes all queries containing table char_name for 100 epochs, and
then train on the entire workload for another 100 epochs. The red
and green curves in Figure 8 show the performance of LOGER on
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Figure 6: Performance of LOGER on PostgreSQL. Solid lines and transparent lines show the performances on testing workloads
and training workloads respectively. The shades show relative latency from 25% to 75% of queries in testing workload.
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Figure 9: Execution latency speedup on JOB workload, com-
pared with plans produced by PostgreSQL’s optimizer.

all queries of char_name when responding to the schema update.
Initially, LOGER has no information about the new table and has to
exploit the information of other tables to select plans for the new
queries. After 8 epochs of incremental training, LOGER performs
better than PostgreSQL on the new queries, and finally reaches
convergence on both training and testing workload.

Comparison with other methods. We compare LOGER with
PG-NoMerge, RTOS [29], Bao [15] and Balsa [28] on each workload.

Table 2 showsWRL, GMRL, average inference time𝑇inf and training
time 𝑇train of the methods, from which we can see that LOGER has
highly competitive performance on all workloads with reasonable
training and inference time. The results of PG-NoMerge show that
globally disabling merge join operator performs well on Stack, but
generally has very limited performance. As RTOSmakes no decision
on physical operators, LOGER can produce better results than it.
The performance of Bao is also limited since it selects from only a
small set of global settings. Balsa outperforms RTOS and Bao on
JOB-RS and TPC-DS, but it fails to train on Stack. Only less than
20% of its training process is completed in 60 hours. This issue also
occurs on RTOS.We further find that both RTOS and Balsa generate
disastrous plans on Stack initially and are unable to outperform
PostgreSQL afterwards.

6.3 Ablation Study
Through the following experiments, we analyze the design choices
of LOGER shown in Table 3. We individually use alternatives to
replace each component and test LOGER on JOB workload. Apart
from WRL and GMRL of the last epoch, we use 𝜎last, the standard
deviation of WRL in the last 50 epochs, to show training stability
towards convergence. From the results, we can conclude that all
replacements degrade performance to different extents.

Effect of 𝜖-beam search. Since 𝜖-beam search adopts the idea
of the 𝜖-greedy algorithm, we analyze both the advantage of in-
troducing the idea of 𝜖-greedy and the advantage over 𝜖-greedy.
The results show that 𝜖-beam search is significantly better than
both 𝜖-greedy and original beam search without exploration, on
both performance and training stability. 𝜖-greedy fails to reach a
performance better than PostgreSQL’s optimizer. The original beam
search is much more stable on training workload with lower perfor-
mance, since it makes no exploration and selects almost the same
plans in the last 50 epochs. However, this leads to low and unstable
performance on testing workload because the model cannot learn
sufficient information for generalization.

Effect of ROSS. ROSS balances between complete dependence on
the DBMS optimizer and learning to select physical operators. We
experiment on both searching in DOSS and selecting only join order
while depending on the DBMS optimizer to select operators. LOGER
with ROSS achieves the best performance on testing workload,
and both alternatives are inferior to ROSS. Meanwhile, it can be
seen from 𝜎last that searching is much less stable in DOSS than in
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Table 2: Results of LOGER and other methods on different training and testing workloads and metrics. JOR, TDS and STK are
the abbreviations of JOB-RS, TPC-DS and Stack respectively. TLE means the competitor cannot finish training. 𝑇inf represents
the average inference time, and 𝑇train represents the training time.

Ours (LOGER) PG-NoMerge RTOS Bao Balsa
JOB JOR TDS STK JOB JOR TDS STK JOB JOR TDS STK JOB JOR TDS STK JOB JOR TDS STK

WRL 0.50 0.54 0.56 0.85 1.00 1.00 1.01 0.64 0.62 0.83 0.53 TLE 0.81 0.68 0.86 1.01 0.56 0.55 1.34 TLETraining
workload GMRL 0.43 0.48 0.80 0.97 0.97 0.97 1.01 0.90 0.65 0.65 0.89 TLE 0.96 0.96 0.96 0.83 0.85 0.86 1.22 TLE

WRL 0.48 0.54 0.47 0.55 1.00 1.00 0.99 0.83 0.80 0.88 0.73 TLE 0.58 0.70 0.79 0.75 1.02 0.59 0.49 TLETesting
workload GMRL 0.66 0.87 0.69 0.85 0.97 1.00 1.00 0.98 0.84 0.94 0.97 TLE 1.00 0.87 0.86 0.68 1.22 1.09 0.95 TLE
𝑇inf /ms 59.6 53.0 37.0 49.2 N/A N/A N/A N/A 72.7 64.0 14.8 TLE 92.5 73.3 18.6 158 188 160 44.9 TLE
𝑇train/h 23.2 25.0 5.6 15.6 N/A N/A N/A N/A 7.2 7.0 0.9 TLE 6.2 6.0 1.9 7.2 22.3 17.9 9.3 TLE
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Figure 10: WRL of LOGER and a number of alternatives that have a major impact on cold-start ability and training stability.
Transparent lines show the original values, and solid lines show smoothed values to better visualize the results.

Table 3: The results of the ablation study. 𝜎last refers to the
standard deviation of WRL in the last 50 epochs.

Experiment Training workload Testing workload
WRL GMRL 𝜎last WRL GMRL 𝜎last

Original LOGER 0.502 0.426 0.051 0.482 0.664 0.022
𝜖-greedy 1.039 0.940 0.154 0.980 1.061 0.284

No exploration 0.830 0.510 0.006 0.778 0.717 0.164
Searching in DOSS 0.606 0.450 0.026 0.572 0.703 0.113
No join operators 0.630 0.573 0.003 0.576 0.700 0.019

No GT layer 0.551 0.497 0.040 0.626 0.720 0.027
No weighting 0.548 0.503 0.064 0.500 0.649 0.336

Simple log function 0.578 0.543 0.054 0.571 0.719 0.149
Mean-pooling 0.579 0.477 0.028 0.563 0.657 0.107
Sum-pooling 0.542 0.451 0.023 0.656 0.646 0.087

No expert knowledge 0.565 0.470 0.030 0.576 0.619 0.127
Bushy plan space 0.536 0.541 0.038 0.557 0.694 0.046

ROSS. The results are not surprising as restricted operators decrease
the difficulty of operator selection while keeping the potential to
explore efficient plans. The stability of selecting only join order
is even better than ROSS since the search space is much smaller,
but the operators are completely decided by the DBMS optimizer,
resulting in fewer chances to achieve better performance.

Effect of GT layer for query representation. The function of GT
is to capture relationships between tables and predicates along with
structural information of the join graph into table representations.
We discard GT and directly use the initial representations 𝑅̂ of tables
as the final representations 𝑅 in the experiment. It can be seen from
Table 3 that without GT, the query representation module is unable
to capture sufficient information, leading to worse generalization
on testing workload.

Effect of reward weighting and log transformation. For the
experiment of reward weighting, we set the weight factor𝑤 to 1,
indicating that only operator-relevant latency is used. Such a modi-
fication results in a worse WRL but a slightly better GMRL, along
with a disastrous 𝜎last indicating extremely unstable performance,
as reward weighting makes a trade-off between the robustness and
the efficiency of plans. We also test the effect of the log transfor-
mation function LT in formula (3) by replacing it with a simple
log(𝑥 + 1) function. The log transformation helps stabilize the per-
formance, while the simple log function cannot handle disastrous
reward values, incurring a low and unstable performance.

Effect of other alternatives on model performance. Query
representation module aggregates column-level information by
max-pooling. We test its reasonableness by replacing it with mean-
pooling and sum-pooling respectively. It can be seen on testing
workload that max-pooling achieves a much better WRL and the
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stablest performance but a slightly worse GMRL than the alterna-
tives. Since columns are equally handled, mean- and sum-pooling
may capture more complete information, but they lack the ability
to focus on columns with small selectivities which have the most
influence on the outputs of table scans.

To test the effectiveness of introducing expert knowledge, we
disable the initialization of experience dataset with expert plans.
The original LOGER has a higher GMRL but much better WRL and
𝜎last than the alternative. Although the expert knowledge might
lead to sub-optimal plans for some queries, it enables LOGER to
avoid poor plans initially, significantly improving training stability.

We also run an experiment on JOB without left-deep restric-
tion, and find that the performance on testing workload decreases.
Searching in bushy plan space leads to a higher potential to find
better plans, but it also significantly enlarges the space and makes
searching for efficient plans much harder, and finally reaches a
lower performance on JOB.

An overall analysis of cold-start ability and training stability.
Figure 10 shows the variation of WRL with epochs using a number
of different alternatives that have a major impact on cold-start
ability and training stability. Since the original values fluctuate
severely, we smooth the curves for better visualization. 𝜖-beam
search makes the greatest improvement on these issues. It can be
seen that on both training and testing workload, replacing it with
𝜖-greedy causes a cold-start issue and a low performance with
drastic fluctuation. Both removing reward weighting and removing
expert knowledge make LOGER much harder to train from scratch,
showing that these methods help search for efficient plans and are
crucial for fast convergence. Allowing bushy plans raises a similar
issue on JOB workload, making LOGER spend much more time to
outperform PostgreSQL’s optimizer. Besides, the training stability
of using DOSS is lower than that of using ROSS, and LOGER finally
reaches an inferior performance with DOSS.

7 RELATEDWORK

Learned query optimizers. In recent years, various learned query
optimizers have been proposed. ReJOIN [17] provides an idea of
using reinforcement learning to select join orders. ReJOINmakes no
consideration of physical operator selection, relying on the DBMS
optimizer’s operator selection algorithm. DQ [12] further presents
an idea to predict the estimated cost of each subplan by a value
model and fine-tune the model by using real execution latency.
Despite the limited performance, the insights of these methods
have made great contributions to later proposed learned query
optimizers. To solve the ambiguity problem caused by flat vector
subplan representations applied in ReJOIN and DQ, RTOS [29]
utilizes tree-structured representations, which are vectorized by
Tree-LSTM [24]. Similar to ReJOIN, RTOS only focuses on join order
selection, which causes limitations to the performance. Neo [16]
demonstrates the possibility to replace the traditional optimizer
with a learned optimizer for SPJ queries. Neo initializes the model
by training with plans generated by an expert optimizer and fine-
tunes it to obtain a query optimizer that selects both join order and
physical operators. Balsa [28] uses a simple simulator to replace
the expert optimizer in Neo and applies various other strategies to
completely avoid dependence on a traditional optimizer.

Our method proposes an idea to utilize knowledge of a tradi-
tional non-learning optimizer by restricted operator search space,
which shares similar insight with Bao [15]. Established on top of a
traditional optimizer, Bao optimizes the plan by globally enabling
or disabling specific physical operators. While Bao achieves sta-
ble performance, small search space limits its performance as it
relies on the traditional optimizer to generate plans. In contrast, our
method specifies join order along with physical operator restriction
on each join, and thus the search space is much larger with a higher
potential to contain efficient plans.

Deep learning for database.With the great success of deep learn-
ing, database researchers seek to leverage advances of deep learning
into different components of DBMS and achieve promising results.
Previous works include but are not limited to learned index based
on a recursive model [11], GNN-based entity resolution [3], car-
dinality estimation based on multi-task learning [23], RL-based
database tuning [14], RL-based query scheduler [21], etc. The suc-
cess of these methods shows the great potential of adapting deep
learning methods to fields of database.

Graph neural networks. Graph neural network (GNN) is a type
of network that learns node representations by embedding features
into graph-structured data, which supports various downstream
tasks [27]. With Graph Convolutional Network [10] as a pioneering
method, a number of variants including Graph Transformer [5] have
emerged in recent years. GT adopts the insight of Transformer [25]
into GNN to capture relationships between adjacent nodes, and
integrates structural information into each node representation
through positional encoding, achieving competitive performance on
various datasets [1, 8]. In LOGER, we use a join graph to represent
each query and apply GT on it to produce table representations.

8 CONCLUSION
We propose LOGER, a learned query optimizer towards generating
efficient and robust plans. We improve representation expressive-
ness by applying GT to the join graph of each query. We intro-
duce ROSS to reduce difficulties in searching for efficient plans by
leveraging the knowledge of DBMS optimizer, and propose 𝜖-beam
search to find potentially better plans while adaptively balanc-
ing exploration and exploitation. Robustness is further improved
by a loss function with reward weighting and log transformation.
Experiments show that our method achieves highly competitive
performance on both PostgreSQL and a commercial DBMS and
outperforms previous state-of-the-art learned optimizers, and that
all the proposed components have a positive effect on performance.

We plan to extend LOGER in the following aspects. We will
further study resource-aware or hardware-aware plan generation
to adapt LOGER to different environments. It’s also necessary to
improve the method to support more complicated predicates like
subqueries. Furthermore, we are seeking a way to employ more
sophisticated DRL techniques to further improve robustness and
performance.

ACKNOWLEDGMENTS
Thisworkwas partially supported byNSFC under Grant No.61832001
and 62272008, and ZTE-PKU Joint Program.

1788



REFERENCES
[1] Emmanuel Abbe. 2017. Community detection and stochastic block models:

recent developments. The Journal of Machine Learning Research 18, 1 (2017),
6446–6531.

[2] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397–422.

[3] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1335–1349. https://doi.org/
10.1145/3318464.3389742

[4] NanDing and Radu Soricut. 2017. Cold-start reinforcement learningwith softmax
policy gradient. Advances in Neural Information Processing Systems 30 (2017).

[5] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[6] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[7] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Trans. Database Syst. 9, 3 (1984), 482–502.

[8] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G
Coleman. 2012. ZINC: a free tool to discover chemistry for biology. Journal of
chemical information and modeling 52, 7 (2012), 1757–1768.

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237–285.

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR 2017.

[11] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In SIGMOD 2018. 489–504.

[12] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[13] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[14] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning Systemwith Deep Reinforcement Learning. Proc. VLDB Endow.
12, 12 (2019), 2118–2130. https://doi.org/10.14778/3352063.3352129

[15] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making learned query optimization practical.

ACM SIGMOD Record 51, 1 (2022), 6–13.
[16] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[17] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for
join order enumeration. In Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management. 1–4.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[19] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. 2002. Tpc-ds, taking
decision support benchmarking to the next level. In Proceedings of the 2002
ACM SIGMOD international conference on Management of data. 582–587.

[20] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
et al. 2018. A tutorial on thompson sampling. Foundations and Trends® in
Machine Learning 11, 1 (2018), 1–96.

[21] Ibrahim Sabek, Tenzin SamtenUkyab, and TimKraska. 2022. LSched: AWorkload-
Aware Learned Query Scheduler for Analytical Database Systems. In SIGMOD
2022. ACM, 1228–1242. https://doi.org/10.1145/3514221.3526158

[22] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1989. Access path selection in a relational data-
base management system. In Readings in Artificial Intelligence and Databases.
Elsevier, 511–522.

[23] Ji Sun andGuoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[24] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved se-
mantic representations from tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 (2015).

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS 2017. 5998–6008.

[26] Christopher John Cornish HellabyWatkins. 1989. Learning from delayed rewards.
(1989).

[27] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24.

[28] Zongheng Yang,Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
arXiv preprint arXiv:2201.01441 (2022).

[29] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
learning with tree-lstm for join order selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297–1308.

1789

https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.1145/3514221.3526158
https://doi.org/10.14778/3368289.3368296

	Abstract
	1 Introduction
	2 Method Framework
	3 Query Representation
	3.1 Join Graph Construction
	3.2 Query Representation Module

	4 Plan Search
	4.1 Restricted Operator Search Space
	4.2 Value Model for State-Action Evaluation
	4.3 ε-Beam Search with Adaptive Exploration

	5 Model Training
	5.1 Experience Dataset
	5.2 Reward Weighting Loss with Log Transformation

	6 Experiments
	6.1 Experiment Setup
	6.2 Overall Performance and Comparison
	6.3 Ablation Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

